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Abstract
Depth separation results propose a possible theoretical explanation for the benefits of deep neural
networks over shallower architectures, establishing that the former possess superior approximation
capabilities. However, there are no known results in which the deeper architecture leverages this
advantage into a provable optimization guarantee. We prove that when the data are generated
by a distribution with radial symmetry which satisfies some mild assumptions, gradient descent
can efficiently learn ball indicator functions using a depth 2 neural network with two layers of
sigmoidal activations, and where the hidden layer is held fixed throughout training. By building
on and refining existing techniques for approximation lower bounds of neural networks with a
single layer of non-linearities, we show that there are d-dimensional radial distributions on the
data such that ball indicators cannot be learned efficiently by any algorithm to accuracy better
than Ω(d−4), nor by a standard gradient descent implementation to accuracy better than a constant.
These results establish what is to the best of our knowledge, the first optimization-based separations
where the approximation benefits of the stronger architecture provably manifest in practice. Our
proof technique introduces new tools and ideas that may be of independent interest in the theoretical
study of both the approximation and optimization of neural networks.

1. Introduction

In recent years, several theoretical papers have provided a possible explanation for the benefits of
using deep neural networks over shallower architectures, by proving depth separation results (Eldan
and Shamir, 2016; Telgarsky, 2016; Poole et al., 2016; Daniely, 2017; Yarotsky, 2017; Liang and
Srikant, 2017; Safran and Shamir, 2017; Poggio et al., 2017; Safran et al., 2019; Venturi et al., 2021).
Simply put, these results show the existence of some function that can be approximated efficiently by
a neural network with a certain depth, whereas a shallower architecture might require exponentially
many more neurons to achieve the same accuracy. Such results may suggest that the reason that
deeper networks perform better in practice stems from their superior approximation capabilities. In
contrast, the network configuration that is achieved in practice when a neural network is trained is
strongly dictated by the learning algorithm used in its optimization. While it is clear that the ability
of a certain architecture to approximate a function efficiently is a necessary condition for being able
to learn it successfully, it is not obvious to what extent - if at all - this is also a sufficient condition.
Indeed, several recent works have shown that in some cases, the same ‘extreme’ properties that
give rise to the inapproximability of these hard functions when using shallower architectures may
also prove detrimental for optimization using the deeper architecture (Malach and Shalev-Shwartz,
2019; Malach et al., 2021). This suggests that certain results used to demonstrate the benefits of
depth such as the one shown in Telgarsky (2016) are in a sense ‘too strong’, and that arguably, one of
the main incentives for studying the approximation power of neural networks (namely, its necessity
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for proving a positive optimization result) is absent in such cases. Moreover, if inapproximability
using a shallow architecture may in fact turn out to imply the inability to optimize efficiently using
the deep architecture in a more general setting, then this would suggest that the approximation
capabilities of a neural network have little impact on its optimization, perhaps further demotivating
the study of neural network approximation from a practical perspective.

In light of the above, to theoretically explain the practical success of depth via the lens of
function approximation, we would need to show that the benefits of depth will also manifest in
practice. While a learning algorithm can simply deterministically return the efficient approximation
of the hard function by utilizing depth for a specific problem setting, this is unsatisfactory; such a
setting would not explain why deeper neural networks achieve better results in practice, since these
are typically trained using first-order optimization methods such as gradient descent (GD) or its
more sophisticated variants. We are now lead to the following question:

Can we show an optimization-based separation result, in which a simple architecture
cannot approximate efficiently (implying the hardness of learning with such architec-
ture), yet a stronger architecture can provably learn with a polynomial sample size,
network size and running time, using a first-order optimization method?

In this paper, we answer this question in the affirmative by proving that a neural network with a
single hidden layer with sigmoidal activations and an additional non-linearity in the output neuron
can learn ball indicator functions efficiently (functions of the form x 7→ 1 if and only if ∥x∥2 ≤ λ
for some λ > 0). In contrast, by using a reduction technique of Safran and Shamir (2017), we
show that ball indicators cannot be approximated efficiently to accuracy better than Ω(d−4) using
depth 2 neural networks when we are not allowed to use an additional non-linearity in the output
neuron. Moreover, using a technique introduced in Daniely (2017), we provide new lower bounds
for approximating ball indicators, showing that getting better than constant accuracy requires that
either the width or the Euclidean norm of the weights of the network grow exponentially in either
d or 1√

ϵ
(ϵ being the desired accuracy). By bounding the progress of GD in a standard setting, this

leads to a similar exponential lower bound on its running time. Overall, these establish what is to
the best of our knowledge, the first separation results where the benefits of the stronger class of
networks for function approximation manifests in practice and facilitates efficient optimization.

The remainder of this paper is structured as follows: After presenting our contributions in more
detail below, we turn to discuss related work in Subsection 1.2. In Sec. 2, we first introduce relevant
definitions and notation before we present our setting and problem formulation in Subsection 2.1.
Thereafter, our main results are presented in Subsection 2.2, followed by a formal definition of
the distributions they use in Subsection 2.3. Sec. 3 contains our approximation lower bounds for
ball indicator functions that our main results build upon. In Sec. 4, we turn to show a positive
optimization result for learning ball indicators.

1.1. Our Contributions

• We show that there exist a sequence {Dd}∞d=2 of d-dimensional heavy-tailed distributions and
a sequence of constants {λd}∞d=2 where λd ∈ [1, 2] for all d, such that no neural network of
depth 2 with a single layer of non-linearities and width less than Ω (exp(Ω(d))) can approxi-
mate ball indicator functions with radii {λd}∞d=2 to accuracy better than Ω(d−4) (Thm. 4).

2



OPTIMIZATION-BASED SEPARATIONS FOR NEURAL NETWORKS

• In a slightly different approximation setting, we show that there exist a sequence {D′
d}∞d=2 of

d-dimensional compactly-supported distributions and a sequence of constants {λd}∞d=2 where
λd ∈ [1, 2] for all d, such that any neural neural network of depth 2 with a single layer of non-
linearities which achieves accuracy O(m−2) for natural m ≥ 1 on ball indicators with radii
{λd}∞d=2 must have width or weight norm exponential in either d or m (Thm. 5).

• We prove that under certain assumptions on the distribution of the data (Assumption 6), a neu-
ral network with two layers of non-linear activations (see Eq. (2) for the formal architecture)
can efficiently learn data labeled by a ball indicator function with radius in [1, 2], and attain
arbitrarily small population loss by using GD with a standard initialization (Assumption 7),
where the hidden layer is held fixed throughout training (Thm. 8).

• Welding our lower bounds together with the positive optimization result, we derive our main
theorems (Thm. 2 and Thm. 3) which are optimization-based separation results. We show
that no algorithm returning a depth 2 network with a single layer of non-linearities can effi-
ciently learn ball indicators with respect to {Dd}∞d=2 to accuracy better than Ω(d−4), whereas
optimizing using a standard GD setting on a depth 2 network cannot efficiently learn ball
indicators with respect to {D′

d}∞d=2 to more than constant accuracy with overwhelming prob-
ability. In contrast, optimizing using a standard GD setting on our stronger architecture which
employs more than a single layer of non-linear activations will succeed in learning with re-
spect to both distributions with high probability.

Next, we turn to discuss and compare related work in the literature that is most relevant to ours.

1.2. Related Work

Depth Separations in Neural Networks. For concreteness, let us focus here on works that separate
depth 2 from 3 where the target function and the domain of approximation are continuous. In their
seminal work, Eldan and Shamir (2016) provided the first such depth separation. The authors show
that a certain radial function consisting of a superposition of polynomially many thin shells cannot
be approximated to accuracy better than an absolute constant using a depth 2 network, unless the
width is exponential in the input dimension. Building on their work, Safran and Shamir (2017)
provide a more natural separating target function by reducing the more complicated hard function
to a ball indicator. Additionally, the authors also demonstrate empirically that depth 3 networks
outperform depth 2 networks in learning ball indicators, even if the shallow network has many more
trainable weights. While we build on a similar proof strategy as in the aforementioned paper, our
work differs from theirs in that they show that for a ball indicator function of any radius, there exists
a distribution under which it is hard to approximate using depth 2 networks, whereas our work shows
that for a specific distribution there exists a ball indicator function with radius in the interval [1, 2]
which is hard to approximate using a depth 2 network. Moreover, our main result rigorously proves
the learnability of the target function used in their experiment. An additional similar separation is
given by Daniely (2017), where the approximation is in a compact domain and the target function
oscillates polynomially many times in the input dimension, and where an exponential bound on the
magnitude of the weights of the depth 2 network is imposed. Venturi et al. (2021) provide separation
results with respect to product distributions on the data and target functions that do not necessarily
possess radial symmetry.
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Unlearnability of Depth Separations. As discussed earlier in the introduction, there are known
cases where the same property that gives rise to a negative approximation result for shallow networks
is also detrimental for optimization using the deeper architecture. Malach and Shalev-Shwartz
(2019) have shown a depth separation result on fractal-like distributions with a natural coarse-to-
fine structure that prompts the use of depth to achieve efficient approximation. On the other hand,
they show that such distributions are intrinsically difficult to learn using gradient methods since the
gradient will be exponentially close to zero with overwhelming probability, even if the architecture
being optimized is able to achieve zero loss on the distribution. Building on a similar technique,
Malach et al. (2021) show that if a depth 3 neural network cannot approximate a target function
efficiently, then a deeper architecture will also be prone to failure if optimized using gradient meth-
ods. As a specific corollary, this implies that the depth separation result shown in Telgarsky (2016),
which exploits the ability of deep ReLU networks to compute piece-wise linear functions with a
large number of segments, also results in a function that is hard to optimize over using gradient
methods. In Vardi et al. (2021a), the authors show that there is a natural proof barrier for proving
depth separations between networks of depth 4 and deeper architectures, when the target functions
have ‘benign’ properties, such as polynomially-bounded Lipschitz constant and being able to be
computed efficiently. This, in a certain sense, suggests the opposite implication of Malach and
Shalev-Shwartz (2019); Malach et al. (2021); that it might be difficult to show depth separations
with functions that have some properties that are desired in practice to ensure learnability.

Learning a Single Neuron. In our positive optimization result, by holding the weights of the
hidden layer fixed throughout training, we essentially reduce our problem to that of learning with
a single neuron using gradient methods. This setting has been studied in several recent works.
Yehudai and Shamir (2020); Vardi et al. (2021b) show the convergence of GD and some of its
variants on the population loss objective, with constant or high probability and with or without a
bias term, under various distributional assumptions on the data and in the realizable setting. In
contrast, our work deals with the non-realizable case, assumes a ball indicator target function, and
provides a convergence guarantee with high rather than constant probability for radial distributions.
Frei et al. (2020) provide an agnostic (in the non-realizable setting) analysis for learning with finite
data while making few assumptions on the problem. However, their result does not imply linear
convergence of GD as opposed to ours, and does not guarantee attaining loss which is arbitrarily
close to the global minimum.

Neural Network Approximation Using Random Features. Many works used the technique of
random features to approximate various target functions, which is potentially used to derive positive
optimization results for neural networks (Bach, 2017; Ji et al., 2019; Bai and Lee, 2019; Allen-Zhu
et al., 2019; Yehudai and Shamir, 2019; Chen et al., 2020; Ghorbani et al., 2021). A major difference
that sets our work apart from these is that other works perform their approximation on a bounded
domain, whereas we show the convergence of random features for heavy-tailed distributions that
generate data with a very large norm. On the downside, we merely show the approximation of
ball indicator target functions, whereas the works cited above show approximation of a family of
polynomials or even more general target function classes.

Learning More than a Single Layer of Non-linearities. The problem of learning a neural
network which has more than a single layer of non-linearities has been addressed by several papers
in recent years. In Goel and Klivans (2019), the authors study a similar architecture to the one we
use to show a positive optimization result, where an additional non-linear activation is employed
on the output neuron. In Allen-Zhu et al. (2019), the authors prove that a certain class of depth
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3 target functions can be improperly learned using depth 3 networks with a different architecture.
Allen-Zhu and Li (2020) show that deep networks with quadratic activations can heirarchically
learn certain concept classes. However, the learning algorithm used in Goel and Klivans (2019) is
different than GD, and all three papers crucially rely on the input having unit norm or some other
form of boundedness, whereas our work accommodates for certain inputs whose norm distribution
does not have finite moments. In contrast, our paper merely establishes convergence for the target
class of ball indicator functions, and not for a broader family of target functions analyzed in the
aforementioned papers. Chen et al. (2020) show an optimization-based separation between a depth 3
neural network in a suitably-defined quadratic NTK regime and a network of arbitrary depth trained
in the NTK regime, where the former learns polynomials of degree p using width dp/2 compared
to dp of the latter. However, this separation does not exclude the existence of a different shallow
learner that operates in the non-NTK regime, whereas our work excludes efficient learnability in a
standard GD setting, or even more generally with any shallow model due to inapproximability, thus
providing a stronger separation.

2. Preliminaries and Main Results

In this section, we formally define our problem setting before stating our main theorems. We will
begin however with introducing some of the notation that will be used throughout the paper in the
following subsection.

2.1. Notation and Terminology

We use [n] as shorthand for the set {1, . . . , n}. We denote vectors using bold-faced letters (e.g. x)
and matrices or random variables using upper-case letters (e.g. X). Given a vector x, we let ∥x∥2
denote its Euclidean norm, where the subscript is occasionally omitted when clear from context.
Given a square matrix A, we denote its spectral norm by ∥A∥sp. Given two non-zero vectors w,v ∈
Rd, we denote the angle between them using θw,v := arccos

(
⟨w,v⟩

∥w∥·∥v∥

)
. We use 1 {·} to denote

the indicator function. A function f : Rd → R is radial if for all x,x′ ∈ Rd, ∥x∥ = ∥x′∥
implies f(x) = f(x′). A function f : Rd → R is log-concave if f = exp(−φ) where φ :
Rd → R is convex. A distribution is radial (resp., log-concave) if its density function is radial
(resp., log-concave). For some L > 0, a function f ∈ C2(R) is L-smooth in a domain A ⊆ Rd if
f(x)− f(x′) ≤ ∇f(x′)⊤(x−x′)+ L

2 ∥x− x′∥2 for all x,x′ ∈ A. When optimizing an L-smooth
objective, a learning rate (step size) η is stable if η < 2/L. We let Sd−1

R :=
{
x ∈ Rd : ∥x∥ = R

}
denote the d-dimensional hypersphere of radius R centered at the origin. We use N (µ, σ2) to denote
a normal random variable with mean µ and variance σ2, and N (µ,Σ) to denote a multivariate
normal random variable with mean µ and covariance matrix Σ.

Our shallow class of neural networks with inferior approximation capabilities is the following
class of depth 2 networks with architecture defined by

x 7→
r∑

j=1

wjσ (⟨uj ,x⟩+ bj) + b0, (1)

where for terseness we occasionally denote the trainable parameters of this architecture in vectorized
form using θ := (u1, . . . ,ur,w,b, b0). In the above architecture, σ is some non-linear activation
function which satisfies the following assumption which we adopt from Eldan and Shamir (2016):
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Assumption 1 (Polynomially-Bounded Activation) The activation function σ is Lebesgue mea-
surable and satisfies

|σ(x)| ≤ Cσ (1 + |x|ασ)

for all x ∈ R and for some constants Cσ, ασ > 0.

We remark that the above assumption is very mild and is satisfied by all standard activation functions
used in the literature, which includes common examples such as ReLU and sigmoidal activations,
and in particular includes the error function and clipped ReLU activations which we use in the
architecture to be defined next: For our stronger class with superior approximation capabilities, we
consider the following ‘depth 3’ neural networks with a simplified structure,

x 7→

 r∑
j=1

wj erf (⟨uj ,x⟩+ bj)

1

+

. (2)

In this architecture, we use error function activations z 7→ erf(z) in the hidden layer, and a clipped
ReLU activation [z]1+ := min

{
[z]+ , 1

}
in the output neuron, where [z]+ := max {0, z} denotes the

ReLU activation. We point out that strictly speaking, this is not a depth 3 neural network since there
are no weights applied after the clipped ReLU activation. However, the additional non-linearity
as we will see later in this section will prove to be necessary and sufficient for approximating the
target functions considered in this paper. Our particular choice of the error function activation is
motivated mainly by technical requirements, since it allows us to greatly simplify certain necessary
calculations (e.g. in the proofs of Thm. 10 and Proposition 21). Likewise, the choice of the clipped
ReLU is also motivated by technical considerations, and we conjecture our result to hold for a wider
class of activation functions, leaving such generalizations to future work.

Since our goal is to separate different architectures according to their asymptotic performance
with respect to the input dimension d ≥ 2, our assumptions formally refer to sequences of distri-
butions and target functions rather than individual objects. We assume that we are given access
to a finite i.i.d. data set {xi, yi}ni=1 sampled from the corresponding distribution Dd in a sequence
{Dd}∞d=2, where the target values are determined according to a sequence of ball indicator func-
tions, yi = 1 {∥xi∥ ≤ λd} for {λd}∞d=2 where λd ∈ [1, 2]. Since we will use a random features
technique where the hidden layer remains fixed during training to derive our positive optimization
result, we will use normal bold-faced letters (x ∈ Rd) and tilde bold-faced letters (x̂ ∈ Rr) to make
the distinction between the d-dimensional data we are given and the r-dimensional random features
produced by the output of the hidden layer in Eq. (2).

2.2. Main Results

We now turn to state our main theorems. The first shows that there exists a sequence of radial distri-
butions with unbounded support such that efficiently learning a ball indicator to accuracy O(d−4) is
not possible using any learning algorithm which must return a network with a weak architecture as
defined in Eq. (1), whereas the strong architecture in Eq. (2) can efficiently learn such ball indicators
using GD.

Theorem 2 There exists a sequence of radial distributions {Dd}∞d=2 such that the following holds:
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• There exist universal constants c1, c2, c3, c4 > 0 and a sequence of target functions {fd(x) :=
1 {∥x∥ ≤ λd}}∞d=c1

where λd ∈ [1, 2] for all d, such that for all d ≥ c1, any algorithm that
returns a depth 2 neural network N with architecture as defined in Eq. (1) which employs an
activation function σ satisfying Assumption 1 must satisfy

Ex∼Dd

[
(N(x)− fd(x))

2
]
≥ c2

d4
,

unless the algorithm runs in time at least c3 exp(c4d).

• For all ϵ, δ ∈ (0, 1) and dimension d ≥ 2, there exist r, T and sample size n that are
poly(1/ϵ, ln(1/δ), d) and learning rate which is 1/poly(1/ϵ, ln(1/δ), d), such that if we run
at most T iterations of GD using a neural network with architecture as defined in Eq. (2),
where the network’s weights are initialized using a standard initialization scheme (see As-
sumption 7) and the hidden layer is held fixed during training. Then for all λ ∈ [1, 2], with
probability at least 1 − δ over the randomness in the initialization of the network and the
sampling of the data, the algorithm returns a neural network N such that

Ex∼Dd

[
(N(x)− 1 {∥x∥ ≤ λ})2

]
≤ ϵ.

The proof of the above theorem appears in Appendix B.1. The main property of the distributions
{Dd}∞d=2 used in our theorem is that they are heavy-tailed in the sense that they produce data in-
stances with very large norm. Essentially, we will be penalized severely for not approximating
data well even when it’s far away from the origin. This however also results in a more challenging
positive optimization result to achieve, since data with large norm is harder to learn; for example,
this results in an objective with gradients having unbounded norm which significantly complicates
our analysis. To partially circumvent this difficulty we use error function activations with image
bounded in [−1,+1] which mitigates the input’s large norm to some extent.

We stress that in our result, the hardness of learning with a depth 2 neural network applies
regardless of whether we are given access to a sufficiently large sample or not. In fact, since the
hardness stems from the inability of depth 2 neural networks to approximate the target functions
{fd}∞d=2, the hardness result persists even with perfect knowledge of the distributions and of the
constants {λd}∞d=2. On the other hand, our result only holds in a high-accuracy regime, and does not
exclude the existence of an efficient algorithm which returns an approximation of a ball indicator
to accuracy slightly larger than c2d

−4, which might be considered sufficient for certain practical
applications in machine learning. The dependence on d−4 is an artifact of our proof technique
(which relies on a reduction from the main result of Eldan and Shamir (2016)). To complement
the above theorem, we present the following result which establishes the hardness of learning ball
indicators to any accuracy smaller than a constant using a standard GD setting, for data generated
by a certain compactly-supported distribution.

Theorem 3 There exists a sequence of compactly-supported radial distributions {D′
d}∞d=2 such

that the following holds:

• There exist constants c1, c2 > 0 and a sequence of target functions {fd(x) := 1 {∥x∥ ≤ λd}}∞d=4

where λd ∈ [1, 2] for all d, such that for all d ≥ 4, suppose we run GD on the architecture
defined in Eq. (1) which employs an activation function σ ∈ C2(R) satisfying Assumption 1
with the following assumptions:
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– The algorithm runs for T ≥ 4 iterations.

