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Abstract

Understanding generalization in modern machine learning settings has been one of the major
challenges in statistical learning theory. In this context, recent years have witnessed the develop-
ment of various generalization bounds suggesting different complexity notions such as the mutual
information between the data sample and the algorithm output, compressibility of the hypothesis
space, and the fractal dimension of the hypothesis space. While these bounds have illuminated the
problem at hand from different angles, their suggested complexity notions might appear seemingly
unrelated, thereby restricting their high-level impact. In this study, we prove novel generalization
bounds through the lens of rate-distortion theory, and explicitly relate the concepts of mutual infor-
mation, compressibility, and fractal dimensions in a single mathematical framework. Our approach
consists of (i) defining a generalized notion of compressibility by using source coding concepts, and
(ii) showing that the ‘compression error rate’ can be linked to the generalization error both in expec-
tation and with high probability. We show that in the ‘lossless compression’ setting, we recover and
improve existing mutual information-based bounds, whereas a ‘lossy compression’ scheme allows
us to link generalization to the rate-distortion dimension — a particular notion of fractal dimension.
Our results bring a more unified perspective on generalization and open up several future research
directions.

Keywords: Generalization error, rate-distortion theory, source coding.

1. Introduction

Many important problems in statistical learning can be cast as the population risk minimization
problem, which is defined as follows (Shalev-Shwartz and Ben-David, 2014):

min{£(w) = Ez,[0(Zw)]}. 1)

where W < R? denotes a parametric hypothesis class, Z € Z denotes the input data with Z being
the data space, ;. denotes an unknown data distribution over Z, and £: Z x W — R7 is a loss
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function that measures the quality of a hypothesis w € W. As the data distribution p is unknown in
practice, we instead consider the empirical risk minimization problem, given as follows:

. 1 &
in{£(5,w) = = 3 (Zi,w)} 2
min{ £(5,) = 2 3102 w)}, @
where S := {Z,...,Z,} denotes a training dataset with independent and identically distributed

(i.i.d.) elements, i.e., each Z; ~jjq4. u-

To attack the optimization problem (2), arguably, the most common approach is to utilize a
stochastic optimization algorithm 4 : Z" — W (e.g., stochastic gradient descent), such that the
algorithm outputs a random hypothesis, i.e., A(S) = W € W. One of the main challenges in
statistical learning theory has been then to understand the behavior of the so-called generalization
error associated with the algorithm output, that is the difference between the population and em-
pirical risks induced by the algorithm output: gen(S, A(S)) == L(A(S)) — £(S,.A(S)). It has
been illustrated that classical algorithm-independent generalization bounds fall short at explaining
the (perhaps unexpected) success of modern machine learning systems (Zhang et al., 2017). This
has motivated the development of algorithm-dependent generalization bounds, a field that has been
evolving in different directions.

An important direction in this context, and the one that is closest to our study, is based on
analyzing the generalization error by using information-theoretic tools. Initiated by Russo and
Zou (2016) and Xu and Raginsky (2017), these approaches link the generalization error to the
mutual information between the data sample S and the algorithm output W; suggesting that a
lower statistical dependence between S and W implies better generalization. Their initial results
were later improved by using different conditional versions of the mutual information (Harutyunyan
et al., 2021; Haghifam et al., 2021; Negrea et al., 2020b; Steinke and Zakynthinou, 2020; Bu et al.,
2020; Haghifam et al., 2020), and were further generalized to more general notions of the mutual
information that are defined through f-divergences (rather than the Kullback-Leibler divergence)
(Esposito et al., 2020; Hellstrom and Durisi, 2020; Masiha et al., 2021).

A second approach has been based on the observation that the algorithm output W can be ‘com-
pressible’ in different senses. Littlestone and Warmuth (1986) in a pioneer work, considered a
compressibility framework for the binary classification problem, in which compressed hypothesis
are chosen based on a subset of length % of .S such that the picked hypothesis predicts correctly the
label for all Z; € S. They showed that whenever such a compressing strategy exists, the algorithm
generalizes well. The compressibility approach is later applied in different ways especially to over-
parametrized neural networks (Arora et al., 2018; Suzuki et al., 2020a,b; Negrea et al., 2020a; Hsu
et al., 2021; Barsbey et al., 2021; Baykal et al., 2019; Kuhn et al., 2021). Loosely speaking, under
different compressibility assumptions for W, these studies showed that a higher level of compress-
ibility indicates a lower generalization error since the hypothesis class VW can be approximated by
a smaller, ‘compressed’ space, which intuitively induces a lower worst-case error.

Finally, a recently initiated line of research has illustrated that when A is chosen as an iterative
optimization algorithm, due to its recursive nature, .4 might generate a ‘fractal structure’, either
in its optimization trajectories (Simsekli et al., 2020; Birdal et al., 2021; Hodgkinson et al., 2021),
or in the support of its stationary distribution (Camuto et al., 2021). These studies showed that the
generalization error can be linked to the ‘intrinsic dimension’ of the fractal structure that is generated
by the algorithm; suggesting that a smaller intrinsic dimension implies improved generalization.
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Even though these three research directions have shed light on different facades of the problem
of understanding the generalization error, the mathematical frameworks that underlie their theoreti-
cal results and their implied take-home messages might be seemingly unrelated, thereby restricting
their high-level impact. In this paper, we prove novel generalization bounds through the lens of
rate-distortion theory (Berger, 1975), and explicitly relate the concepts of mutual information, com-
pressibility, and fractal dimensions in a single mathematical framework.

To achieve this goal, we first define a generalized notion of compressibility by using source
coding concepts from information theory, which then allows us to use ‘information-theoretic cov-
erings’ for WV that we will detail in Section 3. Within this context, we show that the ‘compression
error rate’ of an algorithm A can be linked to its generalization error both in expectation and with
high probability. Next, we show that the aforementioned information-theoretical frameworks can
be obtained as a special case of our setup, which is referred to as ‘lossless compression’. Thanks
to this connection, the results of Xu and Raginsky (2017) can be re-derived. The bound in (Xu
and Raginsky, 2017, Theorem 1) is in terms of the mutual information between S and W, denoted
as I(S; W), which was previously viewed as the dataset dependency of the algorithm. However,
our framework reveals that it is an upper-bound on the compression rate in terms of lossless algo-
rithm compressibility. This new perspective allows us to introduce the notion of lossy algorithm
compressibility to handle continuous or large alphabets where (Xu and Raginsky, 2017, Theorem 1)
can be vacuous as I(.S; W) can be very large; implying that a large I(S; W) does not necessarily
indicate the algorithm will not generalize as long as the algorithm is ‘lossily’ compressible. We fur-
ther established novel tail bounds suggesting that 1(,S; W) (or its lossy version) needs to be small
not only for the underlying distribution of (S, W), but also for any distribution in its vicinity. This
is in the spirit of stability: the algorithm should be compressible under any small perturbation of
the dataset and hypothesis. The new tail bounds are established using a new ‘information-theoretic
covering’ technique, highlighted in Section 4.

Similarly, we derive and improve the results based on ‘conditional mutual information’ (Steinke
and Zakynthinou, 2020) in Appendix A. Thanks to this approach, we established tail and in expec-
tation bounds that recover the VC-dimension bounds (Corollaries 18 and 22); the recovery in terms
of the tail bound is novel.

By exploiting the flexibility of our lossy compression framework, we further extend our results
and obtain bounds in terms of the intrinsic dimension of the marginal distribution of W, namely
the rate-distortion dimension (Kawabata and Dembo, 1994). Our results bring a unified perspective
on mutual information, compressibility, and fractal dimensions, and open up several future research
directions as we will point out in Section 5.

2. Preliminaries

2.1. Notation and problem setup

Random variables, their realizations, and their domains are denoted by upper-case letters, lower-case
letters, and calligraphy fonts, e.g. X, x, and . We assume that all the domains are endowed with
their Borel sigma fields. By Py, we denote the distribution of X, defined on some measurable space
(X, F), and by supp(Px) we denote its support. The expected value of X is denoted by E[ X]. We
call a random variable X (absolutely) continuous if it admits a density with respect to the Lebesgue
measure. The random variable X is called o-subgaussian, if E[exp(t(X —E[X]))] < exp(c?t?/2),
Vt € R. A collection of m € N random variables is denoted by X" = (X1,..., X,,), or simply
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by bold letters X, when m is known by the context. A sequence of m real numbers x1,..., %,
is denoted by {z;}/" ;. Similar conventions are used for sequences of sets or functions. The set of
integers {1,...,m} is denoted by [m]. We use R to denote nonnegative real numbers.

As mentioned in the introduction, we consider a generic randomized algorithm A : Z™ — W,
that has access to dataset S = {Z1,...,Z,}. This randomized algorithm induces a conditional
distribution Py 5. We denote the joint distribution of the dataset S and the hypothesis 1V by
Psw = n®" Py|g and the marginal distribution of W by Py .

Most of our results are expressed in terms of information-theoretic constructs, which we de-
fine as follows. For discrete random variables, the Shannon entropy function is defined as H (X)) =
E[log(1/Px (X))]. Similarly, conditional entropy is defined as H (X |Y") == E[log(1/Px|y (X|Y))].
The mutual information between X and Y is defined as I(X;Y) = H(X) — H(X|Y), and in-
tuitively measures the amount of information these random variables contain about each other.
For continuous random variables, the differential entropy h(X) is defined as —D g, (Px/| Leb),
where Leb is the Lebesgue measure on Euclidean spaces. In particular, if X has pdf p, then
h(X) = E[log(1/p(X))], and —oo otherwise. Similarly, A(X|Y) and I(X;Y) :== h(X) —h(X|Y)
are defined. The Kullback-Leibler (KL) divergence between two distributions ¢ and P defined on
the same measurable space is defined as D 1,(Q|P) = Eq [log %], when () « P, and equals o0,

otherwise. Here, g—g is the Radon-Nikodym derivative of () with respect to P.

2.2. Technical background on source coding

In this section, we will briefly review some results from the literature on source coding that will
ease the introduction of our theoretical framework.! Consider a random variable W taking values
in a finite set W. It is well-known that one can represent W using [log, (|W|)]? bits,® from which
W can be recovered with no error. For instance, if W is a Bernoulli random variable, i.e., P(W =
1) = 1—-P(W = 0) = 0, one bit suffices to represent W. However, intuitively speaking if 6 is
very close to zero or very close to one, using one full bit to represent W is wasteful because in such
cases W is almost deterministic.

In his seminal paper, Shannon (1948) formalized this intuition by introducing the concept of
‘block-coding’, where he showed that the ‘source’ W can be represented in a compressed way by
using a significantly smaller number of bits, provided we can allow for a negligible probability of
recovery error. The main idea behind block coding can be summarized as follows. As opposed to
considering a single realization of the source W, we instead assume that we have access to a vector
of m independent realizations of the source, denoted by W™, and we are allowed to compress
these m instances simultaneously. Moreover, the zero-error constraint in recovering m-instances
is replaced by the ‘asymptotically negligible error’ criterion (i.e., the reconstruction error vanishes
as m — 00). It turns out that joint description of such independent sources is more efficient than
their individual description (Cover and Thomas, 2006). For instance, in our running example of W
being a Bernoulli variable with parameter §, W™ is a binary string of length m. By the law of large

1. For a more detailed introduction, we refer the reader to (Berger, 1975; Cover and Thomas, 2006; Csiszar and Korner,
2011; El Gamal and Kim, 2011; Polyanskiy and Wu, 2014).

2. For a € R, [a] denotes the ceiling of a,i.e. minpen, such that n > a.

3. Depending on the base of logarithm in the Shannon entropy function, the unit of information is either bit (base 2:
log,) or nat (base e: log,). We state all results with base e for simplicity and compatibility with previous results.
However, for the unit of information we use bit, as it is more common in the (digital) source coding context.
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numbers, we expect W™ to have around m# ones in it. So, even though there are 2" binary strings
of length m, roughly speaking W™ has about

< m > ~ emHW) 3)

mo

‘effective’ possibilities where in (3) we use Stirling’s approximation of factorial to express the num-
ber of possibilities in terms of the H (W), the Shannon entropy of W. Intuitively, for a discrete ran-
dom variable W, ‘the effective size’ of m independent realizations is asymptotically about e/ ),
rather than |WW|™. Concretely, there exist sets {Cy, }men, Crn € W™ with |C,,| = e™H (W)+em) guch
that limy,, o, P(W™ € C,,) = 1 and limy, o0 £, = 0. Thus, Shannon showed that the fundamen-
tal limit for the compression of information is determined by the Shannon entropy function H (W),
which can be much smaller than log(|W)|).

