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Abstract
The phenomenon of benign overfitting, where a predictor perfectly fits noisy training data while
attaining low expected loss, has received much attention in recent years, but still remains not fully
understood beyond simple linear regression setups. In this paper, we show that for regression, be-
nign overfitting is “biased” towards certain types of problems, in the sense that its existence on
one learning problem precludes its existence on other learning problems. On the negative side,
we use this to argue that one should not expect benign overfitting to occur in general, for several
natural extensions of the plain linear regression problems studied so far. We then turn to clas-
sification problems, and show that the situation there is much more favorable. Specifically, we
consider a model where an arbitrary input distribution of some fixed dimension k is concatenated
with a high-dimensional distribution, and prove that the max-margin predictor (to which gradient-
based methods are known to converge in direction) is asymptotically biased towards minimizing
the expected squared hinge loss w.r.t. the k-dimensional distribution. This allows us to reduce the
question of benign overfitting in classification to the simpler question of whether this loss is a good
surrogate for the misclassification error, and use it to show benign overfitting in some new settings.
Keywords: benign overfitting, interpolating predictors, implicit bias, surrogate losses

1. Introduction

Benign overfitting is an intriguing phenomenon in statistical learning, which has received much
interest in the past few years, and appears to occur frequently in large-scale learning problems (such
as deep learning). It refers to situations which combine the following: (1) The trained predictor
achieves essentially perfect prediction accuracy on the training data; (2) No predictor in the relevant
hypothesis class can achieve perfect prediction accuracy w.r.t. the underlying data distribution (e.g.,
the Bayes error is strictly positive); yet (3) The trained predictor has good prediction accuracy
w.r.t. the underlying data distribution. This phenomenon is intriguing, because it cannot be easily
explained using standard learning theoretic tools such as uniform convergence (which requires the
performance on the training data and the underlying distribution to be similar). This has led to a
flurry of papers in the past few years, attempting to understand why and when benign overfitting
occurs, and whether uniform convergence can or cannot explain its occurence (see discussion of
related work below).

So far, most of the theoretical work on benign overfitting has focused on linear (or kernel) re-
gression problems using the square loss, with some works extending this to classification problems.
The relatively most well-understood situation is plain linear regression in a well-specified setting,
where we are training a linear predictor x 7→ x>w, w ∈ Rd with respect to the square loss, and
when the outputs y satisfy y = x>w∗+ ξ, where ξ is zero-mean noise. In this setting, we know that
benign overfitting occurs (roughly speaking) whenever the distribution of the input x has a high-
dimensional distribution, with many directions of small (but non-zero) variance that the trained
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predictor can utilize to perfectly fit the training data, without significantly affecting the distribution
of the predictions on new examples. A helpful feature of this setting is that there is a closed-form
expression for the predictor returned by gradient-based methods, when trained to convergence on
the average square loss. For classification, the situation is more complicated, because the predictor
that gradient-based methods converge to with appropriate losses (namely, the max-margin predic-
tor) does not have a closed-form expression in general. Thus, most recent works on classification
focused on more specific setups (as discussed in the related work section below).

In this paper, we propose a new perspective on benign overfitting, which can potentially be used
to analyze when benign overfitting may – or may not – occur in settings beyond those studied so far
in the literature. Roughly speaking, we argue that any predictor that perfectly fits the training data
can be seen as returning the optimum of the average loss, but simultaneously, it is also the optimum
of many other types of average loss objectives, which reflect rather different learning problems
with different optimal predictors (w.r.t. the underlying data distribution). The trained predictor
doesn’t “know” which of these learning problems it is actually solving, so benign overfitting (with
the trained predictor achieving low expected loss) can only occur in some of them. As a result,
benign overfitting is implicitly “biased” towards certain learning problems, and its occurence in one
problem precludes its occurence in another. We note that this is somewhat reminiscent of the paper
Muthukumar et al. (2021), which pointed out that interpolating predictors can be insensitive to the
type of loss function used for training, but we take this in a rather different direction.

To make the argument a bit more concrete, let us consider a linear prediction setup, where we
have some non-negative loss function `(p; y) so that the loss of a predictor w ∈ Rd on an example
(x, y) equals `(x>w; y). Thus, our goal is to minimize E(x,y)[`(x

>w; y)] over w. With an eye
towards benign overfitting, suppose that we attempt this by running a gradient-based method over
the empirical risk objective 1

m

∑m
i=1 `(x

>
i w; yi) (with respect to an i.i.d. training set {xi, yi}mi=1,

and without any regularization), assuming we achieve a globally minimal solution ŵ. In regression,
`(·) is commonly such that for any value y, there is some unique value p such that `(p; y) = 0.
In this case, we understand where gradient-based methods converge to, as shown in the following
theorem (the proof, like most proofs in the paper, appears in the appendix):

Theorem 1 Fix a function L(w) = 1
m

∑m
i=1 `(x

>
i w; yi), where each `(·; yi) is a non-negative

continuous function which equals 0 at some unique point denoted as `−1yi (0). Suppose we run an
arbitrary iterative training method, that converges to a point ŵ such that L(ŵ) = 0 and ŵ ∈
span{x1, . . . ,xm}. Then ŵ is the unique point in arg minw ‖w‖ : L(w) = 0.

Since gradient-based methods rely on iterative updates along the gradient of L(·) (or gradients
of single loss functions `(x>i w; yi)), they generally remain in span{x1, . . . ,xm} assuming we ini-
tialize at 0, and thus the theorem implies that such methods tend to converge to minimum-norm
solutions that minimize the empirical risk. In itself, the theorem is not surprising, and is based on
well-known ideas (see for example Zhang et al. (2021) for a derivation of a somewhat more specific
version). However, our crucial observation is the following rather immediate corollary:

Corollary 2 The point ŵ defined in Thm. 1 is also the (unique) point that satisfies L̃(ŵ) = 0 and
ŵ ∈ span{x1, . . . ,xm}, where L̃(w) := 1

m

∑m
i=1(x

>
i w − `−1yi (0))2.

The corollary follows simply by applying the theorem on the “loss” function ˜̀(x>i w; yi) :=
(x>i w − `−1yi (0))2, which is non-negative and equals zero when x>i w = `−1yi (0). Hence, the same
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method that converges to the minimum-norm root of L(·), also simultaneously converges to the
minimum-norm root of L̃(·).

Comparing L(·) from the theorem and L̃(·) from the corollary, we see that they are both the
empirical average of a certain loss function over m training examples. However, assuming that
the training set {(xi, yi)}mi=1 is sampled i.i.d. from some underlying distribution, it is evident that
they represent empirical risk minimization of two distinct statistical learning problems: One being
minimizing E[`(x>w; y)], and the other minimizing E[(x>w − `−1y (0))2]. In general, these are
different learning problems, with distinct optima with respect to the underlying data distribution.
However, the returned ŵ is exactly the same one. Thus, if we have benign overfitting in one problem
(with the trained predictor ŵ having near-minimal expected loss), we generally cannot expect to
have benign overfitting in the other problem. Thus, the very fact that we can show benign overfitting
in settings such as well-specified linear regression with the square loss, precludes the possibility of
having benign overfitting in other learning problems.

In the paper, we build on this simple observation to provide several new results, both positive and
negative, about the existence of benign overfitting in various regression and classification problems.
We focus on a prototypical setting for benign overfitting, where the input distribution in Rd is
composed of an arbitrary fixed input distribution on the first k coordinates, and a high-dimensional
Gaussian distribution on the other d− k coordinates (which facilitates overfitting the training data).
In this setting, we study consistency of the predictor learned by gradient-based methods, as both d,
the sample size and their ratio diverge to infinity. Informally, our results are as follows:

• Beginning with regression, we provide evidence that benign overfitting generally does not occur
in several natural extensions of the linear regression settings studied so far. These include (1)
linear regression with the square loss in an agnostic or misspecified setting (where E[y|x] does
not necessary equal x>w∗ for some fixed w∗, see Thm. 6); (2) Regression with generalized linear
models (or equivalently, with a single neuron predictor, see Thm. 7); and (3) Regression with
losses other than the square loss (see Thm. 9). In line with our observations above, these negative
results hold exactly because benign overfitting can occur in high-dimensional well-specified linear
regression problems.

• The negative results above depend on the fact that in regression, we generally require the predic-
tor’s output to exactly equal some target value, which is a rather stringent requirement. In contrast,
classification problems are easier, in the sense that we only need the confidence in predicting one
class to be larger than the confidence in another. Indeed, papers such as Muthukumar et al. (2021)
pointed out that in natural setups, benign overfitting in classification can occur even when benign
overfitting in regression fails. Inspired by our previous observations, we investigate the behav-
ior of the learned predictor for binary classification, under the same input distribution as earlier
(where an arbitrary distribution on the first k coordinates is concatenated with a high-dimensional
distribution). Perhaps unexpectedly, we show that in this model, the max-margin predictor (to
which gradient-based methods are known to asymptotically converge in direction) is implicitly
biased towards minimizing the expected squared hinge loss w.r.t. the underlying data distribution
(see Thm. 10). Thus, the consistency of the learned predictor (and hence benign overfitting) in our
model is reduced to a simpler question: Whether the data distribution is such that minimizing the
squared hinge loss is a good surrogate for minimizing misclassification error. We note that unlike
many previous works on benign overfitting in classification, we do not require that the distribution
is such that the least-squares and max-margin predictors coincide. Based on this result, we study
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more specifically the case of linearly separable distributions with label noise, and provide a few
positive results: For example, for just about any choice of distribution on the first k coordinates,
we will have benign overfitting at least for some positive amount of label noise (see Thm. 12).
Moreover, under some stronger distributional assumptions, we will have benign overfitting for
label noise arbitrarily close to 1/2 (see Thm. 13).

Overall, we hope that the perspective suggested in this paper will allow us to understand benign
overfitting beyond the settings studied so far. For example, it would be interesting to identify other
settings where the structure of the square hinge loss means that the max-margin predictor will have
benign overfitting properties, as well as other distributions which lead to similar implicit biases.

1.1. Related Work

Papers such as (Zhang et al., 2017) popularized the notion that modern learning systems (such as
deep learning) tend to perfectly fit the training data, while still performing well on test data. The
literature on the theory of this phenomenon is by now very large, and we will only discuss here the
papers most relevant to our work (see for example Belkin (2021) for a more comprehensive survey).

A line of works (e.g., Belkin et al. (2018a,b,b, 2019b); Mei and Montanari (2019); Liang and
Rakhlin (2020); Belkin et al. (2019a)) showed that this phenomenon is not reserved to deep learning,
and occurs already in linear and kernel learning. More recently, papers such as Bartlett et al. (2020);
Hastie et al. (2019); Belkin et al. (2020) studied conditions for benign overfitting in linear regression
with the square loss in a well-specified setting. In particular, Bartlett et al. (2020) considered general
distributions, and showed how the occurence of benign overfitting can be characterized in terms of
the eigenvalues of the input covariance matrix, and how having many low-variance directions is in
some sense necessary for benign overfitting to occur. Other works which study benign overfitting
and its relationship to classical learning theory include Nagarajan and Kolter (2019); Negrea et al.
(2020); Yang et al. (2021); Bartlett and Long (2021); Bachmann et al. (2021); Koehler et al. (2021);
Zhou et al. (2020); Muthukumar et al. (2021).