– The learning rate satisfies η ≤ 2
L − 1

T where L is the smoothness of the objective when
training the weak architecture on n samples labeled according to a ball indicator.

– We initialize at some θ0 such that P [∥θ0∥2 ≤ p(d, r)] ≥ 1 − exp(−d), for some poly-
nomial p.

Then with probability at least 1 − exp(−d), for all t ∈ {0, . . . , T}, the network Nθt(·) at
iteration t satisfies

ϵ := Ex∼D′
d

[
(Nθt(x)− fd(x))

2
]
>

1

400
,

unless the algorithm runs in time at least

c1 exp

(
c2min

{
1√
ϵ
ln
(
d
√
ϵ+ 2

)
, d ln

(
1

d
√
ϵ
+ 2

)})
,

where c1, c2 > 0 depend solely on σ.

• For all ϵ, δ ∈ (0, 1) and dimension d ≥ 3, there exist r, T and sample size n that are
poly(1/ϵ, ln(1/δ), d) and learning rate which is 1/poly(1/ϵ, ln(1/δ), d), such that if we run
at most T iterations of GD using a neural network with architecture as defined in Eq. (2),
where the network’s weights are initialized using a standard initialization scheme (see As-
sumption 7). Then for all λ ∈ [1, 2], with probability at least 1 − δ over the randomness in
the initialization of the network and the sampling of the data, the algorithm returns a neural
network N such that

Ex∼D′
d

[
(N(x)− 1 {∥x∥2 ≤ λ})2

]
≤ ϵ.

The proof of the theorem, which appears in Appendix B.2, builds on a reduction to the tech-
nique introduced in Daniely (2017), showing that an approximation to accuracy ϵ is only possible
if either of the width of the approximating network or the Euclidean norm of its weights is expo-
nential in either d or 1√

ϵ
. Since the progress of GD and the norm of the weights upon initialization

are bounded due to the assumptions in the theorem statement, we have that GD must perform a
large number of iterations or that the network must be very wide to achieve a good approximation,
resulting in an exponential running time of the algorithm in either of the parameters. This result
essentially combines the approximation limitations of our weak architecture and the inability of GD
with reasonably-sized steps to move much in weight space to produce a negative result.

Turning to discuss the assumptions made in the theorem in more detail, we first note that our
assumptions are mostly mild. The assumption that σ ∈ C2(R) is to simplify the analysis, however
since the non-smooth setting typically tends to result in worse optimization guarantees, we do not
expect the running time to drastically change for the better if σ is assumed to be a ReLU for example.
The polynomial boundedness assumption of the norm upon initialization is also very mild, and
holds for essentially any initialization scheme used in the literature, which includes in particular the
common Xavier initialization (see Glorot and Bengio (2010)), as well as the initialization scheme
we use in our positive optimization result (see Assumption 7). Lastly, the bound on the learning rate
is a necessary condition for the local convergence of GD in a general setting, since there are cases
where no non-trivial guarantee can be given otherwise, as we demonstrate in Appendix H.
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It is interesting to note that a similar trade-off between the dimension and accuracy parameters
was given in Hsu et al. (2021), where it is shown that a certain high-frequency function cannot be
approximated efficiently using depth 2 networks unless the width incurs exponential dependence on
either d or 1

ϵ2
. Moreover, it can be shown that approximating a ball indicator (in the L∞ norm) on

a compact domain can be done efficiently in d if we only wish to obtain constant accuracy ϵ > 0.1

This provides a partial indication that the lower bound we derive here is somewhat tight, since a
lower bound with exponential dependence on both parameters (i.e. exponential in max{d, 1/

√
ϵ})

is not possible.
We now turn to provide an explicit construction of the sequences of distributions used in our

main theorems in the following subsection.

2.3. The Distributions Used

In this subsection, we formally define the sequence of distributions used in Thm. 2 and Thm. 3. We
define a density of a d-dimensional distribution by

µ̄d(x) :=

(
Rd

∥x∥

)d

J2
d/2(2πα

√
dRd ∥x∥), (3)

where Rd = 1√
π

(
Γ
(
d
2 + 1

))1/d
is the radius of the unit-volume d-dimensional Euclidean ball,

α ≥ 1 is the absolute constant used in the derivation of the main result in Eldan and Shamir (2016),
and Jν is the Bessel function of the first kind, of order ν (see the aforementioned reference for
further discussion about these objects). Such similar density functions (identical up to a linear
change of variables) were used to show various inapproximability results for radial functions (Eldan
and Shamir, 2016; Safran and Shamir, 2017; Safran et al., 2019). We now define the densities of
our sequence of distributions {Dd}∞d=2 used in Thm. 2, which are a mixture of the distribution with
density µ̄d defined in Eq. (3) and a multivariate normal with covariance matrix 1√

d
Id:

µd(x) := 0.5µ̄d(x) + 0.5

(
d

2π

)d/2

exp

(
−1

2
dd ∥x∥2

)
. (4)

Turning to define the sequence of distributions {D′
d}

∞
d=2 used in Thm. 3, we define the d-dimensional

distribution D′
d to be the distribution of x ∈ Rd which is given by the sum

x := x1 + x2, where x1,x2 ∈ Sd−1
1 are i.i.d. and uniformly distributed. (5)

We denote the density of D′
d by φd.

Having defined the sequence of distributions used in our main results, we now turn to formally
present our approximation lower bounds in the next section.

3. Lower Bounds for Approximating Ball Indicators

In this section, we present our lower bounds for the approximation of ball indicator functions used to
derive the optimization lower bounds in our main results. As discussed in the related work section,

1. This can be achieved by first approximating a ball indicator to accuracy ϵ/2 using a 2/ϵ-Lipschitz approximation,
and then using the main result in Safran et al. (2019) to approximate the Lipschitz approximation to accuracy ϵ/2
using width polynomial in d (albeit exponential in the constant 1/ϵ).
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the inapproximability of ball indicator functions was previously shown in Safran and Shamir (2017),
and our goal here is merely to adapt and extend similar bounds to our setting and assumptions.

The following theorem establishes the inapproximability of ball indicators with respect to the
heavy-tailed distribution Dd defined in the previous section, which is used to prove Thm. 2.

Theorem 4 The following holds for some universal constants c1, c2, c3, c4 > 0, and any network
employing an activation function satisfying Assumption 1: For all d ≥ c1, there exist a sequence
{λd}∞d=c1

of constants λd ∈ [1, 2] and a sequence of radial distributions {Dd}∞d=2 with density
functions {µd}∞d=2 defined in Eq. (4) such that for any depth 2 neural network N with architecture
as defined in Eq. (1), we have∫

Rd

(N(x)− 1 {∥x∥ ≤ λd})2 µd(x)dx ≥ c2
d4

,

unless N has width at least c3 exp(c4d).

The proof of the above theorem, which appears in Appendix C.1, relies on the main result of
Eldan and Shamir (2016). Essentially, it is shown in the aforementioned work that a superposition
of O(d2) thin shells with varying radii cannot be approximated efficiently using depth 2 neural net-
works, with respect to a heavy-tailed distribution with density similar to the one defined in Eq. (3).
This implies that there must exist a ball indicator function that is inapproximable with respect to the
distribution with such a density, since otherwise we can efficiently construct an approximation of
O(d2) thin shells and concatenate them using a depth 2 neural network, contradicting the result of
Eldan and Shamir (2016).

The following theorem establishes our second inapproximability result of ball indicators with
respect to the compactly-supported distribution D′

d defined in the previous section, which is used to
prove Thm. 3.

Theorem 5 The following holds for any neural network employing an activation function σ which
satisfies Assumption 1, and constants c1, c2 > 0 that may depend solely on σ: For all d ≥ 4,
there exist a sequence {λd}∞d=4 of constants λd ∈ [1, 2] and a sequence of radial distributions
{D′

d}∞d=4 defined in Eq. (5) such that for any natural m ≥ 1 and any depth 2 neural network Nθ

with architecture as defined in Eq. (1), we have∫
Rd

(Nθ(x)− 1 {∥x∥ ≤ λd})2 φd(x)dx >
1

196(m+ 1)2
,

unless N has width r or weight norm ∥θ∥2 at least c1 exp
(
c2min

{
m ln

(
d
m + 2

)
, d ln

(
m
d + 2

)})
.

The proof of the above theorem, which appears in Appendix C.2, builds on and refines the
technique developed in Daniely (2017). We first show that approximating a radial function f :
Rd → R consisting of 2m thin shells using a depth 2 neural network must require a large width
or a large norm of the weights, since its radial component function (namely, the univariate function
g : R → R such that f(x) = g(∥x∥2)) cannot be approximated well using polynomials of degree at
most m. Then, a similar reduction argument as the one used in the proof of Thm. 4 is used to derive
a lower bound for a ball indicator function.

The benefit in the introduction of the parameter m which is independent of d is that it allows us
to separate the dependence on the dimension and the accuracy parameters, leading to a hardness of

10
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approximation result that persists beyond the high-accuracy regime used in the previous theorem,
and which holds even for a (sufficiently small) constant accuracy requirement. On the flip side,
since we cannot rule out the existence of a good approximation using a moderately-wide network
with exponential weights, this comes at the cost of a somewhat weaker algorithmic implication
where the hardness of learning is shown for just the GD algorithm and not for any algorithm as
is the case in Thm. 2. Nevertheless, exponential weights have limitations beyond those that we
exploit to show an optimization-based lower bound in Thm. 3. For example, the class of depth 2
neural networks with exponentially-bounded weights has an exponential FAT-shattering dimension
and is therefore not statistically learnable in polynomial time (if we consider a broader class of
target distributions than ball indicators). We leave the derivation of such statistically-based lower
bounds and the generalization to a broader class of optimization algorithms as important future work
directions.

4. Learning Ball Indicators Using Random Features

In this section, we prove that under certain assumptions on the distribution of the data, the family
of ball indicator functions defined as {1 {∥x∥ ≤ λ}}λ∈[1,2] can be learned efficiently by GD using
a neural network with architecture defined in Eq. (2), with a polynomial network width, sample size
and number of GD iterations. Recalling that we use a tilde to distinguish a d-dimensional data point
x ∈ Rd and r-dimensional random features x̃ ∈ Rr produced by the hidden layer, we now define
our empirical objective function which takes the following form

F̂ (w) :=
1

n

n∑
i=1

([
w⊤x̃i

]1
+
− yi

)2

. (6)

Additionally, we define the risk of a predictor w over a distribution Dd to be

F (w) := Ex∼Dd

[([
w⊤x̃

]1
+
− 1 {∥x∥ ≤ λ}

)2
]
= Ex∼Dd

[
F̂ (w)

]
.

To facilitate our analysis, we make the following assumptions on the distributions of the data and
the initialization of our neural network. Specifically, for the distribution of our data, we assume the
following.

Assumption 6 (Data Distribution Assumption) The sequence of distributions {Dd}∞d=2 possesses
radial symmetry and the density γd of the distribution of its norm given by the random variable Xd

satisfy the following properties:

1. There exists a constant C > 0 such that for all d∫ 2

0
γd(x)dx ≥ C.

2. γd(x) > 0 for all x ≥ 0, and there exists a polynomial q such that for all d and all x ∈
[0.9, 2.05]

γd(x) ≤ q(d).

11
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3. There exist c1, c2 > 0 such that for all x ≥ c1 and all d,

P [Xd ≥ x] ≤ c2 ·
1

x
.

We remark that the above assumption is mild. The main non-trivial requirement is that {Dd}∞d=2

possess radial symmetry, but the remaining properties merely require that γd maintains a non-
negligible portion of its mass within a constant distance from the origin as d grows, is polynomially-
bounded for any d, and has a tail that decays at most proportionally to its distance from the origin.
Note that this includes heavy-tailed distributions such as Cauchy for example.

Moving to our initialization of the network with architecture defined in Eq. (2), we assume the
following:

Assumption 7 (Network Initialization)

1. The weights in the hidden layer Uj ∈ Rd and the bias terms Bj satisfy

Uj ∼ N
(
0,

1

4
· Id
)
, Bj ∼ N

(
0,

1

4

)
.

2. The weights of the output neuron W ∈ Rr satisfy

W ∼ N
(
0,

1

r2
· Ir
)
.

We now turn to present our main result of this section. The following theorem shows that under
Assumptions 6 and 7, for any ϵ, δ ∈ (0, 1), if r is polynomial in d, 1/ϵ and ln(1/δ), and if the
sample size n is cubic in r up to poly-logarithmic factors, then O(r ln(r/ϵ)) iterations of GD will
suffice to achieve a risk of at most ϵ with probability at least 1− δ.

Theorem 8 Under Assumptions 6 and 7, for all ϵ, δ ∈ (0, 1), suppose we run GD on the objective
in Eq. (6) using an architecture as defined in Eq. (2) where the hidden layer is held fixed, with the
following parameters:

• Network width r ≥ max
{
120004, cϵ−5

(
q4(d) + ln2(1/δ)

)}
,

• Sample size n = ⌈cr3 log22(r)⌉,

• Fixed learning rate η < ν
8r , where ν = C

840·94·106 .

until the iterate wt satisfies F̂ (wt) ≤ ϵ
2 . Then with probability at least 1− δ, we have that after at

most T = 2η−1ν−1 ln (r/8ϵ) iterations GD returns wt such that F (wt) ≤ ϵ, where C, q, c1, c2 are
defined in Assumption 6, and c ≥ 1 is a constant that depends solely on C, c1, c2.

In a nutshell, the proof of the above theorem which appears in Appendix G.2, relies on a random
features approach where the weights of the neurons in the hidden layer remain fixed throughout
the optimization process, and then showing that the weights learned by GD in the output neuron
converge with high probability to a point with risk at most ϵ. We remark that we did not attempt

12
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to decrease the constants in the theorem statement, and that even when we fix the hidden layer, the
resulting optimization problem is still non-convex in general and may even contain exponentially
many sub-optimal local minima (Auer et al., 1996; Safran and Shamir, 2016). In a bit more detail,
the proof can be broken down into four parts. In the first part, we show that with high probability,
sufficiently many random features will result in the existence of a weight of the output neuron that
attains small empirical loss. In the second part, we establish that the random features produced
by the initialization scheme defined in Assumption 7 have well-behaved two-dimensional marginal
distributions. This property is important for showing that the gradient of our objective points in the
direction of the point with small empirical risk whose existence is shown in the first part. In the
third part, we prove that GD converges with high probability to a point with small empirical loss.
In the fourth and last part, we show generalization bounds which establish that our small empirical
loss also results in a small risk on the distribution of the data. For a more detailed breakdown of the
proof of the theorem and its intermediate steps, we refer the reader to Appendix A.

References

Zeyuan Allen-Zhu and Yuanzhi Li. Backward feature correction: How deep learning performs deep
learning. arXiv preprint arXiv:2001.04413, 2020.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparame-
terized neural networks, going beyond two layers. Advances in neural information processing
systems, 2019.

Peter Auer, Mark Herbster, Manfred K Warmuth, et al. Exponentially many local minima for single
neurons. Advances in neural information processing systems, pages 316–322, 1996.

Francis Bach. Breaking the curse of dimensionality with convex neural networks. The Journal of
Machine Learning Research, 18(1):629–681, 2017.

Yu Bai and Jason D Lee. Beyond linearization: On quadratic and higher-order approximation of
wide neural networks. arXiv preprint arXiv:1910.01619, 2019.
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László Lovász and Santosh Vempala. The geometry of logconcave functions and sampling algo-
rithms. Random Structures & Algorithms, 30(3):307–358, 2007.

Eran Malach and Shai Shalev-Shwartz. Is deeper better only when shallow is good? Advances in
Neural Information Processing Systems, 32:6429–6438, 2019.

Eran Malach, Gilad Yehudai, Shai Shalev-Shwartz, and Ohad Shamir. The connection be-
tween approximation, depth separation and learnability in neural networks. arXiv preprint
arXiv:2102.00434, 2021.

Yurii Nesterov et al. Lectures on convex optimization, volume 137. Springer, 2018.

Donald B Owen. Tables for computing bivariate normal probabilities. The Annals of Mathematical
Statistics, 27(4):1075–1090, 1956.

Donald Bruce Owen. A table of normal integrals: A table. Communications in Statistics-Simulation
and Computation, 9(4):389–419, 1980.

Tomaso Poggio, Hrushikesh Mhaskar, Lorenzo Rosasco, Brando Miranda, and Qianli Liao. Why
and when can deep-but not shallow-networks avoid the curse of dimensionality: a review. Inter-
national Journal of Automation and Computing, 14(5):503–519, 2017.

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Exponen-
tial expressivity in deep neural networks through transient chaos. Advances in neural information
processing systems, 29:3360–3368, 2016.

14



OPTIMIZATION-BASED SEPARATIONS FOR NEURAL NETWORKS

Itay Safran and Ohad Shamir. On the quality of the initial basin in overspecified neural networks.
In International Conference on Machine Learning, pages 774–782, 2016.

Itay Safran and Ohad Shamir. Depth-width tradeoffs in approximating natural functions with neural
networks. In International Conference on Machine Learning, pages 2979–2987. PMLR, 2017.

Itay Safran, Ronen Eldan, and Ohad Shamir. Depth separations in neural networks: what is actually
being separated? In Conference on Learning Theory, pages 2664–2666. PMLR, 2019.

Adrien Saumard and Jon A Wellner. Log-concavity and strong log-concavity: a review. Statistics
surveys, 8:45, 2014.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algo-
rithms. Cambridge university press, 2014.

Matus Telgarsky. Benefits of depth in neural networks. In Conference on learning theory, pages
1517–1539. PMLR, 2016.

Gal Vardi and Ohad Shamir. Neural networks with small weights and depth-separation barriers.
Advances in Neural Information Processing Systems, 33, 2020.

Gal Vardi, Daniel Reichman, Toniann Pitassi, and Ohad Shamir. Size and depth separation in
approximating benign functions with neural networks. In Conference on Learning Theory, pages
4195–4223. PMLR, 2021a.

Gal Vardi, Gilad Yehudai, and Ohad Shamir. Learning a single neuron with bias using gradient
descent. arXiv preprint arXiv:2106.01101, 2021b.

Luca Venturi, Samy Jelassi, Tristan Ozuch, and Joan Bruna. Depth separation beyond radial func-
tions. arXiv preprint arXiv:2102.01621, 2021.

Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks, 94:
103–114, 2017.

Gilad Yehudai and Ohad Shamir. On the power and limitations of random features for understanding
neural networks. In Advances in Neural Information Processing Systems, pages 6594–6604,
2019.

Gilad Yehudai and Ohad Shamir. Learning a single neuron with gradient methods. arXiv preprint
arXiv:2001.05205, 2020.

Appendix A. Proof Sketch of Thm. 8

This appendix details the proof stages of the convergence of GD when learning ball indicator func-
tions with respect to radial distributions.
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A.1. Random Feature Approximation via Truncation

In this subsection, we show that random features can approximate ball indicator functions having
radius in [1, 2]. The main idea is that we can truncate a particular random feature (neuron in the
hidden layer) by setting its corresponding weight in the output neuron to zero. This way we can
manipulate the expectation of the network’s output to approximate a desired function, and then use
concentration of measure to guarantee a good approximation with high probability. We now present
the main theorem of this subsection:

Theorem 9 Given any δ ∈ (0, 1), suppose that r and n satisfy

• r ≥ max
{
120004, 5004max {c1, 10}4 ln2(8n/δ)

}
,

•
√

ln(8/δ)
2n ≤ p :=

1800q(d)+500c2
√

ln(8n/δ)

r0.25
.

Then for any λ ∈ [1, 2], with probability at least 1−δ over drawing a sample {xi,1 {∥xi∥ ≤ λ}}ni=1

from Dd under Assumption 6 with parameters c1, c2, q, and over the randomness in the initialization
of ∥w0∥ and the remaining network’s weights under Assumption 7, there exists v ∈ Rr which
satisfies the following properties:

1. ∥w0 − v∥2 < ∥v∥2 ≤ 1√
r
.

2. There exists a partition
⋃4

k=1 Ik of [0,∞) into disjoint intervals Ik such that
[
v⊤x̃j

]1
+

=

1 {∥xj∥ ≤ λ} = yj for all j that satisfy ∥xj∥ ∈ I1 ∪ I3, and
∣∣v⊤x̃j

∣∣ ≤ 3 for all j that satisfy
∥xj∥ ∈ I2 ∪ I4. Moreover, we have that

|{j : ∥xj∥ ∈ I2 ∪ I4}| ≤ 2pn.

