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Abstract
In bandit with distribution shifts, one aims to automatically adapt to unknown changes in reward
distribution, and restart exploration when necessary. While this problem has been studied for many
years, a recent breakthrough of Auer et al. (2018, 2019) provides the first adaptive procedure to
guarantee an optimal (dynamic) regret

√
LT , for T rounds, and an unknown number L of changes.

However, while this rate is tight in the worst case, it remained open whether faster rates are possible,
without prior knowledge, if few changes in distribution are actually severe.

To resolve this question, we propose a new notion of significant shift, which only counts very
severe changes that clearly necessitate a restart: roughly, these are changes involving not only best
arm switches, but also involving large aggregate differences in reward overtime. Thus, our resulting
procedure adaptively achieves rates always faster (sometimes significantly) than O(

√
ST ), where

S ≪ L only counts best arm switches, while at the same time, always faster than the optimal
O(V

1
3T

2
3 ) when expressed in terms of total variation V (which aggregates differences overtime).

Our results are expressed in enough generality to also capture non-stochastic adversarial settings.

1. Introduction

In Multi-armed bandit (MAB) an agent sequentially chooses an action, out of a finite set of K
actions (or arms), based on partial and uncertain feedback in the form of rewards Yt(a) for past
actions a ∈ [K] (a pull of arm a) (see Bubeck and Cesa-Bianchi, 2012; Slivkins, 2019; Lattimore
and Szepesvári, 2020, for surveys). The goal is to maximize the cumulative reward.

We consider the setting of switching bandits, where the distributions of arms’ rewards change an
unknown number of times, say L times, till a time horizon T . Performance is then measured by a
dynamic regret which compares rewards against those of the best arm at each round t (i.e., the arm
maximizing mean rewards µt(a)

.
= E Yt(a) over a ∈ [K]). Garivier and Moulines (2011) showed

that existing procedures (Auer et al., 2002; Kocsis and Szepesvári, 2006) could achieve a dynamic
regret Õ(

√
LT ), however, requiring knowledge of L. This requirement on knowledge of L, although

impractical, remained standing till a recent breakthrough of Auer et al. (2018, 2019), with important
follow-ups in Chen et al. (2019); Wei and Luo (2021) for contextual settings. Soon afterwards, other
parameter-free approaches were studied in Besson et al. (2022); Mukherjee and Maillard (2019).
This work is concerned with the achievability of faster rates that better account for mild to severe
changes.

In particular, the
√
LT rate is understood to be tight only in the worst-case, since L counts

all changes in distribution, even mild ones. This is evidenced, e.g., by alternative bounds of the
form V

1
3T

2
3 (see e.g. Chen et al., 2019), when the total variation V

.
=
∑

tmaxa |µt+1(a)− µt(a)|
(aggregating differences) is small, e.g., V ≲ 1/

√
T , yielding regret

√
T , irrespective of the L
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changes. However, the total variation perspective can also be pessimistic as V could be large, up to
O(T ) (yielding regret O(T )), even when the best arm remains fixed across the L changes.

Outside of best arm switches, a dynamic regret of
√
T remains possible (Allesiardo et al., 2017),

irrespective of V and L. In light of this, achieving faster rates of
√
ST , for an unknown number

S ≪ L of best arm switches, is understood as a key open problem 1 (Auer et al., 2019; Foster et al.,
2020).

We in fact aim beyond solving this problem, as even the quantity S overcounts the severity of
changes, e.g., when V remains small across best arm switches. Instead we propose a new notion of
significant shift which aims to only count severe changes in mean reward that clearly necessitate a
restart. Integral to our definition is the idea that a restart (in exploration) is only necessary when there
are no safe arms left to play. Here, an arm a is considered safe if its total regret over any interval
[s1, s2] within a phase, namely

∑s2
t=s1

maxa′ µt(a
′)− µt(a), is o(

√
s2 − s1).

As such, a significant phase ends only when no safe arm remains, which in particular does not
count best arm switches that do not last long enough to hurt regret. For example, a change from arm
a to a′ as a new best arm, with a large gap µt(a

′) − µt(a) = δ, constant over the next rounds, is
ignored if another switch within the next O(δ−2) rounds, reverts back to a as the best arm. Also,
unlike with total variation, aggregate differences are ignored outside of best arm switches.

As a simple sanity check that other distributional changes beyond significant shifts are safely
ignored, we show in Proposition 1 that a simple oracle that effectively ignores all other changes,
achieves regret

√
|I| over any significant phase I of length |I|. Furthermore, such a basic guarantee

of
∑

I

√
|I| total regret over significant phases I , immediately implies (1) a rate of

√
L̃T where

L̃ ≤ S ≤ L only counts significant shifts, and (2) a rate of V
1
3T

2
3 in terms of total variation.

Finally we show that these guarantees are attained adaptively, i.e., with no prior knowledge of
the environment (Theorem 1). Our key algorithmic innovation over previous works is that, rather
than aiming to detect changes in the mean rewards µt(a) of arms a, we focus on detecting changes
in the aggregate gaps in mean rewards between arms, i.e., in

∑
t µt(a

′)− µt(a), a stable quantity
across milder shifts. While this quantity does not directly track the dynamic regret of arm a (as the
comparator a′ here is independent of t), it will turn out sufficient (see beginning of Section 4). Now,
this quantity is estimable via a simple unbiased (importance-weighted) statistic, which concentrates
via martingale inequalities and can thus be used for change-point detection; however, the estimate
does require replays of previously discarded arms a′. These replays are carefully scheduled so as to
not overly affect regret, as inspired by previous work (e.g. Auer et al., 2019; Chen et al., 2019). The
resulting procedure META is described in Algorithm 1.

Our results not only concern the stochastic switching bandits setting, but extend to the adversarial
setting, since we allow for shifts at every round, though they may not trigger significant shifts, and as
well as allow for deterministic rewards (i.e., degenerate distributions). Formally, our setting admits a
randomized, oblivious adversary which decides, a priori, an arbitrary sequence of distributions for
the rewards (Slivkins, 2019).

Finally, we remark that a recent paper of Abbasi-Yadkori et al. (2022) independently and
concurrently also resolves the problem of obtaining the

√
ST rate adaptively.

1. The open problem in (Foster et al., 2020), of adapting to switching regret, is even more general than that resolved here.
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1.1. Further Discussion on Related Work

The work of Manegueu et al. (2021) is closest in spirit to this paper, also establishing dynamic regret
bounds scaling with a generalized notion of shifts. However, their notion is considerably weaker,
as it for instance counts changes resulting in large differences |µt(a)− µt−1(a)| in mean rewards
of a best arm a, even when the best arm does not change. More importantly, their procedures are
non-adaptive, requiring knowledge of the number of such changes.

Many works have considered the problem of achieving regret depending only on the number of
best arm switches S, which we discuss next.

First, in the setting of adversarial bandits with deterministic rewards, the EXP3.S procedure of
(Auer et al., 2002; Auer, 2002) can achieve a near-optimal2 dynamic regret bound Õ(

√
ST ), but

requiring knowledge of S. However, for more practical situations where S is unknown, the best regret
guarantee to our knowledge is O(

√
ST + T 3/4), obtained by combining the Bandits-over-Bandits

strategy of Cheung et al. (2019) with EXP3.S (Foster et al., 2020; Auer et al., 2019). It is also
known that EXP3.S alone can obtain the suboptimal rate of Õ(S

√
T ) for unknown S by setting the

parameters of the algorithm independently of S (Auer, 2002).

The more general problem of obtaining adaptive switching regret
√
ST for all S remains open

and is beyond the scope of this paper (Foster et al., 2020). Relatedly, recent work of Marinov and
Zimmert (2021) showed the impossibility of obtaining such adaptive switching regret bounds against
an adaptive adversary (where switch points may depend on the algorithm’s actions).

