
Proceedings of Machine Learning Research vol 178:1–15, 2022 35th Annual Conference on Learning Theory

On characterizations of learnability with computable learners

Tom F. Sterkenburg TOM.STERKENBURG@LMU.DE

Munich Center for Mathematical Philosophy
Ludwig Maximilian University of Munich

Editors: Po-Ling Loh and Maxim Raginsky

Abstract
We study computable PAC (CPAC) learning as introduced by Agarwal et al. (2020). First, we
consider the main open question of finding characterizations of proper and improper CPAC learn-
ing. We give a characterization of a closely related notion of strong CPAC learning, and provide a
negative answer to the COLT open problem posed by Agarwal et al. (2021) whether all decidably
representable VC classes are improperly CPAC learnable. Second, we consider undecidability of
(computable) PAC learnability. We give a simple general argument to exhibit such undecidability,
and initiate a study of the arithmetical complexity of learnability. We briefly discuss the relation to
the undecidability result of Ben-David et al. (2019), that motivated the work of Agarwal et al.
Keywords: PAC learning, VC dimension, computability, undecidability, arithmetical complexity

1. Introduction

What changes in the theoretical analysis of learning algorithms when we impose a restriction to
algorithms that are, in fact, algorithmic? This fundamental question led Agarwal et al. (2020) to
initiate a study of statistical learning theory with computable learners. The theory of probably
approximately correct (PAC) learning, as presented by Shalev-Shwartz and Ben-David (2014), is
founded on the Vapnik-Chervonenkis (VC) theory of uniform convergence (1971), that separates the
statistical analysis of learning functions from computational considerations. On the other hand, PAC
learning draws its name from Valiant’s computational approach (1984; see Kearns and Vazirani,
1994), that focuses on the efficiency (polynomial runtime) of learners. Agarwal et al. introduce
a natural intermediate set-up, where it is (only) required for learners to be computable functions.
They obtain several results about the ensuing notion of computable PAC (CPAC) learning and its
relationship to unconstrained PAC learnability.

The fundamental theorem of PAC learning (Blumer et al., 1989) states that (under mild measur-
ability conditions) a class of hypotheses is PAC learnable precisely if it satisfies the combinatorial
property of finite VC dimension. Moreover, a class is PAC learnable precisely if the procedure
of empirical risk minimization (ERM) PAC learns it. The main lesson that Agarwal et al. draw
from their results is that the computability requirement “disrupts the fundamental characterization
of learnability by the finite VC-dimension of a class” (2020, p. 59). However, they leave as an open
question what conditions do characterize computable PAC learnability. As the two most important
questions for future research, they ask for characterizations of proper and of improper CPAC learn-
ability. The latter motivates the open problem announced by Agarwal et al. (2021), whether there
are decidably representable PAC learnable classes that are not even improperly CPAC learnable.

In the first main part of this paper (Section 3), we make progress on these two questions. We in-
troduce a notion of strong CPAC (SCPAC) learnability, by adding a stipulation on the computability
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of the sample complexity. The motivation for this notion is that we can prove a natural charac-
terization (that does preserve the classical characterization as neatly as possible), namely as the
conjunction of finiteness of VC dimension and computability of ERM. In fact, the notions of CPAC
and SCPAC learnability are so close that they may already be equivalent; we leave this as an open
question. Further, we solve the open problem of Agarwal et al. (2021). We confirm their con-
jecture that a particular decidably representable PAC learnable class is not even improperly CPAC
learnable, implying that there is a nontrivial question of characterizing improper CPAC learnability.

An incentive for the work of Agarwal et al. was the result due to Ben-David et al. (2017, 2019)
that learnability can be undecidable. Ben-David et al. introduce a general learning model of “esti-
mating the maximum” (EMX), and exhibit a particular EMX learnability problem that they prove to
be independent of the ZFC axioms of set theory (provided ZFC is consistent). From this result they
infer that “there is no VC dimension-like parameter that generally characterizes learnability” (2019,
p. 44). Their analysis is that “the source of the problem is in defining learnability as the existence of
a learning function rather than the existence of a learning algorithm” (ibid., p. 48). In the same vein,
Agarwal et al. (2020, p. 48) write that “[h]ad we required learners to be computable, there would
have been a finite representation for each learner [. . . ], ruling out independence of ZFC results of
the type shown in Ben-David et al. (2017, 2019).”

In the second main part of this paper (Section 4), we turn to the undecidability of computable
PAC learnability. On the basis of Rice’s Theorem, we offer a simple argument to the effect that, for
any notion of learnability in the current computable framework, and a general approach to formu-
lating decision problems of learnability (computable families of hypothesis classes), the resulting
decision problem, if not trivial (either every class is learnable or every class is not), is unsolvable.
We observe that the unsolvability of a learnability decision problem directly entails that the learn-
ability of infinitely many hypothesis classes is independent of the ZFC axioms (provided ZFC is
arithmetically sound). Further, we initiate an investigation (similar to the work of Beros, 2014;
Beros et al., 2021 for algorithmic learning theory) into how undecidable learnability problems are:
that is, into their arithmetical complexity. In particular, we use our characterization of SCPAC learn-
ability to show that this decision problem is Σ3-complete. Finally (in Section 5), we briefly discuss
how our observations relate to the undecidability result of Ben-David et al.