Putting it in simple words, the above theorem establishes that under some technical assumptions on
the magnitude of r and n, there exists a point v ∈ Rr in our optimization space that classifies ‘most’
of the data instances correctly, and thus attains an empirical loss which decays with r and n to zero.
Moreover, the theorem also implies that this point is close enough to our initialization point w0 to
attract GD (see Proposition 11 for a formal statement).

The proof of Thm. 9 which appears in Appendix D relies on concentration of measure and on
the observation that due to the symmetry in Assumption 7, a neural network that is initialized in this
manner will approximate the zero function in expectation. To bias the initialization of the network
to approximate non-trivial functions, we can truncate undesired random features by setting their cor-
responding weight in the output neuron to zero. For example, by truncating random features with a
negative bias term realization, we can bias the function computed by the network to return a positive
prediction on data instances with small norm. Note that by doing so we do not change the initial-
ization scheme defined in Assumption 7, but rather show that such a manipulation performed in the
optimization space of the output neuron is equivalent to initializing using a different initialization
scheme, which can effectively approximate various target functions using our architecture.
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A.2. Radial Distributions Produce Well-Behaved Random Features

Using random features and keeping the hidden layer fixed throughout the optimization essentially
reduces our learning problem to that of learning with a single neuron. To facilitate the convergence
of GD in such a setting, a useful property to show is that the two-dimensional marginal distribution
of the data has a strictly positive density in a neighborhood around the origin (Yehudai and Shamir,
2020; Frei et al., 2020). Such a property is desired since it allows one to show that if the target
vector v that we wish to approximate and our current GD iterate wt satisfy some certain properties,
then the density assumption in the subspace spanned by v,wt guarantees that the gradient points
in the direction of v. To establish that this property is satisfied in our setting, we would need to
analyze the r-dimensional distribution of the random features produced by Assumptions 6 and 7.
To this end, we have the following theorem.

Theorem 10 Suppose that the sequence of distributions {Dd}∞d=2 satisfies Assumption 6(1) with
a constant C > 0, and that a neural network with an architecture defined in Eq. (2) is initialized
according to Assumption 7. Then the sequence of distributions {D̃d}∞d=2 of the random features pro-
duced by the first hidden layer satisfies the following: For any vectors w1 ̸= w2, let D̃w1,w2 denote
the marginal distribution of x̃ on the subspace spanned by w1,w2 (as a distribution over R2). Then
any such distribution has a density function pw1,w2(x) which satisfies infx:∥x∥≤α pw1,w2(x) ≥ β,
where

α =
1

9
, β = C · 10−6.

The proof of the above theorem, which appears in Appendix E, relies for the most part on the
analysis of log-concave distributions performed in Lovász and Vempala (2007). The main challenge
in the proof is that we cannot guarantee that the distributions {D̃d}∞d=2 are log-concave. Instead, we
show that the density of these distributions can be lower bounded by a log-concave density, from
which the theorem follows. With Thms. 9 and 10 at hand, we can turn to show a convergence result
for GD in the next subsection.

A.3. Convergence of Gradient Descent

In this subsection, we establish the technical tools that facilitate the convergence of GD. We begin
with the following proposition, which establishes that as long as some technical inequality is sat-
isfied, then the gradient of the objective in Eq. (6) points us in the direction of the vector v which
achieves small empirical loss and whose existence is established by Thm. 9. More formally, we
have the following:

Proposition 11 Under Assumptions 6 and 7, there exist constants α, β > 0 such that for all
δ ∈ (0, 1), with probability at least 1− δ over sampling n data instances from Dd and over the ran-
domness in the initialization of the network, for all w,v ∈ Rr that satisfy ∥w − v∥ ≤ ∥v∥ ≤ 0.5
and the following technical inequality

1

n

n∑
i=1

([
w⊤x̃i

]1
+
−
[
v⊤x̃i

]1
+

)
· 1
{
w⊤x̃i ∈ (0, 1)

}
·
(
w⊤x̃i − v⊤x̃i

)
≥ 2

n

n∑
i=1

([
v⊤x̃i

]1
+
− yi

)
· 1
{
w⊤x̃i ∈ (0, 1)

}
·
(
w⊤x̃i − v⊤x̃i

)
, (7)
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we have that

⟨∇F (w),w − v⟩ ≥ 1

2
∥w − v∥2

(
α4β

210
− 4r

√
(8r + 8) log2(n)

n
−
√

2 ln (2/δ)

n

)
.

The proof of the above proposition, which appears in Appendix F.1, relies on lower bounding the
dot product with the gradient using the assumed inequality, and then using the marginal density
property from the previous subsection to guarantee that the gradient of the objective is correlated
with the direction leading to v. In a sense, this result can be viewed as a finite data analog in the
non-realizable setting of Thm. 4.2 in Yehudai and Shamir (2020). The main difficulty that arises in
the finite data case is that in the application of the proposition, w is an iterate returned by GD and
thus we need to derive the above result uniformly for all the w’s that satisfy the above condition.

The following proposition establishes that when the technical inequality assumption in Eq. (7)
is violated then we have already achieved a small empirical loss.

Proposition 12 Under Assumptions 6 and 7, for all δ ∈ (0, 1), with probability at least 1− δ over
sampling n data instances from Dd and over the randomness in the initialization of the network, for
all w,v ∈ Rr that satisfy ∥w − v∥ ≤ ∥v∥ ≤ r−0.25 and the following technical inequality

1

n

n∑
i=1

([
w⊤x̃i

]1
+
−
[
v⊤x̃i

]1
+

)
· 1
{
w⊤x̃i ∈ (0, 1)

}
·
(
w⊤x̃i − v⊤x̃i

)
<

2

n

n∑
i=1

([
v⊤x̃i

]1
+
− yi

)
· 1
{
w⊤x̃i ∈ (0, 1)

}
·
(
w⊤x̃i − v⊤x̃i

)
,

if r and n satisfy the following inequalities

• r ≥ max
{
120004, 5004max {c1, 10}4 ln2(16n/δ)

}
,

•
√

ln(16/δ)
2n ≤ p′ :=

1800q(d)+500c2
√

ln(16n/δ)

r0.25
.

Then we have that

F̂ (w) ≤ 20p′ +
2

r
+ 8

√
(8r + 8) log2(n)

n
+ 2

√
2 ln (4/δ)

n
.

The proof of the above proposition which appears in Appendix F.2 is technical, and is based on lower
bounding the smaller term in the proposition assumption by the empirical loss. This is achieved by
analyzing several different cases depending on the values attained by the dot products of v and
w with the data instances. We then upper bound the larger term in the proposition assumption
by using Thm. 9. Combining the two propositions stated in this subsection, the convergence of
GD follows from the fact that we converge to v at a linear rate by Proposition 11 as long as the
technical inquality holds, and if it is violated then Proposition 12 guarantees that the empirical loss
we achieved is sufficiently small.

The final component in our proof of Thm. 8 is to show that the small empirical loss achieved
using the above propositions translates to a generalization bound. To this end, we have the following
theorem:

18



OPTIMIZATION-BASED SEPARATIONS FOR NEURAL NETWORKS

Theorem 13 For all δ ∈ (0, 1), with probability at least 1 − δ over drawing a sample of size n
from any distribution D̃d, we have for all w satisfying ∥w∥ ≤ 1 that

F (w) ≤ F̂ (w) + 4

√
r

n
+ 4

√
2 ln(4/δ)

n
.

The proof of the above theorem, which appears in Appendix G.1, is simple and relies on standard
Rademacher complexity arguments.

Appendix B. Proofs from Sec. 2 – Main Results

B.1. Proof of Thm. 2

Proof Starting with the lower bound in the first item in the theorem statement, we have that it
follows from Thm. 4, since if an algorithm has returned a depth 2 neural network N satisfying

Ex∼Dd

[
(N(x)− f(x))2

]
<

c2
d4

,

then it must hold that the width of the network is at least c3 exp(c4d). Thus for the algorithm to
return such an output it must run in time at least c3 exp(c4d).2

Turning to show the second item, we first argue that if learning is computationally tractable for
a certain sequence of distributions, then it is also tractable for any other sequence of distributions
which is indistinguishable by polynomial-time sampling (see Goldreich (2003, Def. 3.2.4)). This is
true since otherwise we would be able to distinguish the two sequences using the learning algorithm
which would succeed on the first sequence but would fail on the second.

Next, we will show that a sequence which is indistinguishable by polynomial-time sampling
from the sequence defined by the densities in Eq. (4), satisfies Assumption 6. Consider a random
variable Xd which follows a distribution with density given in Eq. (4). Since this is a mixture of
radial distributions, it is clearly radial. We will now show that the density of ∥Xd∥ is given by

γd(x) := 0.5γ̄d(x) + 0.5pd(x),

where

γ̄d(x) :=
d

x
J2
d/2(2πα

√
dRdx), pd(x) :=

2(d/2)d/2

Γ(d/2)
xd−1 exp

(
−0.5dx2

)
. (8)

For the multivariate normal component, we have that it follows a scaled chi-distribution with d
degrees of freedom, given by 1√

d
χd. Since a χd distribution is a special case of the generalized

gamma distribution GG(
√
2, d, 2), and since scaling a generalized gamma random variable by a

constant 1√
d

results in a generalized gamma random variable with parameters GG(
√
2/d, d, 2), we

have that its cumulative distribution function is given by

P

(
d

2
,
dx2

2

)
,

2. Formally, we have that a Turing machine returning a network of width at least c3 exp(c4d) will require exponential
time to output the network’s weights on its tape.
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where P (·, ·) denotes the regularized (lower) incomplete gamma function. Its density is therefore
given by pd(x).

Moving to the density of the norm of the µ̄d component, we let Ad := dπd/2

Γ( d
2
+1)

denote the volume

of the unit hypersphere in Rd and we let Y denote a random variable with density µ̄d. Changing to
polar coordinates, we have

P [∥Y ∥ ≤ x] =

∫
{x:∥x∥≤x}

µ̄d(x)dx =

∫
{x:∥x∥≤x}

(
Rd

∥x∥

)d

J2
d/2(2πα

√
dRd ∥x∥)dx

=

∫ x

0

∫
y∈Sd−1

t

(
Rd

t

)d

J2
d/2

(
2πα

√
dRdt

)
dydt

=

∫ x

0
Adt

d−1

(
Rd

t

)d

J2
d/2

(
2πα

√
dRdt

)
dt =

∫ x

0

d

t
J2
d/2(2πα

√
dRdt)dt.

Thus, the density of the norm of a random variable with density given in Eq. (3) is given by γ̄d(·).
We now prove each of the required properties.

1. It will suffice to lower bound the norm of the multivariate normal component. Using a stan-
dard bound on P (·, ·) (see Eq. (8.10.13) in DLMF) we have

P

(
d

2
,
d

2

)
>

1

2
,

and thus
P [Xd ≤ 2] ≥ P [Xd ≤ 1] ≥ 1

4
.

2. p(x) > 0 for all x > 0 follows immediately from the definition of pd(·) in Eq. (8). Note
that even though p(0) = 0, we can mix the multivariate normal distribution with another
radial d-dimensional distribution that has positive density at the origin (e.g. the density on the
closed ball Br(0) = {x : ∥x∥ ≤ r} whose pushforward via the function x 7→ x1 onto [−r, r]
is the uniform measure). By taking r exponentially small in d and using an appropriately
sufficiently small weight, we can make the two distributions statistically indistinguishable
by polynomial-time sampling, and therefore we may assume without loss of generality that
p(0) > 0.

To upper bound the density γd, we begin with upper bounding 0.5pd(x). The mode of a gen-
eralized gamma random variable GG(

√
2/d, d, 2) where d > 1 is attained at x =

√
1− 1/d,

and we thus have

sup
x

0.5pd(x) =
(d/2)d/2

Γ(d/2)

(
1− 1

d

)(d−1)/2

exp

(
−d

2
+ 0.5

)
.

Plugging d = 2 in the above yields an upper bound of 1. Using a standard lower bound on
the gamma function we have for all d ≥ 3

Γ(d/2) >
√
2π

(
d

2
− 1

) d
2
− 1

2

exp

(
−d

2
+ 1

)
,
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which when plugged in the above and simplified a bit yields

sup
x

0.5pd(x) <
1√
2π

exp(−0.5)

√
d

2

(
1 +

1

d− 2

)(d−1)/2

≤
√

d

2
,

where the second inequality is due to (1 + 1/(d − 2))(d−1)/2 ≤ 2 for all d ≥ 3 and
1√
2π

exp(−0.5) ≤ 0.5. Upper bounding 0.5γ̄d(x) we have from Eq. (10.14.4) in DLMF
that

γd(x) =
d

x
J2
d/2(πα

√
dRdx) ≤

d

x
· (πα

√
dRdx)

d

Γ2(d/2 + 1)
.

Assuming x ≤ (πα
√
dRd)

−2 < 1 and recalling that d ≥ 2, the above is at most

d

x
· xd/2

Γ2(d/2 + 1)
≤ d.

Otherwise, if x > (πα
√
dRd)

−2, we use Eq. (10.14.1) in DLMF and Eldan and Shamir
(2016, Lemma 1) to deduce that

γd(x) =
d

x
J2
d/2(πα

√
dRdx) ≤

d

x
< d(πα

√
dRd)

2 ≤ π2α2

4
d3.

We conclude that there exists a polynomial q of degree 3 which satisfies Item 2 in the assump-
tion.

3. By Eldan and Shamir (2016, Lemma 14) we have for all x ≥ 1 that∫ ∞

x
γd(t)dt =

∫ ∞

x

d

t
J2
d/2(πα

√
dRdt)dt ≤

∫ ∞

x

d

t
· 1.3
tαd

dt =
1.3

α

[
−t−1

]∞
x

=
1.3

αx
.

For the multivariate component, we compute for any x ≥ 2

P
[

1√
d
χd ≥ x

]
= P

[
χ2
d ≥ x2d

]
≤ (x2 exp(1− x2))d/2 ≤ (x2 exp(1− x2)) ≤ 1

2x
,

where the first inequality is a standard tail bound on chi-squared random variables, the second
inequality is due to supx x

2 exp(1− x2) ≤ 1 and d ≥ 2, and the last inequality holds for all
x ≥ 2. Combining the last two displayed inequalities we have for all x ≥ 2 that

P [Xd ≥ x] ≤ 1

2

(
1.3

αx
+

1

2x

)
≤ 1

x
,

where we used the fact that α ≥ 1.
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B.2. Proof of Thm. 3

Before we prove the theorem, we will first state and prove the following lemmas. Throughout this
subsection of the appendix, we use L(θ) to denote the objective function obtained by making predic-
tions with an architecture as defined in Eq. (1), over n data instances sampled from the distribution
D′

d defined in Eq. (5), and using the squared loss. We also define the set

F (d,m) :=
{
f : R2

+ → R | ∃c1, c2 > 0 s.t. ∀d,m > 0,

f(d,m) ≥ c1 exp

(
c2min

{
m ln

(
d

m
+ 2

)
, d ln

(m
d

+ 2
)})}

, (9)

which represents the set of functions that grow exponentially fast in at least one of the parameters d
or m. The lemma below establishes some useful properties of the function class F(d,m).

Lemma 14 Suppose that f ∈ F (d,m) where F (d,m) is defined in Eq. (9). Then

1. For any c, k > 0,
c k
√
f(d,m) ∈ F (d,m) .

2. For any c > 0,

f(c · d,m) ∈ F(d,m) and f(d, c ·m) ∈ F(d,m).

3. For any polynomial p in d,m, we have

1

p(d,m)
f(d,m) ∈ F (d,m) .

Proof

1. This follows immediate from the definition of F (d,m) by taking the constants c k
√
c1 > 0

and c · c2/k > 0 instead of c1 and c2.

2. From symmetry, it suffices to show f(c · d,m) ∈ F(d,m). First suppose that c ≥ 1, then we
have

cd

m
+ 2 ≥ d

m
+ 2

and
cd ln

(m
cd

+ 2
)
≥ d ln

(m
d

+ 2
)
,

since x 7→ x ln (a/x+ 2) is increasing in x for all a, x > 0. We therefore have

f(c · d,m) ≥ c1 exp

(
c2min

{
m ln

(
d

m
+ 2

)
, d ln

(m
d

+ 2
)})

∈ F (d,m) .

Suppose that c < 1. Then

m ln

(
cd

m
+ 2

)
≥ cm ln

(
cd

cm
+ 2

)
= cm ln

(
d

m
+ 2

)
,
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where again we used the fact that x 7→ x ln (a/x+ 2) is increasing in x for all a, x > 0.
Furthermore, we have

cd ln
(m
cd

+ 2
)
≥ cd ln

(cm
cd

+ 2
)
= cd ln

(m
d

+ 2
)
.

Combining these two inequalities we obtain

f(c · d,m) ≥ c1 exp

(
c · c2min

{
m ln

(
d

m
+ 2

)
, d ln

(m
d

+ 2
)})

∈ F (d,m) .

3. Since any polynomial in d, n can be upper bound by cdkmk for sufficiently large c > 0 and
natural k, it suffices to show this item for p(d,m) = dkmk. By symmetry, showing this for
dk and mk is equivalent, and by applying this rule iteratively for 1

m (or equivalently for 1
d ), it

suffices to prove this item for just the case p(d,m) = 1
m . We have by assumption that there

exist c1, c2 > 0 such that for all d,m > 0 we have

1

m
f(d,m) ≥ 1

m
c1 exp

(
c2min

{
m ln

(
d

m
+ 2

)
, d ln

(m
d

+ 2
)})

.

We first handle the case where m > d, in which the above is at least

1

m
c1 exp

(
c2d ln

(m
d

+ 2
))

=
1

m
c1

(m
d

+ 2
)c2d

≥ 1

m
c1

(m
d

+ 1
)c2d

=
1

m
c1

(m
d

+ 1
)c2d/2 (m

d
+ 1
)c2d/2

≥ 1

m
c1

(c2m
2

+ 1
)(m

d
+ 1
)c2d/2

≥ 1

2
c1c2

(m
d

+ 1
)c2d/2

=
1

2
c1c2 exp

(
c2
d

2
ln
(m
d

+ 1
))

≥ 1

2
c1c2 exp

(
c2
d

4
ln
(m
d

+ 2
))

=
1

2
c1c2 exp

(
c2
4
min

{
d ln

(m
d

+ 2
)
,m ln

(
d

m
+ 2

)})
∈ F (d,m) .

In the above, the second inequality follows from Bernoulli’s inequality and the fourth inequal-
ity follows from the inequality 0.5 ln(2 + x)/ ln(1 + x) ≤ 1 which holds for all x ≥ 1 and
since we assume m > d. Turning to the case m ≤ d, we have

1

m
f(d,m) ≥ 1

d
f(d,m),

where by symmetry we have that the proof follows from the same reasoning as in the previous
case, where the roles of d and m are switched.

The following lemma bounds the loss of the objective function in terms of the Euclidean norm
of the weights and the width of the network.
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Lemma 15 Suppose that σ satisfies Assumption 1. Then there exists a polynomial p with coeffi-
cients and degree that depend solely on σ such that

L(θ) ≤ r2p (∥θ∥2) .

Proof We begin with bounding the output of the hidden layer. For any data point xi we have
from Cauchy-Schwartz that ⟨uj ,xi⟩ ≤ ∥uj∥2 ∥xi∥2 ≤ 2 ∥uj∥, where we used the fact that D′

d is
supported on a ball of radius 2. By Assumption 1 we have constants Cσ, ασ > 0 such that

σ (⟨uj ,xi⟩+ bj) ≤ Cσ

(
1 +

∣∣2 ∥uj∥2 + |bj |
∣∣ασ
)
≤ Cσ (1 + |3 ∥θ∥2|

ασ) .

Using the above, we get

L(θ) = 1

n

n∑
i=1

 r∑
j=1

wjσ (⟨uj ,xi⟩+ bj) + b0 − yi

2

≤ 2

n

n∑
i=1

 r∑
j=1

wjσ (⟨uj ,xi⟩+ bj) + b0

2

+ 2

≤ 2

n

n∑
i=1

(rCσ ∥θ∥2 (1 + |3 ∥θ∥2|
ασ) + ∥θ∥2)

2 + 2

≤ 2r2
(
(Cσ ∥θ∥2 (1 + |3 ∥θ∥2|

ασ) + ∥θ∥2)
2 + 1

)
,

where the first inequality uses the inequality (a + b)2 ≤ 2(a2 + b2) which holds for all a, b. The
lemma then follows from the above bound.

Proof [of Thm. 3] We start the proof with showing the lower bound. Suppose we train a neural
network with architecture defined in Eq. (1) using GD for T ≥ 4 iterations. Then we have that the
running time of the algorithm is lower bounded by max{r, T}. Further assume that the algorithm
returned a set of weights θT such that

L(θT ) ≤ ϵ ≤ 1

400
.