Second, the work of Allesiardo et al. (2017) studies dynamic regret in the same randomized
adversarial bandit setting as this paper (which as stated above also recovers the deterministic setting).
They provide two algorithms that get regret S

√
T and T 2/3

√
S, which do not match the optimal

regret of
√
ST . Furthermore, their procedures either require knowledge of S or lower-bounds on the

magnitude of the changes to allow for easier detection.

In contrast to the above works, we impose no requirements on detectability, nor knowledge of
the environment, while achieving rates (at times considerably) faster than

√
ST .

A different body of literature considers more structured changes in reward distributions. In
rested rotting bandits, the reward of an arm decreases depending on its amount of play (Seznec et al.,
2020; Levine et al., 2017; Heidari et al., 2016; Seznec et al., 2019). Slivkins and Upfal (2008) study
a setting where the rewards follow a Brownian motion across time. Several works also studied a
subcase of the above mentioned drifting environment: slowly varying bandits, parametrized by a local
limit on the change of rewards between consecutive rounds (Wei and Srivatsva, 2018; Krishnamurthy
and Gopalan, 2021). Generally, such stronger structural conditions can yield faster rates at times,
often of the form ϕ · log(T ), for some problem dependent quantity ϕ.

Finally, various works combine adversarial and stochastic approaches to simultaneously address
both settings (Bubeck and Slivkins, 2012; Seldin and Slivkins, 2014; Auer and Chiang, 2016).
However, these approaches measure regret to the best arm in hindsight, whereas our results hold for
the stronger dynamic regret.

2. It remains unclear whether log terms are avoidable for adaptive procedures in this setting.
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2. Problem Setting

In our environment, an oblivious adversary decides a sequence of distributions on the rewards. This
subsumes the stochastic switching bandit problem and is also a generalization of the adversarial
bandit problem with deterministic rewards since our reward distributions can have zero variance.

We assume a decision space [K] of K arms with bounded reward distributions: arm a at round t
has reward Yt(a) ∈ [0, 1] with mean µt(a). A (possibly randomized) policy π selects at each round t
some arm πt ∈ [K] and observes reward Yt(πt). The goal is to minimize the dynamic regret, i.e., the
expected regret to the best arm at each round. This is defined as:

R(π, T )
.
=

T∑
t=1

max
a∈[K]

µt(a)− E

[
T∑
t=1

µt(πt)

]
.

In this paper, we rely heavily on analyzing the gaps in mean rewards between arms. Therefore,
for convenience, let δt(a′, a)

.
= µt(a

′) − µt(a) denote the relative gap of arms a to a′ at round t.
Define the worst gap of arm a as δt(a)

.
= maxa′∈[K] δt(a

′, a), corresponding to the instantaneous
regret of playing a at round t. Notice that the above regret is then given as

∑
t∈[T ] E[δt(πt)].

Significant Shifts and Phases. First, we say arm a incurs significant regret on interval [s1, s2] if:
s2∑

t=s1

δt(a) ≥
√
K · (s2 − s1). (⋆)

Intuitively, such an arm is no longer safe to play. Now, if instead (⋆) holds for no interval in a time
period, the arm a incurs little regret over that period. We therefore propose to record a significant
shift only when there is no safe arm left to play. This idea leads to the following recursive definition.

Definition 1 Let τ0 = 1. Then, recursively for i ≥ 0, the (i+ 1)-th significant shift is recorded at
time τi+1, which denotes the earliest time τ ∈ (τi, T ] such that for every arm a ∈ [K], there exists
rounds s1 < s2, [s1, s2] ⊆ [τi, τ ], such that arm a has significant regret (⋆) on [s1, s2].

We will refer to intervals [τi, τi+1), i ≥ 0, as (significant) phases. The unknown number of such
phases (by time T ) is denoted L̃+ 1, whereby [τL̃, τL̃+1), for τL̃+1

.
= T + 1, denotes the last phase.

It should be clear from the above that not all shifts are counted, and in fact not all best arm
switches are counted, since simply having δt(a) > 0, where a was previously a best arm, does not
trigger a significant shift. For further intuition that a procedure need only restart exploration upon a
significant shift, notice that the last arm to trigger (⋆) in a phase I , only incurs regret O(

√
|I|) over

the phase. As long as there exists a safe arm to play, a small regret may be achieved if all other
arms are rejected in time as they become unsafe in a phase. This intuition is verified in the next
proposition.

Proposition 1 (Sanity Check) For each round t belonging to phase [τi, τi+1), define a good arm
set Gt as the set of safe arms, i.e., arms which do not yet satisfy (⋆) on any subinterval of [τi, t]. Then,
consider the following oracle procedure π: at each round t, π plays a random arm a ∈ Gt with
probability 1/|Gt|. We then have:

R(π, T ) ≤ log(K)

L̃∑
i=0

√
K(τi+1 − τi).
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Proof See Appendix A.

It is not hard to show, essentially by Jensen’s, that a rate of the form above is always faster than
O(
√
L̃T ∧ V

1
3T

2
3 ). This is shown for instance in Corollaries 1 and 2.

It is therefore left to design a procedure which mimics the above oracle, i.e., that quickly detects
and rejects unsafe arms, and restarts in time whenever no safe arm is left. Note that we may not be
able to estimate

∑
t δt(a), but since there exists a relatively safe arm a′ in each phase, it’ll be enough

to ensure small regret w.r.t. such a′. Thus, we will need only track
∑

t δt(a
′, a).

3. Results Overview

Our main result is a dynamic regret bound of similar order to Proposition 1 without knowledge of the
environment, e.g., the significant shift times, or the number of significant phases. It is stated for our
algorithm META (Algorithm 1 of Section 4), which, for simplicity, requires knowledge of the time
horizon T . Knowledge of T is easily removed using a doubling trick (see Proposition 2).

Theorem 1 Let π denote the META procedure. Let {τi}L̃+1
i=0 denote the unknown significant shift

times of Definition 1. We then have for some C > 0:

R(π, T ) ≤ C log3(T )
L̃∑
i=0

√
K · (τi+1 − τi).

Remark 1 The log dependence in the rate of Theorem 1 can be improved to

L̃∑
i=0

log(K) log3/2(KT )
√

K · (τi+1 − τi) + log(K) log2(KT ) ·K,

by modifying the threshold in (2) to
√
K log(T ) · (s2 − s1) ∨K2 log2(T ) and adjusting Proposi-

tion 3 in the same manner. This is avoided in the analysis to simplify presentation.

Note that, while the rates above are similar to the oracle rates on Proposition 1, META may not
actually achieve regret

√
|I| over each phase I , but only guarantees

∑
I

√
|I| on aggregate.

The following corollary is immediate from Jensen’s inequality.

Corollary 1 (Bounding by Number of Significant Shifts) Using the same notation of Theorem 1:

R(π, T ) ≤ C log3(T ) ·
√
(L̃+ 1)KT.

Since L̃ ≤ S, we have by Corollary 1 that META recovers the Õ(
√
SKT ) rate of EXP3.S,

however without knowledge of L̃ or S. The rate can in fact be much faster when L̃≪ S.
The Õ(

√
L̃KT ) rate is optimal up to log terms in the worst-case since any algorithm which has

to solve L̃ independent adversarial bandit problems of length T/L̃ can be forced to suffer regret

Ω(
√
KT/L̃) on each phase, following similar arguments as in Auer (2002); Auer et al. (2019).

