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Abstract
This paper considers the problem of finding a tighter upper bound on the minimax regret of pat-
terns, a class used to study large-alphabet distributions which avoids infinite asymptotic regret and
redundancy. Our method for finding upper bounds for minimax regret uses cover numbers with
Kullback-Leibler (KL) divergence as the distance. Compared to existing results by Acharya et al.
(2013), we are able to improve the power of the exponent on the logarithmic term, giving a minimax
regret bound which matches the best known minimax redundancy bound on patterns.
Keywords: Patterns, profiles, minimax regret, universal prediction, Kullback-Leibler divergence

1. Introduction

How well can an estimator predict the next symbol in a sequence when the alphabet size is large?
While there are many variations and nuances of this general question, we will focus on the particular
case when the loss function is log-loss, a function which connects learning problems to ideas of
data compression in information theory. Our main objective is to evaluate minimax regret, which
represents how well an estimator can predict a sequence compared to an oracle who has some
advance knowledge of the sequence (we give the specific details in Section 1.3). A related quantity
to regret is redundancy (an average case version of regret).

A long line of work has been dedicated to studying redundancy and regret for the class of iid
distributions. While it is known that for a fixed alphabet size k that the per-symbol redundancy can
be driven to zero as the length n goes to infinity, this does not hold when k is as large as n (see
Section 1.4 for more discussion). To deal with this, Orlitsky and Santhanam (2004) developed the
notion of patterns, a class which captures large-alphabet distributions (so that we can let k be as
large as n) but still has per-symbol redundancy which goes to zero.

We now present our main result. Formal definitions of all quantities involved are given in
Sections 1.1 to 1.3. Denote the minimax redundancy over a class I as R̄(I) and the minimax regret
as R̂(I). Let the class of patterns on length n sequences be In

Ψ.
The tightest results in the literature for minimax redundancy and minimax regret on the class of

patterns for large n, given by Acharya et al. (2013), are

0.3 · n1/3 ≤ R̄(In
Ψ) ≤ n1/3(log n)4/3 (1)(

3

2 log 2

)
n1/3 ≤ R̂(In

Ψ) ≤ n1/3(log n)4 (2)

where the bounds hold for large n.
In this work, our main result is that we can improve the upper bound for minimax regret so that

it matches the known upper bound for minimax redundancy (up to a multiplicative constant).
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Theorem 1 For some constant c,

R̂(In
Ψ) ≤ cn1/3(log n)4/3 . (3)

This result is not asymptotic. Setting c = 38 gives a bound for all n. Compared to (2), our result
improves the exponent on the logarithmic term.

Our main technique for improving the bound on regret is to use the idea of covering under
Kullback-Leibler (KL) divergence. Generally KL divergence covering bounds are not typically
used since it is difficult to get precise covering numbers (due to probabilities near the boundary).
Also, KL divergence covering, known to be able to compute redundancy bounds, was not previously
known to be a viable approach for computing regret with logarithmic loss, where results are usually
computed by summing over many probability values (Shtarkov’s sum in Orlitsky and Santhanam
(2004)) which are similar to ideas used in Shtarkov et al. (1995). In this work, we are able to find
close-enough covering number upper bounds on the class of probabilities needed to get improved
regret bounds. We are inspired from some of the ideas in Acharya et al. (2013) but we use a very
different approach.

In the next sections, we give the necessary background for understanding our result, specifically
on two concepts: patterns and regret.

1.1. The Class of Patterns and Profiles

Let xn = x1, . . . , xn be a length n sequence which takes symbols from a set X . Since we are
interested in sequences over large alphabets, the set X can be arbitrarily large and possibly even
infinite. The number of possible sequences xn becomes arbitrarily large if the size of X is arbitrarily
large, making it difficult (or nearly impossible) to store or enumerate all possible sequences. Instead,
it is more tractable to enumerate the patterns associated with sequences. In this section, we will
discuss patterns and a related quantity, profiles, which will be important for studying patterns.

Patterns are discussed in Jevtic et al. (2002); Orlitsky and Santhanam (2003, 2004); Orlitsky
et al. (2004); Acharya et al. (2012); Acharya et al. (2013). Given a sequence xn, its pattern is when
each symbol is relabeled with a number based on when the symbol first appears relative to the other
unique symbols. Orlitsky and Santhanam (2004) formally define patterns as the following: Let
A(xn) be the set of symbols appearing in xn. Let the notation xj1 mean the subsequence x1, . . . , xj .
The index of x ∈ A(xn) is

ixn(x)
△
= min{|A(xj1)| : 1 ≤ j ≤ n, xj = x} . (4)

The pattern of xn is given by

patt(xn)
△
= ixn(x1)ixn(x2) . . . ixn(xn) . (5)

For example, patt(banana) = 123232. The letter b is the first to appear, so ibanana(b) = 1. The
letter a is second to appear, so ibanana(a) = 2. All a’s in banana are replaced with 2’s.