The bulk of the remainder of the lower bound proof focuses on lower bounding T in terms of the
norm of θT . Since our bound on ∥θT ∥2 will be shown to be increasing with T , it suffices to derive
the bound for just the iterate at the final iteration T in order to obtain a lower bound on the loss of
all the other iterates t < T as well. We compute

∥θT − θ0∥2 ≤
T∑
t=1

∥θt − θt−1∥2 = η
T∑
t=1

∥∇L(θt)∥2 ≤ η

√√√√T
T∑
t=1

∥∇L(θt)∥22, (10)

where the first inequality is due to the triangle inequality, the equality is due to the update rule
θt+1 = θt − η∇L(θt), and the second inequality is due to Cauchy-Schwartz. We now argue that
L(·) is L-smooth for some positive L > 0. This follows from our assumption σ ∈ C2(R) which

24



OPTIMIZATION-BASED SEPARATIONS FOR NEURAL NETWORKS

implies that ∇2L(·) is a continuous mapping, and thus
∥∥∇2L(θ)

∥∥
sp attains its maximum on any

compact domain. In particular, we may define

L := max
θ:∥θ∥2≤cTdℓrℓ

∥∥∇2L(θ)
∥∥

sp ,

for sufficiently large c, ℓ > 0 (this norm bound will be justified later in the proof). Since L(·) is
L-smooth, we have that

L(θt+1)− L(θt) ≤ ∇L(θt)
⊤(θt+1 − θt) +

L

2
∥θt+1 − θt∥22 .

Plugging the update rule in the above, simplifying and rearranging yields(
η − η2

L

2

)
∥∇L(θt)∥22 ≤ L(θt)− L(θt+1).

Summing over t ∈ [T ] we have that the right-hand side telescopes, and by the fact that L(θT ) ≥ 0
we get

T∑
t=1

∥∇L(θt)∥22 ≤
(
η − η2

L

2

)−1

L(θ0).

Plugging the above back in Eq. (10) we have

∥θT − θ0∥2 ≤
√

TL(θ0) · η
(
η − η2

L

2

)−0.5

=
√

TL(θ0) ·
√
η

(
1− η

L

2

)−0.5

.

Since the function x 7→
√
x
(
1− xa

2

)−0.5 is increasing in x for all x ∈ (0, 2/a) where a > 0, we
have by our assumption η ≤ 2

L − 1
T that

√
η

(
1− η

L

2

)−0.5

≤
√

2

L
− 1

T

(
1−

(
2

L
− 1

T

)
L

2

)−0.5

≤
√

2

L

(
L

2T

)−0.5

=
2

L

√
T ,

which when plugged in the previous inequality yields

∥θT − θ0∥2 ≤
2T

L

√
L(θ0). (11)

To lower bound L, observe that L ∈ C2(R) since σ ∈ C2(R) by assumption. Moreover, it is readily
seen that in this case we have that ∂2

∂2b0
L(θ) = 2. Consider the unit vector e1 = (1, 0, . . . , 0) ∈ Rk,

where k := r(d + 2) + 1 is the dimension of our optimization space. If we assume that ∂2

∂2b0
L(θ)

is the first diagonal entry in the Hessian H(θ) := ∇2L(θ), then we have that it equals 2 for all
θ ∈ Rk. Along with the fact that H(θ) is symmetric, this implies that for all θ

2 = e⊤1 H(θ)e1 = v⊤D(θ)v

where H(θ) = O(θ)⊤D(θ)O(θ) with D(θ) diagonal where its entries are the eigenvalues of H(θ),
O(θ) is orthogonal and v = O(θ)e1. Since O(θ) is an isometry we have ∥v∥2 = 1, implying that

2 =
k∑

i=1

div
2
i .
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Now, if di < 2
k for all i we have

k∑
i=1

div
2
i <

2

k

k∑
i=1

v2i = 2,

which leads to a contradiction. We therefore have that the largest eigenvalue of H(θ) is at least 2/k,
implying L ≥ 2/k since L ∈ C2(R). Plugging this back in Eq. (11) we have arrived at

∥θT − θ0∥2 ≤ Tk
√

L(θ0) ≤ 3drT
√
L(θ0),

where we assume d ≥ 2. By the triangle inequality this implies

∥θT ∥2 ≤ ∥θT − θ0∥2 + ∥θ0∥2 ≤ 3drT
√

L(θ0) + ∥θ0∥2 ≤ 3drT
(√

L(θ0) + ∥θ0∥2
)
.

From Lemma 15 and our initialization assumption, we have that the above can be upper bounded
by cTdℓrℓ with probability at least 1− exp(−d) for sufficiently large c, ℓ > 0. Note that this entails
a lower bound on T as follows

T ≥
∥θT ∥2
cdℓrℓ

,

which implies a lower bound on the running time given by

max{r, T} ≥ max

{
r,
∥θT ∥2
cdℓrℓ

}
≥ 1

dℓ
min

{
1,

1

c

}
·max

{
r,
∥θT ∥2
rℓ

}
.

By Lemma 14, it will suffice to show that

max

{
r,
∥θT ∥2
rℓ

}
∈ F

(
d,

1√
ϵ

)
.

To this end, we first invoke Thm. 5 which by our assumption guarantees that

max {r, ∥θT ∥2} ∈ F (d,m) ,

where m is the largest integer such that ϵ ≤ 1
196(m+1)2

, implying that m ≥ 2 by our assumption

ϵ ≤ 1
400 . We now split our analysis into several cases.

• First assume that r > ∥θT ∥2. Then in this case we immediately have that

max

{
r,
∥θT ∥2
rℓ

}
= r = max {r, ∥θT ∥2} ∈ F (d,m) .

• Assuming r ≤ ∥θT ∥2 and
√
∥θT ∥2r−ℓ ≥ 1, we have

max

{
r,
∥θT ∥2
rℓ

}
≥ max

{
r,
√
∥θT ∥2

}
≥
√
∥θT ∥2 ∈ F (d,m) ,

where the inclusion follows from Lemma 14.
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• Assuming r ≤ ∥θT ∥2 and
√

∥θT ∥2r−ℓ < 1, we have

max

{
r,
∥θT ∥2
rℓ

}
≥ r > 2ℓ

√
∥θT ∥2 ∈ F (d,m) ,

where once again the inclusion follows from Lemma 14.

We conclude the proof by recalling that m is the largest integer such that 1
196(m+1)2

≥ ϵ and

observing that our bound on ϵ of 1
400 implies that

3 ≤ m+ 1 ≤ 1

14
√
ϵ
,

from which we have 1 ≤ 1
42

√
ϵ

and thus

2 ≤ 1

21
√
ϵ
=

1

14
√
ϵ
− 1

42
√
ϵ
≤ m+ 1 ≤ 1

14
√
ϵ
.

That is, for any ϵ ≤ 1
400 we have an integer m such that m = Θ(1/

√
ϵ) and max{r, T} ∈ F (d,m),

and therefore from Lemma 14 we get

max{r, T} ∈ F
(
d,

1√
ϵ

)
.

Turning to the positive optimization result, we first argue that D′
d has a radial density which

follows from the fact that the sum of two radial distributions is also radial, since each individual
distribution is invariant to radial transformations and therefore so is their sum. Next, we prove
each item in Assumption 6, where we denote the random variable representing the norm of the
distribution D′

d by X ′
d, and its density by γ′d.

1. Since D′
d is supported on {x : ∥x∥ ≤ 2}, we have that∫ 2

0
γ′d(x)dx = 1.

2. By Vardi and Shamir (2020, Lemma A.2) and a straightforward change of variables, we have
for all x ∈ [0, 2] that

γ′d(x) =
Γ
(
d
2

)
√
πΓ
(
d−1
2

)xd−2(1− 0.25x2)
d−3
2

(where for x > 2 the density is 0). Upper bounding the expression above, we compute

xd−2(1− 0.25x2)
d−3
2 = (x2)

d−2
2 (1− 0.25x2)

d−3
2 ≤ (x2 − 0.25x4)

d−3
2 ≤ 1,

where the last inequality holds by the assumption d ≥ 3 and the fact that maxx∈[0,2] x
2 −

0.25x4 = 1. Using Eq. 5.6.4 in DLMF, we have Γ
(
d
2

)
/Γ
(
d−1
2

)
<
√

d
2 , allowing us to

deduce an upper bound of
γ′d(x) ≤

√
d

for all x ∈ [0, 2] and d ≥ 3. We remark that γ′d(x) > 0 holds for all x ∈ [0, 2] except
for the boundary, but this poses no problem since we may without loss of generality mix the
distribution with another with positive density at the boundary while keeping the analysis
unchanged (see the explanation in the beginning of Appendix B.1 for justification).
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3. Once again, using the fact that D′
d is supported on {x : ∥x∥ ≤ 2}, we have for all x ≥ 2 that

P
[
X ′

d ≥ x
]
= 0 ≤ 1

x
.

Appendix C. Proofs from Sec. 3 – Approximation Lower Bounds

C.1. Proof of Thm. 4

Proof Our proof builds on the following main result in Eldan and Shamir (2016), which is restated
here for completeness in a slightly different manner to fit our setting.

Theorem 16 (Eldan and Shamir (2016)) The following holds for some universal constants c1, c2, c3, c4 >
0, integer γ ≥ 1, constant α ≥ 1 and any network employing an activation function satisfy-
ing Assumptions 1 and 2 in Eldan and Shamir (2016): For all d ≥ c1, there exist constants
λ
(1)
d , . . . , λ

(k)
d ∈ [1, 2] and ϵ

(1)
d , . . . , ϵ

(k)
d ∈ {−1, 1} where k = γd2, such that for any neural

network N of depth 2 and width at most c3 exp(c4d) we have

Ex∼Dd

( k∑
i=1

ϵ
(i)
d 1

{
∥x∥ ≤ α

√
dλ

(i)
d

}
−N(x)

)2
 ≥ c2,

where the density of Dd is given by

µ̂(x) :=

(
Rd

∥x∥

)d

J2
d/2(2πRd ∥x∥).

Writing the implication of the above theorem in integral form, we have that∫
Rd

(
k∑

i=1

ϵ
(i)
d 1

{
∥x∥ ≤ α

√
dλ

(i)
d

}
−N(x)

)2

µ̂(x)dx ≥ c2.

We now perform a change of variables x = α
√
dz, dx = 1

(α
√
d)d

dz to obtain

∫
Rd

(
k∑

i=1

ϵ
(i)
d 1

{
∥z∥ ≤ λ

(i)
d

}
−N(α

√
dz)

)2
1

(α
√
d)d

µ̂(α
√
dz)dz ≥ c2.

Since N(α
√
dz) computes the same function as the neural network N ′(z) where the weights of

the neurons in the hidden layer are multiplied by α
√
d, and by defining the measure µ̄(x) :=

1
(α

√
d)d

µ̂(α
√
dx) (note that this is indeed a measure as readily seen by the change of variables

y = α
√
dx, dy = 1

(α
√
d)d

dx, which yields
∫
µ̄(x)dx =

∫
1

(α
√
d)d

µ̂(α
√
dx)dx =

∫
µ̂(y)dy = 1),

we can rewrite the above as∫
Rd

(
k∑

i=1

ϵ
(i)
d 1

{
∥x∥ ≤ λ

(i)
d

}
−N(x)

)2

µ̄(x)dx ≥ c2, (12)
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for any depth 2 neural network N of width at most c3 exp(c4d). Fix any d ≥ c1. We assume
by contradiction that for all i ∈ [k], we have a depth 2 neural network Ni of width less than
c3 exp(c4d)/(γd

2) which satisfies∫
Rd

(
1

{
∥x∥ ≤ λ

(i)
d

}
−Ni(x)

)2
µ̄(x)dx <

c2
γ2d4

.

Letting ∥f∥L(µ̄) :=
√∫

Rd f2(x)µ̄(x)dx, we now compute

∥∥∥∥∥
k∑

i=1

ϵ
(i)
d 1

{
∥x∥ ≤ λ

(i)
d

}
−

k∑
i=1

ϵ
(i)
d Ni(x)

∥∥∥∥∥
L(µ̄)

≤
k∑

i=1

∣∣∣ϵ(i)d

∣∣∣ · ∥∥∥1{∥x∥ ≤ λ
(i)
d

}
−Ni(x)

∥∥∥
L(µ̄)

<

k∑
i=1

∣∣∣ϵ(i)d

∣∣∣ ·√ c2
γ2d4

≤
√
c2,

where the first inequality is the triangle inequality and the second is by our assumption. But since∑k
i=1 ϵ

(i)
d Ni(x) can be computed by a depth 2 neural network of width less than c3 exp(c4d) by

concatenating the k networks Ni, i = 1, . . . , k, the square of the above contradicts Eq. (12). We
thus have that for all d ≥ c1, there exists i ∈ [k] such that for any depth 2 neural network N of
width less than c3 exp(c4d)/(γd

2), we have∫
Rd

(
1

{
∥x∥ ≤ λ

(i)
d

}
−N(x)

)2
µ̄(x)dx ≥ c2

γ2d4
,

which for the measure µ defined in Eq. (4) implies∫
Rd

(
1

{
∥x∥ ≤ λ

(i)
d

}
−N(x)

)2
µ(x)dx ≥ c2

2γ2d4
.

Scaling c2 by 0.5γ−2 and since we can take c′3, c
′
4 > 0 small enough so that

c3 exp(c4d)

γd2
≥ c′3 exp(c

′
4d)

for all d ≥ c1, the statement of the theorem follows.

C.2. Proof of Thm. 5

To prove the theorem, we will first need the following lemma and proposition. The lemma below
shows that functions that oscillate 2m + 2 many times cannot be approximated well using polyno-
mials of degree at most m with respect to a certain weight function.

Lemma 17 For any polynomial p of degree at most m, we have∫ 1

−1

(
p(x)− f̄m(x)

)2 Γ
(
d
2

)
√
πΓ
(
d−1
2

)(1− x2)
d−3
2 dx ≥ 1

36
.

29



SAFRAN D. LEE

Proof Since the integrand is non-negative, we can lower bound the integral in the lemma by∫ 0

− 1

2
√
d

(
p(x)− f̄m(x)

)2 Γ
(
d
2

)
√
πΓ
(
d−1
2

)(1− x2)
d−3
2 dx.

Assuming d ≥ 4, then Γ
(
d
2

)
/Γ
(
d−1
2

)
≥

√
d
2 (see Eq. 5.6.4 in DLMF) and since

1√
π

inf
x∈[−0.5d−0.5,0]

(1− x2)(d−3)/2 ≥ 4

9

for all d ≥ 4 we have that the above integral is lower bounded by

2
√
d

9

∫ 0

− 1

2
√
d

(
p(x)− f̄m(x)

)2
dx.

By its definition, f̄m alternates signs at least 2m times on the domain of integration, and since a
degree m polynomial can only change signs at most m times, there are at least m intervals each
of which of length 1

4m
√
d

(we view the intervals at the boundary of the domain of integration as

a single interval of this length whenever
√
d is not an integer) where p does not change its sign.

Moreover, on at least m/2 of these intervals the signs of p and f̄m are opposite, and the integral on
these intervals is lower bounded by their length 1

4m
√
d

. Combining this with our previously derived
lower bound concludes the lemma.

The following proposition shows that a depth 2 neural network cannot approximate a certain
dot-product function that oscillates 2m + 2 many times, unless its width or the Euclidean norm of
its weights is large.

Proposition 18 Suppose that a neural network Nθ(·) with architecture defined in Eq. (1) satisfies

r, ∥θ∥2 ≤
1

10(1 +
√
Cσ)

N
α′
σ/6

d,m ,

where

Nd,m :=
(2m+ d− 2)(m+ d− 3)!

m!(d− 2)!
,

α′
σ :=

{
1 ασ ≤ 1

α−1
σ ασ > 1

, and Cσ, ασ are defined in Assumption 1 and θ are all the trainable weights

of Nθ(·) in vectorized form. Then∥∥Nθ(x)− f̄m(⟨x1,x2⟩)
∥∥2
L2(φd)

>
1

49

Proof By Daniely (2017, Thm. 4), we have that∥∥Nθ(x)− f̄m(⟨x1,x2⟩)
∥∥2
L2(φd)

≥
∥∥Pmf̄m

∥∥
L2(φd)

(∥∥Pmf̄m
∥∥
L2(φd)

−
2
∑r

j=1 |wj | · ∥σ (⟨uj ,x⟩+ bj)∥L2(φd)
+ 2 |b0|√

Nd,m

)
,
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where Pmf̄m is the best degree m polynomial approximation of x 7→ f̄m(x) with respect to the

density w(x) :=
Γ( d

2 )√
πΓ( d−1

2 )
(1− x2)

d−3
2 . By Lemma 17 we have

∥∥N(x)− f̄m(⟨x1,x2⟩)
∥∥2
L2(φd)

≥ 1

6

(
1

6
−

2
∑r

j=1 |wj | · ∥σ (⟨uj ,x⟩+ bj)∥L2(φd)
+ 2 |b0|√

Nd,m

)
.

(13)
We now bound the norm of the function implemented by a neuron

∥σ (⟨uj ,x⟩+ bj)∥L2(φd)
=

√∫
Rd

(σ (⟨uj ,x⟩+ bj))
2 φd(x)dx

≤

√∫
Rd

Cσ (1 + |2 ∥uj∥+ |bj ||ασ)2 φd(x)dx

=
√

Cσ (1 + |2 ∥uj∥+ |bj ||ασ)

≤
√
Cσ (1 + (3 ∥θ∥)ασ) ,

where the first inequality holds due to Cauchy-Schwartz and Assumption 1. From the above and an
additional application of Cauchy-Schwartz we get

2

r∑
j=1

|wj | · ∥σ (⟨uj ,x⟩+ bj)∥L2(φd)
+ 2 |b0| ≤ 2r

√
Cσ ∥θ∥ (1 + (3 ∥θ∥)ασ) + 2 ∥θ∥

≤ 2r ∥θ∥
(
1 +

√
Cσ + 3ασ ∥θ∥ασ

)
.

By our assumption in the proposition statement and the definition of α′
σ which entails α′

σ, ασα
′
σ ≤

1, we have that 2r ∥θ∥ ≤ 1
50N

1/3
d,m and 1 +

√
Cσ + 3ασ ∥θ∥ασ ≤ 2N

1/6
d,m. Plugging these two

inequalities in Eq. (13) and simplifying, the proposition follows.

With the above lemma and proposition, we are ready to prove the theorem.
Proof [of Thm. 5] Let D′

d denote the distribution on Rd defined in Eq. (5). For natural m ≥ 1,
consider the function

fm(z) :=

{
sign

(
sin
(
2πm

√
dz2
))

z2 ∈
[
2− 1√

d
, 2
]

0 otherwise
,

where we define

sign(z) :=

{
1 z ≥ 0

−1 z < 0
.

By the definition of fm(·), we have that we can write

fm(∥x∥2) =
2m+2∑
i=1

ϵ
(i)
d 1

{
∥x∥2 ≤ λ

(i)
d

}
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for appropriately chosen ϵ
(1)
d , . . . , ϵ

(2m+2)
d ∈ {−1, 1} and λ

(1)
d , . . . , λ

(2m+2)
d ∈ [1, 2]. Suppose that

for all i ∈ [2m + 2] there exists a neural network Nθi
(·) of width ri, having weights θi, and with

architecture defined by Eq. (1) such that∥∥∥N (i)
θi

(x)− 1

{
∥x∥2 ≤ λ

(i)
d

}∥∥∥
L2(φd)

≤ 1

14(m+ 1)
.

Then we can construct a depth 2 neural network Nθ′(·) of width r′ which is at most (2m + 2)r,
having weights satisfying

∥∥θ′∥∥ ≤
√
2m+ 2 ·maxi ∥θi∥ such that

Nθ′(x) =

2m+2∑
i=1

ϵ
(i)
d N

(i)
θi

(x),

by taking all the neural networks Nθi
and concatenating them appropriately. From the above and

the triangle inequality we have

∥Nθ′(x)− fm(∥x∥2)∥L2(φd)
≤

2m+2∑
i=1

∣∣∣ϵ(i)d

∣∣∣ · ∥∥∥N (i)
θi

(x)− 1

{
∥x∥2 ≤ λ

(i)
d

}∥∥∥
L2(φd)

≤ 1

7
. (14)

Next, we compute for any x = x1 +x2 such that x1,x2 have unit norm and ∥x∥22 ∈
[
2− 1√

d
, 2
]

to
obtain that

fm(∥x∥2) = sign
(
sin
(
2πm

√
d ∥x∥22

))
= sign

(
sin
(
4πm

√
d(1 + ⟨x1,x2⟩)

))
,

for any unit x1,x2 such that ⟨x1,x2⟩ ∈
[
− 1

2
√
d
, 0
]
. Define

f̄m(z) :=

{
sign

(
sin
(
4πm

√
d(1 + z)

))
z ∈

[
− 1

2
√
d
, 0
]

0 otherwise
.