The next corollary asserts that Theorem 1 also recovers the optimal rate for the drifting environ-
ment setting, i.e., in terms of total-variation V . The proof (Appendix C) follows from the definition
of significant shift (Definition 1) in that the total-variation over every phase [τi, τi+1) can be bounded
below by roughly 1/

√
τi+1 − τi.
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Corollary 2 (Bounding by Total Variation) Let V .
=
∑T

t=2maxa∈[K] |µt(a) − µt−1(a)| be the
unknown total variation of change in the rewards. Using the same notation of Theorem 1:

R(π, T ) ≤ C log3(T )
(√

KT + (KV )1/3T 2/3
)
.

Finally, as stated above, a simple doubling trick removes the need to know T .

Proposition 2 The doubling-horizon version of META has dynamic regret

Õ

(√
(L̃+ 1)KT ∧

(√
KT + (KV )1/3T 2/3)

))
.

4. Algorithm

Algorithm 1: Meta-Elimination while Tracking Arms (META)
Input: horizon T .
Initialize: round count t← 1.
Episode Initialization (setting global variables tℓ,Amaster, Bs,m):

tℓ ← t. // tℓ indicates start of ℓ-th episode.
Amaster ← [K] // Master candidate arm set.
For each m = 2, 4, . . . , 2⌈log(T )⌉ and s = tℓ + 1, . . . , T :

Sample and store Bs,m ∼ Bernoulli
(

1√
m·(s−tℓ)

)
. // Set replay schedule.

Run Base-Alg(tℓ, T + 1− tℓ).
if t < T then restart from Line 2 (i.e. start a new episode).

Algorithm 2: Base-Alg(tstart,m0): elimination with randomized arm-pulls
Input: starting round tstart, scheduled duration m0.
Initialize: t← tstart, At ← [K]. // t and At are global variables.
while t ≤ T do

Play a random arm a ∈ At selected with probability 1/|At|.
Let Acurrent ← At // Save current candidate arm set.
Increment t← t+ 1.
if ∃m such that Bt,m > 0 then

Let m .
= max{m ∈ {2, 4, . . . , 2⌈log(T )⌉} : Bt,m > 0}. // Set maximum replay length.

Run Base-Alg(t,m). // Replay interrupted by child replay.
if t > tstart +m0 then RETURN.
Evict bad arms:
Amaster ← Amaster \{a ∈ [K] : ∃ rounds [s1, s2] ⊆ [tℓ, t) s.t. (2) holds}.
At ← Acurrent\{a ∈ [K] : ∃ rounds [s1, s2] ⊆ [tstart, t) s.t. (2) holds}.

Restart criterion: if Amaster = ∅ then RETURN.
end

As explained earlier in the introduction, a main departure from past work is that, in order to
detect a (significant) shift, we aim to detect changes in aggregate gaps

∑s2
t=s1

δt(a
′, a) between pairs
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Fig. 1: Shown are two replay durations m = m1 or m2, and corresponding replays are shown (gray seg-
ments) at intervals of roughly

√
M/m rounds, where M is the eventual length of an episode. Each replay

(gray segments) aims to detect a 1/
√
m magnitude change, i.e., an average gap 1

m

∑m
t=1 δt(a) of order

1/
√
m. As a recursive procedure, the replays of Base-Alg form a parent-child relationship as depicted.

of arms, over intervals [s1, s2], rather than, e.g., changes in mean rewards µt(a). In particular this
allows us to avoid triggering a restart upon benign changes in distribution.

However, as previously discussed,
∑s2

t=s1
δt(a

′, a) does not directly track the dynamic regret∑s2
t=s1

maxa′ δt(a
′, a). Fortunately, for one, it is a lower bound on the dynamic regret; thus if it

is large, so is the dynamic regret. On the other hand, if maxa′
∑s2

t=s1
δt(a

′, a) remains small for
some a over any [s1, s2], we can rely on the very definition of significant shift to infer that a remains
relatively safe to play: let a′ be the last arm to incur significant regret (⋆) in a phase I , a and a′ must
then have similar regret

√
|I| over I .

Now, as we eliminate arms overtime, estimating
∑s2

t=s1
δt(a

′, a) involves replaying previously
eliminated arms. This has to be done on a careful schedule so as not to overly affect regret when
there is no change; here we simply borrow from similar schedules as in previous work (Auer et al.,
2019; Chen et al., 2019; Wei and Luo, 2021).

We next establish some useful terminology for discussing our approach in more detail.

Terminology and Overview. Our main procedure META operates in episodes, starting each episode
by playing a base algorithm for a possible duration equal to the rounds left till T . Now, a base
algorithm occasionally activates its own base algorithms of varying durations (Line 2 of Algorithm 2),
called replays, aimed at detecting changes according to the aforementioned schedule (stored in the
variable {Bs,m}). We refer to the base algorithm playing at round t as the active base algorithm.
This results in recursive calls, from parent to child instances of Base-Alg, as depicted in Figure 1.

Each instance of Base-Alg maintains at each round t a candidate arm set At, initialized to [K] at
t = tstart and further refined as it eliminates suboptimal arms. Instances of Base-Alg and META share
information, in the form of global variables as listed below:

• All variables defined in META, namely tℓ, t,Amaster, {Bs,m} (see Lines 1–1 of Algorithm 1).

• All arms played at any round t, along with observed rewards Yt(a), and the candidate arm set At.
As such, the size of At can fluctuate throughout an episode as it is reset to [K] by new replays, i.e.,

7
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as a base algorithm is activated by a parent, and again reset as the parent resumes (as maintained
via Acurrent).

By sharing these global variables, any replay can trigger a new episode: every time an arm is
evicted by a replay, it is also evicted from Amaster, essentially the candidate arm set for the current
episode. A new episode is triggered when Amaster is empty, i.e., there is no safe arm left to play.

Eviction Criteria and Critical Estimates. A running intuition so far is that Base-Alg ejects any
arm a from At when it determines that

∑s2
t=s1

δt(a
′, a) is large. Note that any rejected arm is also

immediately rejected by the parent when a child terminates.
Now, the quantity

∑s2
t=s1

δt(a
′, a) is estimated as

∑s2
t=s1

δ̂t(a
′, a), whereby the relative gap

δt(a
′, a) is estimated by importance weighting as:

δ̂t(a
′, a)

.
= |At| ·

(
Yt(a

′) · 111{πt = a′} − Yt(a) · 111{πt = a}
)
. (1)

Note that the above is an unbiased estimate of δt(a′, a) whenever a′ and a are both in At at time
t. It then follows that the difference

∑s2
t=s1

(
δ̂t(a

′, a)− δt(a
′, a)

)
is a martingale that concentrates

at a rate roughly
√
K(s2 − s1) (see Proposition 3).

An arm a is then evicted at round t if, for some fixed C0 > 0 3, ∃ rounds s1 < s2 ≤ t such that:

max
a′∈[K]

s2∑
t=s1

δ̂s(a
′, a) > log(T )

√
C0 · (K(s2 − s1) ∨K2). (2)

5. Regret Analysis

Continuing from the discussion at the beginning of Section 3, for any arm a being played by META,
ideally, the regret to the last arm a′ to incur significant regret in any given phase remains small,
lest a would be evicted before such regret

∑s2
t=s1

δt(a
′, a) is too large over a given interval [s1, s2].

However, we can only reliably estimate such regret via
∑s2

t=s1
δ̂t(a

′, a) when both a, a′ are being
played over [s1, s2] (in fact, this estimator is only unbiased when this is the case).

To this end, we will decompose each phase into bad segments where
∑s2

t=s1
δt(a

′, a) is large (see
Definition 5); we then argue that, while it is safe to miss a few such bad segments, a timely replay of
Base-Alg is likely to occur over some such segment, ensuring both a, a′ are being played, and thus
leading to the detection that a is no longer safe. Note that it is easy to argue that such a perfect replay
will not evict arm a′ since otherwise maxa′′

∑s2
t=s1

δt(a
′′, a′) ≤

∑s2
t=s1

δt(a
′) must be large, i.e., a′

must have significant regret on some interval before the end of the phase. For simplicity, we’ll refer
to such well-timed replays as perfect replays. This is discussed in more detail in Section 5.4.