Understanding benign overfitting in classification problems has been more challenging, since
the max-margin predictor to which gradient-based methods are known to converge to (in direction)
does not have a closed-form solution. Many of the existing works focus on settings where the max-
margin predictor and the (closed-form) least squares predictor coincide (as originally argued in
Muthukumar et al. (2021)). Wang and Thrampoulidis (2021) and Cao et al. (2021) use this to study
a setting where the two classes are a symmetric mixture of Gaussian (or subgaussian) distributions,
without label noise. Chatterji and Long (2021) studies a setting where the two classes are a mixture
of two product distributions, and with label noise, by studying the trajectory of gradient descent
on the training data. Montanari et al. (2019) considers classification problem where the inputs are
Gaussian, and the labels are generated according to a logistic link function, and derives a formula
for the asymptotic prediction error of the max-margin classifier, in a setting where the ratio of the
dimension and the sample size converges to some fixed positive limit. Other works studying benign
overfitting and classification include Liang and Recht (2021); McRae et al. (2021); Poggio and Liao
(2019); Thrampoulidis (2020); Hu et al. (2021).
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2. Preliminaries

Notation. We use bold-faced letter to denote vectors, and assume that they are in column form
unless specified otherwise. Let ei ∈ Rd be the i-th standard basis vector. Given a vector w ∈ Rd,
we letwi denote its i-th coordinate, w|k ∈ Rk to denote its first k coordinates, and w|d−k ∈ Rd−k to
denote its last d− k coordinates. We also use this notation when the vector already has a subscript
for a different purpose, e.g. xi|k refers to the first k coordinates of xi. Given two vectors u,v
of the same size, u � v means that ui ≥ vi for all i. We use [·]+ to denote the ReLU function
z 7→ max{0, z}. [m] is shorthand for {1, . . . ,m}. Id is the d× d identity matrix. We use standard
asymptotic notation O(·),Ω(·) to hide constants (generally with respect to a dimension parameter

d→∞). We use a.s.−→ and P−→ to denote convergence almost surely and in probability, respectively
(of a sequence of random variables to some fixed limit).

Benign Overfitting. For linear prediction problems, benign overfitting is inherently a high-
dimensional phenomenon (since when the dimension is fixed, uniform convergence generally oc-
curs). Thus, the most appropriate way to study benign overfitting is to consider a sequence of input
distributions over Rd (indexed by d), and study the performance of the learned predictors as both d
and the training set size diverges to infinity. For the setting studied in Thm. 1, a common way to
define benign overfitting as follows:

Definition 3 (Benign Overfitting for minimum-norm interpolators) Given a non-negative func-
tion `(p; y) on R2, a sequence of distributions {Dd}∞d=k+1 on Rd ×R satisfies benign overfitting, if
there is a monotonically increasing sequence of integers {md}∞d=k+1 such that the following holds:

• For any sufficiently large d, if we sample md samples {(xi, yi)}md
i=1 i.i.d. from Dd, then almost

surely, there exists some w ∈ Rd such that 1
md

∑md
i=1 `(x

>
i w; yi)) = 0.

• Picking ŵd = arg minw ‖w‖ : 1
m

∑md
i=1 `(x

>
i w; yi)) = 0 to be the minimum-norm minimizer of

the average loss over the dataset, and defining Rd(w) := E(x,y)∼Dd

[
`(x>w; y))

]
, it holds that

infd>k infw∈Rd Rd(w) > 0 as well as Rd(ŵd)− infw∈Rd Rd(w)
P→ 0.

In other words, ŵd is asymptotically optimal, in the sense that its expected loss converges to the
best possible expected loss among linear predictors, as the sample size and d diverge to ∞ at an
appropriate rate. Defining benign overfitting in classification is a bit different, and is left to Sec. 4.

3. Regression

We begin by considering a regression setup, where the loss of a predictor w on an example (x, y)
is denoted as `(x>w; y), and is minimized w.r.t. the first argument at some unique point. A proto-
typical case where we might hope to have benign overfitting is when the inputs are composed or a
“signal” component, concatenated with a high-dimensional random component which can be used
to fit the training data, but without materially affecting the performance on new examples. For-
mally, we focus on the following particularly nice instantiation of this idea (in the context of benign
overfitting as defined in the previous section):

Assumption 1 For any distribution Dd, d > k on (x, y) ∈ Rd × R, the distribution of y and
x = (x|k,x|d−k) (where we separate the first k and last d− k coordinates) satisfies the following:
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• x|k and y have a fixed distribution independent of d, such that E[‖x|k‖2], E[y2], E[‖yx|k‖2] are
all finite, and E[x|kx

>
|k] is positive definite.

• x|d−k is independent of x|k, and is zero-mean Gaussian with covariance matrix 1
d−k · Id−k.

Remark 4 In what follows, it will be convenient to embed a sequence of random variables (each
being a function of samples from a different Dd) in one common probability space, so that notions
such as almost sure convergence make sense. Formally, we can do this as follows: Consider a
doubly-infinite matrix X , where the first k columns correspond to an infinite i.i.d. sequence of input
vectors in Rk, distributed as the first k coordinates ofDd (which is independent of d), and the rest of
the entries are i.i.d. standard Gaussian. Also, we let y be an infinite i.i.d. sequence of output values
distributed as inDd (which is independent of d). Then, for each d and integermd, we let {xi}md

i=1 be
the rows of the md×d top-left submatrix of X , with the last d−k coordinates of each xi multiplied
by 1√

d−k . Also, we let {yi}md
i=1 be the first md entries of y. By Assumption 1, {(xi, yi)}md

i=1 has the
same distribution as an i.i.d. sample from Dd, for all d, while sharing a common probability space.

Variants of this assumption, or related assumptions, are very common in the literature on benign
overfitting (e.g., the “junk features” model of Zhou et al. (2020), or the “weak features” model of
Muthukumar et al. (2021)), although these tend to assume some particular (e.g., Gaussian) distri-
bution on the first k coordinates, whereas we allow that distribution to be rather generic. We note
that we scale the covariance matrix by 1

d−k , to ensure that ‖x‖ is almost surely bounded as d→∞.
Moreover, it means that the values we choose for the predictor w in the last d − k coordinates are
asymptotically immaterial (as we will prove formally in our theorems), and they will serve merely
to fit the training data. Also, we note that the choice of a Gaussian distribution on the last d − k
coordinates is merely for simplicity: Essentially, our analysis only really requires a light-tailed dis-
tribution which is “spread”, in the sense that independent samples are asymptotically orthogonal (as
d → ∞), and that the minimum-norm interpolator exists with arbitrarily high probability for large
enough d. The choice of the distribution will only affect technical details such as how fast d needs
to grow compared to the sample size md. For our choice, we will need the following assumption:

Assumption 2 The sequence of positive integers {md}∞d=k+1 is monotonically increasing, diverges

to∞, satisfies md ≤ d− k for all d, and limd→∞
m3

d log(d)
d = 0.

We now present a basic theorem on the asymptotic behavior of the minimum-norm interpolator:

Theorem 5 For any sequence of distributions {Dd}∞d=k+1 and integers {md}∞d=k+1 satisfying As-
sumptions 1 and 2, it holds that if ŵd := arg minw∈Rd ‖w‖ : 1

md

∑md
i=1(x

>
i w−yi)2 = 0 , where

{xi, yi}md
i=1 are sampled i.i.d. from Dd, then the sequence {ŵd}∞d=k+1 satisfies

ŵd|k
a.s.−→ E

[
x|kx

>
|k

]−1
· E
[
yx|k

]
and E(x,y)∼Dd

[
(x>ŵd − x>|kŵd|k)

2
]

a.s.−→ 0 .

In other words, the first k coordinates of ŵd converges almost surely to the (unique) minimum-
norm minimizer of E[(x>|kw − y)2], and the last d − k coordinates are asymptotically irrelevant.
Since the behavior of any other fixed predictor w∗ will also asymptotically depend just on its first
k coordinates, we see that the expected loss of ŵd converges to a minimal value over all linear
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predictors. Assuming no predictor makes the expected square loss precisely zero, we therefore get
benign overfitting (as defined in Definition 3). .

In itself, this result is not surprising: We deliberately focus on a model which is well-known to
be particularly amenable to benign overfitting. However, inspired by the observations discussed in
the introduction, let us show how a slight tweak of this setup easily makes benign overfitting fail to
occur in general. In fact, this already occurs for linear regression with the square loss, as formalized
in the following theorem:

Theorem 6 Consider any sequence of distributions {Dd}∞d=k+1 and integers {md}∞d=k+1 satis-
fying Assumptions 1 and 2, except that conditioned on x|k, x|d−k is zero-mean Gaussian with

a covariance matrix
g(x|k)

d−k · Id−k (where g : Rk 7→ R is any measurable function such that
Pr
(
g(x|k) ∈ (l, u)

)
= 1 for some positive l, u ∈ R). If we let ŵd := arg minw∈Rd ‖w‖ :

1
md

∑md
i=1(x

>
i w − yi)2 = 0 where {xi, yi}md

i=1 is an i.i.d. sample from Dd, then

ŵd|k
a.s.−→

(
E

[
x|kx

>
|k

g(x|k)

])−1
· E
[
yx|k

g(x|k)

]
and E(x,y)∼Dd

[
(x>ŵd − x>|kŵd|k)

2
]

a.s.−→ 0 .

Proof ŵd can be equivalently written as arg minw∈Rd ‖w‖ : 1
md

∑md
i=1

(
x>i√
g(xi|k)

w − yi√
g(xi|k)

)2

=

0. Thus, ŵd can be seen as a minimal norm interpolator of a related linear regression problem,
where we scale both xi and yi by

√
g(x|k). We note that now this falls exactly in the framework of

Assumption 1, with the last d − k coordinates having a marginal zero-mean Gaussian distribution
with covariance matrix 1

d−k · Id−k; where the first k coordinates have the distribution 1√
g(x|k)

x|k;

and where the target values have distribution y√
g(x|k)

. Plugging this into Thm. 5 and using the

assumptions on g(·), the result easily follows.

The important point to notice here is that now the predictor we converge to is such that its last
d−k coordinates are still asymptotically negligible, whereas the first k coordinates do not look like
the standard minimum-norm optimal predictor we would expect, which is still E[x|kx

>
|k]
−1E[yx|k]

in the first k coordinates. Thus, unless the two somehow exactly coincide, we should not expect
benign overfitting to occur, even though the covariance structure of the inputs x is a textbook case
of amenability to benign overfitting (in the sense of having many small positive eigenvalues). The
following example illustrates this:

Example 1 In the setting of Thm. 6, suppose k = 1, x1 (the first coordinate of x) is uniform
on the interval [−a, a] for some arbitrary a > 0, y = g(x1) = exp(x1), and for all j > 1,

xj =
√

g(x1)
d−1 · rj , where xj is the j-th coordinate of x, and rj is an independent standard Gaussian

random variable. Then it is easy to verify that E[x1xj ] = E[yxj ] = 0 for all j > 1, and

Rd(w) := E(x,y)∼Dd
[(x>w − y)2] = E[x21] · w2

1 +
E[g(x1)]

d− 1
·

d∑
j=2

w2
j − 2E[yx1] · w1 + E[y2] .