By the above we have
fm(∥x∥2) = f̄m(⟨x1,x2⟩),

which when plugged in Eq. (14) yields

∥∥Nθ′(x)− f̄m(⟨x1,x2⟩)
∥∥
L2(φd)

≤ 1

7
.

By Proposition 18 we have that

max
{
r′,
∥∥θ′∥∥

2

}
>

1

10(1 +
√
Cσ)

N
α′
σ/6

d,m ,

implying

max
i

{max {ri, ∥θi∥2}} >
1

20(m+ 1)(1 +
√
Cσ)

N
α′
σ/6

d,m ≥ 1

40(1 +
√
Cσ)m

N
α′
σ/6

d,m . (15)
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Lower bounding 1
mNd,m, we first assume that m > d to obtain

1

m
Nd,m ≥ 1

m

(
m+ d− 2

d− 2

)
≥ 1

m

(
1 +

m

d− 2

)d−2

≥ 1

m

(
1 +

m

d

)d/2
=

1

m

(
1 +

m

d

)d/4
·
(
1 +

m

d

)d/4
≥ 1

m

(
1 +

m

4

)
·
(
1 +

m

d

)d/4
≥ 1

4

(
1 +

m

d

)d/4
=

1

4
exp

(
d

4
ln
(
1 +

m

d

))
≥ 1

4
exp

(
d

8
ln
(m
d

+ 2
))

.

In the above; in the first line, the second inequality follows from the inequality
(
n
k

)
≥ (n/k)k which

holds for all natural n ≥ k and the second inequality follows from the fact that x 7→ (1 + a/x)x is
increasing in x ≥ 0 for all a > 0 and by assuming d ≥ 4 which entails d− 2 ≥ d/2; in the second
line the inequality follows from Bernoulli’s inequality; in the third line, the last inequality follows
from the fact that 0.5 ln(2 + x)/ ln(1 + x) ≤ 1 for all x ≥ 1 and since we assume m > d. Now
assuming that m ≤ d, we have

1

m
Nd,m ≥ 1

d
Nd,m ≥ 1

d

(
m+ d− 2

m

)
,

from which by symmetry and using the same reasoning as in the previous case we get

1

m
Nd,m ≥ 1

4
exp

(
m

8
ln

(
d

m
+ 2

))
.

Combining these two cases together we obtain a lower bound of

1

m
Nd,m ≥ 1

4
exp

(
1

8
min

{
m ln

(
d

m
+ 2

)
, d ln

(m
d

+ 2
)})

,

which when plugged back in Eq. (15), along with Lemma 14, implies the existence of some i ∈
[2m+ 2] such that

max {ri, ∥θi∥2} ≥ c1 exp

(
c2min

{
m ln

(
d

m
+ 2

)
, d ln

(m
d

+ 2
)})

,

for some c1, c2 > 0, concluding the proof of the theorem.

Appendix D. Proofs from Subsection A.1

To prove Thm. 9, we will need the following auxiliary lemmas and propositions. The following
technical lemma provides useful bounds on the special function Owen’s T which we encounter when
computing the expectation of truncated random features (see Owen (1956) for more information
about this function).

Lemma 19 Let

T (h, a) :=
1

2π

∫ a

0

exp
(
−1

2h
2(1 + t2)

)
1 + t2

dt (16)

denote Owen’s T function. Then we have for any (h, a) ∈ [0,∞)2 that

1

2π
exp

(
−1

2
h2
(
1 + a2

))
arctan(a) ≤ T (h, a) ≤ 1

2π
exp

(
−1

2
h2
)
arctan(a).
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Proof Starting with the lower bound, since exp
(
−1

2h
2
(
1 + t2

))
is minimized at t = a in the

domain of integration [0, a] and since the integrand is positive, we can lower bound T (h, a) by

1

2π

∫ a

0

exp
(
−1

2h
2(1 + a2)

)
1 + t2

dt =
exp

(
−1

2h
2(1 + a2)

)
2π

∫ a

0

1

1 + t2
dt

=
exp

(
−1

2h
2(1 + a2)

)
2π

arctan(a),

where the upper bound follows analogously from the exponent being maximized at 0 over the inte-
gration domain.

The following lemma establishes some useful properties of the distribution of the random fea-
tures that are produced by i.i.d. normal random variables.

Lemma 20 Suppose that Uj ∼ N (0, σ2 · Id) and Bj ∼ N (0, σ2) for all j ∈ [r]. Then the pre-
activation output of a neuron in the hidden layer conditioned on the input’s norm ∥X∥ attaining the
value x, given by the random variable (⟨Uj , X⟩+Bj | ∥X∥ = x),3 follows a normal distribution
with variance σ2(1 + x2). Moreover, under the conditioning on the input’s norm, all such outputs
for all the neurons are mutually independent random variables.

Proof Fix some x = (x1, . . . , xd) such that ∥x∥ = x, then we have that

⟨Uj ,x⟩+Bj =

d∑
k=1

Uj,kxk +Bj

is normally distributed with variance σ2(1 + x2) since the sum of independent normal random
variables is normally distributed with the sum of the expectations and variances as its parameters.
Moreover, Since the coordinate in each weight Uj,k and Bj are mutually independent by our initial-

ization assumption it is readily seen that E
[∏

j∈A (⟨Uj ,x⟩+Bj)
]
= 0 for any subset of indices

A ⊆ {1, . . . , r}. Since uncorrelatedness implies independence for multivariate normal variables,
the lemma follows.

The following proposition computes the expectation of the random features produced under
Assumption 7 when we truncate the bias terms.

Proposition 21 Suppose that the random variables U ∈ Rd and B ∈ R are distributed according
to Assumption 7. Then if B is truncated from below at 0 we have for all x ∈ Rd that

EU,B [erf (⟨U,x⟩+B)] =
2

π
arctan

 1√
2 + ∥x∥2

 .

Further, if B is instead truncated from below at 1/
√
2 we have for all x ∈ Rd that

EU,B [erf (⟨U,x⟩+B)] =
4

1− erf(1)

T

√
2,

1√
2 + ∥x∥2

 .

3. To avoid ambiguity stemming from the Borel-Kolmogorov paradox, we formally define this random variable using
the limit lim

ϵ→0
(⟨Uj , X⟩+Bj | ∥X∥ ∈ (x− ϵ, x+ ϵ)). Note that this is a valid definition since by Assumption 6(2)

∥X∥ has a strictly positive density.
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Proof We will use of the following identities which appear in Owen (1980):∫ ∞

−∞
Φ(c+ dz)ϕ(z)dz = Φ

(
c√

1 + d2

)
, (17)∫

Φ(cz)ϕ(z)dz = −T (z, c) +
1

2
Φ(z), (18)

T (0, a) =
1

2π
arctan(a), (19)

where T (·, ·) is Owen’s T function defined in Eq. (16), ϕ(z) = (2π)−0.5 exp(−0.5z2) is the density
function of a standard normal random variable and Φ(z) is its cumulative distribution function.

Let U,B as in the proposition statement. We have by Lemma 20 that ⟨U,x⟩ = ∥x∥2 · Y where
Y ∼ N (0, σ2). We compute the expectation iteratively, starting with the expectation over Y by
using the law of total expectation as follows

EY,B

[
erf
(
∥x∥2 Y +B

)]
= EB

[
EY |B

[
erf
(
∥x∥2 Y + b|B = b

)]]
. (20)

Applying the law of unconscious statistician to Y , the inner expectation above equals∫ ∞

−∞
erf
(
∥x∥2 y + b

) 1

σ
ϕ
( y
σ

)
dy,

which by a simple change of variables, the identity erf(z) = 2Φ(
√
2z) − 1 and Eq. (17), can be

simplified to∫ ∞

−∞
erf (∥x∥σy + b)ϕ (y) dy = 2

∫ ∞

−∞
Φ
(√

2 ∥x∥σy +
√
2b
)
ϕ (y) dy −

∫ ∞

−∞
ϕ(y)dy

= 2

∫ ∞

−∞
Φ
(√

2 ∥x∥σy +
√
2b
)
ϕ (y) dy − 1

= 2Φ

 √
2b√

1 + 2 ∥x∥2 σ2

− 1.

To compute the expectation over the bias term, assume we truncate its values (by setting the corre-
sponding weight in the output neuron to zero) to the interval [α, β] for some β > α. Then plugging
the above in Eq. (20), we have again from the law of unconscious statistician, the density of a
truncated normal and a simple change of variables that this equals

EB

2Φ
 √

2B√
1 + 2 ∥x∥2 σ2

− 1


=2

∫ β

α
Φ

 √
2b√

1 + 2 ∥x∥2 σ2

 1

σ · (Φ(β/σ)− Φ(α/σ))
ϕ

(
b

σ

)
db− 1

=
2

Φ(β/σ)− Φ(α/σ)

∫ β/σ

α/σ
Φ

 √
2σb√

1 + 2 ∥x∥2 σ2

ϕ (b) db− 1.
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From Eq. (18), the above equals

2

Φ(β/σ)− Φ(α/σ)

−T

z,

√
2σ√

1 + 2 ∥x∥2 σ2

+
1

2
Φ(z)

β/σ

α/σ

− 1

=
2

Φ(β/σ)− Φ(α/σ)

T

α

σ
,

√
2σ√

1 + 2 ∥x∥2 σ2

− T

β

σ
,

√
2σ√

1 + 2 ∥x∥2 σ2


=

4

erf(β/
√
2σ)− erf(α/

√
2σ)

T

α

σ
,

√
2σ√

1 + 2 ∥x∥2 σ2

− T

β

σ
,

√
2σ√

1 + 2 ∥x∥2 σ2

 .

Plugging σ = 1
2 and taking the limit β → ∞, the above reduces to

4

1− erf(
√
2α)

T

2α,
1√

2 + ∥x∥2

 ,

which for the special cases of α = 0 and α = 1/
√
2, by virtue of Eq. (19), equals

2

π
arctan

 1√
2 + ∥x∥2

 ,

and
4

1− erf(1)

T

√
2,

1√
2 + ∥x∥2

 .

The following proposition establishes some of the crucial properties of the functions we use to
approximate ball indicators with random features.

Proposition 22 Let ξ ∈ I where I = [0.45, 0.472] and define for z ≥ 0

fξ(z) :=
2

π
arctan

(
1√

2 + z2

)
− ξ · 4

1− erf(1)

(
T

(√
2,

1√
2 + z2

))
.

Then {fξ}ξ∈I satisfy the following properties:

1. For all ξ ∈ I , lim
z→∞

fξ(z) = 0.

2. For all λ ∈ [1, 2] there exists ξ ∈ I such that fξ(λ) = 0.

3. For all ξ ∈ I , fξ(z) has a global minimum at

z∗ =

√√√√ 1

ln
(

ξ
1−erf(1)

)
− 1

− 2,

where z∗ ∈ [2.8, 4.2] for any ξ ∈ I . Moreover, fξ(z) is decreasing for all z ∈ (0, z∗) and
increasing for all z ∈ (z∗,∞).
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4. For all ξ ∈ I and all z ≥ 0

2

π
arctan

(
1√

2 + z2

)
∈ [0, 0.5]

and

ξ · 4

1− erf(1)

(
T

(√
2,

1√
2 + z2

))
∈ [0, 0.5].

5. For all ξ ∈ I and all z ≥ 10,

fξ(z) ≤ − 1

50z
.

6. For all ξ ∈ I and all z ∈ [0.9, 2.1], ∣∣∣∣ ∂∂z fξ(z)
∣∣∣∣ ≥ 1

600
.

Proof

1. Since 1√
2+z2

→ 0 as z → ∞, the limit follows from continuity and the definition of T (·, ·).

2. Given λ ∈ [1, 2], since T
(√

2, 1√
2+λ2

)
> 0, we define

ξ = g(λ) :=
1− erf(1)

2π
·
arctan

(
1√

2+λ2

)
T
(√

2, 1√
2+λ2

) .

Clearly, fξ(λ) = 0 by its definition. To bound the set of values ξ takes for all λ ∈ [1, 2], we
bound the quotient

arctan
(

1√
2+λ2

)
T
(√

2, 1√
2+λ2

)
from below and above. It will suffice to show the monotonicity of this quotient in the domain
[1, 2] and compute its values at the boundary. Since (2 + λ2)−0.5 is monotone, it will suffice
to show monotonicity after the change of variables z 7→ (2 + λ2)−0.5, which yields

arctan (z)

T
(√

2, z
) .

We now need only show that the derivative of the above does not change its sign. Using
the fundamental theorem of calculus, consider the numerator of the derivative of the quotient
which is given by

1

1 + z2
T
(√

2, z
)
− 1

1 + z2
· 1

2π
arctan(z) exp(−(1 + z2)),

which is non-negative by Lemma 19. We now conclude by verifying that g(1), g(2) ∈ I using
a symbolic computation package.
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3. Using the chain rule and the fundamental theorem of calculus, we have

∂

∂z
fξ(z) = − 2

π
· z

(3 + z2)
√
2 + z2

+ ξ · 4

2π(1− erf(1))
·
z exp

(
−
(
1 + 1

2+z2

))
(2 + z2)1.5

(
1 + 1

2+z2

)
=

2z

π(1− erf(1)) (3 + z2)
√
2 + z2

(
ξ exp

(
−
(
1 +

1

2 + z2

))
− (1− erf(1))

)
.

(21)

To find the critical point z∗, equate the above to zero and solve for z to get

z∗ =

√√√√ 1

ln
(

ξ
1−erf(1)

)
− 1

− 2,

which for any ξ ∈ I is contained inside the interval [2.8, 4.2]. Lastly, since

exp

(
−
(
1 +

1

2 + z2

))
is increasing in z and since the fraction on the left-hand side of Eq. (21) is positive for positive
z, we have from that the derivative is negative in (0, z∗) and positive in (z∗,∞).

4. We have

0 ≤ 2

π
arctan

(
1√

2 + z2

)
≤ 2

π
arctan

(
1√
2

)
≤ 0.5,

since clearly the above is positive for all z ≥ 0. Moreover, by Lemma 19

0 ≤ ξ · 4

1− erf(1)

(
T

(√
2,

1√
2 + z2

))
≤ ξ · 4

1− erf(1)
· exp (−1)

2π
arctan

(
1√

2 + z2

)
≤ ξ · 4

1− erf(1)
· exp (−1)

2π
arctan

(
1√
2

)
≤ 0.5,

where the first inequality is immediate from the definition of T (·, ·) and in the last inequality
we used ξ ≤ 0.472.

5. Using Lemma 19 to lower bound T
(√

2, 1√
2+z2

)
, we have

fξ(z) ≤
2

π
arctan

(
1√

2 + z2

)
− ξ · 4

1− erf(1)

(
1

2π
exp

(
−
(
1 +

1

2 + z2

))
arctan

(
1√

2 + z2

))
=

2

π
arctan

(
1√

2 + z2

)(
1− ξ

1− erf(1)
exp

(
−
(
1 +

1

2 + z2

)))
≤ 2

π
arctan

(
1√

2 + z2

)(
1− 0.45

1− erf(1)
exp (−1.01)

)
≤ −0.08

π
arctan

(
1√

2 + z2

)
≤ − 0.064

π
√
2 + z2

≤ −0.02

z
,
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where the second inequality follows from ξ ≥ 0.45 and the assumption z ≥ 10 which implies
−
(
1 + 1/(2 + z2)

)
≥ −1.01, the third inequality follows from 1 − 0.45

1−erf(1) exp (−1.01) ≤
−0.04, the fourth from arctan(z) ≥ 0.8z for all z ∈ [0, 2−0.5], and the last inequality follows
from 2 ≤ 0.02z2 for any z ≥ 10 and from 0.064/(

√
1.02π) ≥ 0.02.

6. Plugging 0.9 or 2.1 into Eq. (21), depending on whether a certain expression in the derivative
is monotonically increasing or decreasing, we can lower bound the derivative in absolute
value by

∣∣∣∣ 2 · 0.9
π(1− erf(1))(3 + 2.12)

√
2 + 2.12

(
0.472 exp

(
−
(
1 +

1

2 + 2.12

))
− (1− erf(1))

)∣∣∣∣
where we also used the fact that ξ ≤ 0.472. The lower bound then follows by verifying that
the above is at least 0.00169.

With the above propositions, we can now prove Thm. 9.

Proof [of Thm. 9] We first sample w0 = (w1,0, . . . , wr,0) according to Assumption 7, and then we
proceed to define v in the following manner: Split the r neurons in the hidden layer into two equally
sized groups, and set vj = r−0.75 for all the neurons in the first group and vj = −ξλ · r−0.75 in the
second group where ξλ ∈ [0.45, 0.472] is a constant that depends on λ and is to be specified later.
Next, we describe which undesired random features get truncated (by setting their corresponding vj
to 0). For each hidden neuron in the first group, we truncate bias terms with value below 0, and for
the second group we truncate bias terms below 1/

√
2. Furthermore, if the sign of any weight wj in

the output neuron’s initialization disagrees with the sign of the corresponding value we had set for
vi, then it is also truncated.

Before we proceed to prove the theorem, we will introduce some notation to be used throughout
the remainder of the proof. We let A1, A2 denote the indices of the neurons that do not get truncated
in the first and second groups, respectively. For some j ∈ [r], we let Wj denote the random variable
which is the j-th coordinate of w0. Fix some i ∈ [n] and let Yj,k = erf (⟨Uj ,xi⟩+Bj,a) denote the
random variable which is the output of the j-th neuron in the k-th group on the i-th data instance,
where Bj,a is a normal random variable with zero mean and variance 0.25 which is truncated from
below at a (i.e. a = 0 for k = 1 and a = 2−0.5 for k = 2). Let v = (v1, . . . , vr) denote the
coordinates of v.

Next, we restate the inequalities assumed in the statement of the theorem to be used throughout
the proof. Observe that after some calculations, the assumed bound on r implies the following
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inequalities (if we also assume n ≥ 4)

r−0.25 ≤ 1

12000
, (22)

10

√
ln
(
8n
δ

)
r

≤ 10

√
ln
(
8n
δ

)
√
r

≤ 1

500
< 1, (23)

− 1

50c1
≤ −10

√
ln
(
8n
δ

)
√
r

, (24)√
ln
(
32
δ

)
r

≤ 0.02, (25)

1.2−r ≤ δ

16
. (26)

We begin the proof with showing the first item in the theorem statement, where the upper bound
follows simply from

∥v∥2 =
r∑

i=1

v2i ≤
r∑

i=1

r−1.5 =
1√
r
,

where the inequality is by the definition of ξ which satisfies ξ ∈ [0.45, 0.472] (and appears at a
later stage of the proof) and the fact that truncating any coordinate vj only decreases the norm of v.
Lower bounding ∥v∥ requires that we first show that the number of neurons that do not get truncated
is large enough. To this end, we first observe that the probability of neurons in the first group to not
get truncated is exactly 1

4 . This is because we obtain a bias term realization that is negative with
probability 0.5, the sign of the corresponding coordinate in w0 is positive with probability 0.5 by
Assumption 7, and since the two events are independent. Similarly, we have that the probability of
a neuron in the second group to not get truncated is 0.25 − 0.25 erf(1) ≥ 0.03. This guarantees
that with high probability, the number of untruncated neurons in each group is at least a constant
fraction of r: We have from Hoeffding’s inequality that for each group that

P

∣∣∣∣∣∣2r
r/2∑
j=1

1 {vj ̸= 0} − E [1 {vj ̸= 0}]

∣∣∣∣∣∣ >
√

ln(32/δ)

r

 ≤ δ

16
,

where the expectations for the first and second groups are at least 0.25, 0.03, respectively, since the
expectation of an indicator is the probability of the event. By Eq. (25) this implies

P

2
r

r/2∑
i=1

1 {vi ̸= 0} ≥ 0.01

 ≥ 1− δ

16
.