Related work We restrict attention to the framework of Agarwal et al. (2020), where the domain
set is countable and hypotheses are total computable functions (see Section 2). Ackerman et al.
(2021) present results about computable PAC learning within a more general framework of com-
putable analysis, where the domain is an arbitrary computable metric space. They also remark on
the assumption of a computable sample complexity, the added ingredient in our notion of SCPAC
learning. Calvert (2015) already studied a computable setting where the domain is 2ω and hypothe-
ses are Π0

1 classes, and established the arithmetical complexity of PAC learnability (finiteness of VC
dimension) of effective hypothesis classes within this setting. Calvert further notes the relation to
earlier work on the computational complexity of calculating the VC dimension of finite hypothesis
classes over finite domain (Linial et al., 1991; Schaefer, 1999). Schaefer, citing Wehner (1990),
also gives the arithmetical complexity of PAC learnability within the computable setting we study
here. Caro (2021) recently showed the undecidability of (among other models) PAC learning, con-
structing instances of both “Turing undecidability” (unsolvability of decision problem) and “Gödel
undecidability” (independence of axiom system). His constructions for the undecidability of PAC
learning apply to the current computable setting, and indeed the relevant (families of) hypothesis
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classes are computable, but they only partly transfer to CPAC learnability (see Section 4.1 for more
details). Beros (2014); Beros et al. (2021) study the arithmetical complexity of learnability for the
algorithmic learning theory paradigm of identification in the limit (Gold, 1967; Jain et al., 1999).

2. Preliminaries

2.1. PAC learning

Let X = N the domain, and Y = {0, 1} the label space. A hypothesis is a function h : X → Y . A
sample S is a finite ordered sequence of input-label pairs, or formally, S ∈ S := ∪n∈N(X × Y)n.
To assess hypotheses, we use the 0/1 error function. Thus the error of h on sample S is given by

LS(h) :=
|{(x, y) ∈ S : h(x) 6= y}|

|S|
,

and the true error or risk of h w.r.t. a distribution D over X × Y is LD(h) := P(x,y)∼D[h(x) 6= y].

Definition 1 (PAC learnability) A hypothesis class H is PAC learnable if there exists a function
mH : (0, 1)2 → N and a learning function A : S → H such that for all ε, δ ∈ (0, 1), for all
m ≥ mH(ε, δ) and any distribution D over X × Y we have

ProbS∼Dm

[
LD(A(S)) ≤ min

h∈H
(LD(h)) + ε

]
≥ 1− δ. (1)

We also call the above agnostic PAC learning to distinguish it from the more specific case of realiz-
able PAC learning, where we make the assumption that there exists h∗ ∈ H with LD(h∗) = 0. We
also call the above proper PAC learning to distinguish it from the more general case of improper
PAC learning, where we do not assume that the range of the learning function A is restricted to H.
That is, Amay also output hypotheses that are not inH; but condition (1), including the comparison
to the best hypothesis inH, does not change.

Definition 2 Empirical risk minimization for hypothesis class H, write ERMH, returns for each
S ∈ S a hypothesis in arg minh∈H LS(h).

For hypothesis class H and X = {x1, . . . , xm} ⊂ X , the restriction of H to X is the class H|X
of functions f : X → Y such that f(x) = h(x) for some h ∈ H and all x ∈ X . We say that H
shatters finite X ⊂ X if the restriction ofH to X contains all functions f : X → Y .

Definition 3 The VC dimension of hypothesis class H, write VCdim(H), is the maximal size of a
set X ⊂ X that is shattered byH. IfH shatters sets of arbitarily large size, then VCdim(H) =∞.

Theorem 4 (Fundamental theorem of PAC learning, Blumer et al., 1989) A hypothesis classH
is PAC learnable if and only if ERMH PAC learnsH if and only if VCdim(H) <∞.

2.2. Computable PAC learning

We use the following computability-theoretic notation (see, e.g., Soare, 2016). Let {φi}i∈N be a
standard enumeration of all partial computable (p.c.) functions. We write φi(x) ↓= y to denote
that φi halts on input x and returns y, while φi(x) ↑ denotes that φi does not halt on x. We write
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φi,s(x) = y if φi outputs y on input x within s computation steps; by convention, i, x, y < s. We
similarly write φi,s(x) ↓ if φi has halted and produced an output on x by s or φi,s(x) ↑ if it has not.

In computable PAC (CPAC) learning, we work with computable hypotheses, total computable
functions h : X → Y . Moreover, learners must be actual learning algorithms, total computable
functions from samples to computable hypotheses.

Definition 5 (CPAC learnability, Agarwal et al., 2020) A hypothesis class H is CPAC learnable
if there exists a total computable A : S → H that PAC learnsH.

We again also use the terms agnostic and proper to distinguish this notion from the more specific
case of realizable CPAC learning and the more general case of improper CPAC learning.

The following fact is an immediate consequence of Theorem 4 and Definition 5.

Fact 1 If VCdim(H) < ∞ and ERMH is computably implementable, i.e., there is a total com-
putable function that computes a version of ERMH, thenH is CPAC learnable.

We further introduce a variant of CPAC learning, that we call strong CPAC (or SCPAC) learning,
where it is explicitly stipulated that the learning algorithm comes with a computable sample com-
plexity function. We discuss the motivation for this notion in Section 3.1.