Rd(·) achieves a minimal value only when wj = 0 for all j > 1, and w1 = E[yx1]
E[x21]

= E[exp(x1)x1]
E[x21]

,

which is a strictly positive number dependent only on a. However, by Thm. 6, the first coordinate
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of ŵd converges almost surely to the different value E
[
yx1
g(x1)

]
/ E

[
x21
g(x1)

]
= E[x1]

E[x21 exp(−x1)]
= 0.

Thus, we get that Rd(ŵd)− infwRd(w) is lower bounded by a positive number independent of d,
and therefore we do not have benign overfitting.

The reader familiar with previous literature might wonder how this can possibly accord with
previous results (such as Bartlett et al. (2020)), which show that benign overfitting does occur for
linear regression with the square loss, under the kind of input distributions we study here. The
reason is that these results assume a well-specified setting, where E[y|x] = x>w∗ for some fixed
w∗ (see for example Assumption 4 in Definition 1 of Bartlett et al. (2020)). In the example above,
this does not hold, since E[y|x] = exp(x1) is not a linear function of x. Had we been in a well-
specified setting (under assumption 1, with E[y|x] = x>|kw

∗
|k for some w∗), benign overfitting

would generally occur, because then we have that E
[
x|kx

>
|k

g(x|k)

]−1
· E
[
yx|k
g(x|k)

]
equals E

[
x|kx

>
|k

g(x|k)

]−1
·

E
[
x|kx

>
|k

g(x|k)

]
w∗|k = w∗|k, which now coincides with the optimal solution on the first k coordinates

(which equals E[x|kx
>
|k]
−1 · E

[
yx|k

]
= E[x|kx

>
|k]
−1 · E[x|kx

>
|k]w

∗
|k = w∗|k).

Next, we turn to study two important settings beyond linear regression with the square loss, and
in both cases, show that we should not expect benign overfitting to occur in general, exactly because
it generally occurs for linear regression with the square loss under Assumption 1.

The first model we study is when we wish to fit a generalized linear model, namely a predictor of
the form x 7→ σ(x>w), where w is the parameter vector and σ(·) is some fixed non-linear function.
In the context of neural networks, this can also be seen as training a single neuron using some
nonlinear activation function σ(·). In this setting, it is not difficult to show that standard gradient-
based methods trained on the average square loss (i.e., minw

1
m

∑m
i=1(σ(x>i w)− yi)2) will indeed

generally converge to the min-norm predictor, namely arg minw ‖w‖ : 1
md

∑md
i=1(σ(x>i w) −

yi)
2 = 0 (see for example the proof of Yehudai and Shamir (2020, Thm. 3.2), combined with

Thm. 1). The following theorem implies that for just about any choice of input distribution on the
first k coordinates, and just about any choice of a strictly monotonic non-linear σ(·), we generally
cannot expect benign overfitting to occur, even in a well-specified setting where E[y|x] = σ(x>w∗)
for some w∗:

Theorem 7 Suppose that σ : R → R is a function whose inverse σ−1(·) exists and is Lipschitz
continuous. Consider any sequence of distributions {Dd}∞d=k+1 and integers {md}∞d=k+1 satisfying
Assumptions 1 and 2, such that for any d and (x, y) ∼ Dd, y = σ(x>|kw

∗) + ξ for some fixed
w∗ ∈ Rk and random variable ξ. Given a training set {xi, yi}md

i=1 sampled i.i.d. from Dd, let ŵd =

arg minw ‖w‖ : 1
md

∑md
i=1(σ(x>i w) − yi)2 = 0. Then E(x,y)∼Dd

[
(x>ŵd − x>|kŵd|k)

2
]

a.s.−→ 0

and
ŵd|k

a.s.−→
(
E[x|kx

>
|k]
)−1
· E
[
σ−1

(
σ(x>|kw

∗) + ξ
)
x|k

]
.

The theorem follows immediately from the observation that ŵd is also the minimum-norm mini-
mizer of 1

md

∑md
i=1(x

>
i w−σ−1(yi))2 = 0, and that the moment conditions in assumption 1 are still

satisfied if we replace y by σ−1(y) (since |σ−1(y)| ≤ cσ(1 + |y|) for some cσ > 0 dependent only

on σ). Hence, by Thm. 5, ŵd|k converges almost surely to
(
E[x|kx

>
|k]
)−1

E[σ−1(y)x|k], which
equals the expression stated in the theorem above.
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When ξ is independent zero-mean noise, and σ(·) (and hence σ−1(·)) are linear functions, then
the asymptotic expression for ŵd|k in the theorem easily reduces to w∗, which is indeed the optimal
predictor we would hope to converge to. However, this generally breaks when σ(·) is nonlinear. To
give just one simple example, suppose that σ(0) = 0, w∗ = 0 and E[x|k] 6= 0, in which case the

asymptotic expression in the theorem reduces to
(
E[x|kx

>
|k]
)−1

E[x|k] ·E[σ−1(ξ)]. For this to equal

w∗ (namely 0), we need that E[σ−1(ξ)] = 0. However, since σ(·) (and hence σ−1(·)) is non-linear,
the equation above will not hold for ”most“ zero-mean distributions. In other words, even if we
fix the input distribution, then just by playing around with the distribution of the noise term ξ, we
can easily encounter situations where benign fitting does not hold. Concretely, the following lemma
(whose proof is in the appendix) shows that no nonlinear σ(·) can possibly satisfy E[σ−1(ξ)] = 0
for all zero-mean distributions:

Lemma 8 Suppose that σ−1(·) is a function on R such that E[σ−1(ξ)] = 0 for all zero-mean
random variables ξ with support of size at most 2. Then σ−1(·) (and hence σ(·)) must be a homo-
geneous linear function (that is, ∃c ∈ R s.t. ∀z ∈ R, σ−1(z) = cz).

Next, we go back to linear regression, but now assume that the loss is not the square loss (say,
the absolute loss). Here again, we cannot expect benign overfitting to occur in general:

Theorem 9 Consider any sequence of distributions {Dd}∞d=k+1 and integers {md}∞d=k+1 satisfy-
ing Assumptions 1 and 2. Suppose we use the loss function `(x>w; y) = f(x>w−y) for some non-
negative function f which has a unique root at 0. Let ŵd := arg minw ‖w‖ : 1

md

∑md
i=1 `(x

>
i w; yi) =

0. Then ŵd|k
a.s.−→ E

[
x|kx

>
|k

]−1
· E
[
yx|k

]
and E(x,y)∼Dd

[
(x>ŵd − x>|kŵd|k)

2
]

a.s.−→ 0 .

The proof is immediate from observing that ŵd is also arg min ‖w‖ : 1
md

∑md
i=1(x

>
i w − yi)2 = 0,

and applying Thm. 5 on this related linear regression problem. Crucially, note that ŵd|k converges
almost surely to the unique minimum-norm minimizer of E[(x>|kw− y)2], and there is no reason to
believe that this is also an optimal solution (w.r.t. the first k coordinates) of E[f(x>w − y)] when
f(·) is not the square loss. Let us illustrate this with a simple example:

Example 2 In the setting of Thm. 9, suppose f(z) = |z| is the absolute loss, k = 1, x1 = 1
with probability 1, and y = x1 + ξ for some independent zero-mean noise term ξ. Then the first
coordinate of ŵd converges almost surely to E[yx1]/E[x21] = 1. However, the expected absolute

loss isRd(w) = E[|x>w−y|] = E
[∣∣∣w1 +

∑d
j=2 xjwj − (1 + ξ)

∣∣∣], which is easily verified to be
minimized only whenw1 = 1+med(ξ) (where med(ξ) is the median of ξ). Thus, whenever med(ξ) 6=
0 = E[ξ] (which occurs whenever ξ has a non-symmetric distribution), Rd(ŵd)− infwRd(w) does
not converge to 0, and we do not have benign overfitting.

4. Classification

The results in the previous section suggest that many natural extensions of well-specified linear
regression will generally not satisfy benign overfitting in our model. These were all regression
problems, where to get (asymptotically) optimal accuracy required the predictions to converge to
some single optimal value.

9
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In this section, we turn to consider binary linear classification setups, where we only care about
the sign of x>w rather than its exact value. More specifically, we will now consider distributions
where the examples (x, y) are such that y ∈ {−1,+1}, and the predictor (specified by a vector w)
is x 7→ sign(x>w). In this case, we generally care only about direction of the predictor w, and its
expected misclassification rate, namely Pr(x,y)(yx

>w ≤ 0).
In regression, we saw that gradient-based methods ran on the empirical risk function generally

converge to the minimum-norm predictor which zeroes the empirical risk, assuming such a pre-
dictor exists (see Thm. 1). For linear classification, the characterization is a bit different: Using
a convex classification loss with exponential tails (such as the logistic loss), it is by now well-
known that gradient-based methods ran on the average loss w.r.t. a given dataset {xi, yi}mi=1 con-
verge in direction to the max-margin predictor ŵ = arg minw∈Rd ‖w‖ : mini∈[m] yix

>
i w ≥ 1

(Soudry et al., 2018; Ji and Telgarsky, 2020), which by definition achieves zero misclassification
error on the dataset. Our goal now is to understand when can we hope to have benign overfitting for
ŵ. Similar to the case of regression, we need to consider a sequence of distributions {Dd}∞d=k+1

(this time on Rd × {−1,+1}) and sample sizes {md}∞d=k+1, which induce a sequence of max-
margin predictors {ŵd}∞d=k+1 (as defined above) when trained on samples {xi, yi}md

i=1. Letting
Rd(w) = Pr(x,y)∼Dd

(yx>w ≤ 0), we say that the sequence {Dd}∞d=k+1 satisfies benign overfit-
ting, if for any large enough d, ŵd exists almost surely, and

inf
d

inf
w∈Rd

Rd(w) > 0 as well as lim
d→∞

E
[
Rd(ŵd)− inf

w∈Rd
Rd(w)

]
= 0 . (1)

Note that this definition is similar to the one we had for regression (Definition 3), except that Rd(·)
is defined with respect to misclassification error, and ŵd is now defined as the max-margin predictor.

As in the case of regression, we will focus on distributions which satisfy Assumption 1, namely
where some arbitrary distribution on the first k coordinates is concatenated with a bounded-norm
Gaussian distribution on the last d−k coordinates. Again, this is a prototypical model for which we
might hope for benign overfitting to occur, and the Gaussianity assumption can be relaxed to other
light-tailed and “spread” distributions.

