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Abstract
An influential line of recent work has focused on the generalization properties of unregularized
gradient-based learning procedures applied to separable linear classification with exponentially-
tailed loss functions. The ability of such methods to generalize well has been attributed to their
implicit bias towards large margin predictors, both asymptotically as well as in finite time. We give
an additional unified explanation for this generalization and relate it to two simple properties of
the optimization objective, that we refer to as realizability and self-boundedness. We introduce a
general setting of unconstrained stochastic convex optimization with these properties, and analyze
generalization of gradient methods through the lens of algorithmic stability. In this broader setting,
we obtain sharp stability bounds for gradient descent and stochastic gradient descent which apply
even for a very large number of gradient steps, and use them to derive general generalization bounds
for these algorithms. Finally, as direct applications of the general bounds, we return to the setting
of linear classification with separable data and establish several novel test loss and test accuracy
bounds for gradient descent and stochastic gradient descent for a variety of loss functions with
different tail decay rates. In some of these cases, our bounds significantly improve upon the existing
generalization error bounds in the literature.

1. Introduction

There is a significant interest nowadays in understanding the generalization properties of unregular-
ized gradient-based learning procedures. This has been motivated by empirical observations in the
context of modern deep learning, where minimizing the training error without any explicit attempt
to constrain model complexity or to avoid overfitting using explicit regularization, often results with
models that generalizes well. It has been argued that this phenomenon is explained by the “implicit
bias” of the learning algorithm, whereby the dynamics of the optimization method itself serve as
a form of regularization that biases the algorithm towards favorable “simple” models that will not
overfit (e.g., Neyshabur et al., 2014, 2017).
In this context, the setting of linear classification with separable data has attracted particular

attention. A compelling result of Soudry et al. (2018) showed that by simply minimizing the
(unregularized) empirical risk over a linearly-separable training set using plain gradient descent,
the trained predictor asymptotically converges (in direction) to the max-margin solution over the
dataset, provided that we use an exponentially-tailed classification loss such as the logistic loss.
Consequently, by virtue of standard margin-based generalization bounds for linear predictors, we
obtain that the gradient descent solution does not overfit when the number of steps 𝑇 is sufficiently
large, even though its magnitude (i.e., Euclidean norm) grows indefinitely with 𝑇 due to the lack of
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explicit regularization. This result has been later extended in several ways to accommodate for other
optimization algorithms and loss functions (Ji and Telgarsky, 2018, 2019; Nacson et al., 2019a,b; Ji
et al., 2020).
In terms of non-asymptotic rates, the convergence in direction to a large margin solution estab-

lished in theseworks is rather slow and decays only logarithmically with𝑇 ; the implied generalization
error bounds for the trained predictors thus come into effect only when 𝑇 is very large, and at least
exponentially large in the size of the training set and in the maximal margin. In a more recent
work, via a refined analysis of the margins attained by the normalized iterates of gradient methods,
Shamir (2021) established finite-time generalization error bounds that apply to smaller and more
realistic values of 𝑇 . For example, for gradient descent used to minimize the average empirical
logistic loss over a separable training set of size 𝑛 with margin γ, these bounds assume the form
𝑂 (1/γ2𝑇 + 1/γ2𝑛), suppressing logarithmic factors in 𝑇 . As discussed by Shamir (2021), such a
bound is essentially optimal to within these logarithmic factors.
Notably, all of the aforementioned generalization error bounds apply to the zero-one accuracy of

the normalized predictor, rather than to the loss of the unnormalized model actually being optimized.
In fact, a main popularized takeaway from this line of work is that generalization in terms of zero-
one prediction accuracy keeps improving as the number of gradient steps 𝑇 grows, regardless of the
test loss which could actually increase asymptotically (see a detailed discussion in Soudry et al.,
2018). In other words, by inspecting the loss on a validation set one might be led to think that
the learning algorithm is overfitting as 𝑇 grows, whereas the underlying predictor actually keeps
improving. However, the increase in loss Soudry et al. (2018) demonstrate (theoretically) is again
only logarithmic in 𝑇 , and thus affects only the very late stages of optimization. A natural question
is then: are the zero-one generalization guarantees strictly better than the test loss guarantees also
earlier in the optimization, after a realistic number of steps? And how do the achievable test loss
bounds depend on properties of the particular loss function? Even further, could we in fact benefit,
in terms of generalization, by an early-stopping of the optimization process?
In this paper, we give positive answers to these questions and provide sharp test loss bounds that

match, up to logarithmic factors, analogous existing bounds for the zero-one accuracy. First, for
exponentially-decaying losses such as the logistic loss, we give a bound of the form𝑂 (1/γ2𝑇+1/γ2𝑛)
over the test loss of the model trained with 𝑇 steps of either GD or SGD over a separable training
set of size 𝑛 and margin γ. Thus, up to logarithmic factors, the real-valued loss of the trained
(unnormalized) model exhibits the same ideal generalization rates known for the zero-one prediction
accuracy. In other words, unless the number of steps 𝑇 is exponentially large (in 1/γ and 𝑛), the test
loss does in fact diminish to zero at a nearly optimal rate, closely following the zero-one accuracy.
We also establish analogous results for a variety of other loss functions, including polynomially-

tailed, sub-exponentially tailed, and super-exponentially tailed losses; these are summarized in
Table 1. Since the loss functions we consider are all surrogates of the zero-one loss, these bounds
immediately imply identical bounds for the test zero-one prediction accuracy of the trained models.
To the best of our knowledge, these are the first non-asymptotic results for those loss functions in
this context.
In fact, our analysis applies much more broadly than just to separable linear classification. We