Definition 6 (SCPAC learnability) A hypothesis classH is SCPAC learnable if there exists a total
computable A : S → H and a total computable mH : N2 → N such that for all a, b ∈ N, for all
m ≥ mH(a, b) and any distribution D over X × Y ,

ProbS∼Dm

[
LD(A(S)) > min

h∈H
(LD(h)) + 1/a

]
< 1/b. (2)

The sufficient condition of Fact 1 is already sufficient for SCPAC learnability.

Proposition 7 If VCdim(H) < ∞ and ERMH is computably implementable, then H is SCPAC
learnable.

Proof Given H with VCdim(H) = d < ∞, Sauer’s lemma gives us a computable bound (de-
pending only on the finite information d) on the sample complexity for the uniform convergence
property of H (Shalev-Shwartz and Ben-David, 2014, Theorem 6.7), which in turn gives us a com-
putable bound on the sample complexity of ERMH (ibid., Corollary 4.4).

2.3. Computability of hypothesis classes

We would also like to formulate a notion of effective computability of hypothesis classes, classes
of computable hypotheses. Namely, a class of total computable functions can itself fail to be com-
putable, in the sense that there is no computable way of checking or even enumerating its elements.

Example 1 (Agarwal et al., 2020, Theorem 9) Define for i ∈ N hypothesis hi by

hi(x) =

{
1 if x = 2i or x = 2i+ 1 & φi(i) ↓
0 otherwise
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and let hypothesis class Hhalt := {hi}i∈N. While each individual hi is computable (since given
by finite information), the hi are not uniformly computable in i (or we could solve the Halting
problem), meaning the members ofHhalt cannot be computably enumerated. This underlies the fact
thatHhalt is not CPAC learnable, not even in the realizable case. Namely, by Fact 1 it would suffice
for CPAC learnability that ERMHhalt

is computably implementable. For this, in the realizable case,
it would suffice that the elements ofHhalt can be enumerated (Agarwal et al., 2020, Theorem 10).

As a general approach to a notion of effective hypothesis classes, we always assume some encod-
ing that computably corresponds the natural numbers (indices) to programs (Turing machines) for
computing hypotheses, inducing some base class Ĥ of computable hypotheses. More precisely, we
assume a computable decoding function C : N→ Ĥ, that gives a computable listing {hi}i∈N = Ĥ
by hi := C(i). Note that this base class Ĥ must always be a strict subclass of the class Hcomp

of all computable hypotheses, because the computable hypotheses are the total computable (t.c.)
functions, and by a standard diagonalization argument we cannot effectively enumerate or encode
(programs for) all and only the t.c. functions.

Given such an encoding of a base class Ĥ, the available hypothesis classes H ⊆ Ĥ correspond
to (and can be identified with) the subsets of N. A computable subset of N then gives a computable
class of (codes of) hypotheses in Ĥ, and a c.e. subset of N gives a computable enumeration of
(codes of) a class of hypotheses in Ĥ. The former corresponds to the notion of decidably repre-
sentable (DR) hypothesis class of Agarwal et al. (2020), and the latter to their notion of recursively
enumerably representable (RER) hypothesis class. We will adopt this terminology.

Example 2 Consider the base class Hfin of all hypotheses with finite support: the hypotheses h
with x0 such that h(x) = h(x′) for all x, x′ > x0 (Agarwal et al., 2020, Remark 7). Each such
h is given by the finite information of its corresponding x0, the list of labels for x ≤ x0, and the
constant label for x > x0; and we can clearly specify an encoding of all such hypotheses that
gives a computable decoding function C : N → Hfin. Examples of DR subclasses—or choices of
base classes in their own right—are the class Hivl of interval hypotheses (h with x0, x1 such that
h(x) = 1 iff x0 < x < x1) and the class Hthd of threshold hypotheses (h ∈ Hivl with x0 = 0). An
example of a non-DR RER subclass is the class of threshold hypotheses with x1 such that φx1(x1) ↓.

Not every DR hypothesis class is CPAC learnable (Agarwal et al., 2020, Theorem 11), which means
there are DR classes for which ERM is not computably implementable. On the other hand, a hy-
pothesis class does not have to be RER to be SCPAC learnable.

Example 3 Take the classHivl of interval hypotheses. This class has VC dimension 2 and ERMHivl

is clearly computably implementable, so it is SCPAC learnable. Now extend this class with all
threshold functions ha such that φa(a) ↑. The extended class H′ is no longer RER. However,
VCdim(Hivl) = VCdim(H′) and we have that for each S ∈ S, minh∈Hivl

LS(h) = minh∈H′ LS(h),
so that the algorithm for ERMHivl

also implements ERMH′ . ThusH′ is also SCPAC learnable.

3. Towards characterizations of computable learnability

3.1. Proper (S)CPAC learnability

We saw that a hypothesis class is (S)CPAC learnable if it has finite VC dimension and ERM is
computably implementable. For SCPAC learnability, this condition pair is also necessary.
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Theorem 8 A hypothesis classH is properly SCPAC learnable if and only if VCdim(H) <∞ and
there exists an algorithm that implements ERMH.