In regression, we were able to characterize the asymptotic behavior of ŵd as the least-square
solution w.r.t. the data distribution on the first k coordinates. To understand the case of classifica-
tion, we will need a similar characterization of what ŵd converges to. At first glance, this might
seem difficult, as the max-margin predictor on a given dataset does not have a closed-form expres-
sion (unlike the case of the least squares solution), and in fact, many previous analyses of benign
overfitting in classification resorted to additional assumptions which make the max-margin predic-
tor coincides with the least-squares solution, arg minw ‖w‖ : 1

md

∑md
i=1(x

>
i w − yi)

2 = 0. We
take a different route, which applies even when the max-margin and least-squares solutions do not
coincide: We show that at least for distributions satisfying Assumption 1, the first k coordinates
of ŵd asymptotically minimize the expected squared hinge loss, `(yx>w) = [1 − yx>w]2+ =
(max{0, 1− yx>w})2. This is formalized in the following theorem:

Theorem 10 Consider any sequence of distributions {Dd}∞d=k+1 satisfying Assumptions 1 and
2, and where y ∈ {−1,+1}. Let ŵd = arg minw∈Rd ‖w‖ : mini∈[md] yix

>
i w ≥ 1 (where

{xi, yi}md
i=1 are i.i.d. from Dd). Furthermore, suppose that for some large enough d0, supd≥d0 ‖v̂d‖

10
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is almost surely bounded, where v̂d is the minimum-norm minimizer1 of the function gd(v) :=
1
md

∑md
i=1[1− yix>i|kv]2+ on Rk. Then letting

g(v) := E
[
[1− yx>|kv]2+

]
,

it holds that

g(ŵd|k)
a.s.−→ inf

v∈Rk
g(v) and E(x,y)∼Dd

[
(x>ŵd − x>|kŵd|k)

2
]

a.s.−→ 0 .

The fact that the characterization is in terms of the squared hinge loss might be surprising at first,
as this loss does not appear explicitly in the definition of the max-margin predictor (and moreover,
the max-margin predictor itself arises from training gradient-based methods on losses which are
definitely not the squared hinge loss). Instead, the loss naturally arises from our analysis. We note
that this loss achieves the same value as the square loss for examples (x, y) where x>ŵd = y, but
is otherwise distinct. Thus, there is no contradiction with previous results on benign overfitting in
classification that focused on situations where the max-margin and least-squares predictors coincide.

Before continuing, let us informally explain how the squared hinge loss arises in our anal-
ysis. Given a dataset {(xi, yi)}md

i=1, recall that xi|k refers to the first k coordinates of xi, and
xi|d−k refers to the last d − k coordinates (which have a high-dimensional isotropic Gaussian
distribution). To simplify matters, let us suppose that {xi|d−k}md

i=1 are precisely unit norm and
orthogonal. In that case, the max-margin predictor on the training set can be equivalently written
as arg minw∈Rd ‖w|k‖2 + ‖w|d−k‖2 : ∀i, yix>i|kw|k + yix

>
i|d−kw|d−k ≥ 1 . For any fixed w|k,

we therefore wish to make ‖w|d−k‖2 as small as possible, while satisfying the constraints, which
can also be written as ∀i, yix>i|d−kw|d−k ≥ 1 − yix>i|kw|k. Since {yixi|d−k}md

i=1 are orthogonal,
it is easy to see that we should pick ŵ|d−k as follows: If 1 − yix

>
i|kw|k ≤ 0, we should make

yix
>
i|d−kw|d−k = 0, and if 1− yix>i|kw|k > 0, we should make yix>i|d−kw|d−k = 1− yix>i|kw|k. By

orthogonality, it follows that the optimal ŵ|d−k is such that ‖w|d−k‖2 = ‖
∑md

i=1 yix
>
i|d−kw|d−k‖

2,
and that this equals

∑md
i=1(yix

>
i|d−kw|d−k)

2 =
∑md

i=1[1− yix>i|kw|k]
2
+. Plugging into the above, we

get arg minw|k∈Rk ‖w|k‖2 +
∑md

i=1[1 − yix>i|kw|k]
2
+ = arg minw|k∈Rk

‖w|k‖2
md

+ 1
md

∑md
i=1[1 −

yix
>
i|kw|k]

2
+. As d→∞, we have md →∞. Hence, the first term becomes negligible, and the sec-

ond term converges pointwise to E[[1 − yx>|kw|k]
2
+], namely the expected squared hinge loss w.r.t.

the first k coordinates. The formal proof of Thm. 10 is more complicated, but follows a similar idea.
Overall, we see that benign overfitting in our binary classification model boils down to the opti-

mality (w.r.t. expected misclassification error) of the minimizer of the expected squared hinge loss
on the first k coordinates. Since the squared hinge loss is not the same as misclassification error,
we cannot hope this to always hold: Indeed, we prove in Appendix B that there exist distributions
where minimizing the squared hinge loss can lead to trivial misclassification error, and therefore
benign overfitting will not occur in these cases. However, for general distributions, it is not unrea-
sonable to assume that minimizing the squared hinge loss will lead to low misclassification error.
This is because predictors that attempt to minimize the squared hinge loss will also tend to make

1. A minimizer always exists, since gd(v) is convex piecewise-quadratic with finitely many pieces. The minimum-
norm minimizer is unique, since if there were two minimizers of equal minimal norm, their average would also be a
minimizer by convexity of gd(·), and with a smaller norm which is a contradiction.
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yx>|kw|k positive, and hence (since the last d − k coordinates have negligible effect) make the ex-
pected misclassification error Pr(yx>w ≤ 0) small. Our goal now will be to illustrate how our
characterization allows us to prove that benign overfitting does occur in some classification setups,
which to the best of our knowledge have not been explicitly studied before. Since we are now
only concerned with the behavior on the first k coordinates, we will focus from now on solely on
examples (x, y) coming from some fixed distribution, where x ∈ Rk.

Recall that for benign overfitting, we need situations where no predictor attains zero error w.r.t.
the underlying data distribution. In binary classification setups, the simplest (and most well-studied)
case where this occurs is when we have an underlying linearly separable distribution Dclean (with
some unit vector w∗ such that Pr(yx>w∗ < γ) = 0 for some margin parameter γ > 0), but where
there is random label noise (with each y flipped to −y with some probability p > 0), resulting
in a final distribution D. In such a distribution, w∗ is still an optimal predictor, but now neces-
sarily its expected misclassification error equals p. To model this setting, it will be convenient to
assume that (x, y) is still distributed as Dclean, and that we wish to find a predictor w satisfying
Pr(x,y)∼Dclean(yx

>w ≤ 0) = 0. However, the predictor we learn is with respect to the “noisy”
labels, where the expected squared hinge loss can be written as

Lp(w) := E(x,y)∼Dclean

[
(1− p) · [1− yx>w]2+ + p · [1 + yx>w]2+

]
(2)

= E(x,y)∼DcleanE[`p(yx
>w)] where `p(z) := (1− p) · [1− z]2+ + p · [1 + z]2+ .

It is easily verified that for any p ∈ (0, 12), `p is a strongly convex function, and therefore Lp(·) is a
strongly convex function, as long as E[xx>] is positive definite (see Lemma 17 in the appendix for a
formal definition of strong convexity and a proof). Therefore, Lp(·) has a unique minimizer w∗p. In
that case, Thm. 10 implies that ŵd|k converges parameterically to w∗p. Thus, for benign overfitting,
it is sufficient that w∗p achieves zero error with respect to the “clean” labels. This is formalized in
the following theorem:

Theorem 11 Under the conditions of Thm. 10, let Rd(w) = Pr(x,y)∼Dd
(yx>w ≤ 0). Then the

benign overfitting property specified in Eq. (1) holds under the following condition: The first k
coordinates of Dd corresponds to some linearly separable distribution Dclean with labels flipped
with some probability p ∈ (0, 12), and the minimizer w∗p of Lp(w) satisfies Pr(x,y)∼Dclean(yx

>w∗p ≤
0) = 0.

Focusing on such linearly-separable-with-label-noise distributions, we now turn to study some
cases where the condition on w∗p in Thm. 11 indeed holds. For example, the following theorem
implies that under mild assumptions, just about any choice of distribution on the first k coordinates
satisfies benign overfitting, for some non-trivial (distribution-dependent) regime of label noise. As
far as we can surmise, this is not at all obvious from the original characterization of the max-margin
predictor, where the data points appear as constraints and where introducing label noise changes
these constraints in possibly complicated ways. However, using our characterization and properties
of the squared hinge loss, the result follows from a rather straightforward continuity argument.

Theorem 12 Fix any distribution Dclean on (x, y) ∈ Rk × {−1,+1}, such that there exists some
w∗ ∈ Rk so that E[[1 − yx>w∗]2+] = 0. Suppose E[xx>] is positive definite and x has bounded
support. Then there exists some a ∈ (0, 12) (dependent on Dclean), such that for all p ∈ (0, a), the
minimizer w∗p of Lp(·) satisfies Pr(x,y)∼Dclean(yx

>w∗p ≤ 0) = 0.

12
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We note that the assumption on w∗ is equivalent to having linear separability w.r.t. Dclean with
margin 1

‖w∗‖ (the unit vector w = w∗

‖w‖∗ satisfies Pr(yx>w < 1
‖w∗‖) = 0).

This result holds for generic linearly separable distributions, but does not specify the amount of
label noise under which benign overfitting occurs. In the following theorem, we identify one simple
class of distributions where benign overfitting occurs with any amount of label noise up to 1

2 :

Theorem 13 Fix any distribution Dclean on (x, y) ∈ Rk × {−1,+1}, such that there exists some
w∗ ∈ Rk so that E[[1 − yx>w∗]2+] = 0. Suppose that for some unit vector u, and conditioned on
y, u>x and (I−uu>)x are mutually independent, and the distributions of (I−uu>)x and−(I−
uu>)x are identical. Then for all p ∈ (0, 12), the minimizer w∗p of Lp(·) satisfies PrDclean(yx

>w∗p ≤
0) = 0.

The conditions in the theorem refer to a situation where there is some distinguished direction u,
such that conditioned on y, the component of the input distribution orthogonal to u is independent
of the distribution along u, and symmetric around the origin. Examples where this occurs include
any one-dimensional distribution, and a mixture of any two symmetric distributions with means in
span(u) (one for y = 1 and one for y = −1, and assuming linear separability). Note that unlike
most previous results on benign overfitting in classification, the distributions do not need to be
identical nor satisfy any additional structural properties.

5. Discussion

In this paper, we proposed and studied a new perspective on the phenomenon of benign overfitting.
We argue that when interpolating the training data, the learned predictor simultaneously optimizes
the average loss function of many different types of problems, and the existence of benign overfitting
on one problem precludes its existence on another. On the negative side, we argue that this makes
benign overfitting difficult to establish for regression settings beyond the well-specified linear ones
studied so far. On the positive side, for classification problems, we identify an implicit bias of
the learned max-margin predictor to minimize the expected squared hinge loss with respect to the
underlying distribution (at least in a simple model where an arbitrary low-dimensional distribution is
concatenated with a high-dimensional one). We use it to show benign overfitting in various settings,
by considering cases where the squared hinge loss is a good surrogate for the misclassification error.