consider a general unbounded stochastic convex optimization problem of the form min𝑤 𝐹 (𝑤) :=
𝔼𝑧∼D [ 𝑓 (𝑤, 𝑧)] where the objective 𝑓 is a nonnegative and smooth convex function over ℝ𝑑 , and
identify two simple and general conditions on 𝑓 that enable sharp generalization bounds, as in the
more specific separable linear classification setup, for both gradient descent (GD) and stochastic
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gradient descent (SGD). The first is a “realizability” condition that captures the rate at which the tail
of 𝑓 diminishes to zero as the Euclidean norm of 𝑤 grows; this is merely a quantitative analogue
of the separability assumption that an optimal zero population loss 𝐹 is attained “at infinity.”
The second condition is a “self-boundedness” property of the gradient operator of 𝑓 , of the form
∥∇ 𝑓 (𝑤, 𝑧)∥ ≤ 𝑐( 𝑓 (𝑤, 𝑧))1−δ for all 𝑤 and 𝑧, for some constants 𝑐, δ ≥ 0. As has been observed
in previous work (Ji and Telgarsky, 2018), while for general nonnegative 1-smooth functions this
condition holds with δ = 1

2 (and 𝑐 =
√
2; see, e.g., Nesterov, 2003), exponentially-tailed losses

satisfy a stronger version of this relation with δ = 0. More generally, we observe that a similar
self-boundedness condition holds in fact for a large variety of loss functions, albeit with a possibly
different setting of δ and 𝑐.
Given that these realizability and self-boundedness conditions hold, and assuming δ → 0 and

𝑐 = Θ(1) to simplify this informal presentation, our generalization loss bounds for both GD and SGD
take the form 𝑂 (ε + ρ(ε)2/𝑇 + ρ(ε)2/𝑛) for an arbitrary ε > 0, where ρ(ε) stands for the minimal
possible norm ∥𝑤∗∥ of a reference point 𝑤∗ ∈ ℝ𝑑 where the test loss drops below ε. (The existence
of such a point is guaranteed by our realizability condition.) For example, in the specific case of
separable linear classification with margin γ and an exponentially-tailed loss, it is not hard to show
that there exists a reference point with test loss < ε and norm ρ(ε) = 𝑂 ((1/γ) log (1/ε)), which
implies the bound we stated earlier for this case if we set ε = Θ(1/𝑇). Similarly, the other results
in Table 1 follow directly from this general bound, up to small variations in the self-boundedness
parameters δ and 𝑐, and whether or not the loss function is Lipschitz on the entire space.
To prove these results, we appeal to algorithmic stability arguments (Bousquet and Elisseeff,

2002; Shalev-Shwartz et al., 2009). Typical stability bounds for gradient methods degrade (at least)
linearly with the number of gradient steps (Hardt et al., 2016; Chen et al., 2018; Bassily et al., 2020;
Attia and Koren, 2021). We show that under the self-boundedness condition with a sufficiently
small δ, a significantly more moderate degradation in stability is possible. Notably, our stability
bounds scale roughly with the optimization error of the gradient method iterates, so that a smaller
training loss directly translates to a better stability bound, and in turn, to a tighter bound on the
generalization gap. Thus, in contrast to traditional generalization error analyses that aim to strike
a balance between the training error and the generalization gap, our analysis shows that for self-
bounded objectives (with sufficiently small δ) these in fact do not stand at odds with each other, and
improving the former directly leads to stronger generalization guarantees. We remark that recently
Lei and Ying (2020) established refined stability bounds under a realizability assumption similar to
ours; however, since they do not make use of the stronger self-boundedness condition, their bounds
degrades quickly (roughly linearly) with the number of gradient steps.

1.1. Summary of contributions

To summarize, the main contribution of this paper are as follows:

• We introduce a general setting of unconstrained stochastic convex optimization, that captures
the well-studied setting of unregularized (and unconstrained) separable linear classification
as a special case (see Section 2). In this framework, we identify two simple conditions—
realizability and self-boundedness—under which strong generalization loss bounds are attain-
able.
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Loss function Tail behavior ρ(ε) (𝒄,δ) Generalization loss

Logistic exp(−𝑥) 1
γ
log( 1

ε
) (1, 0) 𝑂

(
log2 (𝑇)
γ2𝑇

+ log
2 (𝑇)
γ2𝑛

)
Multi-class logistic exp(−𝑥) 1

γ
log( 𝐾

ε
) (2, 0) 𝑂

(
log2 (𝐾𝑇)

γ2𝑇
+ log

2 (𝐾𝑇)
γ2𝑛

)
Polynomial 𝑥−α , α > 0 1

γ
ε−1/α (α, 0) 𝑂

( (
α
γ

) 2α
2+α

(
1

𝑇
α
2+α

+ 𝑇
2
2+α
𝑛

))
Sub-exponential exp(−𝑥α) , α < 1 1

γ
log1/α ( 1

ε
) (α, 0) 𝑂

(
α log

2
α (𝑇)

γ2𝑇
+ α2 log

2
α (𝑇)

γ2𝑛

)
Super-exponential exp(−𝑥α) , α > 1 1

γ
log1/α ( 1

ε
) ( α2δ , δ) , ∀δ > 0 𝑂

(
α2 log

2
α (𝑇)

γ2𝑇
+ α3 log

2+α
α (𝑇)

γ2𝑛

)
Probit exp(−𝑥2) 1

γ
log1/2 ( 1

ε
) ( 3

δ
, δ) , ∀δ > 0 𝑂

(
log(𝑇)
𝑇γ2

+ log(𝑇)
4

𝑛γ4

)
Table 1: Generalization loss bounds established in this paper for constant step-size GD and SGD on separable
linear classification, for loss functions which satisfy Assumptions 1 and 2 along with the relevant parameters.
Here, 𝑇 is the number of gradient steps, 𝑛 is the size of the training set, and γ is the margin over the training
set. (For the multi-class logistic loss, 𝐾 is the number of classes.)