Proof It remains to show the left-to-right direction. So suppose H is SCPAC learnable. Then H
is PAC learnable, so VCdim(H) < ∞; and there are computable learning function A and com-
putable sample complexity function mH such that for all a, b ∈ N, for all m ≥ mH(a, b) and any
distributionD over X ×Y we have (2). UsingA, we can computably implement ERMH as follows.

For given training sample S = ((x1, y1), . . . , (xn, yn)), define distributionDS byDS((xi, yi)) =
1/n for each (xi, yi) ∈ S (in case of repetitions in S, we simply add up the probabilities). Choose
a > n and any b, and compute m = mH(a, b). Let SmDS

be the set of all possible length-m samples
that can be generated fromDS . By runningA on all these sequences, we can computably pick some
Ŝ ∈ arg minS′∈SmDS

LS(A(S′)). The claim is that ĥ = A(Ŝ) is also in arg minh∈H LS(h). Namely,
if not, then for all S′ ∈ SmDS

we would have LS(A(S′)) > minh∈H LS(h). Specifically, each A(S′)
would make at least one more mistake on S than the h ∈ arg minh∈H LS(h), which by definition
of DS implies LDS

(A(S′)) ≥ minh∈H LDS
(h) + 1/n. But that implies that with certainty (Dm

S -
probability 1) we would sample S′ ∼ DS of length m with LDS

(A(S′)) > minh∈H LDS
(h) + 1/a,

contradicting (2).

We do not know whether CPAC learnability is not already equivalent to SCPAC learnability. If it is
not, then Theorem 8, which constitutes an effective version of the original equivalence between PAC
learnability and PAC learnability by ERM, gives reason for thinking that SCPAC learnability is a
natural notion. Moreover, the above proof suggests that anH that is CPAC but not SCPAC learnable
has extreme properties. In particular, it can only be learnable by an algorithmA for which we cannot
compute an upper bound on any corresponding sample complexity function gb(a) = m(a, b) for
fixed b. That is to say, the sample complexity must grow faster in a than any computable function.

Question 1 Does there exist a hypothesis class that is properly CPAC learnable but not properly
SCPAC learnable?

In any case, both the negative and the positive results on CPAC learning in (Agarwal et al., 2020)
also go through for SCPAC learning: the first (Theorems 9 and 11) because the latter is stronger,
the second (Theorems 10, 13, and 15; Corollary 14) because they rely on showing the computable
implementability of ERM, which already gives SCPAC learnability.

3.2. Improper (S)CPAC learnability

We now turn to the improper case. To be clear, we use the qualifier “improper” as a generalization
of “proper.” We will use the qualifier “strictly improper” to mean “improper but not proper.” The
following fact is immediate from the definitions.

Fact 2 If H is improperly CPAC learnable and H′ ⊆ H then H′ is improperly CPAC learnable.
The same holds for improper SCPAC learnability.

Agarwal et al. (2020, Theorem 9, Theorem 11) exhibit two classes Hhalting and HLT that are not
properly CPAC learnable, yet that are improperly (so strictly improperly) CPAC (indeed SCPAC)
learnable (ibid., p. 59). Intuitively, the reason is that the incomputable information encoded in these
classes can be “blotted out” by adding more hypotheses. This is easy if (as in the case of Hhalting
and HLT) a class only contains, for some constant b, hypotheses (seen as sets of positively labeled
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instances) of size bounded by b. Then the obvious SCPAC learnability of the superclass of all such
b-bounded-size hypotheses means by Fact 2 that the original class is improperly SCPAC learnable.1

In general, by Fact 2, extendability to a proper (S)CPAC learnable class is sufficient for improper
(S)CPAC learnability; the next question, towards an actual characterization, is whether it is actually
a necessary condition (Agarwal et al., 2020, Conjecture 23). But a preceding question is whether,
at least for RER hypothesis classes, there is not already a more trivial characterization: every RER
class with finite VC dimension is improperly (S)CPAC learnable. We show here that this is not the
case. For this purpose we take the hypothesis class Hinit defined by Agarwal et al. (2021, p. 4641),
which they already conjecture is not even improperly CPAC learnable (ibid., Conjecture 9). We
slightly reformulate their definition. Let, for each s ∈ N, computable hypothesis hs be defined by

hs(x) =

{
1 if φx,s(x) ↓
0 otherwise,

and letHinit := {hs}s∈N. This class is in fact DR and has VC dimension 1. First we need a lemma.

Lemma 9 If H is improperly CPAC learnable, then for sufficiently large n, we can computably
find for any X = {x1, . . . , xn} ⊂ X of size n a function g : {x1, . . . , xn} → {0, 1} with g /∈ H|X .

Proof Suppose there exists an algorithm A that improperly learns H. Picking some a > 8 and
b > 7, that means that there is sufficiently large m = m(ε, δ) such that for any D over X × {0, 1}

ProbS∼Dm

[
LD(A(S)) ≥ min

h∈H
(LD(h)) + 1/8

]
< 1/7.

But by the computable No-Free-Lunch Theorem (Agarwal et al., 2020, Lemma 19), for any X =
{x1, . . . , xn} ⊂ X of size n = 2m we can computably find a function g : {x1, . . . , xn} → {0, 1}
such that for distribution D̂ uniform over {(x1, g(x1)), . . . , (xn, g(xn))} we have

ProbS∼D̂m

[
LD̂(A(S)) ≥ 1/8

]
≥ 1/7.