Unfortunately, the number of bits required to represent even a single realization of a continuous
random variable W is infinity. For instance, if W is a uniform random variable on [0, 1], we need
infinitely many bits to convey it. However, one bit is enough to represent a single realization of W
within distance 0.5 by mapping W to either W =0if W < 0.5,and to W = 1if W > 0.5, and then
conveying W instead of W. In this example, the reconstruction space (or the set of quantization
points) is W = {0, 1}, the reconstruction is lossy (almost surely we never recover the original 1)
and we measure the distance (or the distortion) between W and its reconstruction W by |W — W|

Let us begin by describing the lossy compression of a single instance of an arbitrary random
variable W. In many information-theoretic and signal processing applications, it suffices to recover
a distorted version W € W of W, as long as the incurred distortion is within an ‘acceptable’ range,
i.e. for € > 0 and a chosen distortion function o: W x W — R*, we have o(W; W) < e. While
the quantized (distorted) space W is equal to WV in many cases, it can be different in general.*
To facilitate the explanation, assume W = W for the rest of this section, i.e., we are required
to produce W € W. Next, let us consider the case of block coding where instead of a single
realization of the source W, we have access to W™ which is a vector of m independent realizations
of the source. This problem is known as the vector-quantization problem. Intuitively speaking, to
compress W' we can take a collection of k£ quantization points W1, Wa, ..., W in W™, where
w; = (Wj1,...,Wjm) for j € [k], and map W™ = (Wy,...,Wy,) to its closest quantization
point. Here, the distortion function between W™ and a quantization point w; should be defined; it
is often chosen to be the average of coordinate-wise distortions:

1 «m .
o Zz’:l o(Wi, ;).

Because the number of quantization points is k, we require log, (k) bits to convey the index of
the quantization point. The ratio log,(k)/m is called the compression rate, because it represents
the number of compression bits per source realization. For the selection of quantization points
W1, Wa, ..., Wi to succeed, we can consider balls of radius € around these quantization points and
require that with high probability W™ falls into the union of these balls. This can be seen as a
“block covering” of W™ with average distortion €. Note that block covering may need a smaller
number of quantization points than the case where the complete covering of the space WW™ with the
worst-case distortion e is required, as in e-net coverings (Anthony and Bartlett, 1999).

4. For example, to convey the sign of W € WW = R, it is natural to consider W = {—1,+1} and o(w, W) = L{ww<o}-
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In this context, the goal becomes finding the minimum number of bits that is required to com-
press i.i.d. repetitions of the source W so that it can be recovered within a given distortion margin.
Shannon (1948) showed that the minimum compression rate needed for recovering a source with
distortion € is determined by the rate-distortion function

RD(e; Py, 0) = inf I(W; W), suchthat Ey, 5 [o(W,W)] <e,

where the infimum is over all conditional probability distributions (Markov kernels) PW\W- Specif-
ically, Shannon showed that for any rate R > RD (¢; Py, 0), a sequence of quantization codebooks

Con Yy Con={Wi=(W;1,...,Wim),j € [lm]} S W™ exists such that ,,, < ™ and
{ J 7 Js
. R )
lim Pyem <vj: — Zizl o(Wi, ;) > e> = 0. (4)

Intuitively, for discrete variables, the effective size of m independent realizations of W is about

G H(W) mH(W|W)

, and each codeword w; covers about e of them, and thus, the total needed code-

words to cover W™ with high probability is about ¢”/(W:W) Similar intuition holds for the con-
tinuous W, by considering (1) and k(W |W), and by considering the effective volume of W™,
Finally, a series of works, e.g. (Marton, 1974; Han, 2000; Iriyama, 2005; Bakshi and Bansal,
2005), studied the rate of convergence of the probability in (4) to zero for a fixed rate R. Equiv-
alently, one can formulate this problem as the minimum needed rate R to have the above error
probability decaying at least as fast as ™. For sources with finite alphabets, this quantity is equal

to (Marton, 1974, Theorem 1) sup RO (e; Q, 0), where the supremum is over all
Q: Dk r(Q| Pw)<log(1/5)

distributions ) defined over W such that () « Py . Intuitively, the empirical distribution Pwm of a

vector of realizations W satisfies Dcr,( Py || Py) < log(1/8), with probability at least 1 — 6™,

The idea is to “cover” all such high probable realizations in the balls with radius €. It turns out

the needed rate is the supremum of the needed rate for each empirical distribution Q. Similar error

exponent term for continuous sources can be found in (Iriyama, 2005, Theorem 1).

In this work, we apply source coding concepts and techniques to establish bounds on the gener-
alization error. To this end, we attempt to ‘reliably compress’ the hypothesis space with respect to
a distortion that depends on the excess generalization error induced by compression. We allow the
compression to be lossy within a distortion level. Then, we establish bounds on the generalization
error in terms of the compression rate, amount of distortion, and reliability level.’

3. Generalization Bounds via Rate Distortion Theory

We start by explaining our notion of compressibility adapted to algorithms.

3.1. Compressibility of an algorithm

The compression, in its classical source coding sense, aims to save a compressed version of a source
that is close enough to the source and requires a smaller storage capacity. Similarly, for a learning

5. The rate-distortion theory was previously used in (Bu et al., 2021; Masiha et al., 2021). For instance, in (Bu et al.,
2021), it is used to compare the expectation of the generalization error of a compressed learning model with respect
to the original model. Herein, we use it to analyze the generalization performance of the original learning model. In
Masiha et al. (2021), generalization error is related to the rate-distortion theory by noting the similarity of the related
formulas. The connection provided in this work is operational and thus much deeper.
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algorithm A: S — W, where S = Z™, by having a dataset S and a picked hypothesis choice
A(S) = W e W, we are interested in finding another algorithm A(S, W) = W € W < W that
has fewer number of probable output hypotheses and performs closely to the original algorithm. In
this work, we consider the generalization error as the compression performance. Consider a training
dataset s and two hypotheses w and w. We define the distortion function d: W X WxS8 —>R
between these two pairs of realizations as the difference of their generalization performances:®

d(w,; s) = gen(s, w) — gen(s, w). ®)

Note that here, unlike the source-coding literature, we allow the distortion function to take negative
values.

To guarantee that this distortion (between single outputs of the original and compressed algo-
rithms) does not exceed a threshold, we need to control the worst-case distortion caused by com-
pression, among all probable w and w, which might end up with overly pessimistic results. To
avoid this, we utilize the block coding technique as follows. For a block of m € N independent
datasets s = (si,...,sn) and a block of picked hypotheses W™ = (W7y,..., W,,), where W;
is a hypothesis choice based on dataset s;, i.e. A(s;) = W;, i € [m], with a slight abuse of nota-
tions, denote .A(s™) = TW™. We then consider a compression algorithm A,,,: S x W™ — W™
that takes as input particular realizations (s™,w™), where A(s™) = w', and outputs a block of
hypotheses Wm = (Wl, cee Wm) We also need to extend our definition in (5) to measure the dis-
tortion between two blocks of algorithm realizations A(s™) = w™ and Ay, (s", w™) = &™. For
now, let us use d,, : 8™ x W™ x W™ — R for m € N to denote this extended distortion function,
whose details will be provided in the next section. In particular, we will use the extended distortion
function defined in (8) to obtain in expectation bounds and an alternative definition given in (12) to
obtain tail bounds on the generalization gap.

Next, we define our compression algorithm. Fix a set H,,, S W™, that we coin a hypothesis
book (as an analogy to code book), and denote its cardinality by [,,,. Denote the elements of H,, by
W = (W1, .., Wjm) € W™, where j € [l], i.e., Hp = {W; }é-’”:‘l. Having defined a distortion
function d,,, and fixed a set H,,, among all compression algorithms A, such that ftm(sm, w™) €
‘H ., we consider the optimal compression algorithm, denoted by ft,’;(sm, w™; M) = Wj, where
J = argmingeq, dm (W™, Wj; s™). With this choice and for a fixed distortion level €, we de-
fine the error event that happens when the average distortion between the original and the optimal
compressed algorithm exceeds e:

Em(Hm, €;dy) = {minje[lm] A (A(S™), Wj; S™) > €}. (6)

Now, we are ready to define our compressibility notion, which will lay the basis of our general-
ization bounds.

Definition 1 The learning algorithm A is (R, €;{dy,},,)-compressible’ for some R € RT and
¢ € R, if there exists a sequence of hypothesis books {Hum}, .o Hm = {Wj, 7 € [lm]} € W™ such
that 1, < e™® and

n_lbii?w IED(S,VV)®"L (5m (Hma € dm)) = 01 @)

6. While d is clearly not a metric, it also depends on the underlying distribution w; we drop this dependence for ease of
notations.

7. While many terms in this work, including R and the rate-distortion terms in the rest of the text, depend on p, Py |s,
n, and the loss function, we drop these dependencies for ease of exposition.
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where Ep(Hum, € di) is defined in (6) and P g yryom denotes the m-times product measure of the
Jjoint distribution of W and S.

3.2. Bounds on the expected value of the generalization gap

In this section, we prove bounds on the expected generalization error, provided .4 is compressible.
Intuitively, we first find compression schemes that cover (S™, W) with high probability, in a sense
that is defined in (7), such that on average the difference of generalization errors of the original and
compressed algorithms does not exceed a threshold. Then, we show that the expected generaliza-
tion error can be bounded in terms of the parameters of this compressed algorithm. To do so, by
borrowing from the source coding literature, we define a distortion function between m realizations
of the two algorithms as:
Do, 0™ 5™) = ST, 51, (8)

where d(w, w; s) was defined in (5).

Having condition (7) for this distortion function guarantees that the expectation of the difference
of the generalization errors of the original and compressed algorithms does not exceed e. This is
stated in Lemma 27, which is used in the proof of the following result, proved in Appendix E.1.

Theorem 2 [falearning algorithm A(S) is (R, €; {|Um|},,)-compressible,’, if Egw || gen(S, W)|] <
o0, and if for all w € W, {(Z, w) is o-subgaussian, then |E[gen(S, W)]| < 1/202R/n + e.

This result shows that the compressibility of an algorithm directly translates into having a good gen-
eralization performance, which can be seen as an information theoretic counterpart of the existing
compression bounds, e.g., (Arora et al., 2018; Suzuki et al., 2020b). To make the above bound more
explicit, we establish the following bound on the compressibility of any arbitrary algorithm, whose
proof is given in Appendix E.2. Let’

Rg(e) = Pinf I(S; W), such that ‘E[gen(S, W) — gen(S, W)” <, 9)

Ww|s

where the expectation is with respect to Pg y and Pg x PW\ g

Theorem 3 Assume that the algorithm A(S) = W induces Pgyy, where S and WV are finite sets.
Then, for every € € R and any vi,vs > 0, the algorithm A(s) is (Rg(€) + vi, e + va; {|9m|}m)-
compressible.

This theorem can be extended to infinite sets, with some further assumptions on separability of
gen(S, W) with respect to (.S, W) and using the quantization technique used in the proof of (El Gamal
and Kim, 2011, Theorem 3.6). Now, combining Theorems 2 and 3 yields:

Theorem 4 Assume that the algorithm A(S) = W induces Psy and for all w € W, {(Z,w) is
o-subgaussian. Then, for any € € R, [E[gen(S, W)]| < A/20?Rg(¢)/n + €.

The extended versions of Theorems 2 and 4 that include bounds on E[gen (.S, W)] and E[| gen(.S, W)|]
as well, can be found in Appendix D.1.1°

m ~
)

8. By |¢,,.| we mean simply the distortion function which is equal to |, (w™, w™; s™)| for any w™, w™, s™.

9. Intuitively, E[gen(S , W) — gen(S, W)] can be seen as the limit of the distortion function 9,, when m — 0.
10. The mild sufficient condition E[|gen(S, W)|]<oco is used to bound E[|gen(S,W)|], E[gen(S,W)], and

|E[gen(S, W)]| in the extended version of Theorem 2. The sufficiency of the condition |E[gen(S, W)]|<oo for
bounding |E[gen(S, W)]|, although seemingly true, is not shown in this work.
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In addition to finite sets, Theorem 4 can be derived using Theorems 2 and 3 also for the infinite
sets that satisfy some further separability assumptions. However, for the infinite set, without any
further assumptions, we show this alternatively and trivially in Appendix E.3 by using and extending
the existing results of Xu and Raginsky (2017, Theorems 1, 4), corresponding to Theorem 4 with
€ = 0 (see Corollary 5 in below). Theorem 4 is extended similarly to (Bu et al., 2020) in Theorem 25
(Appendix D.1) that recovers and potentially improves over (Bu et al., 2020, Proposition 1).

Corollary 5 Suppose the algorithm A(S) = W induces Psy and the loss function {(Z,w) is
o-subgaussian for any w € W. Then, |E[gen(S, W)]| < 4/2021(S; W) /n.

In this corollary, by applying a compressibility approach we could recover the results obtained
using the Donsker—Varadhan’s identity. Indeed, in Appendix B.1 we showed that this identity can
be interpreted and derived via a compressibility approach.

The case of ¢ = 0, considered in (Xu and Raginsky, 2017; Bu et al., 2020), corresponds to the
lossless compression in source coding. While for countable sets of S or W, we can reliably cover
(S™, W™) with € = 0 (in the sense of (7)) and bounded R, for continuous sources and hypotheses,
this term could be infinite. In contrast, considering € # 0, corresponds to the lossy compression in
source coding, which allows to reliably cover (S™, W) with bounded R within distortion e. Note
that even for countable sets, € # 0 can give better bounds.'!