When we also disregard the order of relabeled symbols in a pattern, we get a profile. A profile is
the multiset of multiplicities of symbol counts for a given sequence. (Profiles will be the important
quantity we will work with to determine regret of patterns, which we will discuss in Section 1.4.)

To define a profile, we will first define a type. A type is a vector which indicates the number
of times each symbol appears in a sequence or a pattern. Suppose the alphabet size is k. For a
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sequence xn let #{i : xi = j} be the number of indices where xi = j; then the type is a length k
vector where

type(xn)
△
= (#{i : xi = 1},#{i : xi = 2}, . . . ,#{i : xi = k}) . (6)

As an example, if the alphabet size is k = 6, then type(123232) = (1, 3, 2, 0, 0, 0). This is because
the symbol 1 appears once, the symbol 2 appears three times, the symbol 3 appears twice, and the
symbols 4, 5, 6 do not appear at all. (For more information on types, see Cover and Thomas (2006).)
If we take the type of the pattern of xn, since the length of xn is n, the pattern of xn has at most
n different symbols. By default, we will assume that when we take a type on a pattern for any
sequence xn, that the alphabet size is n.

A profile of a sequence xn is the multiset of values in type(patt(xn)). A multiset does not
specify any order on the values, however for the purposes of our notation, we will order the values
in the multiset from greatest to least. This allows us to define a profile for a sequence xn as

prof(xn)
△
= SORT(type(patt(xn))) . (7)

When we denote a profile, we will ignore the trailing zeros. For example, we will write that

prof(banana) = SORT(type(123232)) (8)

= SORT((1, 3, 2, 0, 0, 0)) (9)

= {3, 2, 1} . (10)

In (9), we express the type of 123232 over an alphabet of size 6 since the pattern has length 6.
Notice that in (10), as stated, we removed the zeros from the sorted multiset.

Let Φn be the set of all profiles for length n sequences. As an example, for length 4 sequences,
the complete set of possible profiles are

Φ4 = {{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}} . (11)

Because the number of profiles for each length n is very limited, enumerating profiles is a much
more feasible task than enumerating all the sequences. In the above example, for n = 4, there are
5 possible profiles, much less than the number of all the possible sequences, which is equal to the
alphabet size (assuming it is finite, which it may not be) raised to the fourth power. In general, if
the length of the sequence is n and alphabet size is k, the total number of sequences is kn. The total
number of types is

(
n+k−1
k−1

)
. The number of profiles is even smaller. One of the most important

properties of profiles (and patterns) is that they do not depend on k. Thus, when studying large-
alphabet distributions, using profiles can drastically reduce the complexity.

1.2. Induced Probabilities of Profiles

Suppose we have a distribution PXn on sequences xn. We can then ask, if sequences xn are drawn
randomly according to PXn , what is the probability prof(xn) is particular profile φ ∈ Φn? This is
the induced probability of a profile φ under PXn . Let this be denoted as µPXn (φ), where

µPXn (φ)
△
=

∑
xn:prof(xn)=φ

PXn(xn) . (12)
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We will mostly be concerned with the case when PXn is an iid distribution. Let

P = (p(1), . . . , p(k)) (13)

be a discrete distribution over an alphabet size of k (P is a probability on [k]
△
= {1, . . . , k}), where

p(i) is the probability of symbol i occurring. For each P , we use P⊗n to be the n-fold product
distribution (iid distribution) on sequence xn, e.g.

P⊗n(xn)
△
=

n∏
t=1

p(xt) . (14)

For later parts of this work, we will need to define classes of probability distributions. Our first
class will be for profiles induced by iid distributions:

Definition 2 Let the class of induced iid probabilities for length-n profiles be

In
Ψ = {µP⊗n(·) : P is a probability on [n] } . (15)

Unfortunately, finding the induced distribution over profiles can be very complicated.