This implies that g /∈ H|X , for else minh∈H(LD̂(h)) = 0 and we would have a contradiction.

Theorem 10 The classHinit is not improperly CPAC learnable.

Proof Suppose it is. Then by Lemma 9 there exists, for some sufficiently large n of our choice, an
algorithm B that for any n input elements x1, . . . , xn proceeds as follows. If xi 6= xj for all distinct
i, j ≤ n, then B returns a function g : {x1, . . . , xn} → {0, 1} such that g /∈ Hinit|{x1,...,xn}. If not,
then B returns some default function on {x1, . . . , xn}, say the constant-0 function.

We define, for each i ≤ n, a total computable n-place fi such that

φfi(x1,...,xn)(z) =


i if z = 0

0 if z = xi > 0 & B(x1, . . . , xn)(xi) = 1

↑ otherwise.

1. A class need not have this boundedness property for similar reasoning to go through, as shown by an example of
one of the referees. For any b-bounded-size H = {hi}i define H′ = {h′

i}i by h′
i(x) = hi(x)/2 if x is even

and h′
i(x) = 1 otherwise, yielding a class of infinite hypotheses that is nevertheless extendable to a properly CPAC

learnable class. An interesting further question is to find a more concrete characterization of such extendability.
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Now by the n-fold Recursion Theorem (Smullyan, 1993, p. 117) there are c1, . . . , cn > 0 such that
for each i ≤ n,

φci = φfi(c1,...,cn).

Moreover, these c1, . . . , cn must be distinct, else φfi(c1,...,cn) = φfj(c1,...,cn) for some i 6= j, which
is excluded by the fact that they have distinct range (for each i only φfi(c1,...,cn) has i in its range).
But then for function g = B({c1, . . . , cn}) we have for each ci that φci(ci) ↓ iff φfi(c1,...,cn)(ci) ↓ iff
g(ci) = 1. This means there exists a large enough s such that for each i ≤ n, φci,s(ci) iff g(ci) = 1,
which implies by definition ofHinit that g ∈ Hinit|{c1,...,cn}, contrary to specification of B.

It follows with Fact 2 that there are RER classes with finite VC dimension that cannot be ex-
tended to properly (S)CPAC learnable classes. So the latter extendability property is in this sense
nontrivial; the question remains whether it actually characterizes improper (S)CPAC learnability.

Question 2 (Agarwal et al., 2020, Conjecture 23) Does there exist a (RER) class H that is not
extendable to a properly (S)CPAC learnable class, yet that is improperly (S)CPAC learnable?

4. Undecidability and complexity of learnability

4.1. Undecidability

There are two kinds of undecidability, that are related but not the same (see, e.g., Poonen, 2014, p.
211; Hamkins, 2020, pp. 251–52; Caro, 2021).

1. Independence of a statement from an axiom system. A statement Y is independent of (or
undecidable in) axiom system A if neither Y nor its negation can be derived from these
axioms using the rules of logic. That is, neither A ` Y nor A ` ¬Y . An example is the
independence of the continuum hypothesis from the ZFC axioms of set theory.

2. Unsolvability of a decision problem. A decision problem, i.e., a family {Qi}i∈N of problems
with YES/NO answers, is unsolvable (or undecidable) if there is no decision algorithm that on
each input i ∈ N returns the correct answer to Qi. The standard example is the unsolvability
of the Halting problem, that asks for each i ∈ N whether φi(i) ↓.

Let “learnable” in this section stand for any specific notion of learnability. We first consider the
undecidability of learnability in sense (2), or the unsolvability of a learnability decision problem.

To a first approximation, a learnability decision question asks: does there exist a decision algo-
rithm that for every given hypothesis class returns YES if the class is learnable and returns NO if it
is not? To make this question meaningful at all, we must presuppose some family H of hypothesis
classes such that eachH ∈ H can actually be presented as input to a candidate decision algorithm.

Example 4 It is impossible to effectively encode the family Hall of all hypothesis classes of com-
putable hypotheses. A learnability problem for Hall is therefore trivially undecidable: there exists
no decision algorithm, because there cannot even exist an algorithm to query on eachH ∈ Hall.
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Let a computable family H = {Hj}j∈N of hypothesis classes be such that there is a computable
procedure that for each given j ∈ N retrieves an effective representation of Hj ; at the least, it
uniformly retrieves an instruction for enumerating the elements of Hj (so the hypothesis classes
of a computable family are all RER). For any computable family {Hj}j∈N we can clearly state
a corresponding decidability of learnability question: does there exists an algorithm that for each
input j returns YES ifHj is learnable and NO otherwise?

We describe a general way of constructing computable families of hypothesis classes, and show
that for each family constructed in this way, the decision problem, if not trivial, is undecidable. Pick
any base class Ĥ ⊂ Hcomp of computable hypotheses that we can code onto the natural numbers.
The uniformly c.e. family {Wi}i∈N of all c.e. subsets of N, or equivalently the family {φi}i∈N of
all p.c. functions, picks out the computable family H = {Hi}i∈N of all RER hypothesis classes
Hi ⊆ Ĥ. We call such a family H a maximal computable family of hypothesis classes. Importantly,
such a maximal family H = {Hi}i∈N has the property that if φi = φj then alsoHi = Hj .