The benefit of € # 0 becomes more clear by having a Lipschitz loss assumption. Combining this
assumption with the above theorem directly yields an upper bound on the expected generalization
error in terms of the rate-distortion function of the hypothesis.

Corollary 6 (Lipschitz loss) Suppose that for a distortion function o: W x W — R* and every
z,w, W, [€(z,w) — £(z,0)] < Lo(w,w)'? and ¢(Z,w) is o-subgaussian. Then, for any € € RY,
we have |E[gen(S, W)]| < 1/202RD(¢/(2£); Pw, 0)/n + € where RD(€; Py, 0) is the rate-
distortion function with respect to the distortion function o:

RO (€; Py, 0) = inf I(W; W), such that ]EWW[Q(W, W)] <e. (10)

W|w

While the term Rg/(e) in (9) is in general intractable, the above bound is amenable to compu-
tation once the marginal distribution Py is known; a more relaxed constraint than knowing Pg
which is needed in many of the information-theoretic bounds on generalization error. The rate-
distortion computation is a convex minimization problem over PW|W and ¢, that can be effectively
computed for finite alphabets using Blahut-Arimoto algorithm (Blahut, 1972; Arimoto, 1972). Note
that using Carathéodory’s theorem (El Gamal and Kim, 2011, Appendix C), it can be shown that it
is sufficient to consider WV such that |W| < |[W| + 1. For the continuous alphabets, this terms can
be efficiently estimated using the fine quantization technique (e.g. (El Gamal and Kim, 2011, Proof

11. The approach applied in in (Negrea et al., 2020a) for studying E[gen (.S, W)] also can be seen as lossy compression.
They considered choosing a randomized ‘surrogate hypothesis’ W for each W, and argue that to establish a good
bound on E[gen(S, W)], one could benefit from the trade-off between E[£(S, W) — L£(S, W)] and E[L(W) —
ﬁ(& W)] However, they have not proposed general explicit bounds on these terms, and rather considered ad-hoc
strategies for overparameterized linear regression and hypercube classification problems, when ﬁ(S W) =0.

12. Note that this condition and imposing the Markov chain W — W — S yield ’E[gen(S, W) — gen(S, W)” <
28Ky, w [Q(W, W)} and I(S; W) < I(W; W) by data processing inequality.
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of Theorem 3.6) or by using the existing lower bounds, e.g. (Riegler et al., 2018), that are almost
tight in the small € regime.

As an analytical example, suppose that the data Z € R? is composed of d i.i.d. elements,
each one distributed according to the normal distribution A(0,3) and suppose that we choose
WasW = 130 7 ~ N(0,(03/n)ly), where 1 is the d x d identity matrix. Further, sup-
pose that £(Z,w) is o-subgaussian for any w € R? and |¢(z,w) — £(z,%)| < £|w — @|?. Then,
while I(S; W) = oo, Corollary 6 together with (Cover and Thomas, 2006, Theorem 10.3.2) yield
|E[gen(S, W)]| is bounded by ming_ < 452 \/UQd log(2£do3/(ne)) /n+e, which equals 2£do3 /n
for € = 28&do3 /n.

The optimal order of € (and the corresponding rate-distortion terms) with respect to n depends
on Pgyy, as well as the loss function. In the above example, € is chosen as O(1/n), and in the
following corollary as O(1/4/n), resulting in the rate-distortion terms of order O(1) and O(log(n)),
respectively.

In our next result, we show that our bound in terms of the rate-distortion function yields a fractal
dimension-based bound as well. Let us define the rate-distortion dimension (Kawabata and Dembo,
1994) for a distribution @ as dimg (Q) = limsup,._,, RD(&; Q, 0)/log(1/e).

Corollary 7 (Rate-distortion dimension) Suppose that for a distortion function p: VW x W — Rt
and every z, w, W, |[{(z,w)—€(z,w)| < Lo(w, W) and {(Z,w) is o-subgaussian. Moreover, assume
that sup <., RO (e; Py, 0)/log(1/€) converges uniformly over n as ey — 0. Then, there exists a
no such that for every n = ny, |E[gen(S, W)]| < 4/402 dimg (Py) log(n£2?) /n.

This corollary, proved in Appendix E.4, shows the relation of our approach with dimension-based
bounds. The rate-distortion dimension is a lower bound to the Minkowski (box-counting) dimension
of the set VW (Kawabata and Dembo (1994)), which was considered in (Simsekli et al., 2020; Birdal
et al., 2021). Moreover dimp (Pyy) is equal to the Rényi information dimension under certain
conditions (Kawabata and Dembo, 1994, Proposition 3.3). The latter dimension is shown to be
related to the fundamental limits of the almost lossless compression (Wu and Verdd, 2010).

3.3. Tail bounds on the generalization gap

To establish a tail bound on the generalization performance, we need to find a compression scheme
that not only covers (S™, W™) with high probability (in a sense of (7)), but also its probability of
covering failure is exponentially decreasing with m, which leads us to the following notion.

Definition 8 The learning algorithm A is (R, €,0;{dm},,)- exponentially compressible for some
0 > 0, if conditions of Definition 1 hold and

lim [—;log(]P’(S7W)®m(5m(Hm,e;dm)))] > log(1/9). (11)

m—00
In other words, the error probability is asymptotically bounded by §™.

On the other hand, instead of considering (8), it turns out that it is sufficient to keep the difference
between the average generalization error of the compressed algorithm and the lowest error of the

10
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original algorithm within a threshold. More precisely, we define the new distortion function:'3

: 1 m .
= ]rg[% gen(s;, w;) — - Zi:l gen(s;, w;). (12)
By using this notion, our first tail bound on the generalization performance of an algorithm is stated
in the following theorem, which is proved in Appendix E.5.

Theorem 9 If a learning algorithm A is (R, €,0; {¢m},,)-exponentially compressible and if for
all w € W, the loss ((Z,w) is o-subgaussian, then with probability at least 1 — 0, we have that
gen(S, W) < 4/202(R + log(1/8))/n + e.

This result shows that exponentially compressible algorithms, with small (R, ¢), generalize well
with probability 1 — §. Next, in our main tail bound, we will show that any arbitrary algorithm is
exponentially compressible, and we will establish a bound on its compressibility triplet (R, €, §). To
state this result, we need some definitions. For a given distribution @) over S x W, let

dg(w; s) = inf [gen(s’, w')| — gen(s, ). (13)
(s";w")esupp(Q)

Intuitively, E¢ 5, [dg (W; S)] can be seen as the limit of the distortion function ¢,,, when m — o.
Moreover, for a distribution () defined over S x W, let

MO*(6Q) =  nf  I(S; W) < nf I(S; W), (14)
Wwis: w|s* R
E[dQ(W;S)]Se E[gen(S,W)fgen(S,W)]Se

where the infimum is over all Markov kernels P, ¢: W x 8 — R* and the expectations and
the mutual information are with respect to joint distributions ) and Qg x PW\ g» Where Qg is the
marginal distribution of S. Now, we state our main tail bound result, proved in Appendix E.6.

Theorem 10 Suppose that the algorithm A(S) = W induces Psyy and for all w e W, {(Z,w) is
o-subgaussian. Then, for every € € R and 6 = 0, with probability at least 1 — §,

202 log(1
n Q: Dir(Q|Ps,w)<log(1/5)

—

where the supremum is over all probability distributions Q) over S x W.

To the best of our knowledge, this is the first information-theoretic tail bound on the generalization
error with the logarithmic dependence on 1/§. The bound does not reduce to previous results even
for € = 0. In this case, RD*(0; Q) < Io(S; W) as W = W and Py s = Qw)s are valid choices,
where I (S; W) implies the mutual information under the distribution (). Hence, as a corollary of
the above theorem, with probability at least 1 — J, we have

gen(S, W) < [202( sup Io(S; W) +1og(1/5))/n. (15)
Q: Drr(Q|Ps,w)<log(1/9)

13. Note that @, (w™,w™; ™) < Fm(w™,w™;s™). For further discussion on this distortion function, refer to Sec-
tion 4.

11
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The bound in Theorem 10 does not only depend on Ps yy7, but on all () close to Pg yy. This is
similar to the error exponent result of (Marton, 1974, Theorem 1). Intuitively, by considering all ()
satisfying D r,(Q| Ps,w) < log(1/d), we cover realizations of (S, W) with probability at least
1 — ™. In other words, to have a good generalization bound with high probability, the algorithm
should be compressible under all such () that are close enough to Pg yy .

Theorem 10 does not take into account any additional stochasticity of the algorithm, as consid-
ered in (Harutyunyan et al., 2021). Considering such a scenario yields stronger results, presented in
Appendix D.2.

Similar to the in expectation part, by having a Lipschitzness property and using (14), Theo-
rem 10 can be upper-bounded in terms of the rate-distortion functions of the hypothesis set.

Corollary 11 (Lipschitz loss) Suppose that for a distortion function o: VV x W — R* and every
z,w, W, [l(z,w) —£(z,0)| < Lo(w,w) and (Z,w) is o-subgaussian. Then, for any ¢ € RY, the
term R, (0, €) in Theorem 10 can be upper bounded by

Ry(8,€) < sup RD(e/(2£); Qw, 0), (16)
Qw: Drr(Qw || Pw)<log(1/d)

where the supremum is over all possible distributions Qw over W.

The above corollary recovers some classical results, e.g. the bound obtained by using e-net
coverings. This result, together with some other concrete examples are presented in Appendix D.3.
Furthermore, similar to Corollary 7, one can derive a dimension-based bound by using Corollary 26.

Note that Theorem 10 can be made data-dependent using ideas of Negrea et al. (2020b). Finally,
we further extend our results in Appendix A, that recovers (and improves in specific cases) the
conditional mutual information based results of Steinke and Zakynthinou (2020); Harutyunyan et al.
(2021).

4. Proof Outline

Our main results are new bounds on the generalization gap. However, we also develop new tech-
niques which are rather general and applicable to arbitrary random variables. In particular, we
derive a variational representation of the tail probability in Lemma 24 (Appendix C) that results the
following tail bound for any arbitrary random variable X:

Theorem 12 For arbitrary random variables X € R, Y € Y distributed according to (X,Y) ~
wx,y, withmarginals X ~ px andY ~ py and for any 6 > 0 and €, A € R, we have

log px ([A, 0)) < a7
max | log(d), su inf inf D i Y g5 v y) — AMA —€) + logE 0. X
o), s nt, inf {Dice iy by v) = A = 9+ log g, | ]}]

where G == {vx.y : Dir(vxy|pxy) < log(1/0)}, X is a real valued random variable and Q(v)
is the set of all conditional distributions Py such that under the joint distribution p XyVxY we

have: [infzesupp(l,x) :E] - E[X | < € vx and vy are marginals of vx y with respect to X and Y,
respectively, and the inner infimum is over all conditional distributions q Xy

12
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This theorem is proved in Appendix E.7 and implies Theorem 10 by considering X as gen(.S, W).
A key idea used in this paper is leveraging the block covering technique to establish tail bounds. In
the following subsection, we explain our general approach for this.

4.1. Tail bound via information-theoretic covering

Covering is a technique that allows to provide upper bounds on the tail probability or the expectation
of an arbitrary random variable. The standard covering technique works as follows (see (Vershynin,
2018, Chapter 7)): consider a random process (Y;):er, and the random variable X = sup;cr Y;. An
e-covering (or e-net) of the set 7' is a finite number of points N' = {t1,t2,...,tx} < T such that
every point ¢ € T' is within distortion € of some point of V. In the information theory literature, the
points t; € N are called “quantization points”, and the process of mapping an arbitrary point ¢t € T
to its closest point in set A is called compression because it allows one to describe each point in set
t by just a number from the set {1,2,...,k}, i.e., the index of its closest point in /. Let X; = Yy,
for 1 < ¢ < k be the value of the random process at points in the e-net. The idea of covering is to

approximate X = sup,c Y; by max(f( LXo . X k). Since any arbitrary t € T is close to some
point t; € N, random variable X too should be close to X; for some i. Once we relate sup,.r Y;
to the maximum of finitely many terms max(X;, X», ..., Xj), one can use tools such as the union

bound to study the latter maximum.

The underlying idea of covering is fairly general. Suppose we have an arbitrary random variable
X that is not necessarily arising as the supremum of an underlying random process. We can still
apply similar ideas if we “cover” X by a finite collection of random variables {Xl, XQ, X k}-
In this paper, we take a similar approach but with two crucial differences: (i) instead of covering a
random variable X, we start off by taking a vector X™ of m i.i.d. repetitions of X, and cover the
vector X ™. This technique is known in the information literature as “block-coding” and allows for a
certain concentration of measure phenomenon to occur when we let m, the number of repetitions of
X to go to infinity. Moreover, it allows to utilize classical results on compression from information
theory (ii) instead of covering the entire space as in an e-net, we allow for a vanishing fraction of the
space to remain uncovered. This is in line with the information-theoretic notion of covering. More
precisely, we cover the subspace in which X™ concentrates on.