Preliminaries. Throughout the proof c1, c2, . . . will denote positive constants not depending on T
or any distributional parameters. Recall from Line 1 of Algorithm 1 that tℓ is the first round of the
ℓ-th episode. WLOG, there are T total episodes and, by convention, we let tℓ

.
= T + 1 if only ℓ− 1

episodes occurred by round T .

3. C0 > 0 needs to be sufficiently large, but does not depend on the horizon T or any distributional parameters. An
appropriate value can be derived from the regret analysis.
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We first handle the simple case of T < K. In this case, the bound of Theorem 1 vacuously holds:

L̃∑
i=0

√
K · (τi+1 − τi) ≥

√
K · (τL̃+1 − τ0) =

√
K · (T + 1− 1) > T.

Thus, it remains to show Theorem 1 for T ≥ K.

5.1. Decomposing the Total Regret

Continuing from the earlier discussion, we first decompose the total regret into (i) the regret of the
last arm to incur significant regret in a phase and (ii) the relative regret of META to this last safe arm.
We start by defining notation, to be used throughout, for this last safe arm,

Definition 2 (Last Safe Arm in a Phase) As described in Section 2, there is a safe arm to play in
each phase i, namely the last arm to incur significant regret (⋆) in phase i, which we denote a♯i . We
then let a♯t, t ∈ [0, T ], track a♯i across phases, that is a♯t

.
= a♯i for t ∈ [τi, τi+1).

Then, the total regret decomposes as:

E

[
T∑
t=1

δt(πt)

]
=

T∑
t=1

δt(a
♯
t) + E

[
T∑
t=1

δt(a
♯
t, πt)

]
.

Note that there is no randomness in the first sum of the R.H.S. above since the safe arm a♯t is
non-random for any fixed round t. This first sum is handled similarly to the guarantee for the oracle
procedure of Proposition 1, as each arm a♯i is safe to play in phase i. In particular, showing this sum
is of the desired order follows from taking St = {a♯t} in Lemma 3 of Appendix A.

So, it remains to bound the relative regret of πt to the safe arm a♯t. To this end, we will first show
that the estimation error of the aggregate relative gap over an interval is suitably small.

5.2. Estimating the Aggregate Gap over an Interval

We first recall a Bernstein-type martingale tail bound, namely, Freedman’s inequality, which yields
as tight a concentration rate as necessary for our purpose (see Proposition 3):

Lemma 1 (Theorem 1 of Beygelzimer et al. (2011)) Let X1, . . . , Xn ∈ R be a martingale differ-
ence sequence with respect to some filtration {F0,F1, . . .}. Assume for all t that Xt ≤ R a.s. and
that

∑n
i=1 E[X2

i |Fi−1] ≤ Vn a.s. for some constant Vn only depending on n. Then for any δ ∈ (0, 1)
and λ ∈ [0, 1/R], with probability at least 1− δ, we have:

n∑
i=1

Xi ≤ (e− 2)λVn +
log(1/δ)

λ
.

Letting λ = 1
R ∧

√
log(1/δ)

Vn
in Lemma 1 implies that if Vn ≥ R2 log(1/δ), then the above L.H.S.

is upper-bounded by (e− 1)
√
Vn log(1/δ). On the other hand, if Vn < R2 log(1/δ), then the bound

becomes (e− 1)R log(1/δ). Thus, in any case, Lemma 1 gives us that with probability at least 1− δ:
n∑

i=1

Xi ≤ (e− 1)
(√

Vn log(1/δ) +R log(1/δ)
)
. (3)

9
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We next apply Lemma 1 for the result below, where the estimate δ̂t(a
′, a) is given in (1).

Proposition 3 Let E1 be the event that for all rounds s1 < s2 and all arms a, a′ ∈ [K]:∣∣∣∣∣
s2∑

t=s1

δ̂t(a
′, a)−

s2∑
t=s1

E
[
δ̂t(a

′, a) | Ft−1

]∣∣∣∣∣ ≤ c1 log(T )
(√

K(s2 − s1) +K
)
, (4)

for an appropriately large constant c1, and where F .
= {Ft}Tt=1 is the filtration with Ft generated

by {πs, Ys(πs)}ts=1. Then, E1 occurs with probability at least 1− 1/T 2.

Proof The martingale difference δ̂t(a
′, a)− E[δ̂t(a′, a)|Ft−1] is clearly bounded above by 2K for

all rounds s and all arms a, a′. We also have a cumulative variance bound:
s2∑

t=s1

E
[
δ̂2t (a

′, a) | Ft−1

]
≤

s2∑
t=s1

|At|2 · E
[
111{πt = a or a′} | Ft−1

]
≤

s2∑
t=s1

|At|2 ·
2

|At|
=

s2∑
t=s1

2|At| ≤ 2K · (s2 − s1).

Then, the result follows from (3), and taking union bounds over arms a, a′ and s1, s2.

5.3. Relating Episodes to Significant Phases

We next show that w.h.p. a restart occurs (i.e., a new episode begins) only if a significant shift has
occurred sometime within the episode. As an important consequence, each significant phase straddles
at most two episodes; this fact comes in handy in summing the regret over episodes (Section 5.5).

Recall from Definition 1 that τ1, τ2, . . . , τL̃ are the times of the significant shifts and that
t1, . . . , tT are the episode start times.

Lemma 2 (Restart Implies Significant Shift) On event E1, for each episode [tℓ, tℓ+1) with tℓ+1 ≤
T (i.e., an episode which concludes with a restart), there exists a significant shift τi ∈ [tℓ, tℓ+1).

Proof Fix an episode [tℓ, tℓ+1). Then, by Line 2 of Algorithm 1, every arm a ∈ [K] was evicted from
Amaster at some round s ∈ [tℓ, tℓ+1), i.e. (2) is true for some interval [s1, s2] ⊆ [tℓ, s). It suffices to
show that this implies arm a incurs significant regret (⋆) on [s1, s2].

Suppose (2) triggers the eviction of arm a. By (4) and (2), we have that there is an arm a′ ̸= a
such that (using the notation of Proposition 3) for large enough C0 > 0 and some c2 > 0:

s2∑
t=s1

E
[
δ̂t(a

′, a) | Ft−1

]
≥ c2 log(T )

√
K(s2 − s1) ∨K2. (5)

Next, note that by comparing Lines 2 and 2, we see that any arm which is evicted from At at any
round t ∈ [tℓ, s) must have also been evicted from Amaster in the same round. Thus, if arm a is
evicted from Amaster at round s, then we must have that a ∈ At for all t ∈ [tℓ, s). Then

E[δ̂t(a′, a) | Ft−1] =

{
δt(a

′, a) a′ ∈ At

−µt(a) a′ ̸∈ At

In either case, the above L.H.S. expectation is bounded above by δt(a
′, a) ≤ δt(a). Thus, (5) implies

arm a incurs significant regret (⋆) on [s1, s2] since the L.H.S. is upper-bounded by
∑s2

t=s1
δt(a).
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5.4. Bounding the Regret Within Each Episode

The relative regret of META to the last safe arm within each episode [tℓ, tℓ+1) will be given in terms
of the phases it intersects. To this end, we introduce the following new notation.

Definition 3 Let PHASES(tℓ, tℓ+1)
.
= {i ∈ [L̃] : [τi, τi+1) ∩ [tℓ, tℓ+1) ̸= ∅}, i.e., denote those

phases intersecting episode ℓ.