1.3. Regret for Online Learning

In this section, we discuss regret and redundancy.
In order to define regret in the context of learning problems, we first define log-loss (short for

logarithmic loss, also called the self-information loss Merhav and Feder (1998)). When evaluating
with log-loss, the task of the estimator is to pick a probability distribution Q on the possible outcome
symbols in some set X . Given the true symbol x ∈ X , the log-loss of the estimator’s prediction Q
is

L(Q, x)
△
= log

1

Q(x)
. (16)

While the above is the loss the estimator incurs, the log-loss alone does not characterize whether
the estimator’s prediction Q was ‘good’ or ‘bad’. To measure how well the estimator’s prediction
is, one method is to compare the log-loss of the estimator’s prediction Q to the true distribution P
of x. This quantity is called redundancy. Redundancy for an estimator’s prediction Q on random
variable X , where X ∼ P , is

R̄(P,Q)
△
= EX∼P [L(Q,X)− L(P,X)] = EX∼P

[
log

1

Q(X)
− log

1

P (X)

]
. (17)

We can also express R̄(P,Q) = D(P∥Q) where

D(P ||Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
(18)

is the Kullback-Leibler (KL) divergence between P and Q. To get the lowest possible redundancy,
the estimator should give Q which represents her belief of the true distribution of x.
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Let I be the class of possible P which can be the true distribution of x. Given an estimator’s
prediction Q, we let the adversary (or nature) choose the P ∈ I with the goal of maximizing the
redundancy. The estimator meanwhile is trying to minimize the redundancy. This gives the minimax
redundancy, first defined by Davisson (1973):

R̄(I) △
= inf

Q
sup
P∈I

R̄(P,Q) . (19)

Redundancy and minimax redundancy both rely on the fact that there is some true distribution P
generating x which we are comparing to. The realizations of x which we are evaluating log-loss is
averaged with respect to this P . Regret is analogous to redundancy, but removes the need to average
over any distribution P ; it is evaluated on an individual realization x. For this to work, the log-loss
of the estimator is compared to the log-loss of the best choice of P in class I which minimizes
L(P, x). To define minimax regret, the adversary chooses the worst value of x to maximize the
regret.

Definition 3 (Regret and Minimax Regret) The regret of prediction Q, class I and outcome x is

R̂(Q, x, I) = L(Q, x)− sup
P∈I

L(P, x) = sup
P∈I

log
P (x)

Q(x)
. (20)

The minimax regret for class I is

R̂(I) = inf
Q

sup
x

R̂(Q, x, I) = inf
Q

sup
x

sup
P∈I

log
P (x)

Q(x)
. (21)

In some other works in the literature, redundancy as we have defined it is called average-case
redundancy (since it averages over some distribution P ) and regret is called worst-case redundancy
(since it is evaluated for the worst realization).

Redundancy and regret are important concepts for universal compression in information the-
ory Davisson (1973); Merhav and Feder (1998); Rissanen (1984). When the true distribution P is
known, the entropy H(P ) is the expected number of bits needed to compress a random x generated
from P . However, in many practical applications P is not known. The redundancy R̄(P,Q) rep-
resents the extra expected number of bits above H(P ) needed to represent x when the compressor
uses Q instead of P to model the distribution of x. In this context, the minimax redundancy gives
a worst-case bound on the expected excess code length independent of P . Minimax regret, which
uses the worst-case x instead of averaging, is a more stringent value than redundancy. It upper
bounds minimax redundancy and represents how many more bits are necessary to compress the
worst possible value. Redundancy and regret also have connections to minimum description length
Barron et al. (1998); Grünwald and Rissanen (2007), gambling Kelly (1956); Feder (1991); Cover
and Ordentlich (1996); Xie and Barron (2000), and sequential prediction Merhav and Feder (1998);
Cesa-Bianchi and Lugosi (2006). Our work is relevant to sequential prediction.

1.4. Regret and Redundancy in Sequential Prediction

In the setting of sequential prediction, the redundancy and regret measure the cumulative perfor-
mance of an estimator in an online game. The estimator is tasked with predicting the probability of
xn one symbol at a time. At each time step t in the online game, the estimator must first give his/her
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best estimate of the probability distribution of symbol xt, after which xt is revealed. The estimator’s
predictions can depend on symbols revealed in the past. The cumulative loss of the estimator is the
sum of the losses at each step. This cumulative loss can be expressed as the log loss on a joint
distribution of the whole sequence of outcomes:

log
1

QXn(xn)
. (22)

Let In be (any arbitrary) class of probability distributions on sequences of length n. The cu-
mulative loss (22) is compared against the log-loss of probability PXn ∈ In. For redundancy, PXn

is the true distribution and we average all possible sequences xn over PXn . For regret, we use
PXn ∈ In which gives the largest probability for the outcome xn.

An important class studied extensively is the class of iid distributions on sequences, which we
denote as In

k , where k specifies the alphabet size and n specifies the sequence length. This is a class
on probabilities over sequences xn.