Now the answer to our question is yes, for any computable family that either only contains
learnable or only contains unlearnable hypotheses classes. For such a family that is trivial for
learnability, either the constant YES algorithm or the constant NO algorithm is a decision algorithm.

Example 5 The maximal computable family constructed from the base class Hivl of interval hy-
pothesis is a trivial family for PAC learnability: already the base class has finite VC dimension.
This family is also trivial for improper (S)CPAC learning (as the base class is SCPAC learnable,
Example 3). However, the family is nontrivial for proper (S)CPAC learning: there exist RER classes
of interval hypotheses that are not CPAC learnable (Agarwal et al., 2020, Theorem 11).

But as soon as a maximal computable family is nontrivial for learnability, the answer is no.

Proposition 11 For any particular notion of learnability, and any maximal computable family H
of hypotheses classes that is nontrivial for this learnability, the learnability problem is unsolvable.

Proof By the correspondence between the members of H and all p.c. functions, this follows directly
from Rice’s Theorem (see Soare, 2016, p. 16) that every nontrivial index set is incomputable. An
index set I ⊆ N is a set of indices of p.c. functions closed under extensional equivalence,

i ∈ I & φi = φj =⇒ j ∈ I,

and nontrivial if neither I = ∅ nor I = N. Now for any maximal computable family H = {Hi}i∈N
of hypothesis classes, we have that if Hi is learnable and φi = φj , then Hi = Hj and Hj is
learnable, too; so that the set IL(H) = {i ∈ N : Hi learnable} is an index set, that is non-trivial if H
is. But then Rice’s Theorem says that IL(H) is incomputable, which just means that there can be no
decision algorithm that for every i returns YES if i ∈ IL(H) and NO otherwise.

Undecidability is not limited to maximal computable families as constructed above.

Example 6 (Caro, 2021, Section 2.3) Caro constructs a computable family Hhalt = {HMj}j∈N
uniformly from the class {Mj}j∈N of Turing machines (i.e, the class {φj}j∈N of p.c. functions), and
proves undecidability of the PAC learnability problem for Hhalt. This family also has the property
that φi = φj implies HMi = HMj , so that the previous reasoning by Rice’s Theorem actually
applies here too. Caro’s own proof is a direct derivation of the undecidability of finiteness of VC
dimension for Hhalt, which entails undecidability of PAC learnability and also (as noted by Caro,
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2021, Section 5) of realizable CPAC learnability, as both are characterized by finite VC dimension
(for RER classes). In fact, by Theorem 8, finite VC dimension here already characterizes (agnostic)
SCPAC learnability, because one can verify that all classes in Hhalt admit of a computable imple-
mentation of ERM. Still, the advantage of the generality of the reasoning by Rice’s Theorem is that
it directly gives us undecidabilility for any learnability notion that Hhalt is nontrivial for.

Caro also already showed undecidability of PAC learning in sense (1).

Example 7 (Caro, 2021, Section 2.2) Caro presents a construction, for any sufficiently expressive
formal system F , of an RER hypothesis classHF such thatHF has finite VC dimension if and only
if F is consistent. Since, by Gödel’s second incompleteness theorem, F (provided it is consistent)
does not decide its own consistency, this yields, for any F , that F does not decide the learnability
ofHF . In particular, ZFC (provided it is consistent) does not decide the learnability ofHZFC.

As Caro (2021, Remark 2.24) also notes, there is a way of directly deriving undecidability in sense
(1) from undecidability in sense (2); so in particular from Proposition 11. We follow the reasoning
outlined by Poonen (2014, pp. 212–13).

Proposition 12 Given any particular notion of learnability that we can arithmetically character-
ize (which includes PAC learnability and SCPAC learnability, see Section 4.2). For any computable
family H = {Hi}i∈N of hypothesis classes such that the learnability decision problem is unsolv-
able (in particular, any maximal computable family for which this learnability is nontrivial), the
learnability of infinitely manyHi is independent of ZFC (provided ZFC is arithmetically sound).

Proof Using the presupposed characterization of the relevant notion of learnability, we can write a
computable procedure that for each i returns a statement Yi of first-order arithmetic that expresses
that Hi is learnable. (For instance, for PAC learnability, the algorithm produces the statement (3)
in Section 4.2 below, uniformly plugging in arithmetical representations of the relevant “atomic”
statements about computable objects, like [h(x) 6= yi].) If ZFC is arithmetically sound, it only
proves such statements (suitably recast in the language of set theory) that are in fact true. Thus we
have a computable procedure that for each i returns a statement Yi such that

• if ZFC ` Yi thenHi is learnable;

• if ZFC ` ¬Yi thenHi is not learnable.

But this gives us a decision procedure for learnability for H (for each i enumerate theorems of ZFC
until we find either Yi or ¬Yi), unless some (indeed infinitely many) Yi are independent of ZFC.

4.2. Arithmetical complexity

The general proof by Rice’s Theorem of undecidability of learnability does not use any specific
properties of the notion(s) of learnability. The mathematical structure of learnability does come into
play when we ask the natural next question, namely how undecidable learnability is. Specifically,
what is the arithmetical complexity of the relevant index set (see Soare, 2016)?