• We obtain sharp algorithmic stability bounds for gradient descent and stochastic gradient
descent in the general unconstrained stochastic convex optimization setup, which directly
translate to bounds on the generalization gap (in terms of actual loss values) of the trained
model (see Theorems 8, 10 and 11 in Section 3). Our stability bounds scale with the
optimization error of the gradient method iterates and allows for a favorable trade-off between
training error and generalization gap, which applies even after a very large number of gradient
steps.

• Combined with standard convergence bounds for smooth optimization, we derive generaliza-
tion loss bounds for gradient descent and stochastic gradient descent in the general stochastic
convex optimization setting (see Theorems 12 and 14 in Section 4).

• Finally, as direct applications of the general bounds, we also achieve several new generalization
results in the setting of unregularized linear classification with separable data (see Section 5).
We consider a variety of loss functions with different tail decay rates, and establish test loss
bounds for gradient descent and stochastic gradient descent for the corresponding classification
problem. These bounds aret summarized in Table 1, and to the best of our knowledge, are
new to the literature.

1.2. Discussion and some implications

On the role of early stopping: For polynomially-tailed losses, with a tail decay rate of 𝑥−α (α ≥ 1),
our generalization error bounds are optimized when 𝑇 = 𝑛, and degrade in quality polynomially-fast
with 𝑇 . Interestingly, the test performance implied by our upper bounds after 𝑇 = 𝑛 steps of GD is
strictly better than the performance of the asymptotic direction to which GD converges as 𝑇 → ∞:
while Ji et al. (2020) show that the asymptotic margin is in generalΘ(𝑛−1/(α+1) ) (see their Proposition
12), which by standard margin bounds translates to a generalization error bound ofΘ(𝑛−(α−1)/(α+1) ),
we obtain a test error bound of 𝑂 (𝑛−α/(α+2) ), which is always better than the former bound—the
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best that one can achieve without early stopping.1 (E.g., for α = 1 the asymptotic bound becomes
vacuous, while our bound for 𝑇 = 𝑛 is 𝑂 (𝑛−1/3).) This addresses open questions from earlier works
(e.g., Ji et al. (2020) mention this explicitly) regarding the role of early stopping: we see that with a
polynomially-decaying loss, not only that early stopping does not harm test performance, but it can
actually strictly improve the latter.

On the optimality of exponential tails: Our results shed some light on what enables exponentially-
tailed losses in attaining optimal test loss bounds, and thus provides a different justification than that
of Ji et al. (2020) for this widely popular choice of a loss function. Crucially, the rapid decay of an
exponential tail allows for a faster optimization rate, as the training loss drops below ε at distance
from origin of at most𝑂 (log(1/ε)) as a function of ε. As already discussed, this faster optimization
rate directly translates to a tighter generalization loss bound. It would be tempting to conclude
that decay rate even faster than exponential would lead to better bounds. However, our analysis of
super-exponentially decaying tails, e.g., tails of the form exp(−𝑥α) for α > 1, suggests that faster
decaying tails actually allow for weaker stability bounds that become worse by a factor of α. Thus,
somewhat remarkably, an exponentially-decaying tail strikes a fine balance between optimization
rate and model stability.

On implicit bias vs. algorithmic stability: It is interesting to relate two very different aspects that
govern generalization in the context of separable linear classification: implicit bias and algorithmic
stability. Our results suggest that while the effect of implicit biases of gradientmethods (towards large
margin solutions) kicks in rather late in the optimization, stability seems to control generalization
more tightly earlier on. Intriguingly, for exponentially-tailed losses that have been the extensive
focus of previous work, the stability and implicit bias (i.e., margin based) arguments both imply
the same tight generalization rates for the downstream prediction accuracy of the trained model.
However, this does not seem to be the case more generally, e.g., in the case of polynomially-tailed
losses, where generalization bounds based on stability are strictly better than those obtained from
margin-based arguments: indeed, the analysis of Shamir (2021) in this case yielded suboptimal
bounds compared to the asymptotic bounds of Ji et al. (2020) which, as we have just discussed, are
weaker than our finite-time bounds based on stability.

2. Unconstrained Stochastic Convex Optimization

We consider the following setting of unconstrained and unregularized stochastic convex optimization
overℝ𝑑 , that subsumes separable linear classification as a special case. LetD be a distribution over
a probability spaceZ. We measure the loss of a model 𝑤 on an example 𝑧 by a loss function 𝑓 (𝑤, 𝑧)
where 𝑓 : ℝ𝑑 × Z → ℝ be a positive, convex and 𝐿-smooth function (with respect to 𝑤, for all
𝑧 ∈ Z). We are interested to find a prediction 𝑤 which has a small population loss, defined as

𝐹 (𝑤) = 𝔼𝑧∼D [ 𝑓 (𝑤, 𝑧)] .

For finding such a model 𝑤, we use a set of training examples 𝑆 = {𝑧1, ..., 𝑧𝑛} which drawn i.i.d.
fromD and an empirical proxy, the empirical loss, defined as

𝐹 (𝑤) = 1
𝑛

𝑛∑︁
𝑖=1

𝑓 (𝑤, 𝑧𝑖). (1)

1. For this discussion, we treat both the max-margin γ and the decay exponent α as constants; see the bounds in Table 1
for the precise dependence on these parameters.
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2.1. The Realizability and Self-boundedness conditions

We additionally make the following two key assumptions on the objective 𝑓 :

Assumption 1 (Realizability). There exists a monotonic decreasing function ρ : ℝ+ → ℝ+ such
that for every ε > 0, there exists 𝑤∗ ∈ ℝ𝑑 such that 𝑓 (𝑤∗, 𝑧) ≤ ε for all 𝑧, and ∥𝑤∗∥ ≤ ρ(ε).