Overall, we hope that our observations here will allow us to understand benign overfitting be-
yond the settings studied so far in the literature. For example, it would be interesting to identify
other settings where the structure of the square hinge loss means that the max-margin predictor
will have benign overfitting properties. Moreover, our results focused on input distributions with a
clean separation between a few “important” coordinates, and a large number of small “unimportant”
Gaussian coordinates, a setting which is prototypical for benign overfitting. Nevertheless, since our
results did not crucially rely on any special properties of the Gaussian distribution, we believe our
insights should be extendable to more general input distributions, and identifying them can be an
interesting direction for future research.
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Appendix A. Proofs

A.1. Proof of Thm. 1

Define
W = {w : L(w) = 0,w ∈ span{x1, . . . ,xm}} .

By definition, we have ŵ ∈ W .
Next, we argue that if w∗ is any minimum norm solution satisfying L(w∗) = 0 (a non-empty

set since by assumption, L(ŵ) = 0 and L(·) is continuous), then w∗ ∈ span{x1, . . . ,xm}, so
w∗ ∈ W as well. The reason is that by definition of L, L(w∗) depends on w∗ only via the values of
x>1 w

∗, . . . ,x>mw
∗. Thus, if w∗ is not in span{x1, . . . ,xm}, we could have found a smaller-norm

solution w such that L(w) = 0 (which would be a contradiction), by projecting w∗ on this linear
span.

Now, we argue that all w ∈ W have the same norm, so in particular, ‖ŵ‖ = ‖w∗‖, which
implies that

ŵ ∈ {arg min
w
‖w‖ : L(w) = 0} . (3)

To see this, fix any w ∈ W , and let X be a matrix whose i-th column is xi. By definition of W ,
there exists a vector α such that w = Xα, and moreover, X>w = z, where z is the vector such
that zi = `−1yi (0). Combining, we get that

X>Xα = X>w = z ,

which implies that
α ∈ A := {u + v : (X>X)v = 0},

with u being some fixed vector (independent of α) satisfying X>Xu = z (we note that such a
u must exist, since by the fact that w∗ ∈ W , it follows that w∗ = Xα∗ for some α∗, hence
X>Xα∗ = X>w∗ = z). Note that for any α ∈ A, Xα has the same norm:

‖Xα‖2 = α>X>Xα = u>(X>X)(X>X)u ,

and since w = Xα, it follows that any w ∈ W has the same norm, from which Eq. (3) follows.
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Finally, we need to prove that ŵ is the unique minimal-norm point achieving L(ŵ) = 0. By
definition, w∗ is such a minimal-norm point. Assume by contradiction that ŵ 6= w∗, and consider
their average, w0 := 1

2(ŵ + w∗). Since Xw∗ = Xŵ = Xw0, it follows that L(w0) = L(ŵ) =
L(w∗) = 0, yet

‖w0‖2 =
‖ŵ‖2 + ‖w∗‖2 + 2ŵ>w∗

4
<
‖ŵ‖2 + ‖w∗‖2 + 2‖ŵ‖ · ‖w∗‖

4
=

4‖w∗‖2

4
= ‖w∗‖2

(since we showed ‖ŵ‖ = ‖w∗‖, and ŵ>w∗ ≤ ‖ŵ‖ · ‖w∗‖ with equality only when the vectors are
equal). Overall, we get that L(w0) = 0 and ‖w0‖ < ‖w∗‖, contradicting the definition of w∗.

A.2. Proof of Thm. 5

Fix some d, and let X ∈ Rmd×d be the matrix whose rows are x1, . . . ,xmd
. Let X|k ∈ Rmd×k

denote its first k columns, and X|d−k the rest of the columns. Since md ≤ d − k, the rows of X
are almost surely linearly independent (since the md rows of X|d−k are i.i.d. Gaussian and hence
almost surely independent). Thus, XX> is invertible, and ŵd = arg min ‖w‖ : Xw = y can be
written in closed form as

ŵd = X>(XX>)−1y = X>
(
X|kX

>
|k +X|d−kX

>
|d−k

)−1
y . (4)

Note that X|d−k is an md × (d − k) matrix composed of i.i.d. Gaussian entries of variance 1
d−k .

By a tail bound for Wishart matrices (see for example Zhu (2012)), it is easily verified that with
probability at least 1− 1

d2
,

‖X|d−kX>|d−k − I‖ ≤ O

(√
md log(d)

d− k

)
= O

(√
md log(d)

d

)
,

where I = Id−k is the identity matrix. Thus, we can write

X|kX
>
|k+X|d−kX

>
|d−k = A+E where A = I+X|kX

>
|k , Pr

(
‖E‖ > O

(√
md log(d)

d

))
≤ 1

d2
.

(5)
Note that A is a positive definite matrix with minimal eigenvalue ≥ 1, hence A−1 exists and
‖A−1‖ ≤ 1 regardless of d.

By taking a union bound over all sufficiently large d, and using the assumption that m
3
d log(d)
d →

0, it follows that md · E (and definitely E) almost surely converges to 0. Therefore, for any large
enough d, I + A−1E is invertible with arbitrarily high probability, and by the Woodbury matrix
identity we get that(

X|kX
>
|k +X|d−kX

>
|d−k

)−1
= (A+ E)−1 = A−1 −A−1E(I +A−1E)−1A−1 .

Thus,

‖(A+ E)−1 −A−1‖ ≤ ‖A−1‖2 · ‖E‖ · ‖(I +A−1E)−1‖ ≤ ‖A−1‖2 · ‖E‖
1− ‖A−1‖ · ‖E‖

, (6)
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which even multiplied by md, converges with d almost surely to 0 . Again by the Woodbury matrix
identity,

A−1 = (I +X|kX
>
|k)−1 = I −X|k(I +X>|kX|k)

−1X>|k .

Collecting the top two displayed equations, it follows that

(X|kX
>
|k +X|d−kX

>
|d−k)

−1 = (A+ E)−1 = I −X|k(I +X>|kX|k)
−1X>|k + E′,

where E′ is some matrix such that md · E′ converges almost surely to 0. Plugging this back into
Eq. (4) and focusing on the first k coordinates of ŵd, it follows that

ŵd|k = X>|k

(
X|kX

>
|k +X|d−kX

>
|d−k

)−1
y

=
(
I −X>|kX|k(I +X>|kX|k)

−1
)
X>|ky +X>|kE

′y

=
(

(I +X>|kX|k)−X
>
|kX|k

)
(I +X>|kX|k)

−1X>|ky +X>|kE
′y

= (I +X>|kX|k)
−1X>|ky +X>|kE

′y

=

(
1

md
I +

1

md
X>|kX|k

)−1( 1

md
X>|ky

)
+X>|kE

′y . (7)

Let us now understand how this expression behaves as d → ∞. First, since md → ∞, we have
1
md
I → 0. Second, we have 1

md
X>|kX|k = 1

md

∑md
i=1 xi|kx

>
i|k, a k× k matrix, which by Assumption

1 and the law of large numbers2 converges almost surely to the (positive definite) matrix E[x|kx
>
|k].

Third, we have 1
md
X>|ky = 1

md

∑md
i=1 yixi|k, which again by by Assumption 1 and the law of large

numbers converges almost surely to the vector E[yx|k]. Fourth, we have

‖X>|kE
′y‖ ≤ ‖X|k‖ · ‖y‖ · ‖E′‖ ≤ md ·

√
1

md
‖X|k‖2F ·

√
1

md
‖y‖2 · ‖E′‖ .

Again by the law of large numbers, both 1
md
‖X|k‖2 = 1

md

∑md
i=1 ‖xi|k‖2 and 1

md
‖y‖2 = 1

md

∑md
i=1 y

2
i

converge almost surely to their (finite) expectations, hence they are almost surely bounded, and since
md · E′ converges almost surely to 0, it follows that the bound in the displayed equation converges
almost surely to 0. Plugging these observations back into Eq. (7), we get that ŵd|k converges almost
surely to E[x|kx

>
|k]
−1 · E[yx|k] as stated in the theorem.

We will now show the second assertion in the theorem, which is equivalent to proving

E(x,y)∼Dd

[
(x>|d−kŵd|d−k)

2
]
a.s.−→ 0 .

By Eq. (4), Eq. (5) and Eq. (6),

‖ŵd|d−k‖ =

∥∥∥∥X>|d−k (X|kX>|k +X|d−kX
>
|d−k

)−1
y

∥∥∥∥ =
∥∥∥X>|d−k ((I +X|kX

>
|k)−1 + E′

)
y
∥∥∥ ,

2. Throughout the proofs, we use the following standard version of the strong law of large numbers: If {rd}∞d=1 are a
sequence of i.i.d. random variables on R such that E[|r1|] < ∞, then 1

d

∑d
i=1 ri converges almost surely to E[r1].

This trivially extends to vector-valued random variables in Rk where k is fixed.
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where E′ is some matrix which converges almost surely to 0. The expression above is at most

‖X|d−k‖ ·
(
‖(I +X|kX

>
|k)−1‖+ ‖E′‖

)
· ‖y‖ ≤ ‖X|d−k‖ · ‖y‖ · (1 + ‖E′‖) ,

where we used the fact that I + X|kX
>
|k is a positive definite matrix with all eigenvalues being at

least 1. Overall, this implies that

‖ŵd|d−k‖
md

≤
(√

1

md
‖X|d−k‖2

)(√
1

md
‖y‖2

)
(1 + ‖E′‖) .

By Assumption 1 and the law of large numbers, both 1
md
‖y‖2 = 1

md

∑md
i=1 y

2
i and 1

md
‖X|d−k‖2 ≤

1
md
‖X|d−k‖2F = 1

md

∑md
i=1 ‖xi|d−k‖2 converge almost surely to their (finite) expectations, and we

already stated that ‖E′‖ converges almost surely to 0. Thus, almost surely, lim supd→∞
‖ŵd|d−k‖

md

has some finite value. Hence, if z ∈ Rd−k is zero-mean Gaussian with covariance matrix 1
d−kI (that

is, the same distribution as x|d−k), we have

Ez[(z>ŵd|d−k)
2] =

1

d− k
· ‖ŵd|d−k‖2 =

m2
d

d− k
·
(‖ŵd|d−k‖

md

)2

,

and since m2
d

d−k → 0 with d, it follows that Ez[(z>ŵd|d−k)
2] converges almost surely to 0 as required.

A.3. Proof of Lemma 8

Considering ξ which equals 0 almost surely, we clearly have σ−1(0) = 0. More generally, fix some
c ∈ R and z > 0, and consider the random variable

ξ =

{
−c w.p. z

z+1

cz w.p. 1
z+1 ,

which is easily verified to be zero mean. The assumption E[σ−1(ξ)] = 0 translates to

z

z + 1
· σ−1(−c) +

1

z + 1
· σ−1(cz) = 0 =⇒ σ−1(cz) = −σ−1(−c) · z .

Fixing c = 1 and studying this equation as a function of z > 0, we see that σ−1(·) is necessarily
linear over [0,∞) (with slope −σ−1(−1)). Similarly, fixing c = −1, we get that σ−1 is necessarily
linear over (−∞, 0] (with slope σ−1(1)). Thus, it only remains to show that −σ−1(−1) = σ−1(1),
which follows by considering the random variable ξ uniformly distributed on {−1, 1}, and noting
that E[σ−1(ξ)] = 0 implies σ−1(−1) + σ−1(1) = 0 in this case.