Taking a union bound over the two truncation groups, we have that

P
[
min {|A1| , |A2|} ≥ r

200

]
≥ 1− δ

8
. (27)

Assuming the above holds, we can derive the lower bound on ∥v∥. Focusing on the neurons in
the first truncation group, we have by Assumption 7 that for any j ∈ A1,

(Wj | vj ̸= 0) ∼ (Wj | Wj > 0) ∼ |Wj | .
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That is, given the knowledge that a weight vj did not get truncated, its corresponding weight in
the hidden layer Wj follows a half-normal distribution. This is true since the bias term Bj and Wj

are independent by Assumption 7, and since vj ̸= 0 implies that the realization of Wj was positive
which by symmetry implies it is half-normally distributed. Since the PDF of a half-normal random
variable is erf

(
x

σ
√
2

)
, we have that P

[
|Wj | ≥ 1

r

]
> 0.3. We can now use Hoeffding’s inequality

on all the neurons in A1 (note that they are i.i.d. even after we are given the knowledge that they
were not truncated) and obtain

P

∣∣∣∣∣∣ 1

|A1|
∑
j∈A1

1

{
|Wj | ≥

1

r

}
− E

[
1

{
|Wj | ≥

1

r

}]∣∣∣∣∣∣ > 10

√
ln(32/δ)

r

 ≤ δ

16
,

which by Eqs. (25,27) implies

P

∣∣∣∣∣∣ 1

|A1|
∑
j∈A1

1

{
|Wj | ≥

1

r

}∣∣∣∣∣∣ ≤ 0.1

 ≤ δ

16
,

or equivalently using Eq. (27) again

P

∣∣∣∣∣∣
∑
j∈A1

1

{
|Wj | ≥

1

r

}∣∣∣∣∣∣ > |A1|
10

≥ r

2000

 ≥ 1− δ

16
. (28)

With the above at hand we can lower bound ⟨w0,v⟩ in a straightforward manner; by Assumption 7
and the construction of v, we have that vj = r−0.75 and wj ≥ 1

r for at least r/2000 neurons,
therefore

⟨w0,v⟩ ≥
r

2000
· 1

r0.75
· 1
r
=

1

2000r0.75
. (29)

Upper bounding ∥w0∥2, we use a standard bound on Chi-squared random variables to obtain

P
[
∥w0∥2 ≥

2

r

]
≤ (2 exp(−1))r/2 ≤ 1.2−r ≤ δ

16
,

where the last inequality follows from Eq. (26). Equivalently, the above can be stated as

P
[
∥w0∥2 <

2

r

]
≥ 1− δ

16
, (30)

which along with Eq. (29) yields

∥w0∥2 <
2

r
≤ 1

103r0.75
≤ 2 ⟨w0,v⟩ ,

where the second inequality follows from Eq. (22). Adding ∥v∥2 to both sides of the above inequal-
ity and rearranging, the lower bound on ∥v∥2 follows.

Moving to the second item in the theorem statement, we now wish to define the intervals
I1, . . . , I4. To this end, we first define the functions

fξλ(z) :=
2

π
arctan

(
1√

2 + z2

)
− ξλ · 4

1− erf(1)

(
T

(√
2,

1√
2 + z2

))
,
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for ξλ ∈ [0.45, 0.472] that depend on λ so that fξλ(λ) = 0 for all λ ∈ [1, 2] (see Item 2 in
Proposition 22). By Item 3 in Proposition 22, we can define two inverse functions which we denote
by f−1

ξλ,1
(z), f−1

ξλ,2
(z) on the intervals (0, z∗) and (z∗,∞), respectively, where it is guaranteed that

z∗ ∈ [2.8, 4.2]. We can now define the intervals I1, . . . , I4. Starting with I1, I2, we let

I1 :=
[
0, f−1

ξλ,1

(
2r−0.25

)]
, I2 :=

(
f−1
ξλ,1

(
2r−0.25

)
, f−1

ξλ,1

(
−r−0.25

))
.

We remark that the above intervals are well-defined since by Items 2 and 6 in Proposition 22, we
have fξλ(0.9) ≥

1
6000 and fξλ(2.05) ≤ − 1

12000 , which along with Eq. (22) imply that

0.9 ≤ f−1
ξλ,1

(
2r−0.25

)
< f−1

ξλ,1

(
−r−0.25

)
≤ 2.05.

To define I3 and I4, we observe that the above also guarantees that z∗ /∈ I1 ∪ I2, and from Item 1 in
Proposition 22 we have that the image of f−1

ξλ,2
(·) is (0, f−1

ξλ,2
(z∗)). We can thus define I3 and I4 as

the intervals given by

I3 :=

f−1
ξλ,1

(
−r−0.25

)
, f−1

ξλ,2

−10

√
ln
(
8n
δ

)
r

 , I4 :=

f−1
ξλ,2

−10

√
ln
(
8n
δ

)
r

 ,∞

 .

To see why the above intervals are well-defined, we use Item 5 in Proposition 22 and Eq. (23) to
deduce that

fξλ(10) ≤ − 1

500
≤ −10

√
ln
(
8n
δ

)
√
r

≤ −10

√
ln
(
8n
δ

)
r

. (31)

Since f−1
ξλ,2

(·) is increasing by its definition (and defined for z = 10 since 10 ≥ z∗), we can apply it
to the above inequality to obtain

10 ≤ f−1
ξλ,2

−10

√
ln
(
8n
δ

)
r

 , (32)

which verifies that I3, I4 are well-defined.
We now turn to show that with high probability, the fraction of data instances with norm in

I2 ∪ I4 decays to zero as r grows. Recall that I2 ⊆ [0.9, 2.05], we can upper bound the length of
I2 using Item 6 in Proposition 22 by 1800r−0.25. Using Assumption 6, let q denote the polynomial
bounding the density γd on I2. Then

Px∼Dd
[∥x∥ ∈ I2] ≤ 1800q(d)r−0.25. (33)

To bound Px∼Dd
[∥x∥ ∈ I4], apply f−1

ξλ,2
(·) to the inequality in Eq. (31) (ignoring the last term) to

get

f−1
ξλ,2

−10

√
ln
(
8n
δ

)
√
r

 ≥ 10. (34)

We now argue that the constant c1 from Assumption 6 satisfies

c1 ≤ f−1
ξλ,2

−10

√
ln
(
8n
δ

)
√
r

 . (35)
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If c1 ≤ 10, the above is immediate from Eq. (34). Otherwise, we can use Eq. (24) and Item 5 in
Proposition 22 to deduce that

f(c1) ≤ − 1

50c1
≤ −10

√
ln
(
8n
δ

)
√
r

,

where Eq. (35) follows by applying the increasing function f−1
ξλ,2

to both sides of the inequality.
Using Eq. (35) and Assumption 6, we have the following bound

Px∼Dd
[∥x∥ ∈ I4] ≤ c2

f−1
ξλ,2

−10

√
ln
(
8n
δ

)
√
r

−1

. (36)

To bound the expression above, note that Eq. (23) entails

r0.25

500
√
ln
(
8n
δ

) ≥ 10,

which allows us to use Item 5 in Proposition 22 to deduce that

fξλ

 r0.25

500
√
ln
(
8n
δ

)
 ≤ −10

√
ln
(
8n
δ

)
√
r

.

Applying the increasing function f−1
ξλ,2

to both sides of the inequality above and rearranging while
noting that f−1

ξλ,2
(z) > 0 for all z in its domain which does not change the sign upon division, we

have

1

f−1
ξλ,2

(
−10

√
ln
(
8n
δ

)
/
√
r
) ≤

500
√
ln
(
8n
δ

)
r0.25

,

which when plugged in Eq. (36) and combined with Eq. (33) using a union bound implies

Px∼Dd
[∥x∥ ∈ I2 ∪ I4] ≤ p :=

1800q(d) + 500c2

√
ln
(
8n
δ

)
r0.25

.

Since the data instances are i.i.d., we can use Hoeffding’s inequality to bound the probability of
getting a significantly larger portion of the data in the intervals I2, I4 as follows

Pxi∼Dn
d

[∣∣∣∣∣ 1n
n∑

i=1

1 {∥xi∥ ∈ I2 ∪ I4} − E [1 {∥xi∥ ∈ I2 ∪ I4}]

∣∣∣∣∣ >
√

ln(8/δ)

2n

]
≤ δ

4
,

which by the assumption
√

ln(8/δ)
2n ≤ p in the theorem statement implies

Pxi∼Dn
d

[
n∑

i=1

1 {∥xi∥ ∈ I2 ∪ I4} > 2pn

]
≤ δ

4
. (37)
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To show that with high probability, data instances with norm in I1 ∪ I3 are classified correctly
and data instances in I2 ∪ I4 have a bounded misclassification margin, we would need to obtain
sufficient concentration of the hidden neurons around their means. We thus now turn to bound
the uniform deviation over the data for each group of neurons from its expected value. Using
Hoeffding’s inequality on the random variables Yi,k for each k separately (which is justified since
given ∥xj∥, the outputs of the neurons in the hidden layer are mutually independent by Lemma 20),
we have from Item 4 in Proposition 22, that P [Yi,1 ∈ [0, 0.5]] = 1, and therefore

P

∣∣∣∣∣∣
∑
i∈A1

r−0.75Yi,1 − r−0.75E [Yi,1]

∣∣∣∣∣∣ >
√

25 ln(8n/δ)√
r

 ≤ δ

4n
.

Likewise, from a similar bound on the average of Yi,2 where P [ξλYi,2 ∈ [0, 0.5]] = 1 by Item 4 in
Proposition 22, we have

P

∣∣∣∣∣∣
∑
i∈A2

ξλr
−0.75Yi,2 − ξλr

−0.75E [Yi,2]

∣∣∣∣∣∣ >
√

25 ln(8n/δ)√
r

 ≤ δ

4n
.

Combining the above two bounds using a union bound and the triangle inequality and taking another
union bound over all the n instances in the data, it then follows from Proposition 21 that

P

[
sup
j∈[n]

∣∣∣v⊤x̃j − r0.25fξλ(∥xj∥)
∣∣∣ ≤ 10

√
ln(8n/δ)√

r

]
≥ 1− δ

2
. (38)

It only remains to show that
[
v⊤x̃j

]1
+
= 1 {∥xj∥ ≤ λ} = yj for any xj such that ∥xj∥ ∈ I1 ∪ I3,

and that
∣∣v⊤x̃j

∣∣ ≤ 3 for any xj such that ∥xj∥ ∈ I2∪I4. To this end, we will consider each interval
separately:

• Suppose that ∥xj∥ ∈ I1, then since fξλ is decreasing on I1 we have that r0.25fξλ(∥xj∥) ≥
r0.25fξλ

(
f−1
ξλ,1

(
2r−0.25

))
= 2. Combining this with Eqs. (23,38) we have

v⊤x̃j ≥ r0.25fξλ(∥xj∥)− 10

√
ln(8n/δ)√

r
≥ 2− 1 = 1.

We thus have [
v⊤x̃j

]1
+
= 1 = 1 {∥xj∥ ≤ λ} = yj .

• Suppose that xj ∈ I2, then since fξλ is decreasing on I2 we have that

r0.25fξλ(∥xj∥) ∈ (−1, 2),

which together with Eqs. (23,38) implies

v⊤x̃j ∈ (−2, 3).
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• Suppose that xj ∈ I3. Since z∗ ∈ I3 by Eq. (32), we have that fξλ is decreasing and then
increasing on I3 by Item 3 in Proposition 22. Therefore, fξλ attains its maximum over I3 at
the boundary, and we have

fξλ(∥xj∥) ≤ max

fξλ

(
f−1
ξλ,1

(
−r−0.25

))
, fξλ

f−1
ξλ,2

−10

√
ln
(
8n
δ

)
r


= max

−r−0.25,−10

√
ln
(
8n
δ

)
r

 .

From the above and Eqs. (23,38), we have

v⊤x̃j ≤ r0.25fξλ(∥xj∥)+10

√
ln
(
8n
δ

)
√
r

≤ max

−1,−10

√
ln
(
8n
δ

)
√
r

+10

√
ln
(
8n
δ

)
√
r

≤ 0,

implying that [
v⊤x̃j

]1
+
= 0 = 1 {∥xj∥ ≤ λ} = yj .

• Suppose that xj ∈ I4, then since fξλ is increasing on I4 we have that

r0.25fξλ(∥xj∥) ∈ (−1, 0),

which together with Eqs. (23,38) implies

v⊤x̃j ∈ (−2, 1).

We conclude the proof of Thm. 9 by applying a union bound to the events in Eqs. (27,28,30,37,38).

Appendix E. Proofs from Subsection A.2

The proof of Thm. 10 relies on the following lemmas. The first lemma below provides a technical
inequality which allows us to lower bound the density of the distribution of our random features by
a log-concave density.

Lemma 23 The function

g(x, z) =
exp

(
erf -1(z)2

(
1− 2

1+x2

))
√
2 + 2x2

restricted to the domain (x, z) ∈ R× [−1/9, 1/9] is non-increasing in x.
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Proof Differentiating with respect to x we obtain (by hand or by using a symbolic computation
package)

∂

∂x
g(x, z) =

x exp
(
erf -1(z)2

(
1− 2

1+x2

)) (
2 erf-1(z)2 − 0.5(1 + x2)

)
0.53(2 + 2x2)2.5

.

The above is non-positive if
2 erf-1(z)2 − 0.5(1 + x2) ≤ 0.

It can be verified that supz∈[−1/9,1/9] erf
-1(z)2 ≤ 0.01, and therefore

2 erf-1(z)2 − 0.5(1 + x2) ≤ 0.02− 0.5 < 0,

which concludes the proof of the lemma.

The following lemma leverages the analysis done in Lovász and Vempala (2007) to assert that
log-concave distributions have well-behaved two-dimensional marginal distributions in any direc-
tions.

Lemma 24 Suppose that X̃1, . . . , X̃r are i.i.d. log-concave random variables with E[X̃1] = 0 and
E[X̃2

1 ] = ρ2. Then the marginal distribution of the random vector (X̃1, . . . , X̃r) on the subspace
spanned by any w1 ̸= w2 has a (two-dimensional) density p(·) satisfying

inf
x:∥x∥≤ 1

9ρ

p(x) ≥ ρ22−16.

Proof Let O denote the orthogonal transformation such that the change of variables x̃ 7→ Ox̃
followed by a marginalization of the last r − 2 coordinates results in the random two-dimensional
vector having density p. We first claim that this density is log-concave; this holds since affine
transformations and marginalizations preserve log-concavity (Saumard and Wellner, 2014). Next,
we have that the distribution of this vector is given by the random variables

X1 =

r∑
j=1

o1,jX̃j , X2 =

r∑
j=1

o2,jX̃j ,

where oi,j is the (i, j)-th entry of O. Consider the density
∫
R2 p(x)dx = 1. We perform a change

of variables x1 7→ 1
ρy1 and x2 7→ 1

ρy2 which entails dx = 1
ρ2
dy, and we have

1 =

∫
R2

p(x)dx =

∫
R2

1

ρ2
p

(
1

ρ
y

)
dy.

That is, 1
ρ2
p
(
1
ρx
)

is the density function of the random vector
(
1
ρX1,

1
ρX2

)
. We will show that

this random vector is in isotropic position which means it has zero mean and identity covariance
matrix: We clearly have for i ∈ {1, 2} that

E
[
1

ρ
Xi

]
=

r∑
j=1

oi,j
ρ

E
[
X̃j

]
= 0,
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and to compute the covariance matrix of
(
1
ρX1,

1
ρX2

)
, we begin with the diagonal entries to obtain

E
[
1

ρ2
X2

i

]
=

1

ρ2

 r∑
j=1

o2i,jE
[
X̃2

j

]
+
∑
j1 ̸=j2

oi,j1oi,j2E
[
X̃j1X̃j2

] =
1

ρ2

r∑
j=1

o2i,jρ
2 = 1,

where we used the facts that X̃j are i.i.d. and that the rows of O are orthogonal. To compute the
off-diagonal entries, we have

E
[
1

ρ2
X1X2

]
=

1

ρ2

 r∑
j=1

o1,jo2,jE
[
X̃2

j

]
+
∑
j1 ̸=j2

o1,j1o2,j2E
[
X̃j1X̃j2

] =
1

ρ2

r∑
j=1

o1,jo2,jρ
2 = 0,

where again we used the facts that X̃j are i.i.d. and that the rows of O are orthogonal. We now have

by Lovász and Vempala (2007, Thm. 5.14) that the density 1
ρ2
p
(
1
ρx
)

satisfies

1

ρ2
p

(
1

ρ
v

)
≥ 2−18∥v∥ 1

ρ2
p(0) ≥ 2−18∥v∥−14

for all v such that ∥v∥ ≤ 1
9 . The above implies that for all x with ∥x∥ ≤ 1

9ρ , we have

p(x) ≥ ρ22−18ρ∥x∥−14 ≥ ρ22−16,

concluding the proof of the lemma.

We are ready to prove Thm. 10.
Proof [of Thm. 10] We begin with evaluating the distribution of the output of an arbitrary neuron
in the first hidden layer, given by erf(⟨Uj , X⟩ + Bj), where X ∼ Dd, Bj ∼ N (0, 0.25) and
Uj ∼ N (0, 0.25). We first observe that the outputs of two neurons are not independent in general.
Indeed, if Dd generated an instance with a very large norm, then erf(⟨Uj , X⟩ + Bj) will be very
close to either −1 or 1, depending on the sign of ⟨Uj , X⟩. Given the information that a neuron
outputs a value close to 1 in absolute value, it is far less likely for other neurons to attain values
close to zero. Fortunately, by Lemma 20 we have that

(⟨Uj , X⟩+Bj | ∥X∥ = x) ∼ N (0, 0.25(1 + x2)).

In words, ⟨Uj , X⟩ + Bj conditioned on ∥X∥ taking the value x follows a normal distribution with
zero mean and variance 0.25(1 + x2). This conditioning is useful, since Lemma 20 also implies
that under this conditioning, the output of the neurons are mutually independent random variables,
which would prove integral in our analysis. We now compute the distribution of the random variable
X̃j = erf(⟨Uj , X⟩+Bj), also conditioned on ∥X∥ = x. We have for any z ∈ (−1, 1)

P
[
X̃j ≤ z | ∥X∥ = x

]
= P

[
⟨Uj , X⟩+Bj ≤ erf -1(z) | ∥X∥ = x

]
= 0.5 + 0.5 erf

(
erf -1(z)

0.5
√
2 + 2x2

)
. (39)
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Differentiating with respect to z using the fact that ∂
∂z erf

-1(z) =
√
π
2 exp

(
[erf -1(z)]2

)
, we have

that the density of X̃j given that ∥X∥ = x is given by

f(z|x) =
exp

(
erf -1(z)2

(
1− 2

1+x2

))
√
2 + 2x2

. (40)

Using the above, we can express the density of the random vector (X̃1, . . . , X̃r) as follows

f̃(x̃1, . . . , x̃r) =

∫ ∞

0
f̄(x̃1, . . . , x̃r, x)dx =

∫ ∞

0

r∏
j=1

f(x̃j | x) · γd(x)dx, (41)

where f̄ is the joint density of X̃1, . . . , X̃r and ∥X∥, and we used the conditional mutual dependence
of the X̃j’s given that ∥X∥ = x which Lemma 20 guarantees. We are now interested in lower
bounding the above expression once it is marginalized to an arbitrary two-dimensional subspace.
To this end, we may assume without loss of generality that w1,w2 are orthogonal and of unit
length (e.g. by applying a Gram–Schmidt process which does not change their span). Letting x̃ =
(x̃1, . . . , x̃r), oj ∈ Rr denote the i-th row of an orthogonal matrix O ∈ Rr×r and A ⊆ Rr−2 denote
the transformed integration domain [−1, 1]r−2 after applying the transformation defined by the first
r − 2 rows of O. We need to lower bound the following expression

inf
x̃:∥x̃∥≤ 1

9

inf
O:O orthogonal

∫
A
f̃(⟨o1, x̃⟩ , . . . , ⟨or, x̃⟩)dx̃1 . . . dx̃r−2

= inf
x̃:∥x̃∥≤ 1

9

inf
O:O orthogonal

∫
A

∫ ∞

0

r∏
j=1

f(⟨oj , x̃⟩ | x) · γd(x)dxdx̃1 . . . dx̃r−2

≥ inf
x̃:∥x̃∥≤ 1

9

inf
O:O orthogonal

∫
A

∫ 2

0

r∏
j=1

f(⟨oj , x̃⟩ | x) · γd(x)dxdx̃1 . . . dx̃r−2

≥ inf
x̃:∥x̃∥≤ 1

9

inf
O:O orthogonal

∫
A

∫ 2

0

r∏
j=1

f(⟨oj , x̃⟩ | x = 1) · γd(x)dxdx̃1 . . . dx̃r−2

≥C inf
x̃:∥x̃∥≤ 1

9

inf
O:O orthogonal

∫
A

r∏
j=1

f(⟨oj , x̃⟩ | x = 1)dx̃1 . . . dx̃r−2, (42)

where the equality is by Eq. (41), the first inequality is because the integrand is non-negative, the
second inequality is by Lemma 23 since ⟨oj , x̃⟩ ≤ ∥oj∥ · ∥x̃∥ ≤ 1/9 from Cauchy-Schwartz, and
the last inequality is due to Dd satisfying Assumption 6(1) with the constant C > 0. Turning to
analyze the density function of the marginal given by

p(x̃r−1, x̃r) =

∫
A

r∏
j=1

f(⟨oj , x̃⟩ | x = 1)dx̃1 . . . dx̃r−2,

observe that it is the density function obtained by an orthogonal transformation and marginalization
on r i.i.d. random variables with density f(z | x = 1). Conveniently, we have from Eq. (40) that
f(z | x = 1) = 0.5 for all z ∈ [−0.5, 0.5]. Namely, this is a uniform distribution on the interval
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[−0.5, 0.5], which has variance 1
12 and is clearly log-concave in z by definition. Lemma 24 then

yields that Eq. (42) is lower bounded by

C · 1

12
· 2−16 ≥ C · 10−6,

concluding the proof of Thm. 10.