Assumption 2 (Self boundedness). There exist 𝑐 > 0 and 0 ≤ δ ≤ 1
2 , such that ∥∇ 𝑓 (𝑤, 𝑧)∥ ≤

𝑐 𝑓 (𝑤, 𝑧)1−δ for all 𝑤 and 𝑧.

As discussed in the introduction, Assumption 1 is a quantitative abstraction of the separability
assumption in linear classification that an optimal zero population loss is attained “at infinity.”
Without loss of generality, we will assume that ρ(ε) ≥ 1 for all ε; otherwise, we may replace ρ with
the function ε → max{ρ(ε), 1}.
Assumption 2 on the other hand is the main assumption that enables our algorithmic stability

and generalization results. We recall that the self-boundedness condition always holds with 𝑐 =
√︁
2β

and δ = 1
2 for nonnegative β-smooth objectives (e.g., Nesterov, 2003). However, we observe that for

many loss functions a significantly stronger version of this condition holds with δ ≪ 1
2 , which allows

for stronger generalization bounds; see the examples in Table 1, and more details in Section 5. The
generality of the self-boundedness condition can be seen from the following simple observation:

Lemma 3. Let 𝑓 : ℝ𝑑 → ℝ+ be a positive and differentiable function. Then,

(i) 𝑓 satisfies Assumption 2 with δ = 0, 𝑐 > 0 if and only if log( 𝑓 ) is 𝑐-Lipschitz;

(ii) 𝑓 satisfies Assumption 2 with δ > 0, 𝑐 > 0 if and only if 𝑓 δ is 𝑐δ-Lipschitz.

For example, it is not hard to see that the exponential loss 𝑓 (𝑥) = 𝑒−𝑥 and the logistic loss admit
the first property above for 𝑐 = 1; and that a polynomial loss 𝑓 (𝑥) = 𝑥α (α ≥ 1) admits the second
property for δ = 1/α and 𝑐 = α.

2.2. Example: linear classification with margin

The setting of linear classification with separable data is obtained as a special case of our main
setting. We mainly consider binary classification with margin γ > 0, where the examples are labeled
examples (𝑥𝑖 , 𝑦𝑖) and there exists a unit vector 𝑤∗ such that 𝑦𝑤∗ · 𝑥 ≥ γ almost surely (with respect
to a distribution D over instances (𝑥, 𝑦)). For brevity, we denote 𝑧 = 𝑦 · 𝑥 and assume that data
is scaled so that ∥𝑧∥ ≤ 1 with probability 1. In this case, we have 𝑓 (𝑤, 𝑧𝑖) = ℓ(𝑤 · 𝑧𝑖) for all 𝑖,
where ℓ is a convex, positive and monotonically decreasing loss function, such as the logistic loss
ℓ(𝑥) = log(1 + exp(−𝑥)). For such functions, Assumption 1 holds:

Lemma 4. If ℓ : ℝ → ℝ+ is positive, convex and strictly monotonically decreasing such that
lim𝑥→∞ ℓ(𝑥) = 0. Then, the inverse ℓ−1 is a well defined function and 𝑓 (𝑤, 𝑧) = ℓ(𝑤 · 𝑧) satisfies
Assumption 1 with ρ(ε) = (1/γ)ℓ−1(ε).

Assumption 2 also holds for many asymptotically-vanishing loss functions. As discussed in
more detail in Section 5, for exponentially, sub-exponentially, and polynomially tailed losses it is
satisfied for δ = 0; for super-exponentially tailed losses (including the Probit loss) Assumption 2 is
satisfied for any δ > 0, albeit with 𝑐 = Θ(1/δ). Table 1 summarizes the relevant parameters ρ, 𝑐, δ
for the various loss functions.
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3. Stability bounds for self-bounded objectives

For bounding the generalization gap we use algorithmic stability. In this section we define the notion
of stability that we use, on-average-leave-one-out model stability and prove that popular gradient
methods, like gradient descent and stochastic gradient descent, are stable with respect to this notion.

3.1. Preliminary: On-Average Leave-One-Out model stability

We first introduce the stability notions we will rely on, and note their connection to generalization.
Specifically, that notion of stability that we consider is on-average leave-one-out (on-average-loo)
model stability. For this definition, we assume without loss of generality that there exists an example
𝑧0 ∈ Z for which 𝑓 (𝑤, 𝑧0) = 0 for all 𝑤. (Otherwise, we can artificially augment the sample
space with such an instance.) Now, given an i.i.d. sample 𝑆 = (𝑧1, . . . , 𝑧𝑛), with the corresponding
empirical risk (Eq. (1)), we define the leave-one-out samples 𝑆𝑖 = (𝑧1, . . . , 𝑧𝑖−1, 𝑧0, 𝑧𝑖+1, . . . , 𝑧𝑛) for
all 𝑖 ∈ [𝑛], with the corresponding empirical risks:

∀ 𝑖 ∈ [𝑛], 𝐹𝑖 (𝑤) =
1
𝑛

∑︁
𝑧∈𝑆𝑖

𝑓 (𝑤, 𝑧) = 1
𝑛

∑︁
𝑗≠𝑖

𝑓 (𝑤, 𝑧 𝑗).

Wecan now define the on-average-loomodel stability for learning algorithms. This notion of stability
amounts to the distance (in Euclidean norm) between the output models of a learning algorithm on
the the full sample 𝑆 and the leave-one-out samples 𝑆𝑖 , averaged over the choice of 𝑖. We refer to two
notions of loo-model-stability ℓ1-on-average-loo model stability, which will be used for achieving a
generalization bound for Lipschitz functions, and ℓ2-on-average-loo model stability, we be used for
non-Lipschitz functions.
Throughout the paper, we bound the expected stability and generalization of learning algorithms.