A.4. Proof of Thm. 10

We note that as in the proof of Thm. 5, our assumptions imply that ŵd exists almost surely for all
d > k.

Since the proof is a bit lengthy, we split it into three subsections: First we state and prove an
auxiliary lemma about the optimal value of a certain optimization problem. Then, we analyze the
ŵd|k term, and finally, we analyze the ŵd|d−k term.
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A.4.1. AN AUXILIARY LEMMA

Lemma 14 Fix some integer m ≥ 1, some r ∈ Rm, and an m×m symmetric matrix E such that
‖E‖ < 1

2 . Then the set {α ∈ Rm : (I + E)α � r} is not empty. Moreover, letting

a∗ = min
α∈Rm

‖α‖2 + α>Eα : (I + E)α � r , (8)

we have ∣∣a∗ − ‖[r]+‖2
∣∣ ≤ 2‖E‖ · ‖[r]+‖2 ,

where [r]+ denotes applying [·]+ element-wise.

To prove the lemma, we will first state and prove the following helper lemma:

Lemma 15 For any symmetric matrix E such that ‖E‖ ≤ 1
2 , it holds that I + E is invertible and

‖(I + E)−1 − I‖ ≤ 2‖E‖.

Proof By Weyl’s inequality, λmin(I + E) ≥ λmin(I) − ‖E‖ ≥ 1
2 > 0, hence I + E is invertible.

Moreover, by the Woodbury matrix identity,

(I + E)−1 = I − E(I + E)−1 ,

which implies

‖(I + E)−1 − I‖ ≤ ‖E‖ · ‖(I + E)−1‖ ≤ ‖E‖
1− ‖E‖

.

Noting that ‖E‖ ≤ 1
2 , it follows that the above is at most ‖E‖1/2 = 2‖E‖.

Proof [Proof of Lemma 14] The fact that {α ∈ Rm : (I + E)α � r} is not empty follows from
the observation that I + E is positive definite and hence invertible (since we assume ‖E‖ < 1

2 ).
Thus, the set contains for instance the vector (I +E)−1r. Also, note that the minimum a∗ is indeed
attained, as we are minimizing a strongly convex function with (feasible) linear constraints.

To continue, let us perform the variable change β = (I + E)α (which is valid since I + E is
invertible), so α = (I + E)−1β. Noting that a∗ = minα:(I+E)α�rα

>(I + E)α, it follows that

a∗ = min
β∈Rm:β�r

β>(I + E)−1β . (9)

By the assumption ‖E‖ ≤ 1
2 and Lemma 15, it follows that

‖(I + E)−1 − I‖ ≤ 2‖E‖ .

This implies that
(1 + 2‖E‖)I � (I + E)−1 � (1− 2‖E‖)I,

where A � B for symmetric matrices A,B implies that A − B is positive semidefinite. Plugging
this back into Eq. (9), it follows that

min
β∈Rm:β�r

(1 + 2‖E‖) · ‖β‖2 ≥ a∗ ≥ min
β∈Rm:β�r

(1− 2‖E‖) · ‖β‖2 .
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Now, it is easily verified that minβ:β�r ‖β‖2 =
∑m

i=1[ri]
2
+. Plugging this in the previous displayed

equation, it follows that

(1 + 2‖E‖)
m∑
i=1

[ri]
2
+ ≥ a∗ ≥ (1− 2‖E‖)

m∑
i=1

[ri]
2
+ .

Therefore, ∣∣∣∣∣a∗ −
m∑
i=1

[ri]
2
+

∣∣∣∣∣ ≤
m∑
i=1

[ri]
2
+ · 2‖E‖ ,

from which the bound in the lemma follows.

A.4.2. ANALYSIS OF ŵd|k

ŵd can be equivalently written as

ŵd = arg min
w∈Rd

‖w‖2

md
: ∀i ∈ [md], yix

>
i w ≥ 1 .

Let us write the first k coordinates of w as v, the last d−k coordinates of w as u, and the last d−k
coordinates of xi as zi. Then the above can be equivalently written as

arg min
v∈Rk,u∈Rd−k

‖v‖2

md
+
‖u‖2

md
: ∀i ∈ [md], yiz

>
i u ≥ 1− yix>i|kv ,

or again equivalently as

arg min
v∈Rk

‖v‖2

md
+ fmd

(v) (10)

where

fmd
(v) = min

u∈Rd−k

‖u2‖
md

: ∀i ∈ [md], yiz
>
i u ≥ 1− yix>i|kv .

(we note that since d−k > md, and the coordinates of zi are i.i.d. Gaussian, then almost surely, the
set {yizi}md

i=1 ⊂ Rd−k is linearly independent, and the constraints in the displayed equation above
are feasible).

Our goal will now be to argue that as d,md go to infinity, fmd
(v) converges to a simple closed-

form expression independent of {(xi, yi)}md
i=1. To do so, let Z,X be md × (d− k) matrices whose

i-th rows are yiz>i and yix>i|k respectively, for i ∈ [md]. Also, let 1 be the all-ones vector in Rmd .
Thus, we can write

fmd
(v) = min

u∈Rd−k

‖u‖2

md
: Zu � 1−Xv .

Clearly, the optimal u must lie in the row span of Z (otherwise, we can further reduce ‖u‖2 by
projecting to that subspace, without violating the constraints). Thus, any optimal u can be written
as Z>α for some α ∈ Rmd , so we can rewrite the displayed equation above as

fmd
(v) = min

α∈Rmd

1

md
α>
(
ZZ>

)
α : ZZ>α � 1−Xv .
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Letting
E = ZZ> − I ,

we can write the above as

fmd
(v) = min

α∈Rmd

1

md

(
‖α‖2 + α>Eα

)
: (I + E)α � 1−Xv . (11)

Similar to the proof of Thm. 5, we can use a tail bound (e.g., Zhu (2012)) for Wishart matrices to
argue that with probability at least 1− 1

d2
,

‖E‖ ≤ O

(√
md log(d)

d

)
. (12)

Let us now sketch the rest of the proof for analyzing ŵd|k, followed by a more rigorous analysis.
Informally, as d increases and E goes to zero, Eq. (11) “converges” to the optimization problem

min
α∈Rmd

‖α‖2

md
: α � 1−Xv ,

whose solution is α = [1−Xv]+ (with [·]+ applied element-wise), which leads to an optimal objec-
tive value of 1

md
[1−Xv]2+ = 1

md

∑md
i=1[1−yix>i|kv]2+. Since yi,xi|k are i.i.d., this in turn converges

to E[(1− yx>|kv)] almost surely. Plugging this back into Eq. (10), and noting that 1
md
‖v‖2 → 0 for

any fixed v, we get that asymptotically we are looking for an optimum of minv∈Rk E[1− yx>|kv]2+],
hence ŵd|k is asymptotically a minimizer of this function as stated in the theorem.

To formally justify this informal argument, we apply Lemma 14 on Eq. (11) with r = 1−Xv,

m = md, recalling that ‖E‖ = O
(√

md log(d)
d

)
(which is less than 1

2 for any large enough d) with

probability at least 1− 1
d2

. Thus, we get that with probability at least 1− 1
d2

, it holds simultaneously
for any v that∣∣∣∣fmd

(v)− 1

md
‖[1−Xv]+‖2

∣∣∣∣ ≤ 2‖E‖
md
·‖[1−Xv]+‖2 ≤ O

(√
md log(d)

d

)
· 1

md
‖[1−Xv]+‖2 .

(13)
Plugging this back into Eq. (10), and plugging in 1

md
‖[1−Xv]+‖2 = 1

md

∑md
i=1[1− yix>i|kv]2+, we

get that with probability at least 1− 1
d2

,

ŵd|k = arg min
v∈Rk

‖v‖2

md
+ (1 + εd,v) · 1

md

md∑
i=1

[1− yix>i|kv]2+

= arg min
v∈Rk

(1 + εd,v) · gd(v) +
‖v‖2

md
, (14)

where gd(v) := 1
md

∑md
i=1[1− yix>i|kv]2+ as defined in the theorem statement, and εd,v satisfies

sup
v∈Rk

|εd,v| ≤ εd := O

(√
md log(d)

d

)
.
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Let us now consider the sequence {ŵd|k}∞d=d0 , where we pick d0 sufficiently large so that
Eq. (14) and the bound on εd,v holds for any d ≥ d0 with probability at least 1 − 1

d2
. By a

union bound, it follows that these hold simultaneously for all {ŵd|k}∞d=d0 , with probability at least
1− od0(1), where od0(1) signifies an expression that goes to 0 with d0. Assuming this event holds,
let us compare this sequence to the sequence {v̂d}∞d=d0 of random vectors (defined over the same
probability space), where v̂d is the minimum-norm minimizer of gd(v). We want to argue that for
any d, if Eq. (14) holds, then ‖ŵd|k‖ is not much larger than ‖v̂d‖. In the theorem, we assume that
supd ‖v̂d‖ is almost surely bounded, so the above would imply that supd≥d0 ‖ŵd|k‖ is also bounded
by some finite number with probability at least 1 − od0(1). To justify this, note that by Eq. (14),
definition of v̂d, and the fact that supv |εd,v| ≤ εd, we have with probability 1 − od0(1) that for all
d ≥ d0,

(1− εd) · g(v̂d) +
‖ŵd|k‖2

md
≤ (1 + εd,ŵd|k) · gd(ŵd|k) +

‖ŵd|k‖2

md

≤ (1 + εd,v̂d
) · gd(v̂d) +

‖v̂d‖2

md
≤ (1 + εd) · gd(v̂d) +

‖v̂d‖2

md
.

Multiplying both sides by md and switching sides, it follows that

‖ŵd|k‖2 ≤ 2mdεd · gd(v̂d) + ‖v̂d‖2 ≤ 2mdεd + ‖v̂d‖2 ,

where the last transition follows from v̂d being a minimizer of gd(·), hence gd(v̂d) ≤ gd(0) = 1.

Recalling that mdεd = O
(√

m3
d log(d)

d

)
d→∞−→ 0 by Assumption 2, it follows in particular that with

probability at least 1−od0(1), ‖ŵd|k‖2 ≤ 1+‖v̂d‖2 for all large enough d. Recalling that supd ‖v̂d‖
is bounded almost surely, we overall get the following: For any d0, there exists some finiteBd0 such
than with probability at least 1− od0(1),

{ŵd|k}∞d=d0 ⊂ Vd0 := {v ∈ Rk : ‖v‖ ≤ Bd0} ,

and each ŵd|k satisfies Eq. (14).
We now reach the final stage of the analysis of ŵd|k. Fix the function

g(v) := E[[1− yx|kv]2+] ,

as defined in the theorem. We will the require the following observation, which we state as a lemma:

Lemma 16 For any d0, the sequence of functions {gd(·)}∞d=d0 converges to g(·) almost surely,
uniformly on the compact set Vd0 .