To see the idea of block covering in action, let X1, ..., X,, be m i.i.d. repetitions of X. Then,
P(X > A)™ = P(min; X; > A). In order to relate min; X; to an average, we introduce the fol-
lowing distortion function between two sequences.'*

Definition 13 Given two sequences a = (ai,...,an) and b = (by,..., by,), define p(a,b) =
min; a; — = 3, b;.

Then, we have the following result (see Appendix E.8 for a proof):
Theorem 14 Let X be an arbitrary random variable. Take m € N and let X™ be its m i.i.d.

repetitions. Let Xm(l), e ,Xm(k) be an arbitrary set of k € N random variables produced from
some arbitrary conditional distribution QXmu) e R ()| X Then, for any € € R,

14. This distortion function is new and not previously used in the information theory literature to the best of our knowl-
edge.

13
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P(X > A)™ < P(Hj : ;i X)) =A- e> + ]P’(Vj e [k] : p(X™, X™(5)) > e) (18)
N A
; (m ; () = A — e) + P(Vj e [k] : p(X™, X™(5)) > e).
The random vectors X™(1), X (2), ..., X™ (k) represent “quantizations” of the sequences X™.

The term P(‘v’j e [k] : p(X™, X™(5)) > e) represents probability of excess distortion (with re-

spect to p) when covering X™ by X™(1), ..., X" (k). The term P(% D Xi(j)=A— e) is a tail
bound inequality on the quantizations points. We make this more clear by the following example.

Example 1 Let k = 1, X~Bernoulli(1/2), A=0.5, and e=0. Then, P(X = A) = 0.5. Let X; = 0
with probability one. Then, P(},X; = A —¢€) = 0. The term p(X™, X™) is zero if and only if
X = 0 for some i. Thus, P(p(X™, X™) > €) = (1/2)™. Hence, we have equality for this example.

5. Conclusion

In this work, using the source coding literature, we developed a compressibility framework to study
the generalization error of the stochastic learning algorithms. This framework allows establishing
bounds on the generalization gap in terms of rate-distortion function. Further, our defined compress-
ibility notion makes the connection between several different research approaches in studying the
generalization gap, e.g. information-theoretic and dimension-based approaches. This study opens
up new directions, including: (i) making our bounds computational by applying the numerical meth-
ods to compute or bound the rate-distortion function and rate-distortion dimension, (ii) investigating
the relation between our bounds and other dimensions-based bounds, by exploiting the relation be-
tween rate-distortion dimension and fractal dimensions, e.g. correlation dimension, (iii) making the
connection between our compressibility framework and PAC-Bayesian approaches (McAllester,
1999),15 (iv) to establish general bounds on the generalization error by combining rate-distortion
theoretic results of this work and the approach of using surrogate hypothesis (Negrea et al., 2020a),
and contrariwise, to use the ad-hoc approaches of the latter for our compressibility framework to
derive alternative bounds, (v) and finally combining the information-theoretic covering approach,
introduced in Section 4.1, with other related techniques such as chaining.
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Appendices

The organization of the appendices is as follows.

* In Appendix A, we introduce the notion of conditional compressibility. Using this concept,
we derive several bounds on the generalization performance that recover (and for certain
cases improve) some previous bounds by Steinke and Zakynthinou (2020); Harutyunyan et al.
(2021); Vapnik (1998).

* In Appendix B, we discuss the Donsker-Varadhan’s inequality. The relation with compress-
ibility is shown and a variational representation of the expectation of a random variable is
presented.

* In Appendix C, the tail bound on the arbitrary random variable (Theorem 12) is discussed.
In particular, a variational representation of the tail probability is presented, which is a key
lemma to derive this tail bound.

* In Appendix D, extensions of Theorems 2, 4, and 10 are stated, in addition to some concrete
examples of Corollary 11.

* Finally, in Appendix E, proofs of our results are presented.

Type of a sequence Through the appendices, we use the notion of the type (Cover and Thomas,
2006). Here, we give its definition. We say that two sequences ™, /™ € X™ have the same type
if their empirical distributions are the same. The type of a sequence x"* is its empirical distribution
and is denoted by 7 (). An m-type @, refers to all sequences of length m whose empirical
distributions equal @,,. Note that for any z € X, Q,,(x) = k/m where k € {0,1,...,m}. For
ease of notation, the type @, (x) is simply denoted by Q(x) or ¢(z), whenever m is known from
the context.

Appendix A. Conditional Compressibility

In this section, we introduce conditional compressibility, using concepts from Steinke and Zakyn-
thinou (2020). Building based on this notion, we derive both in expectation and tail bounds that
recover and improve over some previous results. Theorem 17 recovers (and potentially improves
over) (Steinke and Zakynthinou, 2020, Theorem 1.2.1) and (Harutyunyan et al., 2021, Corollary 2).
Corollaries 18 and 22 recover the the in-expectation and tail bound results when a learning algorithm
has a bounded VC-dimension (Vapnik, 1998).

Through this section, assume 3 € Z"*? be a super-dataset of length 2n, distributed accord-
ing to P3 = u®n, containing the dataset S = 3k and a ghost dataset S = 3k, where 3k =
(31.k15- 5 3nk,) and K = (Ky,...,K,) and K = (K1,..., K,) are vectors of length n such
that each K; takes values uniformly over {1,2} independent of {K;: j # i}, and K; = {1,2}\K;.
Denote

Florlw) = Ll w) = Loiow) =+ ST (1P (o 0) — Lzw)). (19)
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Let dp, :== W™ x W™ x Z2mm x {1 2} _, R be a function, measuring a distortion between m
realizations of f(3,k,w) and f(3,k,w). In particular, we use the following distortion functions:

(pm(wm Am m km) — j[él[ln f(gj,kj,wj Zz 1 f 3l,kl,wl) (20)
O (0™, ™5 3™, k™) = Ezizl(f(ﬁhkiawi) — f(3i, ki, i), (2D
m m.m pmy LN s s T
Em(w™, ™53 k™) = %Zizl(u(ﬁhkuwzﬂ — [ f (i, ke, y)]), (22)
where k; = (ki 1,...,kip). In general when 3 = (3,...,3), the distortion functions are denoted

by dn, ( mw s k).

Definition 15 The learning algorithm A(S) is (R(3), €(3); {dm},,)-conditionally compressible for
some R(3) € R and €(3) € R, if for any 3 € ZAZX", there exists a sequence of hypothesis books
{Hom(8) e Him(3) = {W;(5)..5 € [lm(3)]} € W™ such that L, (5) < e™®) and

lim P w( min dp (W™, W;(5);5, K™ =0, 23
i KW 5)® (j.;[gg(lﬁ)] (W™, w;(3);3 )>e(z)> 0 (23)

where Px w|; = Z%PWBK’
The learning algorithm is (R(3), €(3),0; {dm},,)- exponentially and conditionally compressible
for some § > 0, if in addition to above conditions, the following also holds:

lim {_;LIOgOP(K’W”@m (jemin (W™, W5 (3); 3, K™) > e(g)))] > log(1/6). (24)

m—0 [l'm (3)]

In other words, asymptotically the error probability is bounded by §™.

Similar to the unconditional part, we state in expectation and tail bounds.

A.1. Bounds on the expected value of the generalization gap

The first theorem is a bound on the expectation of the generalization performance of the condition-
ally compressible algorithms.

Theorem 16 Consider a learning algorithm A(S) and a bounded loss function {(z,w) € [0, 1].

i. If A(S) is (R(3), €(3); {Um},,)-conditionally compressible, then

E[gen(S,W)] < E3[ 2}1(5) + 6(5)].
ii. If A(S) is (R(3),€(3); {|9ml},,)-conditionally compressible, then

[Efgen(S, W)]| < E3

20
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ii. If A(S)is (R(3),€(3); {&m},,)-conditionally compressible, then

S o) )]

n

E[lgen(S, W)[] < E3

This theorem is proved in Appendix E.9. We use this result to derive a bound on the generalization
gap of an arbitrary learning algorithm, in the next theorem. This theorem can be derived from
(Steinke and Zakynthinou, 2020, Theorem 1.2) in the same manner as we have proved Theorem 4
using (Xu and Raginsky, 2017, Theorems 1,4). It can be alternatively derived using Theorem 16 and
by bounding the conditional compressibility parameters of an arbitrary learning algorithm, similar
to the proof of Theorem 3. We omit the proof, as it is similar to the proofs of Theorems 3 and 4.

Theorem 17 Suppose the algorithm A(S) = W induces Psy and the loss function ¢(z,w) is
bounded in the range [0, 1]. Consider any auxiliary random variable U'® defined by the conditional
distribution Py 5w and satisfying Py,sw = PyPsPyy, s'7. Then, for any e € R

i

2R
s [gen(S, W)]| <z |4/ 22230 6]7

n
[ 2R
Eswlgen(S, W)] <E3u EZU() +el,
- 2(RY, 5 ;7(€) + log(2))
Pl IO <o \/ e n +el, (25)

where

Rpgule) = inf 1K Wls,w),  such thar ‘E[f(;,,K,W)—f(;,,K,W)”ge

WK u

R su(€) = inf I(K;Wls,u), such that E[f(avaW) —f(z,K,W)] <e

W|5K,u

Rpy(e) = inf I(K:Ws,u), suchthar E||f(5. K. W)| = |f(6. K. W)l| <e. 26)

Wisk u
The expectations are with respect 1o P Py |3, o, and PKPW| s

il.
|Es,w[gen(S, W)] Z E3, U[ 2RE 3.u(€) + 6],

Esw[gen(S, W)] Z Es, U[ 2R}, 5 1il€) + e],

16. Here, U represents the stochasticity of the algorithm. Note that U being a constant is always a valid choice. For
further discussions, refer to Appendix D.2.
17. Note that PU,?;,K,W = R%PUPW|U,3K-
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1 n
Esv[lgen(S, W) < = Y Esu|/2(Rp 504(e) +og(2) + €|, @7)

i=1

where

Rp,uile) = inf I(KiWlsi,u), such that ‘E[f(g,i,Ki,W)—f(gi,Ki,W)]’<e,

W|5Ki,11,

Rlp,uile) = inf I(Ky;Wlsi,u), such that E[f(gi,Ki,W)—f(gi,Ki,W)]<e,

Wlsk, u

Ripgile) =, inf T(KaWlsiou),  such that B[ | (50, Ko, W)l = | £ i K, W] | < e

W|6K1.,u

(28)

where f(3;, Ki,w) = (—1)k(£(3:1,w) — £(3:2,w)) and the expectations are with respect to
PKiPW|Zn,ki7U and PKZ'Psz‘,Kiau'
The above bound trivially recovers (Steinke and Zakynthinou, 2020, Theorem 1.2.1) and (Haru-
tyunyan et al., 2021, Corollary 2) by letting U = Constant, e = 0, and W = W.

Next, we show that we can recover the bound in terms of VC-dimension using the above result.

Corollary 18 Ifa learning algorithm has the VC-dimension d and the loss function ¢(z,w) € [0, 1],
then

. E[|gen(S, W)|] < \/2(d10g(2en/d) +1log(2))

n

2dlog(2en/d)

[Elgen(s, W))| < -

The corollary is proved in Appendix E.10.

A.2. Tail bounds on the generalization gap

In this section, we propose tail bounds on the generalization performance using exponentially and
conditionally compressibility.

Theorem 19 If the learning algorithm A(S) is (R(3),€(3),0/2;{d;},,)- exponentially and con-
ditionally compressible, then with probability at least 1 — 0 for the bounded loss function {(z,w) €
[O’ 1])

gen(S, W) < sup —
3622" n n

\/2(R(5) +log(2/0)) 6(3)] L [los(2/0)

The theorem is proved in Appendix E.11.
Now, we establish a tail bound on the generalization performance of the arbitrary learning algo-
rithm. For a given distribution Qy y over {1,2}" x W, let

dQy w (W3 3,k) = inf [fG. K w')] = f(3. k). (29)
(k" ,w")esupp(Q,w)
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Moreover, for a set /'8 and a distribution @ defined over {1,2}" x W x U, define

RO (e; Q|3) = L inf I(K; W|U)
Wisk,U*
]E[dQK,W(W;;,,K)]ge

< inf I(K; W|U) (30)

Py; :
Wik U

E[f(Z?vK?W)_f(Z?vK7W)] <€

= inf I(K; W|U), (31)

P :
Wik, U

E[gen(3x,W)—gen(3x,W) | <e

where Qk v is the marginal distribution of (K, 1¥/), the infimum is over all conditional probability
distributions (Markov kernels) PW\ su ¢ W xS xU — R, the expectation and the mutual
information are with respect to joint distributions () and Quk X PW|3K7U7 where Qi is the
marginal distribution of (U, K) . Then, we have the below tail bound, proved in Appendix E.12.