We denote by 𝔼𝑆 the expectation with respect to the sample 𝑆 ∼ Z𝑛, and by 𝔼𝐴 the expectation with
respect to the randomization in the learning algorithm (if it is randomized).

Definition 5 (on-average leave-out-out model stability). Let 𝐴 : Z𝑛 → ℝ𝑑 be a learning algorithm.
We say that 𝐴 is ℓ1-on-average-loo model ε-stable if for any sample 𝑆,

1
𝑛

𝑛∑︁
𝑖=1

𝔼𝐴
[
∥𝐴(𝑆) − 𝐴(𝑆𝑖)∥

]
≤ ε, (2)

and that 𝐴 is ℓ2-on-average-loo model ε-stable if for any sample 𝑆,

1
𝑛

𝑛∑︁
𝑖=1

𝔼𝐴
[
∥𝐴(𝑆) − 𝐴(𝑆𝑖)∥2

]
≤ ε. (3)

We will denote by ε(1)stab the infimum over all ε for which Eq. (2) holds, and by ε
(2)
stab the infimum over

all ε for which Eq. (3) holds.

Note that for any algorithm 𝐴, the output 𝐴(𝑆𝑖) given the sample 𝑆𝑖 viewed as a random variable
that is independent of the sample point 𝑧𝑖 . We can use this fact to get a connection between
on-average-loo model stability and generalization.

Lemma 6. Let 𝐴 be an ℓ1-ε-on-average-loo model stable learning algorithm. Then, if for every 𝑧,
𝑓 (𝑤, 𝑧) is convex and 𝐺-Lipschitz with respect to 𝑤,

𝔼𝑆,𝐴
[
𝐹 (𝐴(𝑆))

]
≤ 𝔼𝑆,𝐴

[
𝐹 (𝐴(𝑆))

]
+ 2𝐺ε.
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Lemma 7. Let 𝐴 be an ℓ2-ε-on-average-loo model stable learning algorithm. Then, if for every 𝑧,
𝑓 (𝑤, 𝑧) is convex and 𝐿-smooth with respect to 𝑤,

𝔼𝑆,𝐴
[
𝐹 (𝐴(𝑆))

]
≤ 4𝔼𝑆,𝐴

[
𝐹 (𝐴(𝑆))

]
+ 3𝐿ε.

3.2. Gradient Descent

First, we establish a stability bound for GD under Assumption 2. We consider standard gradient
descent (GD) with a fixed step size η > 0 applied to the empirical risk 𝐹; this method is initialized
at a point 𝑤1 and at each step 𝑡 = 1, . . . , 𝑇 performs an update

𝑤𝑡+1 = 𝑤𝑡 − η∇𝐹 (𝑤𝑡 ). (4)

The algorithm returns the final model, 𝑤𝑇 .
We begin with bounding the ℓ1-on-average-loo model stability of GD with self-boundedness.

Theorem 8. Suppose Assumption 2 holds and 𝑓 (𝑤, 𝑧) is positive, convex and 𝐿-smooth with respect
to 𝑤, for all 𝑧. Then, GD with step size η ≤ 2/𝐿 is ℓ1-on-average-loo model stable with

ε(1)stab ≤
𝑐η𝑇δ

𝑛

(
𝑇∑︁
𝑡=1

𝐹 (𝑤𝑡 )
)1−δ

.

We will be mostly interested in the regime where Assumption 2 holds with a sufficiently small δ
so that 𝑐 and 𝑇δ are constants (namely, where δ = 𝑂 (1/log𝑇)). In this case, we obtain a stability
bound of the form ε(1)stab = 𝑂 ( 1

𝑛

∑𝑇
𝑡=1 𝐹 (𝑤𝑡 )), which increases very moderately with the number of

steps 𝑇 provided that GD properly minimizes the training error.
In our stability analysis below, we will use the following standard lemma in smooth convex

optimization (e.g., Hardt et al., 2016).

Lemma 9. If 𝑓 : ℝ𝑑 → ℝ is convex and 𝐿-smooth and 0 < η ≤ 2/𝐿, then for every 𝑢, 𝑣 ∈ ℝ𝑑 ,

∥(𝑢 − η∇ 𝑓 (𝑢)) − (𝑣 − η∇ 𝑓 (𝑣))∥ ≤ ∥𝑢 − 𝑣∥.

Proof of Theorem 8. Let {𝑤𝑡 }𝑡 be the iterates of GD on 𝐹 and {𝑤𝑖𝑡 }𝑡 be the iterates of GD on 𝐹𝑖 .
Then for every 𝑡,

𝑤𝑖𝑡+1 = 𝑤
𝑖
𝑡 −

η

𝑛

∑︁
𝑗≠𝑖

∇ 𝑓 (𝑤𝑖𝑡 , 𝑧 𝑗).

As a result, by Lemma 9,

∥𝑤𝑡+1 − 𝑤𝑖𝑡+1∥ =




𝑤𝑡 − η

𝑛

𝑛∑︁
𝑗=1

∇ 𝑓 (𝑤𝑡 , 𝑧 𝑗) − 𝑤𝑖𝑡 +
η

𝑛

∑︁
𝑗≠𝑖

∇ 𝑓 (𝑤𝑖𝑡 , 𝑧 𝑗)






=





1𝑛∑︁
𝑗≠𝑖

(
𝑤𝑡 − η∇ 𝑓 (𝑤𝑡 , 𝑧 𝑗) − 𝑤𝑖𝑡 + η∇ 𝑓 (𝑤𝑖𝑡 , 𝑧 𝑗)

)
+ 1
𝑛
𝑤𝑡 −

1
𝑛
𝑤𝑖𝑡 − η∇ 𝑓 (𝑤𝑡 , 𝑧𝑖))






≤ 1
𝑛

∑︁
𝑗≠𝑖



𝑤𝑡 − η∇ 𝑓 (𝑤𝑡 , 𝑧 𝑗) − 𝑤𝑖𝑡 + η∇ 𝑓 (𝑤𝑖𝑡 , 𝑧 𝑗)

 + 1
𝑛



𝑤𝑡 − η∇ 𝑓 (𝑤𝑡 , 𝑧𝑖) − 𝑤𝑖𝑡
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≤ 1
𝑛

𝑛∑︁
𝑗≠𝑖

∥𝑤𝑡 − 𝑤𝑖𝑡 ∥ +
1
𝑛
∥𝑤𝑡 − 𝑤𝑖𝑡 ∥ +

η

𝑛
∥∇ 𝑓 (𝑤𝑡 , 𝑧𝑖)∥.