Appendix F. Gradient Descent Convergence Proofs

The proofs of Propositions (11,12) build on the following lemmas, where the first which is presented
below, bounds the growth function of the hypothesis class of predictors that are intersections of
halfspaces. This lemma will allow us to bound the empirical Rademacher complexity of certain
function classes that we will encounter in the proofs of the propositions.

Lemma 25 Let r ≥ 2. Let Hr,m denote the hypothesis class of intersections of m halfspaces in
r-dimensional Euclidean space (i.e. x 7→ 1 if and only if it is contained inside all m halfspaces).
Then the growth function of Hr,m denoted τHr,m(·) satisfies

τHr,m(n) ≤ nm(r+1)

for all n > r + 1.

Proof Let Hr denote the class of predictors in Rr parameterized by w ∈ Rr and b ∈ R such that
hw,b(x) = 1

{
w⊤x+ b ≥ 0

}
. It is a well-known fact that the VC-dimension of Hr is r + 1. By

the Sauer-Shelah lemma (Shalev-Shwartz and Ben-David, 2014, Lemma 6.10) and the assumption
r ≥ 2, we have

τHr(n) ≤
(

en

r + 1

)r+1

≤ nr+1.

Next, observe that for any h ∈ Hr,m and a set C = {x̃1, . . . , x̃n}, the number of different labellings
on C produced by hypotheses in Hr,m is uniquely determined by a set of m halfspaces. Since each
such halfspace can produce at most nr+1 different labellings on the set C, the size of the different
labellings attained by hypotheses in Hr,m is therefore upper bounded by

(
nr+1

)m
= nm(r+1),

concluding the proof of the lemma.

The following lemma bounds the empirical Rademacher complexity of certain function classes
that control the empirical risk we obtain over our data.

Lemma 26 Fix v ∈ Rr, assume n > r + 1 and define the function classes

F1 :=
{
x̃ 7→ 1

{
w⊤x̃ ≥ 1

}
· 1
{
v⊤x̃ ≤ 0

}
+ 1

{
w⊤x̃ ≤ 0

}
· 1
{
v⊤x̃ ≥ 1

}
: w ∈ Rr

}
,

F2 :=

{
x̃ 7→ 1

{
w⊤x̃ ∈ (0, 1)

}
· 1
{
v⊤x̃ ∈ (0, 1)

}
·
(
(w − v)⊤

∥w − v∥
x̃

)2

: w ∈ Rr,w ̸= v

}
.
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Let fw ∈ F1. Then for any distribution D̃ we sample x̃i from, we have with probability at least
1− δ that

sup
w∈Rr

∣∣∣∣∣ 1n
n∑

i=1

fw(x̃i)− Ex̃i∼D̃ [fw(x̃i)]

∣∣∣∣∣ ≤ 4

√
(8r + 8) log2(n)

n
+

√
2 ln (2/δ)

n
.

Further, if fw ∈ F2 then for any distribution D̃ we sample x̃i from, which satisfies ∥x̃i∥ ≤
√
r

almost surely, we have with probability at least 1− δ that

sup
w∈Rr

∣∣∣∣∣ 1n
n∑

i=1

fw(x̃i)− Ex̃i∼D̃ [fw(x̃i)]

∣∣∣∣∣ ≤ 4r

√
(8r + 8) log2(n)

n
+

√
2 ln (2/δ)

n
.

Proof We shall use a Rademacher complexity argument to prove the lemma. Starting with F1, we
have by standard Rademacher complexity arguments that

sup
w∈Rr

∣∣∣∣∣ 1n
n∑

i=1

fw(x̃i)− Ex̃i∼D̃ [fw(x̃i)]

∣∣∣∣∣ ≤ 2Rn (F1 (x̃1, . . . , x̃n)) +

√
2 ln (2/δ)

n
(43)

(Boucheron et al., 2005, Thm. 3.2), where Rn (F1 (x̃1, . . . , x̃n)) := E
[
supfw∈F1

∣∣ 1
n

∑n
i=1 ξifw(x̃i)

∣∣]
is the empirical Rademacher complexity of F1, and the expectation is over ξ1, . . . , ξn which are i.i.d.
Rademacher random variables. Next, we have that the empirical Rademacher complexity of F1 can
be upper bounded by √

2 log2(τF1(n))

n
,

where τF1(·) is the growth function of F1 (Boucheron et al., 2005, Eq. (6)). Since the class F1 is
contained inside the class of intersections of 4 halfspaces, its growth function is upper bounded by
the growth function of the class of such intersections, and thus by virtue of Lemma 25 the above is
at most √

(8r + 8) log2(n)

n
.

Plugging this back in Eq. (43), we arrive at

sup
w∈Rr

∣∣∣∣∣ 1n
n∑

i=1

fw(x̃i)− Ex̃i∼D̃ [fw(x̃i)]

∣∣∣∣∣ ≤ 2

√
(8r + 8) log2(n)

n
+

√
2 ln (2/δ)

n
,

where the bound on F1 now follows from Shalev-Shwartz and Ben-David (2014, Lemma 26.6)
after a simple scaling to accommodate for the difference between classifiers mapping to {0, 1} and
{−1, 1}.

Turning to bound the difference for F2, by Eq. (43) it suffices to upper bound the empirical

Rademacher complexity of F2. For any i ∈ [n], define the functions ϕi(x) := x
(
(w−v)⊤

∥w−v∥ x̃i

)2
and

for a ∈ Rn let ϕ(a) = (ϕ1(a1), . . . , ϕn(an)). We now have that

Rn (F2 (x̃1, . . . , x̃n)) ≤ Rn (ϕ ◦ F1 (x̃1, . . . , x̃n)) ≤ r ·Rn (F1 (x̃1, . . . , x̃n)) ,

where the first inequality is by the definitions of F1 and F2 and the fact that changing the orientation
(or omitting some) of the halfspaces defining F1 results in the same growth function bound, and
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the second inequality follows from the contraction lemma (Shalev-Shwartz and Ben-David, 2014,
Lemma 26.9) where the Lipschitz constant of ϕi is upper bounded by r for all i due to Cauchy-
Schwartz and the fact that ∥x̃i∥ ≤

√
r almost surely. The bound on F2 then follows immediately

from our previously derived bound on F1.

Lemma 27 Suppose 0 ̸= w,v ∈ Rr such that θ := θw,v > 0, ∥w − v∥ ≤ ∥v∥ ≤ r−0.25 and
r ≥ 106. Let A1,3 = (−∞, 0] × [1,∞) and A3,1 = [1,∞) × (−∞, 0]. Then under Assumption 7,
we have

Ex̃

[
1

{(
w⊤x̃,v⊤x̃

)
∈ A1,3 ∪A3,1

}]
≤ 1

r
.

Proof Since the expectation of an indicator function is the probability of the event, we have

Ex̃

[
1

{(
w⊤x̃,v⊤x̃

)
∈ A1,3 ∪A3,1

}]
= Px̃

[
1

{(
w⊤x̃,v⊤x̃

)
∈ A1,3 ∪A3,1

}]
. (44)

In what follows, we consider the projections of w,v, denoted by ŵ, v̂, onto the two-dimensional
space spanned by them, so that x̂ ∈ R2 is sampled from the marginal distribution D̃w,v. This is
justified since the expression we are bounding in the lemma only depends on dot products of x̃ with
w,v which do not change when we perform such a projection.

We shall now derive a bound on the above probability by bounding ∥x̂∥ with high probability
over the randomness in sampling it from the marginal distribution. Recall that by Lemma 20 we
have that conditioned on ∥x̃∥, each coordinate xj of x̂ is distributed according to

∑n
i=1 oj,iX̃i, where

X̃i are i.i.d. with density given in Eq. (40) and oj = (oj,1, . . . , oj,n), j ∈ {1, 2}, are orthogonal.

Since X̃i is bounded in [−1, 1] and E
[
X̃i

]
= 0 regardless of the realization of ∥x̃∥, we can use

Hoeffding’s inequality to deduce that for all j ∈ {1, 2},

Px̃∼D̃

[
|xj | ≥

r0.25

2
√
2θ

]
≤ 2 exp

(
−
√
r

4θ2

)
.

By a union bound and since the ball of radius r0.25

2θ contains the square
[
− r0.25

2
√
2θ
, r0.25

2
√
2θ

]2
, we have

Px̂∼D̃w,v

[
∥x̂∥ ≥ r0.25

2θ

]
≤ Px̂∼D̃w,v

[
x̂ /∈

[
− r0.25

2
√
2θ

,
r0.25

2
√
2θ

]2]
≤ 4 exp

(
−
√
r

4θ2

)
. (45)

Now, define

w̄ :=
∥v̂∥
∥ŵ∥

ŵ, v̄ :=
∥ŵ∥
∥v̂∥

v̂.

Since θ := θw,v = θw̄,v̂ = θŵ,v̄, we have

∥w̄ − v̂∥2 = ∥w̄∥2 + ∥v̂∥2 − 2 ∥w̄∥ ∥v̂∥ cos (θ) = 2 ∥v̂∥2 (1− cos(θ)) ≤ θ2√
r
, (46)

where in the inequality we used ∥v̂∥2 ≤ 1/
√
r and 1− cos(θ) ≤ θ2

2 which holds for all θ ∈ R by a
Taylor expansion. From a similar argument we have

∥ŵ − v̄∥ ≤ 2 ∥ŵ∥2 (1− cos(θ)) ≤ 4θ2√
r
, (47)
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where we used the triangle inequality and our assumption to obtain ∥ŵ∥ ≤ ∥ŵ − v̂∥+∥v̂∥ ≤ 2 ∥v̂∥.
Using the above shorthands, we also have that

(
ŵ⊤x̂, v̂⊤x̂

)
∈ A1,3 ⇐⇒

(
w̄⊤x̂, v̂⊤x̂

)
∈ A1,3,

and (
ŵ⊤x̂, v̂⊤x̂

)
∈ A3,1 ⇐⇒

(
ŵ⊤x̂, v̄⊤x̂

)
∈ A3,1.

This holds true since x ∈ (−∞, 0] if and only if ax ∈ (−∞, 0] for all a > 0. A necessary condition
for
(
w̄⊤x̂, v̂⊤x̂

)
∈ A1,3 to hold is that

∣∣∣w̄⊤x̂− v̂⊤x̂
∣∣∣ ≥ 1,

since otherwise, if the two dot products are less than that apart then the inclusion of either in one of
the intervals (−∞, 0], [1,∞) excludes the other from the second interval. We now compute using
Cauchy-Schwartz and the square roots of Eqs. (46,47) to obtain

∣∣∣w̄⊤x̂− v̂⊤x̂
∣∣∣ ≤ ∥w̄ − v̂∥ · ∥x̂∥ ≤ r−0.25θ ∥x̂∥ ,

and ∣∣∣ŵ⊤x̂− v̄⊤x̂
∣∣∣ ≤ ∥ŵ − v̄∥ · ∥x̂∥ ≤ 2r−0.25θ ∥x̂∥ ,

That is, ∥x̂∥ < 0.5r0.25/θ implies
(
ŵ⊤x̂, v̂⊤x̂

)
/∈ A1,3 ∪ A3,1. Along with Eq. (45), this means

that

Px̂∼D̃w,v

[(
ŵ⊤x̂, v̂⊤x̂

)
∈ A1,3 ∪A3,1

]
≤ Px̂∼D̃w,v

[
∥x̂∥ ≥ r0.25

2θ

]
≤ 4 exp

(
−
√
r

4θ2

)
.

Plugging the above in Eq. (44) and returning to r-dimensional space, we have arrived at

Ex̃

[
1

{(
w⊤x̃,v⊤x̃

)
∈ A1,3 ∪A3,1

}]
≤ 4 exp

(
−
√
r

4θ2

)
≤ 4 exp

(
−

√
r

4π2

)
≤ 1

r
,

where the last inequality follows from the inequality 4 exp(−
√
x/4π2) ≤ 1/x which holds for all

x ≥ 106.

Having established the required tools to prove Propositions (11,12), we now turn to do so.
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F.1. Proof of Proposition 11

Proof First note that the proposition statement is trivially true if w = v. Assume w ̸= v for the
remainder of the proof and define ϵi :=

[
v⊤x̃i

]1
+
− yi. We compute

⟨∇F (w),w − v⟩ = 1

n

n∑
i=1

([
w⊤x̃i

]1
+
− yi

)
· 1
{
w⊤x̃i ∈ (0, 1)

}
·
(
w⊤x̃i − v⊤x̃i

)
=

1

n

n∑
i=1

([
w⊤x̃i

]1
+
−
[
v⊤x̃i

]1
+
+ ϵi

)
· 1
{
w⊤x̃i ∈ (0, 1)

}
·
(
w⊤x̃i − v⊤x̃i

)
=

1

n

n∑
i=1

([
w⊤x̃i

]1
+
−
[
v⊤x̃i

]1
+

)
· 1
{
w⊤x̃i ∈ (0, 1)

}
·
(
w⊤x̃i − v⊤x̃i

)
+

1

n

n∑
i=1

ϵi · 1
{
w⊤x̃i ∈ (0, 1)

}
·
(
w⊤x̃i − v⊤x̃i

)
.

By Eq. (7), the above is at least

1

2n

n∑
i=1

([
w⊤x̃i

]1
+
−
[
v⊤x̃i

]1
+

)
· 1
{
w⊤x̃i ∈ (0, 1)

}
·
(
w⊤x̃i − v⊤x̃i

)
.

Since [·]1+ is non-decreasing,
(
[a]1+ − [b]1+

)
· (a− b) ≥ 0 for all a, b ∈ R, and therefore each

summand in the above is non-negative and we can omit summands in which v⊤x̂i /∈ (0, 1), to
lower bound the above by

1

2n

n∑
i=1

([
w⊤x̃i

]1
+
−
[
v⊤x̃i

]1
+

)
· 1
{
w⊤x̃i ∈ (0, 1)

}
· 1
{
v⊤x̃i ∈ (0, 1)

}
·
(
w⊤x̃i − v⊤x̃i

)
=

1

2n
∥w − v∥2

n∑
i=1

(
(w − v)⊤

∥w − v∥
x̃i

)2

· 1
{
w⊤x̃i ∈ (0, 1)

}
· 1
{
v⊤x̃i ∈ (0, 1)

}
.

By Lemma 26, with probability at least 1− δ, the above is lower bounded uniformly for all w by

1

2
∥w − v∥2

(
Ex̃

[(
(w − v)⊤

∥w − v∥
x̃i

)2

· 1
{
w⊤x̃ ∈ (0, 1)

}
· 1
{
v⊤x̃ ∈ (0, 1)

}]

−4r

√
(8r + 8) log2(n)

n
−
√

2 log (2/δ)

n

)
. (48)

Let P denote the orthogonal projection matrix projecting onto the subspace spanned by w,v. Since
the expectation above is non-negative, we can lower bound it by

Ex̃

[(
(w − v)⊤

∥w − v∥
x̃

)2

· 1 {∥P x̃∥ ≤ α} · 1
{
w⊤x̃ ∈ (0, 1)

}
· 1
{
v⊤x̃ ∈ (0, 1)

}]
. (49)

We now argue that ∥w − v∥2 ≤ ∥v∥2 implies that θw,v ≤ π
2 . This follows from

∥w∥2 − 2 ⟨w,v⟩+ ∥v∥2 = ∥w − v∥2 ≤ ∥v∥2 ,
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from which we have ⟨w,v⟩ ≥ ∥w∥2
2 , i.e. the dot product between w and v is strictly positive and

therefore
θw,v ≤ π

2
. (50)

Next, we have from the triangle inequality and our assumption that ∥w∥ ≤ ∥w − v∥ + ∥v∥ ≤
2 ∥v∥ ≤ 1. Since P is an orthogonal projection that keeps w,v unchanged, we have that w⊤x̃ =
Pw⊤x̃ = w⊤P x̃ and v⊤x̃ = Pv⊤x̃ = v⊤P x̃. We thus have for any x̃ in Eq. (49) by using
Cauchy-Schwartz and Thm. 10 which guarantees α ≤ 1, that

∣∣w⊤x̃
∣∣ ≤ ∥w∥ · ∥P x̃∥ ≤ α ≤ 1

9 .
Letting ŵ, v̂ ∈ R2 denote the projections of w,v onto the two-dimensional subspace spanned by
them, we have that Eq. (49) equals

Ex̃

[(
(w − v)⊤

∥w − v∥
x̃

)2

· 1 {∥P x̃∥ ≤ α} · 1
{
w⊤x̃ > 0

}
· 1
{
v⊤x̃ > 0

}]

=Ex̂∼D̃w,v

[(
(ŵ − v̂)⊤

∥ŵ − v̂∥
x̂

)2

· 1 {∥x̂∥ ≤ α} · 1
{
ŵ⊤x̂ > 0

}
· 1
{
v̂⊤x̂ > 0

}]
(51)

≥ inf
u∈R2:∥u∥=1

Ex̂∼D̃w,v

[(
u⊤x̂

)2
· 1 {∥x̂∥ ≤ α} · 1

{
ŵ⊤x̂ > 0

}
· 1
{
v̂⊤x̂ > 0

}]
≥β inf

u∈R2:∥u∥=1

∫
R2

(
u⊤x̂

)2
· 1 {∥x̂∥ ≤ α} · 1

{
ŵ⊤x̂ > 0

}
· 1
{
v̂⊤x̂ > 0

}
dx̂ (52)

≥α4β

8
√
2
sin3

(π
8

)
≥ α4β

210
. (53)

In the above, Eq. (51) follows from the fact that all the dot products are in the subspace spanned
by w,v, so we can take the expectation over the marginal distribution D̃w,v; Eq. (52) follows from
Thm. 10, since the marginal density of D̃w,v is lower bounded by β for all x̂ with norm at most
1/9; and the inequalities in Eq. (53) are by Yehudai and Shamir (2020, Lemma B.1) applied to the
vectors w and v and by Eq. (50). Plugging the lower bound on the expectation we obtained above
in Eq. (48), the proposition follows.

F.2. Proof of Proposition 12

Proof We begin with upper bounding the loss of making predictions using w when the target values
are determined by v:

1

n

n∑
i=1

([
w⊤x̃i

]1
+
−
[
v⊤x̃i

]1
+

)2

, (54)

in terms of the following surrogate loss

1

n

n∑
i=1

([
w⊤x̃i

]1
+
−
[
v⊤x̃i

]1
+

)2

· 1
{
w⊤x̃i ∈ (0, 1)

}
. (55)

To this end, we partition the sums into 9 parts, depending on the values the dot products take in
the following manner: Define the intervals I ′1 = (−∞, 0], I ′2 = (0, 1) and I ′3 = [1,∞), and for
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j1, j2 ∈ {1, 2, 3} define the sets Aj1,j2 = I ′j1 × I ′j2 . We now wish to upper bound

1

n

n∑
i=1

([
w⊤x̃i

]1
+
−
[
v⊤x̃i

]1
+

)2

=
1

n

∑
j1,j2∈{1,2,3}

∑
i:(w⊤x̃i,v⊤x̃i)∈Aj1,j2

([
w⊤x̃i

]1
+
−
[
v⊤x̃i

]1
+

)2

.

We will do so by analyzing three different cases:

• We begin with the observation that the sums are identical over the sets A2,1, A2,2, A2,3 and
A1,1, A3,3. This is because for instances x̃i with dot products in A1,1, A3,3, we have that[
w⊤x̃i

]1
+
=
[
v⊤x̃i

]1
+

, and therefore all such summands are identically zero in both Eq. (54)
and Eq. (55); and for instances with dot products in A2,1, A2,2, A2,3 we have that 1

{
w⊤x̃i ∈ (0, 1)

}
=

1, so each summand in both equations is identical.

• Turning to analyze the sums for A1,2, A3,2, we use Thm. 9 with a confidence of δ/2 to obtain

∣∣∣{i : (w⊤x̃i,v
⊤x̃i

)
∈ A1,2 ∪A3,2

}∣∣∣ ≤ 3600q(d) + 1000c2
√

ln (16n/δ)

r0.25
n.