We start with standard PAC learnability, characterized by finiteness of VC dimension. We can
spell out the property VCdim(H) < d as

(∀ distinct x1, . . . , xd ∈ X )(∃y1, . . . , yd ∈ {0, 1})(∀h ∈ H)(∃i ≤ d) [h(xi) 6= yi] . (3)

10
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Since only the first and the third quantifiers are unbounded, this is equivalent to a Π1 statement. Then
the property VCdim(H) <∞, equivalent to (∃d)[VCdim(H) < d], is a Σ2 property. This gives an
upper bound on the arithmetical complexity for any computable family of hypothesis classes.

Fact 3 The problem of PAC learnability for a computable family of hypothesis classes is no harder
than Σ2.

Moreover, this bound is strict: as observed before by Schaefer (1999) there are computable families
of hypothesis classes such that the problem is Σ2-complete. The following proof is similar to that of
Schaefer (1999, theorem 4.1) with reference to Wehner (1990), and is also implicit in Zhao (2018).

Proposition 13 (Schaefer, 1999) There exists a computable family of hypothesis classes such that
the problem of PAC learnability is Σ2-complete.

Proof We exhibit a computable family H = {Hi}j for which the index set {j ∈ N : Hj is learnable}
is equal to the index set Fin = {j ∈ N : Wj is finite}. The latter is well-known to be Σ2-complete
(see Soare, 2016, p. 86).

LetHfin = {hi}i∈N a computable enumeration of all hypotheses with finite support and {Wj}j∈N
an enumeration of all c.e. sets. For every j ∈ N define c.e.

Nj := {n ∈ N : n ≤ |Wj |} = {n ∈ N : (∃s)[n ≤ |Wj,s|]},

and let Hj := {hi : i ∈ Nj}. Then we have that j ∈ Fin precisely if VCdim(Hj) < ∞. Namely,
if j ∈ Fin then also |Nj | = |H| < ∞ and VCdim(Hj) < ∞. But if j /∈ Fin then |Nj | = N and
Hj = Hfin, so VCdim(Hj) =∞.

Next, we turn to SCPAC learnability. Recall its characterization, Theorem 8, by the conjunction of
finiteness of VC dimension and the computable implementability of ERM. We first introduce as a
lemma an equivalent statement of the second conjunct, that we can then express arithmetically to
give us an upper bound.

Lemma 14 For computable hypothesis class H, ERMH is computably implementable if and only
if BH := {S ∈ S : (∃h ∈ H) [LS(h) = 0]} is computable.

Proof We have that S ∈ BH precisely if LS (ERMH(S)) = 0, so it is immediate that if ERMH
is computable, then so is BH. Conversely, if the latter is computable, then the following procedure
gives an algorithm for ERMH. For given S = (xn, yn), for all i ≤ n, j ≤

(
n
i

)
define zni,j to be the

j-th length-n binary sequence that disagrees with yn on precisely i positions. Now for the i ≤ n in
increasing order, check for each defined zni,j whether (xn, zni,j) ∈ BH; as soon as this is the case for
some zni,j , start enumerating hypotheses in H until finding an h with LS(h) = i, and return this h.
This procedure will always halt and return a hypothesis ĥ ∈ minh∈H LS(h).

Proposition 15 The problem of SCPAC learnability for a computable family of hypothesis classes
is no harder than Σ3.

11
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Proof Let 〈·〉 : S → N be some computable 1-1 encoding of all finite samples onto the natural
numbers. Given computable family H = {Hj}j , c.e. subset Bi := {〈S〉 : S ∈ S & (∃h ∈
Hi) [LS(h) = 0]} ⊆ N is computable precisely if BHi is. Since (cf. Soare, 2016, p. 83)

(∃d)
[
W d = Bi

]
⇐⇒ (∃d)[Bi ∩Wd = ∅ ∧Bi ∩Wd = N]

⇐⇒ (∃d) [(∀s)[Bi,s ∪Wd,s = ∅] ∧ (∀x)(∃s)[x ∈ Bi,s ∩Wd,s]]

⇐⇒ (∃) [(∀)[. . . ] ∧ (∀)(∃)[. . . ]]
⇐⇒ (∃)(∀)(∃)[. . . ],

the computability of Bi can be expressed as as a Σ3 statement. But then the conjunction with the
Σ2 statement of finiteness of VC dimension is also a Σ3 statement.

Again, this bound is strict.

Proposition 16 There exists a computable family of hypothesis classes such that the problem of
SCPAC learnability is Σ3-complete.

Proof We show for a family {Hj}j∈N of classes of threshold functions that the question of SCPAC
learnability is equivalent to the index set Rec = {j ∈ N : Wj is computable}, which is Σ3-complete
(Rogers, 1967, Theorem XVI; also see Soare, 2016, p. 88). Recall that, for i ∈ N, threshold function
hi is defined by by h(x) = 1 if and only if x < i. In addition, let hω be such that hω(x) = 1 for all
x. From the standard enumeration {Wj}j∈N of the c.e. sets, defineHj := {hi : i ∈Wj} ∪ {hω}.