Theorem 20 Suppose the algorithm A(S) = W induces Psy and {(z,w) is bounded in the
range [0,1]. Consider any auxiliary random variable U defined by the conditional distribution
Pys,w and satisfying Py sw = PUPSPW|U,519- Then, for any values of {€(3)}; and 6 > 0, with
probability at least 1 — §

gon(S, W) < sup \/2(R(5,5, e>n+ log(2/9)) 6(3)] . lgf/& . 32)
3
where
R(3,6,€) = sup RO (e(3); Ql3), (33)

Q: Drr(Q|Pk,w,u|;)<log(2/9)

where the supremum is over all possible distributions Q over {1,2}"™ x W x U.

Remark 21 By considering the exponentially and conditionally compressibility with respect to
P w,3)@m rather than P w5 em in (24), the following result also can be achieved with the
assumptions of Theorem 20. For any € and 6 = 0, with probability at least 1 — §

2(R(0,€) +10g(2/0)) , .,  [log(2/s) (34)

n n

gen(S, W) < \/
where

R(6,¢€) = sup E304 [0 (6; Qx wir313)]. (35)
Q: Dk (Q|Pr,w,3,u)<log(2/d)

where the supremum is over all possible distributions Q) over {1,2}" x W x Z?" x U, Qx,wu3 is
the conditional distribution of (K, W, U) given 3, and Q3 is the marginal distribution of 3.

18. As mentioned before, U represents the stochasticity of the algorithm. For further discussions, refer to Appendix D.2.
19. Note that P3 x,w,u = P3Pk PuPw|v,3x = 5 1% Pu Py u,3x-
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Finally, we use Theorem 20 to recover the generalization bound for the algorithms having a
bounded VC-dimension Vapnik (1998).

Corollary 22 If a learning algorithm has VC-dimension d and the loss function {(z,w) € [0, 1],
then with probability at least 1 — ¢

2(dlog(2en/d) + log(2/9)) N \/10g(2/5)

n n

—

The corollary is proved in Appendix E.13.

Appendix B. On the Donsker-Varadhan’s Inequality

The Donsker-Varadhan’s identity implies that for arbitrary distributions p(x) and ¢(z) on a set X
and for any arbitrary function ¢ : X — R we have

Dicr(alp) > Exg[®(X)] — log (Exe* ™). (36)
In this appendix, we first show that this inequality can be proved using a compressibility approach

for a finite set X'. Then, we also derive a lemma based on (36) that is used to derive a tail bound on
an arbitrary random variable.

B.1. Donsker-Varadhan’s inequality via compression

Take some arbitrary function ® : X — R. Generate 2™ sequences
X™(1),X™(2),..., XM,

where X"™(i) = (X1(7),...,Xu(?)), in an ii.d. fashion from p(z), i.e. each X;(i) ~ p for
i € [2™1], j € [m], independent of other instances. Consider the expression

[mkaxigl (Xi( ))]
On the one hand,

m

cElmaxi ¥ @(Xi (k)] E[eman Zié(xmc))] < E[Z eL@(X,-(k))] _ gk (Ex~p [ew{)])
k
Therefore,

E [ml?xz ®(X;(k))

< mR + mlog (IEXNP [eq)(X)D. 37

On the other hand, let 7,,, be the probability that at least one of the sequences X" (k) for some k will
have type g(x). It is known that (for example by using Cover and Thomas (2006, Theorem 11.1.4))
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Ym — 1 as m tends to infinity if R > Dg(¢|p). Under the event that the sequence X" (k) has
type q(z), >, ®(X;(k)) equals mEx.,[®(X)]. Thus,

E[m]?xz Q(X;(k)) | = mymEx~q[®(X)] +m(1 — ) min O (x). (38)

From (37) and (38) and by letting m tend to infinity, we obtain

Dyr(q|p) + log (EXNP [e‘P(X>D > Ex o [®(X)].

This yields the desired inequality.

B.2. Variational representation of E[ X ]

In this subsection, we state a variational lemma on E[ X ], used in proof of Theorem 12. The lemma
is proved in Appendix E.14, by using (36).

Lemma 23 For every distribution v, we have

_! iﬁf[DKL(’/HM) + logE, [e)‘X]]. (39)

E,[X] 3

Appendix C. Tail Bound on an Arbitrary Random Variable

The key to the proof of the tail bound in Theorem 12 is a variational representation of the tail
probability, stated in the next lemma.

Lemma 24 Let € be an arbitrary real number. For any arbitrary distribution vx on R, let P(vx)
denote the set of distributions p s on R for which

[ inf x} —E[X] <e.

xesupp(vx )

Let X ~ ux where px is an arbitrary distribution on the sample space X < R. Then, for any
A € R we have®

logPx~py (X = A) = sup inf {—DKL(VXWX)—A[A—E—EP[X]] }
vx<px DPx€Pvx), A=0 T

We give two proofs for this lemma. The first proof is provided in Appendix E.15.1. We give also

an alternative proof (in the inequality form) when X and S are finite sets. This proof illustrates the

connections between the tail bound and compression. To this end, consider the distortion function

p defined in Definition 13. Note that ¢, can be expressed in terms of this distortion function,

HM. M

ie. QW™ wm;sm) = p({gen(si,wi)}ie[m], {gen(si,wi)}ie[m]) To establish the tail bound,
first we upper bound it in terms of the tail of some quantizations of X"* and the probability of
covering X™ by this quanitzation points. This is exactly the bound established in Theorem 14.
Indeed, Theorem 14 shows the connection between the tail bound and compression. Note that
Theorem 14 also holds if the conditions > A — € and > € are replaced by conditions > A — ¢
and > e respectively in (18). The rest of proof applies some information-theoretic techniques, as
detailed in Appendix E.15.2.

20. For a € R, [a]+ = max(0, a).
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Appendix D. Other Results

In this section, we state some further obtained results.

D.1. Extension of the in expectation bound

In a similar manner as (8), let &, (W™, W™; s™) = L 37" (| gen(s;, w;)| — | gen(s;, @;)|). Here,
we state the extended version of Theorem 2.

Theorem 2 Consider a learning algorithm A(S) and suppose that Eg || gen(S, W)|] < oo and
Sforallw e W, U(Z,w) is o-subgaussian.

i. If A(S) is (R, €;{0m},,)-compressible, then E[gen(S,W)] < 4/20%2R/n + ¢.
ii. If A(S) is (R, € {|Uml},,)-compressible, then |E[gen(S, W)]| < \/202R/n + e.
iii. If A(S) is (R, €;{&m},,)-compressible, then E[ | gen(S, W)|] < A/202(R + log(2))/n + €.

All above expectations are with respect to Ps yy .

Next, we state the extended version of Theorem 4.

Theorem 4 Assume that the algorithm A(S) = W induces Psy and for all w € W, {(Z,w) is
o-subgaussian. Then, for any € € R,

2
|E[gen(S,W)]| <\ ——— GRE

o2 R’
E[gen(S, W)]

E[| gen(S, W) ] \/2" G )il o (40)

where
Rg(e) = Pinf I(S;W), such that ’E[gen(S, W) — gen(S, W)” <,
w|s
Riy(e) = inf I(S;W), such that ]E[gen(S, W) — gen(S, W)] <e,
WS
Rp(e) = inf I(S;W),  such that E[|gen(S,W)| - |gen(S,W)[| <e. @D
Wis
All expectations in above are with respect to Ps y and Pg x PW| g
This theorem can be trivially extended to the case where we have access to an internal random-
ness U of the algorithm, as defined in Appendix D.2. For example, by using E[gen(S, W)] =

EyEgwvlgen(S, W)], it can be shown that E[gen(S, W)] < Ey[y/202Rgy/n] + €, where
Rp (€)= inf I(S; W|U = w), in which the infimum is over all Markov kernels Py

W|S,u
that E[gen(S, W) — gen(S, W)] <e
In the following, Theorem 4 is extended similarly to Bu et al. (2020). The proof trivially follows
n
from the relation E[gen(S, W)] = 1 3 E[gen({Z;}, W)] and Theorem 4, where E[gen({z;}, w)] =
i=1
L(w) — (2, w).
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Theorem 25 Suppose the algorithm A(S) = W induces Psy and for all w € W, (Z,w) is
o-subgaussian. Then, for any € € R,

Elgen(S, W) < 1 32 y/202 (9 4« @)
E[gen(S, W)] < ;24 /202R§57i(e)] + €, (43)
E[ | gen(S, W)|] < % i_\/ﬁﬂ(R%’i(e) +1og(2))] + ¢ (44)
where the expectation is with respect to Ps w and
RE.i(e) = Pivlii I(Zi; W), such that ‘E[gen({Zi}, W) — gen({Z;}, W)]’ <€, (45)
Rl i(e) = iplf I(Zi; W), such that E[gen({Zi}, W) — gen({Z;}, W)] <€, (46)
Wiz,
Fal©) = ot 123 W), - such that B[ gen((Z:),W)| = |gen({Z}. W)l <€ @)
Wiz,

where E[gen({z;},w)] = L(w) — (2, w) and the expectations are with respect to Pz, w and

PZi X PW|Zz"

Letting € = 0 and W = W, this theorem recovers (and potentially improves over) (Bu et al.,
2020, Proposition 1).

D.2. Extension of the tail bound

It has been already shown by Harutyunyan et al. (2021) that taking into account the stochasticity
of the algorithm could yield tighter bounds on the expectation of the generalization gap. Here, we
apply a similar idea for the tail bound. To this end, we represent partial or full stochasticity of the
algorithm which is independent of the dataset by U € {/. This means that the hypothesis is chosen
according to Pyy|sy (deterministically or randomly). Having this stochasticity available, we can
make our compression more efficient, by letting the hypothesis books in Definition 1 depend on U
as well, i.e. for each arbitrary distribution () defined over U, we choose a sequence of hypothesis
books M (Q) = {W;(Q),7 € [lm(Q)]} € W™, such that I,,,(Q) < ¢™ (@) and

lim — log Py sywyon |  min <pm(Wm,vaj(15Um);sm)>e > log(1/5), (48)
m el )

m—00 I (Pym

where Pym is the empirical distribution of U™. Then, it can be shown that R in Theorem 9 can be
replaced by supg, R(Q), where the supremum is over all () such that D1, (Q||Py) < log(1/9).

In order to define the extended version of Theorem 10, we need to define an extended definition
of RD*(¢; Q), that takes U also into account. For a distribution () defined over S x W x U, let

RD*(; Q) == inf I(S;W|U) < inf I(S;WU), (49)
PW\S,U: PVVlS,U: )
E[dQS,W (Wﬁ)] <e lE[gen(S,W)fgen(S,W)] <e
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where (g v is the marginal distribution of (.S, W), the infimum is over all Markov kernels Pisu

W xS xU — R, the expectation and the mutual information are with respect to joint distributions
Qand Qs x P, Wis,0 where ()s 17 is the marginal distribution of (.S, U). Note that letting U being
a constant, (49) will be reduced to (14). Now, we state an extended version of Theorem 10, proved
in Appendix E.6.

Theorem 10 Suppose that the algorithm A(S) = W induces Psyy and for all w € W, {(Z, w)
is o-subgaussian. Consider any auxiliary random variable U defined by Py sy and satisfying
Pysw = PuPsPy\u,s- Then, for every e € R and § > 0, with probability at least 1 — 6,

202 log(1
gen(S, W) <\/ " (By(0,€) + log(1/9)) + €, Ry(d,€) == sup RD*(e;Q),
n Q: D (Q|Ps,w,u)<log(1/6)

where the supremum is over all possible distributions Q) over S x W x U.

Note that the above bound holds for any U that satisfies the assumptions of the theorem and U being
a constant is always valid choice. By the choice of U = Constant, this extended version becomes
the same as the original one, stated in Section 3.3.

As a special case, when S and W are independent, the above theorem, by choosing U = W,
results that with probability 1 — ¢, gen(S, W) < 4/202log(1/6)/n. This bound is equal to the
one obtainable by direct application of Hoeffding’s inequality. However, we may not be able to
achieve this bound using Theorem 10 with constant U. Since, while for example I(S; W) = 0
under Pg yy, it may not be equal to zero under distribution (), where Dy, (Q||Psw) < log(1/6);
as under distribution ), random variables .S and W might be (weakly) dependent.

D.3. Examples for Lipschitz loss
In the following, we show some consequences of Corollary 11.