Then, our main claim is as follows, w.r.t. the event E1 of Proposition 3:

E

tℓ+1−1∑
t=tℓ

δt(a
♯
t, πt)

 ≤ 1

T
+ c3 log

3(T ) · E

111{E1} ∑
i∈PHASES(tℓ,tℓ+1)

√
K · (τi − τi−1)

 . (6)

Expectations above are taken over all randomness in both algorithm and environment. We will be
comparing the safe arm a♯t to any arm META considered safe throughout the episode.

Definition 4 (Last Master Arm) We let aℓ denote any arm surviving at time tℓ+1 − 1 in Amaster.

The relative regret to the last safe arm over episode ℓ is then decomposed into the following two
quantities:

(a) The relative regret of πt w.r.t. the last master arm aℓ.

(b) The relative regret of the last master arm aℓ to last safe arms a♯t.

Namely, we have:

E

tℓ+1−1∑
t=tℓ

δt(a
♯
t, πt)

 = E

tℓ+1−1∑
t=tℓ

δt(aℓ, πt)


︸ ︷︷ ︸

(a)

+E

tℓ+1−1∑
t=tℓ

δt(a
♯
t, aℓ)


︸ ︷︷ ︸

(b)

. (7)

We then proceed to show that each of (a) and (b) are of order (6).
An immediate difficulty is that these two quantities involve interdependencies between the

random variables tℓ, tℓ+1, πt and aℓ, which require careful handling. Our general approach is to first
condition on just tℓ, whereby appropriate surrogates for these various quantities can be bounded
pointwise, i.e., independent of the values of πt, tℓ+1 and aℓ. We go over more detailed intuition
below.

• Bounding (a). Here we first assume the event E1 of Proposition 3, whereby for any a, a′

retained together in a given interval of time [s1, s2], i.e., a, a′ ∈ At, ∀t ∈ [s1, s2], we have that∑s2
t=s1

δt(a
′, a) ≲

√
K(s2 − s1). Now, aℓ, by definition, is any a′ retained at all rounds in episode ℓ,

while δt(a
′, πt) =

∑
a∈[K] δt(a

′, a) · 111{πt = a}. We may therefore reduce the problem to bounding
relative regrets

∑
t δt(a

′, a) · 111{πt = a} · 111{E1}, by carefully considering such intervals of time
where a is also retained. In particular, first an interval from tℓ to tℓ(a), defined as the round at which
a is evicted from Amaster, and then intervals within replays of Base-Alg which bring a back into At.
Importantly, bounding the regret within replays crucially uses the fact that sufficiently few replays
are expected. The details are found in Appendix B.1.
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• Bounding (b). This is most involved, a main difficulty arising from the fact that, if arm a♯t is
evicted from Amaster by some time s1, large aggregate values of

∑s2
t=s1

δt(a
♯
t, aℓ) may go undetected

outside of well-timed replays of Base-Alg. Our main strategy, as discussed at the start of Section
5 is to divide up every phase i intersecting remaining rounds [tℓ, T ] into bad segments where aℓ
incurs significant regret to arm a♯i

.
= a♯t, and argue that few such bad segments may occur before a

well-timed replay occurs that finally evicts aℓ.
Note that such an argument is independent of the episode end time tℓ+1 − 1, so we only need to

condition on tℓ. A difficulty remains in that aℓ is undetermined till time tℓ+1, which we circumvent
by defining bad segments w.r.t. any possible arm a, and arguing that any such a is evicted in time.

Definition 5 Fix tℓ, and let [τi, τi+1) be any phase intersecting [tℓ, T ). For any arm a, define rounds
si,0(a), si,1(a), si,2(a) . . . ∈ [tℓ ∨ τi, τi+1) recursively as follows: let si,0(a)

.
= tℓ ∨ τi and define

si,j(a) as the smallest round in (si,j−1(a), τi+1) such that arm a satisfies for some fixed c4 > 0:

si,j(a)∑
t=si,j−1(a)

δt(a
♯
i , a) ≥ c4 log(T )

√
K · (si,j(a)− si,j−1(a)), (8)

if such a round si,j(a) exists. Otherwise, we let the si,j(a)
.
= τi+1 − 1. We refer to any interval

[si,j−1(a), si,j(a)) as a critical segment, and as a bad segment (w.r.t. arm a) if (8) above holds.

We can restrict attention to bad segments, since outside of this, any critical segment–in fact, at
most one per phase–contributes small regret as (8) is reversed. The following proposition, which
relates the concentration bound of Proposition 3 to (8), establishes crucial guarantees on bad segments.

Proposition 4 (proof in Appendix B.2) Suppose event E1 holds. Let [si,j(a), si,j+1(a)) be a bad
segment with respect to arm a. Fix an integer m ≥ si,j+1(a)− si,j(a). Then:

(i) No run of Base-Alg(tstart,m) with tstart ∈ [si,j(a), si,j+1(a)] ever evicts arm a♯i .

(ii) If a♯i ∈
⋂si,j+1(a)

t=s̃ At, where s̃
.
= ⌈ si,j(a)+si,j+1(a)

2 ⌉, then arm a is evicted by round si,j+1(a).

Note that such an eviction implies crucially an eviction from Amaster. The above guarantees lead to
the following notion of perfect replay, well-timed to evict arm a over a given bad segment.

Definition 6 Given a bad segment [si,j(a), si,j+1(a)), a perfect replay designates a call of
Base-Alg(tstart,m) where tstart ∈ [si,j(a), s̃] (as defined in (ii)) and m ≥ si,j+1(a)− si,j(a)

Corollary 3 Under the conditions of Proposition 4, a perfect replay will evict arm a from Amaster.

All that is left is to show that, for any arm a (in particular, a = aℓ), a perfect replay is scheduled
with high probability before too many bad segments w.r.t. a elapse. This leads to an immediate
bound on the regret of any a to a♯i over the phases [τi, τi+1) intersecting episode [tℓ, tℓ+1). The full
details are found in Appendix B.2.
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5.5. Summing the regret over episodes.

Recall from earlier that there are WLOG T total episodes with the convention that tℓ
.
= T +1 if only

ℓ episodes occur by round T . Then, summing our episode regret bound (6) over ℓ gives:

T∑
ℓ=1

E

tℓ+1−1∑
t=tℓ

δt(a
♯
t, πt)

 ≤ 1 + c3 log
3(T )

T∑
ℓ=1

E

111{E1} ∑
i∈PHASES(tℓ,tℓ+1)

√
K · (τi − τi−1)

 .

Recall here that E1 is the good event over which the concentration bounds of Proposition 3 hold. Then,
using the fact that, on event E1, each phase [τi, τi+1) intersects at most two episodes (Lemma 2), the
sum over ℓ ∈ [T ] on the above R.H.S. becomes:

E

111{E1} T∑
ℓ=1

∑
i∈PHASES(tℓ,tℓ+1)

√
K · (τi − τi−1)

 ≤ 2
L̃∑
i=1

√
K · (τi+1 − τi).

This concludes the proof of Theorem 1.

6. Conclusion

We have shown that it is possible to adapt optimally to an unknown number of significant shifts—a
new notion proposed here—resulting in rates always faster than optimal total variation rates, while at
the same time resolving the open problem of adaptivity to an unknown number of best arm switches
S. Our rates can in fact be much faster than when expressed in terms of S or total variation, as the
notion of significant shift is considerably milder.

The more general problem of adaptive switching regret (Foster et al., 2020), where one aims to
compete against any sequence of arms (as opposed to the best arm at each round), remains open.
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Appendix A. Proof of Proposition 1

We show a slightly more general version of Proposition 1 below which comes in handy in the proof
of Theorem 1.