By Assumption 2 we get,

∥𝑤𝑡+1 − 𝑤𝑖𝑡+1∥ ≤ ∥𝑤𝑡 − 𝑤𝑖𝑡 ∥ +
η𝑐

𝑛
𝑓 (𝑤𝑡 , 𝑧𝑖)1−δ. (5)

Now, the function 𝑔(𝑥) = 𝑥1−δ is concave, thus, by Jensen’s inequality,

1
𝑛

𝑛∑︁
𝑖=1

∥𝑤𝑡+1 − 𝑤𝑖𝑡+1∥ ≤ 1
𝑛

𝑛∑︁
𝑖=1

(
∥𝑤𝑡 − 𝑤𝑖𝑡 ∥ +

η𝑐

𝑛
𝑓𝑖 (𝑤𝑡 )1−δ

)
≤ 1
𝑛

𝑛∑︁
𝑖=1

∥𝑤𝑡 − 𝑤𝑖𝑡 ∥ +
η𝑐

𝑛

1
𝑛

𝑛∑︁
𝑖=1

𝑓𝑖 (𝑤𝑡 )1−δ

≤ 1
𝑛

𝑛∑︁
𝑖=1

∥𝑤𝑡 − 𝑤𝑖𝑡 ∥ +
η𝑐

𝑛
𝐹 (𝑤𝑡 )1−δ.

By summing over 𝑡 = 1, . . . , 𝑇 − 1 and another use of Jensen inequality, we get,

1
𝑛

𝑛∑︁
𝑖=1

∥𝑤𝑇 − 𝑤𝑖𝑇 ∥ ≤ η𝑐

𝑛

𝑇−1∑︁
𝑡=1

𝐹 (𝑤𝑡 )1−δ

≤ η𝑐

𝑛

𝑇∑︁
𝑡=1

𝐹 (𝑤𝑡 )1−δ

≤ η𝑇𝑐

𝑛

(
1
𝑇

𝑇∑︁
𝑡=1

𝐹 (𝑤𝑡 )
)1−δ

=
η𝑇δ𝑐

𝑛

(
𝑇∑︁
𝑡=1

𝐹 (𝑤𝑡 )
)1−δ

.

■

Now we bound the ℓ2-on-average-loo model stability of Gradient Descent on self-bounded loss
functions. The resulting bound is stated in the following theorem.

Theorem 10. Suppose Assumption 2 holds. If, for every 𝑧, 𝑓 (𝑤, 𝑧) is positive, 𝐿-smooth, convex
with respect to 𝑤, then, GD with step size η ≤ 2/𝐿 is ℓ2-on-average-loo model stable with

ε(2)stab ≤
𝑐2η2𝑇2δ

𝑛1+2δ

( 𝑇∑︁
𝑡=1

𝐹 (𝑤𝑡 )
)2(1−δ)

.

Again, we will be mostly interested in the regime where 𝑐 and 𝑇δ are constants. In this case, we
get a stability bound of the form𝑂 ( 1

𝑛
(
∑𝑇
𝑡=1 𝐹 (𝑤𝑡 ))2), which again scales favorably with the number

of steps 𝑇 given that GD is properly tuned for convergence on the empirical risk.
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Proof. Let {𝑤𝑡 }𝑡 be the iterates of GD on 𝐹 and {𝑤𝑖𝑡 }𝑡 be the iterates of GD on 𝐹𝑖 . By a similar
derivation as in the proof of Theorem 8,

∥𝑤𝑡+1 − 𝑤𝑖𝑡+1∥ ≤ ∥𝑤𝑡 − 𝑤𝑖𝑡 ∥ +
η𝑐

𝑛
𝑓 (𝑤𝑡 , 𝑧𝑖)1−δ. (6)

Then, by summing Eq. (6) over 𝑡 = 1, . . . , 𝑇 − 1, we get

∥𝑤𝑖𝑇 − 𝑤𝑇 ∥ ≤ η𝑐

𝑛

𝑇−1∑︁
𝑡=1

𝑓 (𝑤𝑡 , 𝑧𝑖)1−δ ≤ η𝑐

𝑛

𝑇∑︁
𝑡=1

𝑓 (𝑤𝑡 , 𝑧𝑖)1−δ.