Proof It is easy to see that by the law of large numbers, for any fixed v ∈ Vd0 , gd(v) converges
almost surely to g(v). Thus, {gd(·)}∞d=d0 almost surely converges to g(·) pointwise. To show
that this pointwise convergence implies uniform convergence, it is enough to prove that almost
surely, {gd(·)}∞d=d0 is equicontinuous, a sufficient condition for which is that this infinite sequence
of functions on Vd0 has a uniformly bounded Lipschitz parameter (uniformly over d). Since each
gd(·) is differentiable, it is enough to prove a finite upper bound on supd≥d0 supv∈Vd0

‖∇gd(v)‖:
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Indeed, using Jensen’s inequality and the Cauchy-Schwartz inequality, we have

‖∇gd(v)‖ =

∥∥∥∥∥− 2

md

md∑
i=1

[1− yix>i|kv]+ · yixi|k

∥∥∥∥∥ ≤ 2

md

m∑
i=1

∥∥∥[1− yix>i|kv]+ · yixi|k
∥∥∥

≤ 2

md

m∑
i=1

(1 + |yix>i|kv|) · ‖yixi|k‖ ≤
2

md

md∑
i=1

(
‖yixi|k‖+ ‖yixi|k‖2‖v‖

)
≤ 2

√√√√ 1

md

md∑
i=1

‖yixi|k‖2

+ 2

(
1

md

md∑
i=1

‖yixi|k‖2
)
‖v‖. (15)

Assumption 1 implies that ‖yx|k‖2 has bounded expectation. Therefore, by the law of large num-
bers, 1

md

∑md
i=1 ‖yixi|k‖2 converges almost surely to E[‖yx|k‖2]. Moreover, ‖v‖ is also bounded,

since v ∈ Vd0 and Vd0 is a compact set. In view of Eq. (15), we get that ‖∇gd(v)‖ is almost surely
bounded uniformly for all v ∈ Vd0 and d ≥ d0. As discussed previously, this implies equicontinuity
and hence uniform convergence.

Now, fix some reference vector v0 ∈ Rk. We make the following observations:

1. Since ŵd|k is a minimizer of the expression in Eq. (14) (with probability 1 − od0(1) for all
d ≥ d0), it follows that with the same probability, for any fixed reference vector v0,

(1− εd) · gd(ŵd|k) ≤ (1 + εd,ŵd|k) · gd(ŵd|k) +
‖ŵd|k‖2

md
≤ (1 + εd,v0) · gd(v0) +

‖v0‖2

md

≤ (1 + εd) · gd(v0) +
‖v0‖2

md
,

and therefore

gd(ŵd|k) ≤
1 + εd
1− εd

· gd(v0) +
‖v0‖2

(1− εd)md
.

2. By Lemma 16 above, and the fact that {ŵd|k}∞d=d0 ⊂ Vd0 with probability 1 − od0(1), it
follows that with the same probability,

|gd(ŵd|k)− g(ŵd|k)|
d→∞−→ 0 .

Moreover, by the law of large numbers, it holds with probability 1 that

|gd(v0)− g(v0)|
d→∞−→ 0 .

3. Since |εd,v| ≤ εd
d→∞−→ 0, we have that 1+εd

1−εd and 1− εd converge to 1.

Combining these three observations, and the fact that ‖v0‖2
md

d→∞−→ 0, it follows that with probability
at least 1− od0(1),

lim sup
d→∞

g(ŵd|k)− g(v0) ≤ 0 .

This holds for any v0, hence g(ŵd|k) must converge to infv g(v) with probability at least 1−od0(1).
Taking d0 to infinity, we get that g(ŵd|k) must asymptotically converge to infv g(v) with probability
1, as stated in the theorem.
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A.4.3. ANALYSIS OF ŵd|d−k

We now turn to analyze the last d − k coordinates of ŵd, namely ŵd|d−k. First, we note that since
ŵd|k minimizes the expression in Eq. (14), which equals 1 + εd,0 when v = 0, it must hold that

‖ŵd|k‖2

md
+

1 + εd,ŵd|k

md

md∑
i=1

[1− yix>i|kŵd|k]
2
+ ≤ 1 + εd,0 .

Recalling that supv |εd,v| ≤ εd
d→∞−→ 0, it follows in particular that 1

md

∑md
i=1[1−yix>i|kŵd|k]

2
+ ≤ 2

(all this for large enough d and with probability at least 1− 1
d2

, as specified there).
Next, note that by Eq. (10) and the fact that ŵd|k, ŵd|d−k jointly optimize it over (v,u), we

have

fmd
(ŵd|k) =

‖ŵd|d−k‖2

md
.

Combined with Eq. (13) (using v = ŵd|k), it follows that with probability at least 1− 1
d2

,

‖ŵd|d−k‖2

md
≤

(
1 +O

(√
md log(d)

d

))
· 1

md
‖[1−Xŵd|k]+‖2 ,

and since we showed that 1
md
‖[1−Xŵd|k]+‖2 = 1

md

∑md
i=1[1− yix>i|kŵd|k]

2
+ ≤ 2 under the same

event, it follows that

‖ŵd|d−k‖2

md
≤ 2 +O

√m2
d log(d)

d


with probability at least 1 − 1

d2
. By a union bound, it follows that this holds simultaneously for all

sufficiently large d, with arbitrarily high probability, hence almost surely, lim supd→∞
‖ŵd|d−k‖2

md
≤

2.
As a result, if z ∈ Rd−k is zero-mean Gaussian with covariance matrix 1

d−kI , we have

Ez[(z>ŵd|d−k)
2] =

1

d− k
· ‖ŵd|d−k‖2 =

md

d− k
·
‖ŵd|d−k‖2

md
,

where md
d−k

d→∞−→ 0 by assumption, and lim supd
‖ŵd|d−k‖2

md
≤ 2 almost surely, hence Ez[(z>ŵd|d−k)

2]
converges almost surely to 0. Recalling that by Assumption 1, z has the same distribution as x|d−k,
it follows that

E(x,y)∼Dd

[
(x>ŵd − x>|kŵd|k)

2
]

= E(x,y)∼Dd

[
(x>|d−kŵd|d−k)

]
a.s.−→ 0 .

A.5. Proof of Thm. 11

Since we consider labels flipped with some positive probability p, we trivially have infd infw∈Rd Rd(w) >
0. Thus, it remains to prove that under the condition stated in the theorem, Pr(x,y)∼Dd

(yx>ŵd) con-
verges almost surely to p.
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As discussed before the theorem, Lp(·) has a unique minimizer w∗p. Therefore, by Thm. 10,
ŵd|k

a.s.−→ w∗p. Since we assume Pr(x,y)∼Dclean(yx
>w∗p ≤ 0) = 0, we argue that

Pr
(x,y)∼Dclean

(yx>ŵd|k ≤ 0)
a.s.−→ 0 . (16)

We note that formally proving this requires some care, as Pr(yx>w ≤ 0) is not necessarily contin-
uous in w (otherwise Eq. (16) would follow immediately by continuity). To show Eq. (16) formally,
define for all γ > 0 the set Zγ := {z ∈ Rk : z>w∗p > γ, ‖z‖ ≤ 1

γ }. Clearly,

Pr
(x,y)∼Dclean

(yx ∈ Zγ)
γ→0−→ 1 . (17)

Moreover, since ŵd|k
a.s.−→ w∗p, it holds with probability 1 that yx>ŵd|k −→ yx>ŵ∗p simultane-

ously for all vectors yx of some bounded norm. Therefore, for any fixed γ,

Pr
(x,y)∼Dclean

(yx>ŵd|k ≤ 0 | yx ∈ Zγ) = Pr
(x,y)∼Dclean

(
yx>ŵd|k ≤ 0 | yx>w∗p > γ, ‖yx‖ ≤ 1

γ

)
a.s.−→ 0 .

(18)
Recalling that for any two events E,A over some probability space,

Pr(A) = Pr(A|E) · Pr(E) + Pr(A|¬E) · Pr(¬E) ≤ Pr(A|E) + Pr(¬E) ,

it follows that for any fixed γ,

Pr
(x,y)∼Dclean

(
yx>ŵd|k ≤ 0

)
≤ Pr

(x,y)∼Dclean

(yx>ŵd|k ≤ 0 | yx ∈ Zγ) + Pr(yx /∈ Zγ).

Combined with Eq. (17) and Eq. (18), it follows that by picking γ small enough, then almost surely,
we can make Pr(x,y)∼Dclean

(
yx>ŵd|k ≤ 0

)
asymptotically smaller than arbitrarily small positive

numbers, from which Eq. (16) follows.
From Eq. (16), it follows that Pr(x,y)∼Dd

(yx>|kŵd|k ≤ 0)
a.s.−→ p. By Thm. 10, we also have

that
E(x,y)∼Dd

[
(x>ŵd − x>|kŵd|k)

2
]

a.s.−→ 0 . (19)

Thus, we can use similar arguments as above, to prove that

Pr
(x,y)∼Dd

(yx>ŵd ≤ 0)
a.s.−→ p , (20)

which as discussed earlier implies the theorem statement. Formally, let D̃d refer to Dd, where y
is distributed according to the “clean” distribution Dclean. Also, let Zdγ = {z ∈ Rd : z>|kw

∗
p >

γ, ‖z‖ ≤ 1
γ }. Similar to before, we have

Pr
(x,y)∼D̃d

(yx ∈ Zdγ )
γ→0−→ 1 .

By applying Markov’s inequality on Eq. (19), it follows that for any γ > 0, the measure of points
yx ∈ Zdγ such that |yx>ŵd − yx>|kŵd|k| > γ

2 goes to 0 almost surely. For all other points, we have
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yx>|kŵd|k > γ ⇒ yx>ŵd >
γ
2 . Recalling that yx>|kŵd|k

a.s.−→ yx>|kw
∗
p (which is > γ) uniformly

for all yx ∈ Zdγ , we get that

Pr
(x,y)∼D̃d

(yx>ŵd ≤ 0 | yx ∈ Zdγ )
a.s.−→ 0 .

Combining the two displayed equation above, and using the same arguments as we made in the
context of Eq. (17) and Eq. (18), it follows that almost surely, Pr(x,y)∼D̃d

(yx>ŵd ≤ 0) can be
made asymptotically smaller than arbitrarily small positive numbers, from which it follows that

Pr
(x,y)∼D̃d

(yx>ŵd ≤ 0)
a.s.−→ 0 .

Switching from D̃d toDd (which involves flipping y randomly with probability p), Eq. (20) follows.

A.6. Proof of Thm. 12

Recall that a function f : Rk → R is λ-strongly convex, if for any u,v ∈ Rk and α ∈ [0, 1],

f(αu + (1− α)v) ≤ α · f(u) + (1− α)f(v)− α(1− α) · λ
2
‖u− v‖2 . (21)

Note that any λ-strongly convex function is also λ′ strongly convex for any λ′ ∈ [0, λ]. Also, it is
well-known that any convex function is 0-strongly convex, that if f is λ-strongly convex, then c · f
is c · λ-strongly convex, and that a sum of a λ-strongly convex function and a λ′-strongly convex
function is (λ + λ′)-strongly convex. Moreover, if f is λ-strongly convex, it always has a finite
unique minimizer w∗, and f(w)− f(w∗) ≥ λ

2‖w −w∗‖2 for any w.
We start with the following auxiliary lemma, which implies that Lp(·) is strongly convex:

Lemma 17 If E[xx>] is positive definite (with minimal eigenvalue λmin > 0), then for any p ∈
(0, 12 ], Lp(·) (as defined in Eq. (2) is 2pλmin-strongly convex.