This is true since v⊤x̃i ∈ (0, 1) implies that v misclassifies x̃i which can only happen on the
above fraction of the data instances. This allows us to derive the following upper bound

1

n

∑
i:(w⊤x̃i,v⊤x̃i)∈A1,2∪A3,2

([
w⊤x̃i

]1
+
−
[
v⊤x̃i

]1
+

)2

≤ 1

n

∑
i:(w⊤x̃i,v⊤x̃i)∈A1,2∪A3,2

1

≤
3600q(d) + 1000c2

√
ln (16n/δ)

r0.25
.

• Lastly, assuming that θw,v > 0 we have uniformly for any w ∈ Rr with probability at least
1− δ

2 , the sums over the sets A1,3, A3,1 are at most

1

n

∑
i:(w⊤x̃i,v⊤x̃i)∈A1,3∪A3,1

([
w⊤x̃i

]1
+
−
[
v⊤x̃i

]1
+

)2

=
1

n

n∑
i=1

1

{
i :
(
w⊤x̃i,v

⊤x̃i

)
∈ A1,3 ∪A3,1

}

≤ Ex̃

[
1

{(
w⊤x̃i,v

⊤x̃i

)
∈ A1,3 ∪A3,1

}]
+ 4

√
(8r + 8) log2(n)

n
+

√
2 ln (4/δ)

n

≤ 1

r
+ 4

√
(8r + 8) log2(n)

n
+

√
2 ln (4/δ)

n
.

where the equality is due to
[
w⊤x̃i

]1
+
−
[
v⊤x̃i

]1
+

= 1 for any x̃i with dot products in
A1,3 ∪ A3,1, the first inequality is due to Lemma 26 using a confidence of δ/2, and the last
inequality is due to Lemma 27.
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We can now combine the above three cases using a union bound to deduce that with probability at
least 1− δ

1

n

n∑
i=1

([
w⊤x̃i

]1
+
−
[
v⊤x̃i

]1
+

)2

− 1

r
− 4

√
(8r + 8) log2(n)

n
−
√

2 log (4/δ)

n
−

3600q(d) + 1000c2
√

ln (16n/δ)

r0.25

≤ 1

n

n∑
i=1

([
w⊤x̃i

]1
+
−
[
v⊤x̃i

]1
+

)2

· 1
{
w⊤x̃i ∈ (0, 1)

}
≤ 1

n

n∑
i=1

([
w⊤x̃i

]1
+
−
[
v⊤x̃i

]1
+

)
· 1
{
w⊤x̃i ∈ (0, 1)

}
·
(
w⊤x̃i − v⊤x̃i

)
, (56)

where in the last inequality we used that fact that [·]1+ is 1-Lipschitz. We remark that in the case
where θw,v = 0, the only possible non-empty dot product sets are A1,1, A2,2, A3,3 and possibly also
at most one of either A2,3, A3,2, therefore the upper bound we derived above is also valid in the case
where θw,v = 0. This holds true since we can simply skip the third case which analyzes the sums
with dot products in A1,3, A3,1 which requires that θw,v > 0 to invoke Lemma 27.

Turning to upper bound the expression

2

n

n∑
i=1

([
v⊤x̃i

]1
+
− yi

)
· 1
{
w⊤x̃i ∈ (0, 1)

}
·
(
w⊤x̃i − v⊤x̃i

)
,

we have from Thm. 9 that the above loss can be decomposed into the loss over four intervals
I1, . . . , I4 and upper bounded as follows (note that we previously assumed that the theorem im-
plications hold so we don’t need to further evaluate the confidence over which they do)

2

n

4∑
j=1

∑
i:∥xi∥∈Ij

([
v⊤x̃i

]1
+
− yi

)
· 1
{
w⊤x̃i ∈ (0, 1)

}
·
(
w⊤x̃i − v⊤x̃i

)
=

2

n

∑
i:∥xi∥∈I2∪I4

([
v⊤x̃i

]1
+
− yi

)
· 1
{
w⊤x̃i ∈ (0, 1)

}
·
(
w⊤x̃i − v⊤x̃i

)
≤ 2

n

∑
i:∥xi∥∈I2∪I4

4 ≤ 8
3600q(d) + 1000c2

√
ln (16n/δ)

r0.25
,

where the first inequality is due to
[
v⊤x̃i

]1
+
−yi ≤ 1, 1

{
w⊤x̃i ∈ (0, 1)

}
≤ 1 and

∣∣w⊤x̃i − v⊤x̃i

∣∣ ≤
4 for all i such that ∥xi∥ ∈ I2 ∪ I4. Combining the above with Eq. (56) and the inequality in the
proposition statement, we have arrived at the following bound

1

n

n∑
i=1

([
w⊤x̃i

]1
+
−
[
v⊤x̃i

]1
+

)2

≤ 9 ·
3600q(d) + 1000c2

√
ln (16n/δ)

r0.25

+
1

r
+ 4

√
(8r + 8) log2(n)

n
+

√
2 ln (4/δ)

n
. (57)
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We now use Thm. 9 one last time to upper bound the squared loss of v and obtain

1

n

n∑
i=1

([
v⊤x̃i

]1
+
− yi

)2

≤ 1

n

∑
i:∥xi∥∈I2∪I4

1 ≤
3600q(d) + 1000c2

√
ln (16n/δ)

r0.25
.

Combining the above with Eq. (57) using the inequality (a+ b)2 ≤ 2a2+2b2 with a =
[
w⊤x̃i

]1
+
−[

v⊤x̃i

]1
+

and b =
[
v⊤x̃i

]1
+
− yi, the proposition follows.

Appendix G. Proofs of Thm. 8 and Thm. 13

G.1. Proof of Thm. 13

Proof Define the function class

F :=
{
x̃ 7→ w⊤x̃ : ∥w∥ ≤ 1

}
,

and define the loss

ℓ(y, y′) =
(
[y]1+ −

[
y′
]1
+

)2
.

Using standard Rademacher complexity arguments (Shalev-Shwartz and Ben-David, 2014, Thm. 26.5)
and the fact that ℓ is upper bounded by 1, we have with probability at least 1− δ that

F (w) ≤ F̂ (w) + 2Rn (ℓ ◦ F (x̃1, . . . , x̃n)) + 4

√
2 ln(4/δ)

n
.

where Rn (F (x̃1, . . . , x̃n)) := E
[
supfw∈F

∣∣ 1
n

∑n
i=1 ξifw(x̃i)

∣∣] is the empirical Rademacher com-
plexity of F , and the expectation is over ξ1, . . . , ξn which are i.i.d. Rademacher random variables.
To bound the empirical Rademacher complexity, we have from Shalev-Shwartz and Ben-David
(2014, Lemma 26.10) that

Rn (F (x̃1, . . . , x̃n)) ≤
maxi ∥x̃i∥√

n
≤
√

r

n
.

From the above, the contraction lemma (Shalev-Shwartz and Ben-David, 2014, Lemma 26.9) and
since ℓ is 2-Lipschitz, we conclude

F (w) ≤ F̂ (w) + 4

√
r

n
+ 4

√
2 ln(4/δ)

n
.
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G.2. Proof of Thm. 8

Proof Before we delve into the proof of the theorem, we will first establish several technical
inequalities that are implied by the assumptions in the theorem statement and that will be used
throughout the proof. Let α, β ∈ (0, 1) denote the constants guaranteed by applying Thm. 10 which
is justified by Assumption 6, and denote

p :=
1800q(d) + 500c2

√
ln (64n/δ)

r0.25
.

Then we have that

r ≥ max
{
120004, 5004max {c1, 10}4 ln2(64n/δ)

}
, (58)√

ln(64/δ)

2n
≤ p ≤ ϵ

16
, (59)

4r

√
(8r + 8) log2(n)

n
+

√
2 ln (8/δ)

n
≤ α4β

420
, (60)

4

√
r

n
+ 4

√
2 ln(16/δ)

n
≤ ϵ

2
, (61)

40p+
2

r
+ 8

√
(8r + 8) log2(n)

n
+ 2

√
2 ln (16/δ)

n
≤ ϵ

2
. (62)

We first note that Eq. (62) implies that 40p ≤ ϵ/2 and in particular p ≤ ϵ/16, which establishes the
second inequality in Eq. (59). For the first inequality in Eq. (59), we compute√

ln(64/δ)

2n
≤ 1

r0.25
·
√

ln(64/δ)

r0.25
≤

1800q(d) + 500c2
√

ln (64n/δ)

r0.25
= p,

where in the above, the first inequality is due to 2n ≥ r and the second inequality is due to our
assumption in the theorem statement which implies r0.25 ≥ max{q(d), c2} if c > 0 is sufficiently
large. Next, we compute

ln(64n/δ)√
r

=
1

r0.4

(
ln(64c)

r0.1
+

ln(r3 log22(r))

r0.1

)
+

ln(1/δ)√
r

.

In the above we first have from the assumption in the theorem statement that r−0.4 ≤ c−0.4ϵ2. We
can therefore bound the parenthesized expression by an absolute constant to establish that it can be
made arbitrarily small. Upper bound the term

ln(64c)

r0.1
≤ ln(64c)

c0.1
√
ϵ ≤ 6,

which follows from supx ln(64x)/x
0.25 ≤ 6 and ϵ ≤ 1. For the second term in the parentheses, we

compute
ln(r3 log22(r))

r0.1
=

3 ln(r)

r0.1
+

2 ln(log2(r))

r0.1
≤ 12 + 3 = 15,
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which follows from supx 3 ln(x)/x
0.1 ≤ 12 and supx 2 ln(log2(x))/x

0.1 ≤ 3. The bound ln(1/δ)/
√
r ≤

ϵ2√
c

is immediate from the assumption in the theorem statement that r ≥ cϵ−5 ln2(1/δ) ≥ cϵ−4 ln2(1/δ).
Combining the bounds on the three terms we have shown that

ln(64n/δ)√
r

≤ ϵ2
(

21

c0.4
+

1√
c

)
. (63)

Squaring the above, rearranging and scaling c to be sufficiently large (while recalling that ϵ ≤ 1)
implies Eq. (58).

To establish the remaining inequalities in Eqs. (60-62), we would first need to upper bound the
following two terms:

2

√
2 ln (16/δ)

n
≤ 2

r

√
2 ln (16/δ)

r
≤ 2ϵ

c
, (64)

where in the above, the first inequality is by n ≥ r3 for c > 1 and the second inequality is by our
assumption that r ≥ 2 ln(16/δ) when c is sufficiently large, and that r ≥ cϵ−5 ≥ cϵ−1. Next, we
upper bound the term

4r

√
(8r + 8) log2(n)

n
= 4

√
(8r + 8) log2

(
cr3 log22(r)

)
cr log22(r)

≤ 16√
c

√
log2

(
cr3 log22(r)

)
log22(r)

=
16√
c

√
log22(c) + 3 log2(r) + 2 log2(log2(r))

log22(r)
.

By the change of variables x = log2(r) we have that the above equals

16√
c

√
log22(c) + 3x+ 2 log2(x)

x2
≤ 16√

c

√
log22(c) + 3 + 1 ≤ 16

c0.25
√
5 + 3 + 1 ≤ 48

c0.25
,

where the first inequality follows by our assumption r ≥ 2 which implies log2(r) ≥ 1 and thus
3/x ≤ 3, and since supx 2 log2(x)/x

2 ≤ 1; and the second inequality follows from supx log
2
2(x)/

√
x ≤

5. Combining this with Eq. (64), we can thus take c > 0 sufficiently large so that the left-hand side
of Eq. (60) is smaller than any constant, thus satisfying the inequality in the aforementioned equa-
tion. Moreover, in the above we have also shown (when combined with Eq. (64) again) that

8

√
(8r + 8) log2(n)

n
+ 2

√
2 ln (16/δ)

n
≤ 96

c0.25r
+

2ϵ

c
≤ 96ϵ

c1.25
+

2ϵ

c
,

where the second inequality uses our assumption in the theorem statement that r ≥ cϵ−1. Thus,
for sufficiently large c > 0 we have that the above is at most ϵ/4 which upper bounds the last two
summands in the left-hand side of Eq. (62) and also implies Eq. (61). It only remains to show that
40p+ 2/r ≤ ϵ/4 to establish the last remaining inequality in Eq. (62). To this end, compute

p =
1800q(d) + 500c2

√
ln (64n/δ)

r0.25
=

1800q(d)

r0.25
+ 500c2

√
ln (64n/δ)√

r
.
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Bounding the term 1800q(d)/r0.25, we have from our assumption in the theorem statement r ≥
cϵ−4q4(d) that this is at most 1800c−0.25ϵ. Using Eq. (63) to bound the term inside the square root,
we obtain

p ≤ 1800c−0.25ϵ+ 500c2

√
21

c0.4
+

1√
c
· ϵ,

which for a sufficiently large c > 0 is smaller than ϵ/320 and therefore 40p ≤ ϵ/8. The 2/r term is
also at most ϵ/8 by our assumption, concluding the derivation of the inequalities in Eqs. (58-62).

Turning to the proof of the theorem, we can apply Thms. (9,13) and Propositions (11,12) with a
confidence parameter of δ/4 in each, by using Eqs. (58,59), and further assume that their implica-
tions hold throughout the remainder of the proof. Note that this happens with probability of at least
1− δ by a union bound.

We first show that for some t ∈ {0, 1, . . . , T}, GD finds a point wt such that

F̂ (wt) ≤
ϵ

2
. (65)

If the assumption in Proposition 11 is violated by w0, then we have from Proposition 12 and Eq. (62)
that F̂ (w0) ≤ ϵ

2 . Otherwise, we have from Thm. 10 that ν = α4β
840 ≤ 1, and thus from Proposition 11

and Eq. (60) we get
⟨∇F (w0),w0 − v⟩ ≥ ν ∥w0 − v∥2 ,

With the above inequality, we can follow a similar approach as in Yehudai and Shamir (2020,
Thm. 5.3(2)) and deduce that for t = 0,

∥wt+1 − v∥2 = ∥wt − η∇F (wt)− v∥2

= ∥wt − v∥2 − 2η ⟨∇F (wt),wt − v⟩+ η2 ∥∇F (wt)∥2

≤ ∥wt − v∥2 (1− ην) + η2 ∥∇F (wt)∥2 .

We shall now derive a bound on the norm of the gradient in the above expression as follows

∥∇F (wt)∥ =

∥∥∥∥∥ 2n
n∑

i=1

([
w⊤

t x̃i

]1
+
− yi

)
· 1
{
w⊤

t x̃i ∈ (0, 1)
}
· x̃i

∥∥∥∥∥
≤ 2

n

n∑
i=1

∣∣∣∣([w⊤
t x̃i

]1
+
− yi

)
· 1
{
w⊤

t x̃i ∈ (0, 1)
}∣∣∣∣ · ∥x̃i∥ ≤ 2

√
r.

By our assumption η < ν
8r we have

1− ην + 4η2r < 1− ην

2
< 1,

which implies

∥wt+1 − v∥2 ≤ (1− ην + 4η2r) ∥wt − v∥2 ≤
(
1− ην

2

)
∥wt − v∥2 . (66)

In particular ∥wt+1 − v∥2 ≤ ∥wt − v∥2 < ∥v∥2, and therefore

∥wt+1∥ ≤ ∥wt+1 − v∥+ ∥v∥ ≤ 2 ∥v∥ ≤ 2r−0.25.
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Now, if the inequality in Eq. (7) is violated, then by Proposition 12 and Eq. (62) we have that
F̂ (w1) ≤ ϵ

2 and thus we have shown that Eq. (65) holds for t = 1. Otherwise, we have that all the
conditions in Proposition 11 hold for wt+1, and we can therefore apply both propositions iteratively
until Eq. (7) is violated and Eq. (65) holds for some t < T , or until T iterations of GD have been
performed. In the latter case, we can apply Eq. (66) iteratively to obtain

∥wT − v∥2 ≤
(
1− ην

2

)T
∥w0 − v∥2 ≤ exp

(
− ln

( r

8ϵ

))
∥w0 − v∥2 ≤ ϵ

8r
,

where the second inequality is due to T = 2η−1ν−1 ln (r/8ϵ) and the inequality (1 − 1/x)x ≤
exp(−1) which holds for all x ≥ 1, and the last inequality is due to ∥wt∥ , ∥v∥ ≤ 0.5 and the
triangle inequality. Using the above, we can compute

1

n

n∑
i=1

([
w⊤

T x̃i

]1
+
−
[
v⊤x̃i

]1
+

)2

≤ 1

n

n∑
i=1

(
w⊤

T x̃i − v⊤x̃i

)2
≤ 1

n

n∑
i=1

∥wT − v∥2 · ∥x̃i∥2 ≤
ϵ

8
,

where the first inequality uses the fact that [·]1+ is 1-Lipschitz and the second inequality is by Cauchy-
Schwartz. We can now bound the squared loss of v by using Thm. 9 to get

1

n

n∑
i=1

([
v⊤x̃i

]1
+
− yi

)2

≤ 1

n

∑
i:∥xi∥∈I2∪I4

1 ≤
3600q(d) + 1000c2

√
ln (32n/δ)

r0.25
≤ ϵ

8
,

where the last inequality is implied by Eq. (59). Combining the last two displayed inequalities using
the inequality (a + b)2 ≤ 2a2 + 2b2 with a =

[
w⊤

T x̃i

]1
+
−
[
v⊤x̃i

]1
+

and b =
[
v⊤x̃i

]1
+
− yi, we

have that
F̂ (wT ) ≤

ϵ

2
.

We finish the proof by showing that this results in a generalization bound. Using Thm. 13 and
Eqs. (61,65), we have for some t ∈ {0, 1, . . . , T} that

F (wt) ≤ F̂ (wt) + 4

√
r

n
+ 4

√
2 ln(16/δ)

n
≤ ϵ

2
+

ϵ

2
= ϵ.

The proof of the theorem is complete.

Appendix H. Learning Rate Stability is Insufficient for Efficient Learning

In this appendix, we show that although the stability of the learning rate is sufficient to guarantee the
asymptotic convergence of GD, it is not sufficient for convergence in polynomial time. For an L-
smooth function f , it is well-known that GD with a fixed and stable step size η, meaning that η < 2

L ,
converges to a local minimum asymptotically (e.g. Nesterov et al. (2018, Thm. 2.1.14)). Moreover,
there are examples for which no non-trivial guarantee can be given if η ≥ 2

L . We now provide an
example of a 2-smooth function where T ≥ 4 iterations of GD with a step size of η > 2

L − 1
T result

in only constant progress towards the global minimum.
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Consider the objective f(x) = x2 with the global minimum x∗ = 0. Then the gradient step
update for η > 2

L − 1
T = 1− 1

T ≥ 3
4 is given by

xt+1 = xt − 2ηxt = (1− 2η)xt.

Iteratively applying the above recursion we obtain

|xT − x∗| = |xT | =
∣∣(1− 2η)Tx0

∣∣ = (2η − 1)T |x0| ≥
(
1− 2

T

)T

|x0| ≥
1

16
|x0| .

In the above, the third equality is due to η ≥ 3
4 which guarantees that 2η−1 > 0, the first inequality

follows from the fact that (2η − 1)T is increasing for all η > 0.5, and the last inequality is due to
(1− 2/x)x ≥ 1

16 for all x ≥ 4.
It follows from the above that GD with a step size larger than 2

L − 1
T cannot get to less than

a constant fraction of its initialization distance from the global minimizer. Thus, even if we allow
the step size to be just a small margin away from the edge of stability 2/L, convergence cannot be
guaranteed in general. This results in the necessary condition that η ≤ 2

L − 1
T which is a stronger

assumption than merely requiring that the learning rate is stable. We also remark that while the
example given in this appendix is of a strongly convex function, our analysis holds locally and
therefore also applies in the non-convex regime, given that the objective possesses a local minimum
with a finite smoothness parameter L in its neighborhood.

62


	Introduction
	Our Contributions
	Related Work

	Preliminaries and Main Results
	Notation and Terminology
	Main Results
	The Distributions Used

	Lower Bounds for Approximating Ball Indicators
	Learning Ball Indicators Using Random Features
	Proof Sketch of Thm. 8
	Random Feature Approximation via Truncation
	Radial Distributions Produce Well-Behaved Random Features
	Convergence of Gradient Descent

	Proofs from Sec. 2 – Main Results
	Proof of Thm. 2
	Proof of Thm. 3

	Proofs from Sec. 3 – Approximation Lower Bounds
	Proof of Thm. 4
	Proof of Thm. 5

	Proofs from Subsection A.1
	Proofs from Subsection A.2
	Gradient Descent Convergence Proofs
	Proof of Proposition 11
	Proof of Proposition 12

	Proofs of Thm. 8 and Thm. 13
	Proof of Thm. 13
	Proof of Thm. 8

	Learning Rate Stability is Insufficient for Efficient Learning