As a result,

1
𝑛

𝑛∑︁
𝑖=1

∥𝑤𝑖𝑇 − 𝑤𝑇 ∥2 ≤
𝑐2η2

𝑛3

𝑛∑︁
𝑖=1

( 𝑇∑︁
𝑡=1

𝑓 (𝑤𝑡 , 𝑧𝑖)1−δ
)2

=
𝑐2η2𝑇2

𝑛3

𝑛∑︁
𝑖=1

(
1
𝑇

𝑇∑︁
𝑡=1

𝑓 (𝑤𝑡 , 𝑧𝑖)1−δ
)2

≤ 𝑐2η2𝑇2δ

𝑛3

𝑛∑︁
𝑖=1

( 𝑇∑︁
𝑡=1

𝑓 (𝑤𝑡 , 𝑧𝑖)
)2(1−δ)

(Concavity of 𝑥 → 𝑥1−δ)

≤ 𝑐2η2𝑇2δ

𝑛3

( 𝑇∑︁
𝑡=1

𝑛∑︁
𝑖=1

𝑓 (𝑤𝑡 , 𝑧𝑖)
)2(1−δ)

(δ ≤ 1
2 , 𝑓 (𝑤𝑡 , 𝑧𝑖) ≥ 0)

=
𝑐2η2𝑇2δ

𝑛1+2δ

( 𝑇∑︁
𝑡=1

𝐹 (𝑤𝑡 )
)2(1−δ)

.

■

3.3. Stochastic Gradient Descent

We now turn to establish a stability bound for Stochastic Gradient Descent (SGD) under Assump-
tion 2. Given a dataset 𝑆 of size 𝑛, SGD is initialized at a point𝑤1 ∈ ℝ𝑑 and at each step 𝑡 = 1, . . . , 𝑇 ,
samples randomly an index 𝑖𝑡 ∈ [𝑛] and performs an update

𝑤𝑡+1 = 𝑤𝑡 − η∇ 𝑓 (𝑤𝑡 , 𝑧𝑖𝑡 ), (7)

where η > 0 is the step size of the algorithm. We consider a standard variant of SGD that returns
the average iterate, namely 𝑤𝑇 = 1

𝑇

∑𝑇
𝑡=1 𝑤𝑡 .

We discuss the performance of SGD that runs for 𝑇 iterations on data set with size 𝑛, and
show ℓ1-on-average-loo model stability bound for the algorithm. The stability bound that we get is
identical to the ℓ1-on-average-loo model stability bound of GD and stated in the following theorem
(proof deferred to the full version of the paper (Schliserman and Koren, 2022)).

Theorem 11. Suppose Assumption 2 holds. If, for every 𝑧, 𝑓 (𝑤, 𝑧) is positive, 𝐿-smooth, convex
with respect to 𝑤, then, SGD with step size η ≤ 2/𝐿 is ℓ1-on-average-loo model stable with

ε(1)stab ≤
η𝑇δ𝑐

𝑛

(
𝑇∑︁
𝑡=1

𝐹 (𝑤𝑡 )
)1−δ

.
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4. Generalization loss bounds

We now establish new generalization bounds for gradient methods on self-bounded objectives, using
the stability bounds developed in the previous section.

4.1. Gradient Descent

We begin with GD and show the following generalization bound:

Theorem 12. Suppose that for any 𝑧, the loss function 𝑓 (𝑤, 𝑧) is nonnegative, convex, 𝐿-smooth
with respect to 𝑤, and further satisfies Assumptions 1 and 2. Then the output of GD with step size
η ≤ 1/2𝐿 initialized at 𝑤1 = 0 has, for any ε such that 0 < ε/ρ(ε)2 ≤ 1/η𝑇 ,

𝔼[𝐹 (𝑤𝑇 )] = 𝑂
(
ρ(ε)2
η𝑇

+ 𝐿ρ(ε)
4(1−δ)𝑐2η2δ𝑇2δ

𝑛1+2δ

)
.

If in addition 𝑓 is 𝐺-Lipschitz, the output 𝑤𝑇 also satisfies

𝔼[𝐹 (𝑤𝑇 )] = 𝑂
(
ρ(ε)2
η𝑇

+ ρ(ε)2(1−δ)ηδ𝑇δ𝐺𝑐
𝑛

)
.

We remark that the condition on ε is not very restrictive; for example, ε = 1/η𝑇 is always a valid
choice and gives a nontrivial convergence bound. (In applications of the bound, we will sometimes
use a better choice of ε that satisfies this condition.)
To obtain this result, we first bound the training error of GD in the smooth and convex regime,

under Assumption 1. The proof is standard and based on basic techniques in convex optimization.

Lemma 13. Under Assumptions 1 and 2, if for every 𝑧 𝑓 (𝑤, 𝑧) is 𝐿-smooth, convex and positive, let
{𝑤𝑡 }𝑡 be produced by the GD update rule (Eq. (4)) with η ≤ 1/2𝐿 on 𝑆 and 𝑤1 = 0. It holds for
any ε > 0 that

𝐹 (𝑤𝑇 ) ≤
1
𝑇

𝑇∑︁
𝑡=1

𝐹 (𝑤𝑡 ) ≤
2ρ(ε)2
η𝑇

+ 2ε.

Nowwe turn to proving the generalization bound for gradientmethods on self bounded objectives,
as stated in Theorem 12. Here we only show the bound in the Lipschitz regime. The full proof is
implied by using Lemma 7 and Theorem 10 and appears in the full version of the paper (Schliserman
and Koren, 2022).

Proof of Theorem 12. First, for any 𝑧, the loss function 𝑓 (𝑤, 𝑧) is nonnegative, convex, 𝐿-smooth
and 𝐺-Lipschitz with respect to 𝑤. Moreover, that 𝑓 satisfies Assumptions 1 and 2. Then, we know
by Lemma 6 that

𝔼
[
𝐹 (𝑤𝑡 )

]
≤ 𝔼

[
𝐹 (𝑤𝑡 )

]
+ 𝔼

[
2𝐿
𝑛

𝑛∑︁
𝑖=1

∥𝑤𝑡 − 𝑤𝑖𝑡 ∥
]
.