Proof We have Lp(w) = E[`p(yx
>
|kw)], where `p(β) = (1 − p)[1 − β]2+ + p[1 + β]2+. We first

argue that `p is 2p-strongly convex: Indeed, it can be easily verified that `p(β) = pβ2+(1−2p)[1−
β]2++h(β), where h(β) is a convex function that equals−2β+1 on (−∞,−1], β2+2 on [−1,+1],
and 2β + 1 on [1,∞). Therefore, `p is the sum of the 2p-strongly convex function pβ2 and convex
functions, hence is 2p-strongly convex itself.

E[(x>u− x>v)2] = (u− v)>E[xx>](u− v) ≥ λmin‖u− v‖2 .

Combining, we get that

Lp (αu + (1− α)v) = E
[
`p

(
αx>u + (1− α)x>v

)]
≤ E

[
α`p(x

>u) + (1− α)`p(x
>v)− pα(1− α)(x>u− x>v)2

]
≤ αLp(u) + (1− α)Lp(v)− pλminα(1− α)‖u− v‖2

Which by Eq. (21), implies that Lp is 2pλmin-strongly convex.
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We now continue with the proof of the theorem. Recall that

Lp(w) = E
[
(1− p)[1− yx>w]2+ + p[1 + yx>w]2+

]
,

and in particular, L0(w) = E[[1− yx>w]2+] which achieves a minimal value of 0 at some w∗. For
any p ∈ [0, 12), let

L̃p(w) = E[[1− yx>w]2+] +
p

1− 2p
· g(w) where g(w) := E[[1− yx>w]2+ + [1 + yx>w]2+] .

It is easy to check that (1 − 2p) · L̃p(w) = Lp(w) for all w, hence a minimizer w∗p of Lp(·) is
also a minimizer of L̃p(·), and w∗ is a minimizer of L̃0(·). Moreover, by Lemma 17, L̃p(w) is
2pλ
1−2p -strongly convex for some λ > 0 (which would also imply that its minimizer w∗p always exists
and is unique).

Next, we argue that w∗p is continuous as a function of p in (0, 12): Otherwise, there is some
p0 ∈ (0, 12) and a sequence of values p1, p2, . . . converging to p0, such that w∗pj remains bounded
away from w∗p0 , say by some minimal distance δ > 0. Let us see why that is not possible: By
2pλ
1−2p -strong convexity of L̃p(·) and the fact that w∗p is a minimizer, it would imply

L̃p(w
∗
p0)− L̃p(w∗p) ≥

pλ

(1− 2p)
‖w∗p0 −w∗p‖2 ≥

pλδ2

(1− 2p)

if p = pj for some j. Similarly, by 2p0λ
1−2p0 -strong convexity of L̃p0(·), and the fact that w∗p0 is a

minimizer, we would have

L̃p0(w∗p)− L̃p0(w∗p0) ≥ p0λ

1− 2p0
‖w∗p −w∗p0‖

2 ≥ p0λδ
2

1− 2p0

for any p = pj . Summing the last two displayed equations for any p = pj , it follows that
(L̃pj (w

∗
p0) − L̃p0(w∗p0)) + (L̃p0(w∗pj ) − L̃pj (w

∗
pj )) is bounded away from 0 as j → ∞, but this

contradicts the fact that L̃pj (w
∗
p0)− L̃p0(w∗p0)

j→∞−→ 0 and L̃p0(w∗pj )− L̃pj (w
∗
pj )

j→∞−→ 0.
Now, since w∗p is a continuous function of p in (0, 12), it must have a limit point ŵ as p → 0.

Since limp→0 L̃p(w
∗) = L̃0(w

∗) and L̃0(w
∗) ≤ L̃0(w

∗
p) ≤ L̃p(w

∗
p) ≤ L̃p(w

∗), we must have

limp→0 L̃p(w
∗
p) = L̃0(w

∗). But since w∗p
p→0−→ ŵ and L̃p is Lipschitz in any fixed neighborhood

of ŵ (with a uniform upper bound on the Lipschitz constant), it follows that L̃p(ŵ)
p→0−→ L̃0(w

∗).
Recalling that L̃0(w

∗) = L0(w
∗) = 0, it follows that

lim
p→0

L̃p(ŵ) = 0 .

Combining this with the fact that L̃p(ŵ) ≥ E[[1−yx>ŵ]2+] ≥ E[141yx>ŵ< 1
2
] = 1

4 Pr(yx>ŵ <
1
2) regardless of p, it follows that

Pr

(
yx>ŵ <

1

2

)
= 0 .
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Now, let B be such that Pr(‖yx‖ ≤ B) = 1 (such a B exists by assumption). Note that since

w∗p
p→0−→ ŵ, then for any p > 0 sufficiently small, we must have ‖w∗p− ŵ‖ ≤ 1

4B . For any y,x such
that ‖yx‖ ≤ B, the event yx>w∗p <

1
4 implies

yx>ŵ = yx>w∗p + yx>(ŵ −w∗p) <
1

4
+ ‖yx‖‖ŵ −w∗p‖ ≤

1

4
+

B

4B
=

1

2
.

But since we showed that yx>ŵ < 1
2 occurs with probability 0, it follows that the event yx>w∗p <

1
4

also occurs with probability 0, namely

Pr

(
yx>w∗p <

1

4

)
= 0 .

In particular, we get that for all sufficiently small p, the misclassification error probability of w∗p is
0.

A.7. Proof of Thm. 13

We first argue that for all p ∈ (0, 12 ], w∗p must be in span(u). Otherwise, suppose that w∗p = αu+ r
for some α ∈ R and non-zero vector r orthogonal to u. Then we argue that αu−r (which is distinct
from w∗p) must also be a minimizer of Lp, because the distribution of

yx>w∗p = yx>(αu + r) = αyx>u + yr>(I − uu>)x

is the same as
yx>(αu− r) = αyx>u− yr>(I − uu>)x ,

and the the value of Lp(·) depends just on the distribution of yx>w∗p. But since Lp(·) is strongly
convex, its minimizer must be unique, which is a contradiction.

Next, we argue that we can assume w∗ (which minimizes L0(w) = E[[1 − yx>w]2+]) to be in
span(u) without loss of generality: If not, and it equals αu+ r with r 6= 0 orthogonal to u, then by
the same arguments as above, αu− r also minimizes L0(·). But L0(·) is convex, so the average of
the two points (which is αu) is a minimizer of L0(·), and we can take w∗ to be that minimizer.

Finally, we argue that if we write w∗p as αpu, and w∗ as αu, then the sign of αp and α must be
the same. Indeed, suppose without loss of generality that α > 0 (otherwise, flip u to −u, and note
that α cannot be zero, since then w∗ = 0 and it cannot possibly satisfy the theorem assumptions).
Since L0(w

∗) = E[[1− yx>αu]2+] = 0, it follows that yx>u > 0 with probability 1. Therefore,

d

dβ
Lp(βu) |β=0 = − 2(1− 2p)E[yx>u] < 0

for any p ∈ (0, 12), which by convexity of β 7→ Lp(βu) implies that the (unique) minimizer w∗p =
αpu of Lp(·) must satisfy αp > 0. Overall, we have

Pr(yx>w∗p ≤ 0) = Pr(αpyx
>u ≤ 0) = Pr(αyx>u ≤ 0) = Pr(yx>w∗ ≤ 0) = 0 .

as required.

29



SHAMIR

Appendix B. Minimizers of the Squared Hinge Loss Can Lead to Large
Misclassification Error

Fix some distribution D over examples (x, y) ∈ Rk × {−1,+1}. If the distribution is linearly
separable, it is easy to see that a minimizer of the expected squared hinge loss, E[[1−yx>w]2+] will
also minimize the expected misclassification error (probability that yx>w ≤ 0). However, this can
badly break down when there isn’t linear separability. Concretely, suppose that we introduce label
noise, so that the sign of y is flipped with some probability p. In this case, the expected hinge loss
can be written as

Lp(w) = E(x,y)

[
(1− p) · [1− yx>w]2+ + p · [1 + yx>w]2+

]
,

where the expectation is with respect to the “clean” labels. In this case, the minimizer of the above
might have an expected misclassification error of 1/2 (even if p is arbitrarily small). To see this,
it is enough to produce some finite linearly-separable dataset, such that 50% of the points will be
misclassified by the minimizer of Lp(·) (and then random label flipping will keep the error rate at
50%). The existence of such a dataset was essentially shown for a more general setting in Long
and Servedio (2010), and below we instantiate their analysis for our setting with more explicit
guarantees:

Theorem 18 For any p ∈ (0, 1
12), there exists a dataset {xi, yi}4i=1 ⊆ R2 × {−1,+1}, where

maxi ‖x‖i ≤ 1, such that:

• There exists a unit vector w∗ for which mini yix
>
i w
∗ ≥ p

• If ŵ is a minimizer of Lp(w) = 1
4

∑4
i=1

(
(1− p) · [1− yx>w]2+ + p · [1 + yx>w]2+

)
, then

ŵ misclassifies two of the four points.

Proof
Let y1 = y2 = y3 = y4 = 1, and

x1 = x2 =

(
p
−p

)
, x3 =

(
1
0

)
, x4 =

(
p
5p

)
.

It is easily verified that w∗ = (p, 0) satisfies mini yix
>
i w
∗ ≥ p. Also, by Lemma 17, it is easily

verified that Lp(·) is strongly convex. Therefore, the minimizer is unique, and we claim that for any
small enough p > 0, it equals

ŵ =

(
5− 16p

3 + 8p
,

1− p
3p(3 + 8p)

)
.

In that case, for the two points x1 = x2 = (p,−p),

x>1 ŵ = x>2 ŵ = − 1− 16p+ 48p2

9 + 24p
,

which is negative for any small enough p ∈ (0, 1
12), hence two of the four points are misclassified.

To verify that ŵ above is indeed the minimizer, let `p(z) := (1 − p)[1 − z]2+ + p[1 + z]2+ (so that
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Lp(w) = E(x,y)[`p(yx
>w)]), and note that

4·∇Lp(ŵ) = 4·∇Lp(ŵ1, ŵ2) = 2p`′p(p(ŵ1−ŵ2))

(
1
−1

)
+`′p(w1)

(
1
0

)
+p`′p(p(ŵ1+5ŵ2))

(
1
5

)
,

(22)
where

`′p(z) = − 2(1− p)[1− z]+ + 2p[1 + z]+ .

A tedious but routine calculation shows that for any p ∈ (0, 1
12), it holds that p(ŵ1− ŵ2) ∈ [−1, 0),

p(ŵ1 + 5ŵ2) ∈ [0, 1], and ŵ1 > 1. Plugging in the corresponding expressions for `′p(z) into
Eq. (22), we get the 0 vector. Hence, ∇Lp(ŵ), and since Lp(·) is convex, it follows that ŵ is
indeed its minimizer.
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