Corollary 26 Suppose that the loss function {(Z, w) is o-subgaussian for any w € WW.

i. [e-net covering] Let W = R% and let W with probability one take value in the d-dimensional
ball V; = {w € R%: |w| < ro} and suppose that for every z,w,w, |(z,w) — £(z,W)| <
Ll|w — w|. Then, for every § > 0, with probability at least 1 — 9,

gen(S, W) < min [\/202(dlog(2ro/e) + 10g(1/9)) + 226].

e=0 n

In particular, for n = 16, with probability at least 1 — e~%2, we have gen(S, W) < (4roL +
ov/d)+/log(n)/n.

ii. Suppose that W € {0,1}¢ is composed of d i.i.d. elements distributed according to Bernoulli
distribution with an unknown parameter P(W; = 1) = pand |{(z,w)—{(z,w)| < Ldg(w, w),
where dy is the Hamming distance.”' Then, for every § > 0, with probability at least 1 — §,

gen(S, W) < min [ \/20—2[dlog(2) —dhy(¢/d) +log(1/0)] 26]’

0<e<d n

21. For binary vectors « = (1,...,24) and y = (y1, - .., ya) dar(z,y) = 20| Liz, 2y, }-
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where hy(-) is the binary entropy function, i.e. hy(p) = —plog(p) — (1 — p)log(1 — p), for
p € [0, 1] and 0log(0) = 0 by convention.

iii. Suppose that W € R% is composed of d i.i.d. elements distributed according to the two-sided
exponential distribution p(w;) = 3e~MNvil i € [d] and |[0(z,w) — (z,0)| < L|w — b]s.
Then, for every § > 0, with probability at least 1 — 9§,

[ \/202(de(6, 8) + log(1/3))

n

gen(S, W) < min

e=0

+ 28L¢,

where R/ (€, ) is determined by
log(1/6) = aA — 1 —log(al),
in which o == eexp(R/ (¢, 9))/d.

iv. Suppose that W € R is composed of d i.i.d. elements distributed according to the normal
distribution N'(0,0%;) and |¢(z,w) — l(z,@)| < L|w — ©|3. Then, for every § > 0, with
probability at least 1 — §,

gen(S, W) < min

€20 n

[\/02(d10g(maX(da2/€a 1)) + 21og(1/6)) n 226]7

where o = o is determined by

1{a? o?
N N

The corollary is proved in Appendix E.16.

Appendix E. Proofs

In this section, we present the proofs of all our results, in the order of their appearances in the paper.

E.1. Proof of Theorem 2

Here we state the proof for the long version of the theorem, stated in Appendix D.1. Note that as
defined in that appendix, &y, (w™, &™; s™) = L 37" (| gen(s;, w;)| — | gen(s;, w;)|).

Before stating the proof, we show that having condition (8) for the distortion functions {¥,,, |9, &m }
guarantees that the expectation of the difference of the original and compressed algorithms does not

exceed e.

Lemma 27 IfE[|gen(S, W)|] < oo, then for dy, € {Om, [Im|,&m} condition (7) yields
i, B 8773557 < °

The above lemma is proved in Appendix E.17. Now, we proceed with the proof of the extended
version of Theorem 2, appeared in Appendix D.1.
Proof
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Parti. Suppose that for each (s™,w™), w(s™,w™) = W; where j = arg min ¢,, (w™, w;; s™),
J€llm]
which will be denoted by w = (w1, . . ., Wy,) for simplicity. Then,

E(s,w[gen(S, W)]

1 [ m
:iE(S’W)®m, Z gen(sz', Wq/)]

m | i=1

1 - .
=—Egwyom Z gen(S;, W;) — gen(S;, WZ)] + E(SW ®m [Z gen(S;, WZ)]

m [ i=1 i=1
@1 [ .
< EE(S’W)@” Z gen(.S;, Wl)] + e+ em,

[ i=1

<lg Z (Siywii) | +e+

— m | max en(S;, w; €+e¢

m S® ielin] ~ g iy Wyii m
b 2
(g)i 202mlog(ly,) fete

m n
() [202R
< + e+ em,

m

where (a) is by Lemma 27, (b) is derived since ), gen(.S;, w; ;) is 04/m/n-subgaussian, and (c)
i=1

is obtained by bounding [,,, < e™!. Taking the limit for m — oo completes the proof.

Partii. Similarly, let w(s™,w™) := W; where j = arg min |[J,,(w™, W;; s")|. Then, we have

J€[lm]
‘E(S w) [gen(S, W)]‘
1
E(SW @m [‘ Z gen(S;, WZ)’]
i=1
1 m R m
<mE(S7W)®7n[ i_Zlgen(Si, W;) — gen(S;, Wz)‘] + E(SW ®7n[ ; gen(S;, VVZ ]
lES@;m max ‘ Z gen(S;, w;, Z)’ +e+em
m Jellm
2
gl 202mlog(2l,,) fete,
m n
2
g\/20 (R +log(2)/m) .
n

Taking the limit for m — oo completes the proof.

Partiii. Similarly, let W (s, w™) == W; where j = arg min &, (w"™, W;; s™). Then, we have
J€[lm]
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E(s,w) Ugen (S, W)H

1 1
*E(SW ®m [Z ‘gen Si, W;) ‘ — ‘gen S;, WZ)‘] + E(SW ®m [Z ‘gen S;, Wz)‘]
i=1 i=1

1

<—Egom [ ma en(S;, wi;)| | +e+e
m S® Le[mx];‘g (S m)’] € m

<1\/202mlog(2mlm)
m

n

<\/20’2(}2 + log(2))

n

+e+éeEm

+ e+ em.

Taking the limit for m — oo completes the proof. |

E.2. Proof of Theorem 3
Proof Fix ¢ and v1,v5 > 0. Assume that there exists a W € W defined by the conditional
distribution Py ¢, such that ‘E[gen(S, W) — gen(S, W)” < e. It is sufficient to show Rp(e) <
I(S;W) + 1. A
Denote the empirical distribution of a sequence =" by Pym, i.e.
#ie[m]:x=x

m

Py (z) = (51)

Then, using the proof of (Cuff etal., 2010, Theorem 3), there exists a required sequence of {H, },,.cn

such that |H,,,| < emU(5: W)+11) and such that for each S™, a vector W™(S™) € Hpn, that we de-
note for ease of notations as Wm, can be chosen such that

It iy (5:18) = gy (5 ) v =+ 0. )

where —2> means convergence in probability and TV denotes the total variation distance between
two distributions (Cuff et al., 2010, Definition 4). Moreover, by strong law of large numbers, for m
independent instances (.S;, ;) chosen according to Pg 7, we have

| Pism wm)(s,w) = Psw (s, w)|rv = 0. (53)
This yields

i[gen (Si, Wi) — gen(Sz,Wz ]

1=

<‘E[gen (S, W) — gen(S, W ” + em (54)

1
m

[y

<€+ e, (55)

where ¢,,, vanishes as m — c0. Now,
P(swHem (ﬁm(Wm, Wm; S™) = e+ VQ) <Piswem (e+em =€+ 1n)
—0,

where the last line is when m — co. This completes the proof. |

31



SEFIDGARAN GOHARI RICHARD $IMSEKLI

E.3. Proof of Theorem 4
Proof We show

2
[Elgen(s, W)]| </ 272D 4 56)

and the proof for the rest of bounds in (40) is similar. Consider any Markov kernel PW\ g that
satisfies ’E[gen(S, W) — gen(S, VAV)” < e. Then,

E[gen(S, W)]| <‘E[gen(5, W)]’ +e

2021(S; W)
A ———— +¢,
n

where the last step is deduced from (Xu and Raginsky, 2017, Theorem 1). This completes the proof.
|

E.4. Proof of Corollary 7
Proof Let n{, be large enough such that for n > n{, and € := 2£/vVngL? = 2/y/n,

RD(e/(2L); Pw, 0)/1log(2L/€) < 2dimg (P ).

Note that this holds due to the uniform convergence assumption of the corollary. Then, using Corol-
lary 6, we have

202 dimg (Pyy, 6) log(nL2 1
|E[gen(S, W)]| < \/ o dimg (P, 6) log(nL?) e
n n
_ \/ 402 dimg (P, 6) log(n£2)
~ n ,
where the last inequality holds for n = ng, where ng > ng is a sufficiently large integer. m

E.5. Proof of Theorem 9

Proof Some of the steps in this proof are identical to the proof of Theorem 14, by considering X™
as (gen(Sy, Wh), ..., gen(Sy, Win)) and X™(5) as (gen(S1, Wj1), .-, 8en(Sm, Wjm)). Here, for
the sake of completeness, we re-state all steps for the particular setup and notations used for the
generalization error problem.

For any v € (0,log(1/0)) sufficiently small, choose mg such that for m > my,

1
——10g(P(swyemn (Em(Hm, € om))) > log(1/6) —v. (57)
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For ease of notations, let £, = &, (Hm, € ©m). Then,

Psw(gen(S, W) = A)™
=P(swyem (Vi gen(Si, Wi) = A)
<P(swyen (Vi, gen(S;, W;) = A, E7) + IP)(s wyem (Em)
om (Vi, gen(S;, Wi) = A, EC) 4 e~mos(1/0)=v)
Jw™: Vi, gen(Si, w;) = A, EC)) + e~ m0s(1/0)=v)

<Psw
<Pgem

i

3j € [ln], {Ai}21 € R: Vi, gen(S;, 0j:) = A — Ay, Z Ay < me> 4 —mllog(1/6)—v)
i=1

<Ps®m

<Ps®m

37 € [lm], {Ai}izs € R: Z gen(Si, wji) = Z(A —Ay), Z A; < me) + e~mllog(1/0)-v)
i=1 =

=1

<P5®m

N N~

el Z gen(S;, wj;) = m(A — e)) + e7mlog(1/0)—v)

Z PS@m (Z gen(Si, lZ)Jﬂ) = m(A — 6)) + e—m(log(l/(S)—u)

J€[lm] i=1

(2) e—mn(A=6)?/(20%) | —m(log(1/6)-v)

Je[l'm]
(gem(R—n(A—eF/(Qa?)) 1 e—mllog(1/6)-v)

(226—m(log(1/6)—1/)

where (a) is derived using the Hoeffding’s inequality, (b) is derived since I, < €™, and (c) is

derived by choosing A as A = M + €. The proof completes by taking the m’th root

of both sides, and since v can be chosen arbitrarily small.
|

E.6. Proof of Theorem 10

Theorem 10 is stated in Section 3.3 for U being a constant and in Appendix D.2 has been extended
to take into account the stochasticity of the algorithm. In the following, we first state the proof
for finite sets and for the U being a constant using Theorem 9. The result can be extended to
the case of arbitrary U that satisfies the conditions of the theorem, and to infinite sets, with some
further assumptions on (S, W), using the quantization technique used in the proof of (El Gamal and
Kim, 2011, Theorem 3.6) and by applying (Iriyama, 2005, Theorem 1) and its adaptation for the
memoryless sources in (Bakshi and Bansal, 2005, Theorem 3). However, for the general case, we
state an alternative proof that applies the Donsker—Varadhan’s variational representation of the KL.
divergence.
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E.6.1. FIRST PROOF

Proof Suppose that S x W is a finite set and U is a constant. We start by showing that for every
€ € R and any vy, > 0, the algorithm A(S) is (R(J, €) + v1, € + 12, 0; {m }m)-exponentially
compressible. Our proof is similar to (Marton, 1974, Theorem 1).

Let @, be an arbitrary type of S™ x W™. For the definition of the type, refer to the beginning
of the appendices. Define

Qm(6) = {Qm: Drr(Quml|Psw) <log(1/6)}. (58)

Note that,
Pswen(T(S™ W™ ¢ Qu(0) = Y, Pswen (T(S™,W") =Q,)
Qn#Q(d)
@ S emDrn(@lPsw)
Qn#Q(d)
O 181X W] g log(6)
—m(10g(8)+[S]x|W]|log(m)/m)
=(6 +em)™, (59)
where lim,,, o, €., = 0, the step (a) is due to (Cover and Thomas, 2006, Theorem 11.1.4), and the
step (b) is deduced since number of types can be bounded by mlSIXIWI,

First, we state a variant of type covering lemma (Berger, 1975, Section 6.1.2, Lemma 1) (ap-
peared also in (Csiszar and Korner, 2011, Lemma 9.1)), proved in Appendix E.18:

Lemma 28 For any v > 0 and any type Q. there exists a hypothesis book H,, = {WQm, 1 J €
o]} S W™, such that lg,, < e™@m, where

Rq,, = RD*(6;Qm) +€Q,ns (60)

and lim, €@, = 0, and such that for m = m, q,,,

Pg,w)@m (’T(Sm, W™ = Qm, 'I?[(llin ] em(W™,Wq,, ;5™) = €+ 1/> =0. (61)
JELQm,

Let m > m,, where m, is sufficiently large such that the above lemma holds for all types.

LettingH,, = | Hq,,, we have
QmeQm(9)
m< Y, lon
QmeQm(9)

RO* (€Qm)+ )
<m|8|x|wwem<Qm?32<a>[ (6Qu)+eon]

K. ’
e <eren5ﬁ<5) N (S’Qm)%m) : (62)
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where lim,, o £/, = 0. Moreover,

Piswyem (Em(Hm, € + V5 om))
<Psuyem ((S™, W™) ¢ Q)

+P w( (S™ W™) € O, mi i W™ o, :8™) =€+
(5,W)® <( ) € Om Qnrfggmjerflléi]som( WQ,.5:9") = € V>

(a)
<0 +em)™.

where the last steps is derived using Lemma 28 and relation (59).