Lemma 3 Let {St}Tt=1 be a fixed sequence of arm-sets such that St ⊆ Gt and, for any fixed phase
[τi, τi+1), St ⊇ St+1 for all t ∈ [τi, τi+1). Let π be a procedure which, at each round t, plays an
arm uniformly at random from St. We then have

R(π, T ) ≤ log(K)

L̃∑
i=0

√
K · (τi+1 − τi).

Proof Fix a phase [τi, τi+1) and for arm a ∈ [K], let τai be the last round in phase [τi, τi+1) when a
is included in St. WLOG, suppose τ1i ≤ τ2i ≤ · · · ≤ τKi . Then, the regret of a procedure π which
plays arm a ∈ St at round t ∈ [τi, τi+1) with probability 1/|St| is:

τi+1−1∑
t=τi

∑
a∈St

δt(a)

|St|
≤

K∑
a=1

τai −1∑
t=τi

δt(a)

K + 1− a
≤

K∑
a=1

√
K(τai − 1− τi)

K + 1− a
≤ log(K)

√
K(τi+1 − τi),

where we use the fact that |St| ≥ K+1−a for t < τai . Summing the regret over all phases [τi, τi+1)
gives the desired result.

The proof of Proposition 1 follows by taking St = Gt in Lemma 3.

Appendix B. Details for the Proof of Theorem 1

B.1. Bounding E[
∑tℓ+1−1

t=tℓ
δt(aℓ, πt)] (Term (a) of Equation (7))

Following the discussion of Section 5.4, we first reduce the problem to bounding the relative regret∑
t δt(a

′, a). To relate the quantity δt(aℓ, πt) to the relative gap δt(aℓ, a) for a fixed arm a, we first
convert (a) to an alternative form involving the relative regrets to fixed arms.

Proposition 5

E

tℓ+1−1∑
t=tℓ

δt(aℓ, πt)

 = E

tℓ+1−1∑
t=tℓ

∑
a∈At

δt(aℓ, a)

|At|

 . (9)

Proof This indeed follows from first conditioning on on tℓ and carefully applying tower property:

E

tℓ+1−1∑
t=tℓ

δt(aℓ, πt)

 = Etℓ

E
tℓ+1−1∑

t=tℓ

δt(aℓ, πt) | tℓ


= Etℓ

[
T∑

t=tℓ

E [δt(aℓ, πt) · 111{t < tℓ+1} | tℓ]

]

= Etℓ

[
T∑

t=tℓ

E[111{t < tℓ+1} · E[δt(aℓ, πt) | Ft−1, tℓ] | tℓ]

]
,
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where we use the fact that 111{t < tℓ+1} is constant conditional on Ft−1. Next, the innnermost
expectation on the above R.H.S. is:

E[δt(aℓ, πt) | Ft−1, tℓ] =
∑
a∈At

δt(aℓ, a) · P(πt chooses a | Ft−1, tℓ) =
∑
a∈At

δt(aℓ, a)

|At|
.

Plugging the above into our earlier chain of expectations and unconditioning then gives us (9).

Next, we condition on the good event E1 on which recall the concentration bounds of Proposition 3
hold. We also further decompose (9) by partitioning the rounds t to those before arm a is evicted
from Amaster and those after. Suppose arm a is evicted from Amaster at round taℓ ∈ [tℓ, tℓ+1). In
particular, this means arm a ∈ At for all t ∈ [tℓ, t

a
ℓ ). Thus, it suffices to bound:

E

111{E1} ·
 K∑

a=1

taℓ−1∑
t=tℓ

δt(aℓ, a)

|At|
+

K∑
a=1

tℓ+1−1∑
t=taℓ

δt(aℓ, a)

|At|
· 111{a ∈ At}

 . (10)

Suppose WLOG that t1ℓ ≤ t2ℓ ≤ · · · ≤ tKℓ . Then, for each round t < taℓ all arms a′ ≥ a are retained
in Amaster and thus retained in the candidate arm set At. Thus, |At| ≥ K + 1− a for all t ≤ taℓ .

Next, we bound the first double sum in (10), i.e. the regret of playing a to aℓ from tℓ to taℓ − 1,
Applying Proposition 3, since arm a is not evicted from At till round taℓ , on event E1 we have for
some c5 > 0 and any other arm a′ ∈ Amaster through round taℓ − 1 (i.e., a′ ∈ At for all t ∈ [tℓ, t

a
ℓ )):

taℓ−1∑
t=tℓ

E[δ̂t(a′, a) | Ft−1] ≤ c5 log(T )
√
K(taℓ − tℓ) ∨K2.

Next, since a, a′ ∈ At for each t ∈ [tℓ, t
a
ℓ ), we have:

∀t ∈ [tℓ, t
a
ℓ ) : E[δ̂t(a′, a) | Ft−1] = δt(a

′, a).

Thus, we conclude for any such a′:

taℓ−1∑
t=tℓ

δt(a
′, a) ≤ c5 log(T )

√
K(taℓ − tℓ) ∨K2 =⇒

taℓ−1∑
t=tℓ

δt(a
′, a)

|At|
≤

c5 log(T )
√
K(taℓ − tℓ) ∨K2

K + 1− a
,

where the second inequality appeals to |At| ≥ K + 1− a for all t ∈ [tℓ, t
a
ℓ ). Since this last bound

holds uniformly for all a′ ∈ Amaster at round taℓ − 1, it must hold for the last master arm aℓ. In
particular,

taℓ−1∑
t=tℓ

δt(aℓ, a)

|At|
≤ max

a′∈Ata
ℓ
−1

taℓ−1∑
t=tℓ

δt(a
′, a)

|At|
≤

c5 log(T )
√
K(taℓ − tℓ) ∨K2

K + 1− a
.

Then, summing the above R.H.S. over all arms a, we have on event E1:

K∑
a=1

taℓ−1∑
t=tℓ

δt(aℓ, a)

|At|
≤ c5 log(K) log(T )

√
K(tℓ+1 − tℓ) ∨K2.
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Fig. 2: Shown are various replay scheduled durations (gray segments) with indications of when a given arm
a may be reintroduced to At.

Next, we handle the second double sum in (10). We first observe that if arm a is played after
round taℓ , then it must due to an active replay. The difficulty here is that replays may interrupt each
other and so care must be taken in managing the relative regret contribution

∑
t δt(aℓ, a) (which may

be negative) of different overlapping replays.
Our strategy is to partition the rounds when a given arm a is played by a replay after round taℓ

according to which replay is active and not accounted for by another replay. This will allow us to
isolate the relative regret contributions δt(aℓ, a) to (10) of a given replay.

For this purpose, we define the following notation.

Definition 7 Recall that the Bernoulli Bs,m (see Line 1 of Algorithm 1) decides whether Base-Alg(s,m)
is scheduled (and hence has the chance to become active at all).

Call a replay Base-Alg(s,m) proper if there is no other activated replay Base-Alg(s′,m′) such
that [s, s+m] ⊂ (s′, s′ +m′) where Base-Alg(s′,m′) will become active again after round s+m.
In other words, a proper replay is not scheduled inside the scheduled range of rounds of another
replay. For each Base-Alg(s,m), let M(s,m, a) be the last round in [s, s + m] when arm a is
retained by Base-Alg(s,m) and all of its children. Furthermore, let PROPER(tℓ, tℓ+1) be the set
of proper replays scheduled to start before round tℓ+1. Let R(a) be the set of scheduled replays
Base-Alg(s,m) such that its parent Base-Alg has evicted arm a before round s.