Since each Hj has finite VC dimension, SCPAC learnability of Hj is equivalent to the com-
putability of BHj . Moreover, BHj is computable precisely if Hj is. Namely, starting with the
right-to-left direction, to decide hi ∈ Hj for i ∈ N (for hω the answer is always yes), it is enough
to ask whether ((i, 1), (i + 1, 0)) ∈ BHj . Conversely, to decide S ∈ BHj , we can distinguish four
cases. First, if y = 1 for all (x, y) ∈ S, then S ∈ BHj because LS(hω) = 0. Second, if there are
(x, 0), (x′, 1) ∈ S with x < x′ then S /∈ BHj . Third, if y = 0 for all (x, y) ∈ S then take the
smallest x0 with (x, y) ∈ S; now S ∈ BHj precisely if hx ∈ H for some x < x0. Otherwise, take
the (x0, y0), (x1, y1) ∈ S with x0 < x1 and y0 = 1, y1 = 0 that have smallest difference |x0 − x1|;
now S ∈ BHj precisely if hx ∈ H for some x with x0 ≤ x < x1.

In sum, we have that j ∈ Rec iffHj is computable iffHj is SCPAC learnable.

If Question 1 has a negative answer then the notions of CPAC and SCPAC learnability coincide, and
we also have the complexity of the former. Otherwise, we need some different arithmetical charac-
terization for CPAC learning. Similarly, to find the complexity of improper (S)CPAC learnability,
we first need an arithmetical characterization of this notion (which would follow from a negative
answer to Question 2).

5. Conclusion and discussion

In the first part of this paper, we made progress on the main open problems concerning computable
PAC (CPAC) learning: to give characterizations of (im)proper CPAC learnability. We gave a charac-
terization of proper strong CPAC (SCPAC) learning, that is an effective version of the fundamental
theorem of PAC learning; and we confirmed the conjecture that there are decidably representable
PAC learnable classes that are not even improperly CPAC learnable. We leave as open questions
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whether every CPAC learnable class is already SCPAC learnable (in which case we already have
a characterization of CPAC learnability) and whether every improperly CPAC learnable class is
extendable to a properly CPAC learnable class (in which case we have a characterization of im-
proper CPAC learnability). A natural further question of characterization concerns the notion of
nonuniform CPAC learning (Soloveichik, 2008; Agarwal et al., 2020), including a strong variant.

In the second part, we investigated undecidability of (computable) PAC learning. We gave a
basic argument to uncover both undecidability of learnability decision problems and the indepen-
dence of ZFC of learnability, and we initiated a study of the arithmetical complexity of notions of
learnability. Future characterizations of notions of learnability (e.g., of improper (S)CPAC learning
or nonuniform (S)CPAC learning) also unlock the question of their arithmetic complexity.

What do our observations about undecidability mean for the motivating claim of Agarwal et al.
(2020), that the ingredient of computability rules out “independence of ZFC results of the type
shown in Ben-David et al. (2017, 2019)”? Proposition 12 does state that for infinitely many partic-
ular RER H the learnability of H is independent of ZFC (provided ZFC is arithmetically sound).
We did not exhibit any particular such class, but this is also not hard to do (recall Example 7 of the
classHZFC of Caro, 2021). Perhaps the main difference with the original result of Ben-David et al.
is that undecidable learnability statements in the computable framework of Agarwal et al. are in the
end all statements of first-order arithmetic. Ben-David et al. showed that the EMX learnability of
a particular hypothesis class is equivalent to the continuum hypothesis CH—or at least to a weak
version of the CH (see Hart, 2019)—which is a more complex set-theoretical statement.

This is important for the conclusion of Ben-David et al. that there is no combinatorial character-
ization of EMX learning, thus, that there exists “no general dimension for learning” (2019, p. 47).
They write that a combinatorial “dimension for learning” (like VC dimension for PAC learning) is
a “finite character property” (defined as ZFC-provably equivalent to a bounded formula in the lan-
guage of set theory, or ∆0 in the Lévy hierarchy; see Jech, 2003) that does not vary over different
models of ZFC (pp. 47–48). On a closer look (2017, p. 14), Ben-David et al. restrict attention to a
class of models of ZFC such that ∆0 properties have the same truth value in each model (these prop-
erties are “absolute,” in particular, for the class of transitive models of ZFC; see again Jech, 2003).
Under this restriction, “loosely speaking, PAC learnability does not depend on the specific model of
set theory,” whereas “EMX learnability heavily depends on the cardinality of the continuum” and
(provided ZFC is consistent) disagreeing models of ZFC “are known to exist” (2017, p. 14–15).

Now Proposition 12 does also directly imply (provided ZFC is arithmetically sound) that for
infinitely many particular RER H there are different models of ZFC that disagree on whether
VCdim(H) < ∞ (whether H is PAC learnable). However, such disagreeing models, that must
involve nonstandard models of arithmetic, are excluded by the above restriction of models. Here
we enter the slippery territory of questions of truth and existence in mathematics (some entries to
the relevant literature are Koellner, 2009; Button and Walsh, 2018; Hamkins, 2020). Most scholars
in the foundations of mathematics would indeed find it implausible to claim that there is no truth
to the arithmetical matter of whether a certain RER H is PAC learnable (has finite VC dimension),
just because this is not settled among all (nonstandard) models of arithmetic. Even if we cannot pin
it down with first-order axioms, they would argue, we have a clear conception of the natural num-
bers as per the intended, standard model. Things are much more contentious when it comes to set
theory and the continuum hypothesis. While it is therefore more plausible to make the analogous
claim about the non-existence of a dimension concept for EMX learnability, Ben-David et al. do
still commit here to a philosophical position that is hardly uncontroversial.
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