Hence,

1
lim _% log (IP(S,W)®7" (gm(Hm7 €+ v (Pm))) < log(l/é)' (63)

m—00

The relations (62) and (63) show that for every ¢ € R and any v;,v9 > 0, the algorithm A(S)
is (R(0,€) + v1, € + v2,0; {m}m)-exponentially compressible. Using Theorem 9 completes the
proof. |

E.6.2. SECOND PROOF

Proof In this proof, since we use Theorem 12, we denote Py, 5w by py,s,w, to be compatible with
the notations of Theorem 12. Note that s w = pspupw|s,y where U is an independent noise
in the algorithm and W is the output hypothesis of the algorithm.

Let X = gen(W,S). This defines pgyw, x. Writing Theorem 12 with the choice of ¥ =
(S,U, W), we get that

logPxuy (X = A) (64)

< max | log(9), sup inf {DKL(pXS7U,WV57U7WqX|S,U,WVSvU7W)
vs,uw,x€0  Px|s,0wEW), dx|5,u,w > AZ0

- )\(A - 6) + log E,U'S,U,Wq)ﬂs’U’W [eAX] }:|
where G is the following set of distributions:

G ={vxsovw : Dxr(vxsuwlpx,suw) <log(1/6),}
and Q(v) is the set of conditional distributions p RISUW such that under p |S,uwYSUW We have:
{ inf 1:} ~E[X] <e
xesupp(vx )

Since X = gen(W,S) under px yw.s, and Dir(vx suwl|ix suw) < 0o, we obtain that
X = gen(W,S) under vy yw,s too. Therefore, the supremum is over distribution v of the form
VX,UW,S = VUW,SHX|UW,S- This implies that

Drr(vx,suwl|px,suw) = Drr(vsuwllpsuw)
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and

inf x= inf en(s’, w')].
zesupp(vx ) (S’,w’)esuplo(Vs,w)[g ( )]

Now, take some arbitrary v,y , and also take some arbitrary py;. 0,8, W satisfying

Py usw = Pvnu,s

where W) € W belongs to the hypothesis space and

inf en(s’,w')| — E . [enW,S]ée.
(s/,w’)ESupp(us,w)[g ( )] vU.SPy|u,s | (W1, 5)
Let X1 = gen(W7, S). Then, Py suw € Q(v).

Next, we define W5 to have a joint distribution of the form Py | U VS.UW,X such that the marginal
joint distribution of (Wg, U) is the same as (Wl, U) under Pyiy 0, sVS.UW.X - Note that Pyus =
Py, o is assumed here by the fact that W5 has a joint distribution of the form Py, [UVS.UW,X-

Let X5 = gen(Wha, S). Take ¢ X,|5,0w to be the conditional distribution of X, given S, U, W.

Also, take p sow € Q(v) to be the conditional distribution of X, given S, U, W. We evaluate
the above bound with ¢ Ra|SUW and p SO Then,

Drr(ps,suwvsowlag, spwvsvw) < Drr(Py, s uvs.ow Py, s pvsow)
= Drr(py, s uvsow by, pvsow)
= Drr(py, s uvsulpy, pvso)

— 1 (Wy; S|U).

T TPy |s,uYs.U

Finally, under 1,5,wdx, 5 7 We have that S =(Zy,...,%y,) is an i.i.d. sequence according
to puz. Moreover, in pr,s we have that U is independent of S. Furthermore, in x,|s> We have
PYu.s = Piinjo which together with independence of U and S implies that W is independent of
S. Therefore, gen(Wg, S) is the sum of 7 i.i.d. variables, and since ¢(Z, ) is o-subgaussian, hence
gen(Ws, S) is o/y/n-subgaussian. Therefore, we can compute its moment generating function.
Thus, logE[e’\X] < A202/2n and letting A == n(A — €)/o? yields

DKL(pX|s,UVS,UHCIX|5,UVS,U) —MA =€)+ IOgEus,UqX‘S,U[eAX]

_n(A- €)?

(W 81U - 55

<I,.
= TPy s, uVSU

Hence, denoting Gsu,w = {vsuw : Drr(vsuwl|psuw) < log(1/0)}, and by definition (14),
we have

logPx~puy (X = A) (65)

< max [1og(5), sup {m@*(e; Q) — ”(A_G)Q}]

vs,uw€Gs,uw
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Letting

\/202(%9*(6; Q) +log(1/4))

n

A= sup

vs,u,w€Gs,uw

+ €,

completes the proof. |

E.7. Proof of Theorem 12
‘We first claim that

log ]P)XN,U«X (X = A)

< sup inf {_DKL<VYXMYX) — )\|:(A — 6) — f@d(pXWVY,X)} } (66)
+

vy x Ky X p)g|y€Q(l/), A=0
This follows from Lemma 24 because if we look at vy x’s of the form vy x = vx Hy|x, We have
Drr(vyxllpyx) = Drr(vxllpx).

Moreover, the term S zd(p XYY, x ) depends only on the marginal distribution on X under PRy VY.X
Next, given p Xy letpgy =p XYYy For every Y = y, consider the conditional distribution
PRly—y induced by this joint distribution. Lemma 23 yields

inf | Dicr (pgy -, lx) + 108 Eq[e¥]| = AE,[X Y = y], (67)
X
By averaging this over y using the distribution vy, we obtain
qipf [DKL(pX‘yVYHquyVY) + Eyy logEq[e/\X’Y]] = /\jfcd(pfmeY)- (68)
Xy

This equality along with (66) yield
logPx~puy (X =A4)

< sup inf inf { — DKL(VYX ||,LLYX)
vyx<pyx  Pxy€QW) dxjy, A=0

— {)\(A —€)— DKL(meZ/quX‘YVy) —Ey~uy logIEq[eAXY]] }
+
From the Donsker-Varadhan’s identity we obtain the inequality

Ey ~y log By [eM Y] < DKL(VYHuy)—i-logEuyEq[e)‘XW] = DKL(VYHMy)-HogEuyqx‘yE[e)‘X].
Therefore,

log PXNMX (X = A)

< o it = Dravdirs) = [MA = 9 = Diatogy v lagy )

vy x KWy X px‘yeQ(V)v Q)‘qya A=0
= Dic (v ly) ~ 08 By Bl |
+

The desired inequality follows from here since D, (vy x|y x) = Dir(vy | py ).
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E.8. Proof of Theorem 14
Proof Let X™ = (X1,...,X,,). We can write

=P (17 € [K] : p(X™, X7 (5)) + % i Xi(j) = A, p(X™, X™(4)) < ) (69)

where (69) follows from the definition of p (Definition 13). |

E.9. Proof of Theorem 16

Proof First, note that as established in (Steinke and Zakynthinou, 2020, Proof of Theorem 5.1),
Ef[gen(S,W)] = EsEx w3[f (3, K, W)].

The rest of the proof is similar to the proof of Theorem 2, by considering the term f(3, K, W),
instead of gen(.S, W), and by noting that conditioned on 3 = 3 and W = w, for every j €
[n], (—=1)%i(€(35,1,w) — £(3;2,w)) is a bounded process in the range [—1,1], with average zero,
that takes values among ¢(3;1,w) — £(3;.2,w) and —(£(3;,1,w) — £(35,2,w)), uniformly. Hence,
f(3,K,w) is 1/4/n-subgaussian. We show the proof for part i. The other parts follow similarly.
Let W (3, k", w™) = w;(3) where j = argmind,,(w™, Ww;(3);3,k™). We denote it simply by
3€llm (5)]
W = (W1, ..., wWn). Then, we have

E(K,W|3)[f(37 K, W)]

1 m
<7]E(I(J/VB)Q\()"TL [Z f(37 KZ7 WZ)]
i=1
1 m ) 1 m )
<= Bk wipem [Z [ Ki, Wi) — f(5, K, Wz‘)] + B wipen [Z fG, K, Wi)]
=1 i=1
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Taking the limit for m — oo completes the proof. |

E.10. Proof of Corollary 18

Proof Let U be the stochasticity of the algorithm (e.g. the randomness in choosing the training data
for each batch in the SGD algorithm) in a sense that for a given dataset s = (21, ..., 2,) and based
on the sequence of values {(¢(z1,w), ..., ¢(zn, w))}wew, the algorithm chooses a fixed hypothesis
w conditioned on U = u.

If an algorithm has the VC-dimension d and for a fixed 3 = 3, the set of possible pairs
{(l(z1,w),...,0(zn,w))}w, where z; = 3x for some k € {1,2}", is bounded by the set of pos-
sible {(£(z1.1,w), (21,2, W), ..., (251, w),€(2n2,w))}w, and the latter is bounded by (2en/d)?
due to Sauer-Shelah lemma Sauer (1972); Shelah (1972). Hence, I(K,W|3,u) < dlog(2en/d).
Using Theorem 17 completes the proof. |

E.11. Proof of Theorem 19

Proof Let Ay = 4/log(2/d)/n, Ay = sup, v/2(R(3) + log(2/5))/n + €(3), and let S ~ " be
independent of (S, W). Then,

P(gen(S, W) = A1 + Ay) —]P’( [E(S W)] L(S, W) + £(S,W) — £(S,W) = Ay + AQ)

(5, W)
<]P’<IE5 [ﬁ(S, W)] (5, W) = Al) + P<ﬁ(5, W) — £(S, W) > Ag)
<6/2+ P(E(S, W) = £(S,W) = As).
It remains to upper bound the second term by 6/2. Denote 3 € Z2*" as concatenation of S and .S,
such that for some K € {1,2}", Z; = 3, g, and Z; = 3i i, As before, we denote S = 3k and

S = 3. The joint distribution of 3, K, W is P3Pk Pyy|3,., where P53 = 1®%" and Py is uniform
over {1,2}". Now,

P(ﬁ(S, W) — £(S, W) ) - ( 3g. W) — L3k, W) > Az)
P(f(3, K, W ) As)
max IP’(f(z»K W) = As).

//\

The rest of proof is to bound Py v, (f(3, K, W) = Ag) for a fixed 3. Similar to the proof of
Theorem 9, for any v € (0, log(2/9)) sufficiently small, choose mg such that for m > my,
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i |t (Pacaigon i (77,0615, K") > (9)) ) | > 1og(2/0) - v

m—00 €[lm (3)]

For ease of notations, let &, be the event that r[llru?)] em(W™,w;(3);3, K™) > €(3). Then,
JEllm (5

Pw;(f (3, K, W) = Ag)™
=P wipen (Vi, f(3, Ki, Wi) = Ag)
<P wipen (Vi, f(3, Ki, Wi) = Ag, &7 )-I-]P’(K Wiy (Em)
<P wipen (Vi, f(3. Ki, Wi) = Do, E5,) + e 082/ =)

<Pgem (Ju™: Vi, f(3, K wi) = A2, ) + e—maog@/a)—u)

A
A

<PK®m (3] € [ ( )] {A } _1 € R: VZ f(j,Ki,’LZ)jﬂ') = AQ — Ai, Z Az < me(3)> + e_m(log(2/5)—u)
=1

=1

<PK®m<aje[ G)], {A ™, e R: ng,,Kz,w” (A - A Z >+e_m<1og<2/a>—y>
=1 i=1

<IP’K®m (3] € [lm(g)] Z f(g,Ki,’UA)j’Z) = AQ — 5 ) m(log(2/6)—v)

i=1
Z Pkam (Z G K w5,) = m(Ag — 6(5))) 1 g—mllog(2/8)—v)
JE[lm (3)] =1
(2 3 e~ mn(B2—e(3))?/2 | o—m(log(2/8)~v)
]e[lm(ﬁ)]

Q) m(RG)-n(Ba—c(:))2/2) | o-mllos(2/5)—)
g2e—m<log(2/6>—u>,

where (a) is derived using the Hoeffding’s inequality, (b) is derived since ,,(3) < ¢”#®) and (c)

is derived since Ay > w + €(3). The proof completes by taking the m’th root of

both sides, and since v can be chosen arbitrarily small. |

E.12. Proof of Theorem 20

Proof First, similar to the proof of Theorem 19, we have

P(gen(S, W) = A1 + Ag) <§/2 + maxP(f(3, K, W) = Ao).
3

where Ay = 4/log(2/§)/n, Az = sup, v/2(R(3,0,¢€) +log(2/6))/n + €(3), and R(3,0,€) is
defined in the theorem. The rest of the proof is to upper bound Pk yy(;(f(3, K, W) = Az) by 6/2
for a fixed 3, which follows similarly as the proof of Theorem 10, by considering f (3, K, W) instead

of gen(S, W). [
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E.13. Proof of Corollary 22

Proof For any 3 and under any @ such that Dk (Q| Pk wup;) < log(2/6) < oo, we have
I(K,Wlu) < dlog(2en/d). Since, for any fixed U, similar to the proof of Corollary 18, the set
of possible W under Py yy,1|; 1s bounded by (2en/d)?, and consequently under @ as well. Using
Theorem 20 completes the proof. |

E.14. Proof of Lemma 23

Proof The Donsker-Varadhan’s identity states that
Drr(v|p) = Sgp{Ey[é(X)] - 10gEH[e<P(X)]}_

The choice of ® (&) = A\Z implies the following inequality for any distributions v and p:
Dir(v|p) = AE,[X] — log E,[¢*].
Therefore,
iﬂf[DKL(yHu) + logEM[e)‘X]] > AE, [X].
On the other hand, if % is proportional to e~*%, one can directly verify that
Dir(v|p) +log E,[e*] = AR, [X].