We first observe that for each round t when a replay is active, there is a unique proper replay
associated to t. This is either the replay active at round t or the proper replay which was scheduled
most recently before t. Then, for a fixed arm a, we partition the set of rounds t > taℓ where
arm a ∈ At (and hence could be played) into intervals, each initiated by the start of a unique
Base-Alg(s,m) ∈ PROPER(tℓ, tℓ+1) ∪ R(a) and terminated when arm a is evicted or when the
replay in question terminates, i.e. at round M(s,m, a). Note that in this partition of rounds, it is
not enough to merely consider the scheduling of proper replays Base-Alg(s,m) ∈ PROPER(tℓ, tℓ+1)
since non-proper children of proper replays may resample arm a after their parent evicts a. It is also
not enough to consider just the schedules of replays inR(a), which reintroduce arm a, since a proper
replay may not evict a before being pre-empted by another proper replay. This delicate accounting
of the rounds where arm a is resampled is demonstrated in Figure 2.

Then, the second double sum in (10) can be decomposed into a sum over such replays and then a
sum over the rounds where each such replay retains arm a. In other words, we can write the second
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double sum of (10) as:

K∑
a=1

∑
Base-Alg(s,m)∈PROPER(tℓ,tℓ+1)∪R(a)

111{Bs,m = 1}
M(s,m,a)∑
t=s∨taℓ

δt(aℓ, a)

|At|
.

Further bounding the sum over t above by its positive part, we can sum over all Base-Alg(s,m), or
obtain:

K∑
a=1

∑
Base-Alg(s,m)

111{Bs,m = 1}

M(s,m,a)∑
t=s∨taℓ

δt(aℓ, a)

|At|
· 111{a ∈ At}


+

, (11)

where the sum is over all replays Base-Alg(s,m), i.e. s ∈ {tℓ + 1, . . . , tℓ+1 − 1} and m ∈
{2, 4, . . . , 2⌈log(T )⌉}. It then remains to bound the contributed relative regret of each Base-Alg(s,m)
in the interval [s ∨ taℓ ,M(s,m, a)], which will follow similarly to the previous steps. Fix s,m and
suppose taℓ + 1 ≤M(s,m, a) since otherwise Base-Alg(s,m) contributes no regret in (11).

Then, following similar reasoning as before, i.e. combining our concentration bound (4) with the
eviction criterion (2), we have for a fixed arm a:

M(s,m,a)∑
t=s∨taℓ

δt(aℓ, a)

|At|
≤ c5 log(T )

√
Km ∨K2

mint∈[s,M(s,m,a)] |At|
,

Plugging this into (11) and switching the ordering of the outer double sum, we obtain

∑
Base-Alg(s,m)

c5 log(T )
√
Km ∨K2

K∑
a=1

1

mint∈[s,M(s,m,a)] |At|
.

We claim this inner sum over a is at most log(K). For a fixed Base-Alg(s,m), if ak is the k-th arm in
[K] to be evicted by Base-Alg(s,m) or any of its children, then mint∈[s,M(s,m,ak)] |At| ≥ K+1−k.
Thus, our claim follows follows from

∑K
k=1

1
K+1−k ≤ log(K).

Let R(m)
.
= c5 log(K) log(T )

√
Km ∨K2 which is the bound we’ve obtained so far on the

relative regret for a single Base-Alg(s,m). Then, plugging R(m) into (11) gives:

E

111{E1} K∑
a=1

tℓ+1−1∑
t=taℓ

δt(aℓ, a)

|At|
· 111{a ∈ At}

 ≤ Etℓ

E
 ∑

Base-Alg(s,m)

111{Bs,m = 1} ·R(m) | tℓ


= Etℓ

 T∑
s=tℓ+1

∑
m

E[111{Bs,m = 1} · 111{s < tℓ+1} | tℓ] ·R(m)

 .

Next, we observe that Bs,m and 111{s < tℓ+1} are independent conditional on tℓ since 111{s < tℓ+1}
only depends on the scheduling and observations of base algorithms scheduled before round s. Thus,
recalling that P(Bs,m = 1) = 1/

√
m · (s− tℓ),

E[111{Bs,m = 1} · 111{s < tℓ+1} | tℓ] = E[111{Bs,m = 1} | tℓ] · E[111{s < tℓ+1} | tℓ]

=
1√

m · (s− tℓ)
· E[111{s < tℓ+1} | tℓ].
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Plugging this into our expectation from before and unconditioning, we obtain:

E

tℓ+1−1∑
s=tℓ+1

⌈log(T )⌉∑
n=1

1√
2n · (s− tℓ)

·R(2n)

 ≤ c6 log
3(T )Etℓ,tℓ+1

[√
K(tℓ+1 − tℓ) ∨K2

]
. (12)

Then, to bound (a), it suffices to bound
√
K(tℓ+1 − tℓ) ∨K2. First, we claim that every phase

[τi, τi+1) is length at least K/4. Observe by our notion of significant regret, that an arm a incurring
significant regret on the interval [s1, s2] means

s2∑
t=s1

δt(a) ≥
√
K · (s2 − s1) =⇒ 2 · (s2 − s1) ≥

√
K · (s2 − s1) =⇒ s2 − s1 ≥ K/4.

Thus, each significant phase (Definition 1) must be at least K/4 rounds long meaning τi+1 − τi =
(τi+1 − τi) ∨K/4.

Showing (a) is order (6) then follows from conditioning again on E1 in (12) and upper bounding
tℓ+1 − tℓ by the combined length of all phases [τi, τi+1) intersecting episode [tℓ, tℓ+1).

B.2. Bounding E[
∑tℓ+1−1

t=tℓ
δt(a

♯
t, aℓ)] (Term (b) of Equation (7))

To show Proposition 4, we first need an elementary lemma which only depends on the definition of
significant shift (Definition 1).

Lemma 4 Let [si,j(a), si,j+1(a)) be a bad segment, defined with respect to arm a. Then

si,j+1(a)∑
t=

⌈
si,j(a)+si,j+1(a)

2

⌉ δt(a♯i , a) ≥
c4
4
log(T )

√
K

(
si,j+1(a)−

(
si,j(a) + si,j+1(a)

2

))
. (13)

Proof (of Lemma 4) Let s̃ .
=
⌈
si,j(a)+si,j+1(a)

2

⌉
be the midpoint between si,j(a) and si,j+1(a). Then,

we have by (8) in the construction of the si,j(a)’s (Definition 5) that:

si,j+1(a)∑
t=s̃

δt(a
♯
i, a) =

si,j+1(a)∑
t=si,j(a)

δt(a
♯
i , a)−

s̃−1∑
t=si,j(a)

δt(a
♯
i, a)

≥ c4 log(T )
√
K

(√
si,j+1(a)− si,j(a)−

√
s̃− 1− si,j(a)

)
≥ c4

4
log(T )

√
K(si,j+1(a)− s̃), (14)

where the last step is from the elementary fact
√
a+ b−

√
a ≥
√
b/4 for any b ≥ a ≥ 0.

Proof (of Proposition 4) Suppose event E1 (i.e., our concentration bound (4)) holds. For (i), if
Base-Alg(tstart,m) with tstart ≥ si,j(a) evicts arm a♯i before round si,j+1(a), then arm a♯i incurs
significant regret (⋆) on a subinterval of [si,j(a), si,j+1(a)], which is a contradiction to the definition
of arm a♯i .
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For (ii), we first observe E[δ̂t(a♯i , a) | Ft−1] = δt(a
♯
i , a) for any round t ∈ [s̃, si,j+1(a)] if

a♯i , a ∈ At. Then, combining (13) of Lemma 4 with our concentration bound (4), we have that arm a
will satisfy the eviction criterion (2) over interval [s̃, si,j+1(a)].