By Lemma 13 and Theorem 8 we get,

𝔼[𝐹 (𝑤𝑡 )] ≤
(
2ρ(ε)2
η𝑇

+ 2ε
)
+ 2η𝑇

δ𝐺𝑐

𝑛

(
2ρ(ε)2
η

+ 2ε𝑇
)1−δ

.
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Finally, if ε ≤ ρ(ε)2/η𝑇 we get,

𝔼[𝐹 (𝑤𝑡 )] ≤
(
2ρ(ε)2
η𝑇

)
+ 2η𝑇

δ𝐺𝑐

𝑛

(
2ρ(ε)2
η

)1−δ
= 𝑂

(
ρ(ε)2
η𝑇

+ ρ(ε)2(1−δ)ηδ𝑇δ𝐺𝑐
𝑛

)
.

■

4.2. Stochastic Gradient Descent

In this section we state and show a generalization bound for SGD on self-bounded losses.

Theorem 14. Suppose that for any 𝑧, the loss function 𝑓 (𝑤, 𝑧) is nonnegative, convex, 𝐺-Lipschitz
and 𝐿-smooth with respect to𝑤. Further assume that 𝑓 satisfies Assumptions 1 and 2. Then the output
of SGD with step size η ≤ 1/2𝐿 initialized at 𝑤1 = 0 has, for any ε such that 0 < ε/ρ(ε)2 ≤ 1/η𝑇 ,

𝔼[𝐹 (𝑤𝑇 )] = 𝑂
(
ρ(ε)2
η𝑇

+ ρ(ε)2(1−δ)ηδ𝑇δ𝐺𝑐
𝑛

)
,

when the expectation is on the randomness of the algorithm and on the data examples.

As in the case of GD, we use the stability bound to get a generalization error bound. In the same
manner, we begin in bounding the optimization error of SGD (see Lemma 23 in the full version
of the paper (Schliserman and Koren, 2022)). then, we prove generalization in a similar way as in
GD, except using Lemma 23 and Theorem 11 instead of Lemma 13 and Theorem 8. The full proof
appears in the full version of the paper (Schliserman and Koren, 2022).

5. Applications to separable linear classification

As detailed in Section 2, the setting of linear classification with separable data (with margin γ > 0)
is captured by our general framework. In this section, we demonstrate how to apply our general
generalization bounds for gradient methods in this setting with several popular choices of loss
functions. Most of our application are of binary classification, where 𝑓𝑖 (𝑤) = ℓ(𝑤 · 𝑧𝑖) for every 𝑖,
where ℓ : ℝ → ℝ+ is a nonnegative loss function and 𝑧𝑖 = 𝑦𝑖 · 𝑥𝑖 for the labeled examples (𝑥𝑖 , 𝑦𝑖).
Here we provide the derivation of the bounds for the logistic loss and for polynomially-tailed losses.
Details for the remaining bounds can be found in the full version of the paper (Schliserman and
Koren, 2022)

5.1. Logistic loss

We start with functions with exponential tails. The first loss function that we consider is the logistic
loss, ℓ(𝑦) = log(1 + 𝑒−𝑦). This function is convex, 1-Lipschitz, 1-smooth and (1, 0)-self-bounded
(see Lemma 25 in the full version of the paper (Schliserman and Koren, 2022)). Moreover, by
Lemma 4, Assumption 1 holds with ρ(ε) = (1/γ) log(1/ε). For this function, we can choose
ε = 1/𝑇 and obtain the following generalization bound:

12
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Corollary 15. If ℓ is the logistic loss, then for gradient descent on 𝐹 with step size η = 1
2 and 𝑤1 = 0:

𝔼[𝐹 (𝑤𝑇 )] = 𝑂
(
log2 𝑇
γ2𝑇

+ log
2 𝑇

γ2𝑛

)
.

The implied generalization bound over the zero-one accuracy of the model matches, up to log𝑇
factors, the bounds obtained by Shamir (2021) for the normalized predictor.

5.2. Polynomially-tailed losses

Now we turn to discuss loss functions with polynomially-decaying tails. On such functions, As-
sumption 2 holds for δ = 0. For concreteness, we will focus on the following loss function, but our
arguments hold more generally for any Lipschitz loss with a similar tail decay rate:

ℓ(𝑦) =
{
(1 + 𝑦)−α 𝑦 ≥ 0;
1 − α𝑦 𝑦 < 0, (8)

forα > 0, which is convex,α-Lipschitz,α(α+1)-smooth, and (α, 0)-self-bounded (see Lemma 27 in
the full version of the paper (Schliserman andKoren, 2022)). In addition, by Lemma 4, Assumption 1
holds for ρ(ε) = (1/γ)ε−1/α. For a suitable choice of ε we can obtain the following generalization
bound:

Corollary 16. If ℓ is the the function defined in Eq. (8), the output of gradient descent on 𝐹 with
step size η = 1

2𝐿 = 1
2α(α+1) and 𝑤1 = 0 holds,

𝔼[𝐹 (𝑤𝑇 )] = 𝑂
((
α

γ

) 2α
2+α

(
1

𝑇
α
2+α

+ 𝑇
2

α+2

𝑛

))
.

We see that as long as α ≪ 𝑇 , as the degree of the polynomial gets higher, gradient methods will
optimize the test loss faster. Also note that this bound is optimized for 𝑇 = 𝑛, for any degree α > 0.
Finally, we remark that the rate we established in Corollary 16 is essentially the best one could hope
for, as it matches the optimal (training) optimization rate of GD on polynomially-tailed functions.

Lemma 17. Let α ≥ 1. There exists a function 𝑓 : ℝ → ℝ+ that is convex, α-Lipschitz, α(α + 1)-
smooth and (𝑐,0)-self-bounding over ℝ𝑑 with ρ(ε) = ε−1/α and for every 𝑡 ≥ 1, the iterate 𝑤𝑡 of
gradient descent with η = 1/α(α + 1) and 𝑤1 = 0 has 𝑓 (𝑤𝑡 ) = Ω(𝑡−

α
α+2 ).
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