Thus, the desired inequality is established.

E.15. Proof of Lemma 24

We state two proofs for this lemma.

E.15.1. FIRST PROOF

Proof We simplify the right hand side and reduce it to the left hand side. For any vx, if there exists

a distribution p; € P(vx) such that (A — ¢) > [E,[X], then one can set A = oo. Otherwise, it is
optimal to set A = 0. Let A denote the set of distributions vx such that for any p¢ € P(vx) we

A~

have (A — €) < E,[X]. Then, the desired equality is equivalent with

log Px~py (X = A) = sup —Dper(vx|px).

I/Xe.A

Remember that P(vx) denotes the set of distributions p ¢ on R for which

it o] -[4] <e

Thus, A is the set of distributions vx such that A < inf( )x, or equivalently, supp(rx) <
TESUPP(VX

[A,00). The minimum of Dy (vx|lux) is then obtained by a distribution that is proportional

with px on [A, c0), and the minimum value of Dxr (vx|px) equals —logPx ., (X > A). This

completes the proof. |
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E.15.2. SECOND PROOF

Proof In this part, we give a second proof of Lemma 24 from Appendix C. Fix some natural number
m. The type of a given sequence in A™ is defined as its empirical distribution. For every type vx
of the sequences in X of length m, pick an arbitrary type p, (Z) on a set X satisfying

[ min :L':| —E,, [X] < e (70)

z: v(z)>0

Let ¢, (&) be another distribution such that

2 p— AT
O I i LY
Ep, e X
Equivalently, )
AN C]z/(i”)€>‘$ X

pu(‘r) = Eique)\f( s V.

Then, one can directly verify that
Dicr,(po(2)]gv(2)) = Ay, [X] — log Eg, [M]. (71

Let X™ = (X1, Xo,...,X,,) be m i.i.d. repetitions from the distribution px.

Take some ¢ > 0. Let k& = max, e"(¢+Prr(pv(@)9-(2)) where the maximum is over all pos-
sible types v (of sequences in X™). We now define X" (1),..., X™(k) jointly distributed with
X™. Given some ™, we define the conditional distribution of X" (1), ..., X™ (k) given 2™ as
follows. Let v/(z) be the empirical type of the sequence z™. For j < e™(¢HPrrpv(¥)lan ()
generate the sequences X" (j) independently and i.i.d. from the distribution g, (). For j >
em(CHDxr(pe(@)lar ()| the sequences X™(j) are all zero.

From Theorem 14 we get the following tail bound:

P(X = A)™ < P(Hj : %Z)&(j) > A - e> + P(Vj e [k] : p(X™, X™(5)) > e). (72)
‘We have

P4 € 11 p(X™ X7 > €) = Dota™p(% € [h]: o™, X7 (7)) = e

XM = xm>

Fix some X™ = 2™ with a type v(z). Observe that if for some j, the sequence X" (j) has type
pu () then p(X™, X™(j)) < e. This follows from the definition of p, in (70). Therefore, the

probability P(Vj e [k] : p(X™, X™(j)) > €

XM = 1:"‘) is less than or equal to the probability

that there is no j such that the sequence X™ (j) has type p, (Z).

We now compute the probability that there is some j < e™(¢H+PrL(Pv(@)lav(2) such that the
sequence X" (7) has type p, (&). The probability that each sequence has type p, (Z) is greater than
or equal to (Csiszar, 1995, Lemma 2.6)

o = (m + 1)~ Hle=mDicr v (@)lav (@),
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The probability that there is no j < e™(¢+Pxr(pv(#)la.(#))) such that the sequence X™ () has type
p(z) equals

(1— a)em(chL(pV@)Hqu(@))) < eXp(_aem(chDKL(pu(i)llqu(i)))) = exp(—(m + 1)—|)2|em<)

where we used the inequality (1 — )™ < exp(—muz). Since this upper bound does not depend on
our choice of ™, we get

P(¥j € [k]: p(X™, X7(j)) > €] < exp(—(m + 1)~ 1¥em€),

Next, note that

Plaj : %Z}C(g‘) > A — e] = Zp(a:m)lplaj : %Z&-(j) > A -

For every e < A, we can obtain an upper bound using the union bound as follows:

1 .
Pl3i: =S %)= A
[J mZ ()

xm] - Plﬂj < emCHDRL(p(@) 0 (@) Z ()

em(C+ Dk 1 (pv(2)]av(2)))

< > P[;ZXi(j)zA—

7j=1

m

Take some j < e™(C+PxLpv(@)la-(#))) Chernoff’s bound implies that

pljnzfmj) SA-

:Em] < exp(—=mA(A = o)) | | Eq, [exp(AXi(7))]2"™]
i=1

= exp(—mA(A —€) + mlogE,, [exp(AX)]).

We obtain

1o,
]P’[H].mZi]XZ(j)>A—

me] < exp(m(¢ + Dicr(po(2)]g0(£))) — mA(A — €) +mlog Eg, [exp(AX)])
= exp[m( —mA(A —€) + mAE,, (X)]

where we used (71) in the last step. Another trivial upper bound is

1 ~
Pl3j: =S X)) = A —
[] m; ()

Thus,
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The above bound depends only on the type v and not on the exact sequence z. If we denote 7,
the set of sequences =™ with type v, we have (Csiszdr, 1995, Lemma 2.6)

Y, p(@™) < exp(-=mDgr(vx|px))-

Im'E%
Thus,
Z p(:l:m)IP’[EIj : iZ)AQ(]) >A—¢ xm]
m &
x™meT, 7
< exp{—mDKL(VXpX) — m[ —C+AA—¢€)— )\Epy(f()} }
+
Therefore,

1 ~
Pl3j: =S X)) = A —
[] mzzj () €

< gexp{—mDmme) —m| — A -0 —am, ()] |
< (m+ 1) myaxeXp{—mDKL(uXpr) — m[ —C+MA—¢€) — /\EPU(X)L}.

From (72) we get

IP’(X>A)m<IP’[3j:12XZ-(j) >A—e¢
m -

+P(Vj e [K]: p(X™, X™(5)) > e)
< (m+ 1)|X‘ mﬁmxexp{—mDKL(VXpX) — m[ —(+ AA —¢) — AE,p, (X)] }
4
+ exp(—(m + 1)*\?3|em4)_
Raising both sides of the inequality to the power 1/m and letting m tend to infinity yields
P(X > A) < mgxexp{—DKL(VX|px) — [ —CH+MA =€) — )\IEPV(X)} }
+
Letting m tend to infinity, we obtain the above inequality for any arbitrary p, () in P(vx). Letting

¢ tend to zero yields the desired result. |

E.16. Proof of Corollary 26
Proof
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i. Let W be uniformly distributed over the d-dimensional ball with radius ¢ < R with center
W. Let V4 denote the volume of the unitary d-dimensional ball. Then,

IW;W) =H(W) — HW|W)
—H(W) — log(e™V,)
<log((ro + €)%Vy) — log(eVy)

=dlog((ro + €)/e)
<dlog(2rp/e).

Now, using Corollary 11, we derive with probability at least 1 — &,

202(dlog(2ro/€) + log(1/0))

n

gen(S, W) < \/ + 2Le.

For n > 16, by letting € == 2r¢+/dlog(n)/n and § == e~%2, we derive that for n > 16, with
probability at least 1 — e~ %2,

gen(S, W) < (4ro€ + ov/d)+/log(n)/n.
ii. The result follows from (Marton, 1974, Example 1) and Corollary 11.
iii. The result follows from (Bakshi and Bansal, 2005, Example 1) and Corollary 11.
iv. The result follows from (Ihara and Kubo, 2000, Theorem 2) and Corollary 11.

E.17. Proof of Lemma 27

Proof Here we show the proof for d,,, == 1,,. The proof is similar for |¢,,| and &,,. For simplicity,
denote &, == & (Hm, € Um).

E(S W)@m < min ﬁm(Wm, VAV]7 Sm)>
’ J€llm]

Jellm]

JE[lm]

QE(&W)@m ( min ﬁm(Wm, Wj; Sm) |5m> P(S,W)®m (5m) + €

<E(swyom (Um (W™, W1; S™)|Em)Pisw)em (Em) + €

1 U mn .
<EE(5,W)®’” <| Z gen(Si, Wi)| + | Z gen(S;, Wy,;)]
i=1 i=1

gm> P(57W)®m (gm) +e€

(a) 1 ke
< Egswyen <| > gen(S;, W3]
=1

5m> Pswyem (Em) + v/2021og(2)/(nm) + €

(b)
<eéEm + €
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where lim,,, .o €, = 0, (a) is due to a known maximal inequality for subgaussian random vari-
able (Boucheron et al., 2013, Theorem 2.5) and (b) is derived due to the Lemma 29, stated in the
following. Taking the limit for m — oo completes the proof.

To show step (b), we state the following lemma, shown within the proof of (Berger, 1975,
Theorem 7.2.2). Here, for the sake of completeness, we state the adapted proof to our setup in
Section E.19.

Lemma 29 Assume that Ex[| X|] < oo, where X € X. Let { A, }men: Am S X™, be a sequence
of sets such that lim,, o Pxem (X™ € A,;,) = 0. Then,

1
lim — Z|X| ) dPyem = 0. (73)

m—0o0 M A izl

E.18. Proof of Lemma 28

Proof Denote that the marginal type of (), with respect to S as ;. Consider a random
variable T, defined by the conditional distribution P, W| g» such that E[de (W S )] €, where the

expectation is with respect to joint distribution ¢) SW = Qsm X P WS-
Following the proof of (Csiszar and Korner, 2011, Lemma 9. 1), we can find a set HQm

{WQujrd € llg, i1} € W™, such that

m(I(S; W)-i—am)
lQm, <e

where the mutual information is with respect to the joint distribution Q)¢ 1;,, and such that for each
S™ having the type Qs,m, there exists a j(S™) € [l 3], such that

| Psm g, sy (5, ) = Qg (8, 0) |7y = e, (74)

where £/ vanishes as m — 0. Note that by Carathéodory’s theorem, we can assume that W is
a finite set as well and hence dg,, (w; s) is always bounded. This yields for the picked j(S5™),
satisfying the above equation, we have

Z de g, J(S™) i Si) < m(e+em), (75)
i=1
where ¢,,, vanishes as m — 00. Now,

P(s,w)@m (T(Sm, W™) = Qm, min @,(W" Wg,, ;™) =€+ V)
JE lQm,W]

:P(S,W)®m <T(Sm, Wm) = Qm, )

e [l Z mm gen(Sy, W) — gen(S;,0q,, j,i) = m(e + V))
Qm.wlizy
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=Pswyem | T(S™,W™)

:P(S,W)®m <T(Sm, Wm)

(a)
<P we

_0’

m (T(S™, W™)

:Qma,

m

min Z min
Jellg,, wl} (s’ w'):
m W=l Qm (s’ w')>0

= QTIZ? Z de meJﬂ’ S ) m(€ + V))
lQm ]z 1
= Qm,m(e+em) = m(e+v))

where the last step holds for m > m, q,,, where m,, ¢, is a sufficiently large integer.

l O W . This completes the proof.

E.19. Proof of Lemma 29

Proof Letn = Ex[|X|] and s,, (2™

B,
Cm

Fix a § > 0. Then,

S (X™)d Py f
Am Am
Lm
ngm
J. o, 5

N

(a)

< J (Sm(X™) — n)dPxem + €.

The required set Hc,, would be equal to the HQm v having the minimum cardinality number

) = L 3" |z;|. Define the following sets

={z™: sm(x
= {x": sp(x

™) >n+d},
™) <n—d}.

m

X™) —n)dPxem + f (S (X™) = n)dPxem + ne,,
Am OB

X™) —n)dPxem + (5J
A (N BE,

j (S (X™) — )dPyem + em
Am (N Bom

(76)

where €, vanishes as m — oo and (a) is derived since for X™ € B,,, S;,,(X") — n is positive.

Next,

| (Sp(X™) ~ mdPyon = [ = marye. - |

Lo

LM

(Sm(X™)

X™))dPxem

— n)dP)(@m

S (X™))dPxem + LC e (n — Sm(X™))dPxemn
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N

f (1 = Son(X™))dPyem + 0
B¢, (1 Cm

b
< T]J dPX®m+5
Bg, (Cm

—~
=

= nj dPxem + 0
Cm

G an

where €/ vanishes as m — 0, (a) is derived since E[S, (X™)] = 7, (b) is derived since S, (X™)
is non-negative, and (c) is derived since P(|S,, — n| > J) asymptotically vanishes by law of large
numbers.
The inequalities (76) and (77) yield for any § > 0,
1 m
lim — | ()|Xi[) dPyom < 6. (78)

m—0o0 M, Am ia

This completes the proof. |
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