Next, following the outline of Section 5.4, we bound the the regret of a fixed arm a to a♯i over the
bad segments w.r.t. a. It should be understood that in what follows, we condition on tℓ. First, fix
an arm a and define the bad round s(a) > tℓ as the smallest round which satisfies, for some fixed
c7 > 0: ∑

(i,j)

√
si,j+1(a)− si,j(a) > c7 log(T )

√
s(a)− tℓ, (15)

where the above sum is over all pairs of indices (i, j) ∈ N × N such that [si,j(a), si,j+1(a)) is a
bad segment with si,j+1(a) < s(a). We will show that arm a is evicted within episode ℓ with high
probability by the time the bad round s(a) occurs.

For each bad segment [si,j(a), si,j+1(a)), let s̃i,j(a)
.
=
⌈
si,j(a)+si,j+1(a)

2

⌉
denote the midpoint

of the bad segment and also let mi,j
.
= 2n where n ∈ N satisfies:

2n ≥ si,j+1(a)− si,j(a) > 2n−1.

Next, recall that the Bernoulli Bm.t decides whether Base-Alg(t,m) activates at round t (see Line 1
of Algorithm 1). If for some t ∈ [si,j(a), s̃i,j(a)], Bt,mi,j = 1, i.e. a perfect replay is scheduled,
then a will be evicted from Amaster by round si,j+1(a) (Corollary 3). We will show this happens
with high probability via concentration on the sum

∑
(i,j)

∑
tBt,mi,j where j, i, t run through all

t ∈ [si,j(a), s̃i,j(a)) and all bad segments [si,j(a), si,j+1(a)) with si,j+1(a) < s(a). Note that these
random variables only depend on the fixed arm a, the episode start time tℓ, and the randomness of
scheduling replays on Line 1. In particular, the Bt,mi,j are independent conditional on tℓ.

Then, a Chernoff bound over the randomization of META on Line 1 of Algorithm 1 conditional
on tℓ yields

P

∑
(i,j)

∑
t

Bt,mi,j ≤
E[
∑

(i,j)

∑
tBt,mi,j | tℓ]
2

| tℓ

 ≤ exp

(
−
E[
∑

(i,j)

∑
tBt,mi,j | tℓ]
8

)
.

We claim the error probability on the R.H.S. above is at most 1/T 3. To this end, we compute:

E

∑
(i,j)

∑
t

Bt,mi,j | tℓ

 ≥∑
(i,j)

s̃i,j(a)∑
t=si,j(a)

1√
mi,j · (t− tℓ)

≥ 1

4

∑
(i,j)

√
si,j+1(a)− si,j(a)

s(a)− tℓ
≥ c7

4
log(T ),

where the last inequality follows from (15). The R.H.S. above is larger than 24 log(T ) for c7 large
enough, showing that the error probability is small. Taking a further union bound over the choice
of arm a ∈ [K] gives us that

∑
(i,j)

∑
tBt,mi,j > 1 for all choices of arm a (define this as the good

event E2(tℓ)) with probability at least 1−K/T 3.
Recall on the event E1 the concentration bounds of Proposition 3 hold. Then, on E1 ∩ E2(tℓ),

we must have tℓ+1 − 1 ≤ s(aℓ) since otherwise aℓ would have been evicted by some perfect replay
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before the end of the episode tℓ+1 − 1 by virtue of
∑

(i,j)

∑
tBt,mi,j > 1 for arm aℓ. Thus, by the

definition of the bad round s(aℓ) (15), we must have:∑
[si,j(aℓ),si,j+1(aℓ)):si,j+1(aℓ)<tℓ+1−1

√
si,j+1(aℓ)− si,j(aℓ) ≤ c7 log(T )

√
tℓ+1 − tℓ. (16)

Thus, by (8) in Definition 5, over the bad segments [si,j(aℓ), si,j+1(aℓ)) which elapse before the end
of the episode tℓ+1 − 1, the regret of aℓ to a♯t is at most order log2(T )

√
K · (tℓ+1 − tℓ).

Over each non-bad critical segment [si,j(aℓ), si,j+1(aℓ)) and the last segment [si,j(aℓ), tℓ+1−1),
the regret of playing arm aℓ to a♯i is at most log(T )

√
τi+1 − τi since there is at most one non-bad

critical segment per phase [τi, τi+1) (see (8) in Definition 5).
So, we conclude that on event E1 ∩ E2(tℓ):

tℓ+1−1∑
t=tℓ

δt(a
♯
t, aℓ) ≤ c8 log

2(T )
∑

i∈PHASES(tℓ,tℓ+1)

√
K(τi+1 − τi).

Taking expectation, we have by conditioning first on tℓ and then on event E1 ∩ E2(tℓ):

E

tℓ+1−1∑
t=tℓ

δt(a
♯
t, aℓ)

 ≤ Etℓ

E
111{E1 ∩ E2(tℓ)} tℓ+1−1∑

t=tℓ

δt(a
♯
t, aℓ) | tℓ

+ T · Etℓ [E [111{Ec1 ∪ Ec2(tℓ)} | tℓ]]

≤ c8 log
2(T )Etℓ

E
111{E1 ∩ E2(tℓ)} ∑

i∈PHASES(tℓ,tℓ+1)

√
K(τi+1 − τi) | tℓ

+
K

T 2

≤ c8 log
2(T )E

111{E1} ∑
i∈PHASES(tℓ,tℓ+1)

√
τi+1 − τi

+
1

T
,

where in the last step we bound 111{E1 ∩ E2(tℓ)} ≤ 111{E1} and apply tower law again. This shows (b)
is at most order the R.H.S. of (6). ■

Appendix C. Proof of Corollary 2

The proof of Corollary 2 follows straightforwardly from Definition 1. Recall from Section 3 that
V

.
=
∑T

t=2maxa∈[K] |µt(a) − µt−1(a)| is the total variation of change in the rewards. Then, by
Theorem 1, it suffices to show

L̃∑
i=0

√
K(τi+1 − τi) ≲

√
KT + (KV )1/3 · T 2/3. (17)

Fix a phase [τi, τi+1) such that τi+1 < T + 1. We first bound the total variation over this phase

V[τi,τi+1)
.
=

τi+1∑
t=τi+1

max
a∈[K]

|µt(a)− µt−1(a)|.
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By the definition of significant shift (Definition 1), an arm a = argmaxa∈[K] µτi+1(a) must incur
significant regret (⋆) on the interval [s1, s2] for some τi ≤ s1 < s2 < τi+1, or

s2∑
t=s1

δt(a) ≥
√
K(s2 − s1).

Since
√
s2 − s1 >

∑s2
t=s1

1/
√
τi+1 − τi, there must be a round t ∈ [s1, s2] such that δt(a) ≥√

K/(τi+1 − τi). Let a′ ∈ argmaxa′∈[K] µt(a
′). Then, we have√

K

τi+1 − τi
≤ δt(a) ≤ µt(a

′)− µt(a) + µτi+1(a)− µτi+1(a
′)

≤ |µτi+1(a)− µt(a)|+ |µt(a
′)− µτi+1(a

′)|

≤ 2

τi+1∑
s=t+1

max
a∈[K]

|µs(a)− µs−1(a)|

≤ 2 · V[τi,τi+1)

This gives us a lower bound on the total variation over each interval [τi, τi+1). Then, by Hölder’s
inequality:

L̃∑
i=0

√
K(τi+1 − τi) =

√
K(T + 1− τL̃) +

L̃−1∑
i=0

√
K(τi+1 − τi)

≤
√
KT +

 L̃∑
i=0

√
K

τi+1 − τi

1/3 L̃∑
i=0

(τi+1 − τi)
√
K

2/3

≤
√
KT +

 L̃∑
i=0

2V[τi,τi+1)

1/3

K1/3T 2/3

=
√
KT + (2KV )1/3 · T 2/3.

■
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