In
k

△
= {P⊗n : P is a probability on [k]} (23)

A long line of work which includes Krichevsky and Trofimov (1981); Shtarkov (1987); Clarke
and Barron (1990, 1994); Shtarkov et al. (1995); Cover and Ordentlich (1996); Xie and Barron
(2000) determined that

R̄(In
k ) =

k − 1

2
log

n

2πe
+ log

Γk
(
1
2

)
Γ
(
k
2

) + ok(1) (24)

R̂(In
k ) =

k − 1

2
log

n

2π
+ log

Γk
(
1
2

)
Γ
(
k
2

) + ok(1) . (25)

The formulas (24) and (25) are for when the alphabet size k is fixed and the sequence length
n goes to infinity. They do not give satisfying enough solutions for when the alphabet size is large
compared to the sequence length, which is the case of large-alphabet.

For the large-alphabet case, Davisson (1973) observed that while for finite alphabet, per-symbol
minimax redundancy (this is the minimax redundancy divided by the sequence length n) can go to
zero, for this to occur with infinite alphabet, more conditions need to be shown. Following this,
Kieffer (1978) clarified what these conditions are and showed that for an iid source with an infinite
alphabet, per-symbol redundancy does not go to zero. Orlitsky and Santhanam (2004) determined
asymptotic values of minimax regret for iid distributions with various alphabet sizes k relative to n.
They showed that R̂(In

k ) = Θ(n) when k = Θ(n),
Because there is no diminishing per-symbol minimax redundancy in the large-alphabet case, an

alternative direction in the study of redundancy and regret for large-alphabets is to consider patterns
(or profiles) of infinite alphabets sequences.

Since iid distributions assign the same probability to patterns with the same profile, Orlitsky
et al. (2004) showed that the minimax regret of the class of patterns is the same as the minimax
regret of the class of profiles. Hence, we can work directly with profiles to find the minimax regret
of patterns.

In order to find its redundancy and regret, Acharya et al. (2012); Acharya et al. (2013) work
with a Poissonized process on profiles. Prior to their result, Orlitsky et al. (2004) determined an
upper bound using a result of Hardy and Ramanujan (1918) on the number of integer partitions.
This previous upper bound was that R̂(In

Ψ) ≤ π
√

2/3n1/2.

6



REGRET ON PATTERNS USING COVERING

2. Overview of Proof

The rest of this work is dedicated to proving Theorem 1. We split the proof into a few sections. In
Section 3 we discuss KL divergence coverings, a key technique in our proof method. In Section 4,
we show how the problem of minimax regret for the class of profiles is related to finding a spe-
cific divergence covering number. Some key ideas used in this part include the log-sum inequality
to replace working with the complicated distributions over profiles, to working with simpler dis-
tributions. This turns our regret problem over profiles, to a regret problem over a special class of
monotonic probability distributions. Another key idea is to use the Grenander estimator, which gives
the maximum likelihood estimator when the estimators are restricted to be in this special monotonic
class. In Section 5, we show the necessary divergence covering number result for our monotonic
distributions class. This completes the proof.

3. Upper Bounds Using Divergence Covering

Let △k−1 be the probability simplex over size k alphabet. Our procedure for finding our minimax
regret result focuses on using a covering on a subset of △k−1 under KL divergence (18). A covering
is a set of points in a space (we will call them centers) for which all other points in the space are
within a certain distance ε to. Traditionally, the distance is defined with as the Euclidean distance,
but for our purposes, we need the distance to be KL divergence. Note that KL divergence is not a
metric.

Definition 4 (KL Divergence Covering Number) Let k be the alphabet size, ε > 0, and B ∈
△k−1. Define

M(k, ε,B) = inf{m : ∃{Q(1), ..., Q(m) ∈ △k−1} s.t max
P∈B

min
Q(i)

D(P ||Q(i)) ≤ ε} . (26)

We call ε the radius. The elements Q(1), ..., Q(m) are the centers of the covering. We use Q to mean
the set of centers. KL divergence covering is discussed in more detail in Tang (2022).

With a KL divergence covering, we can use a technique of Yang and Barron (1999) to get a
bound on mutual information. Under an information theory interpretation, the minimax redundancy
is equivalent to a channel capacity between the parameter space and observed sequence (first dis-
covered by Gallager (1974)) which can be expressed also as a mutual information. This gives us
a method to bound minimax redundancy with results from divergence covering bounds. To use
divergence covering to get a bound on minimax regret, we need an additional step. This step is
non-trivial since the class of induced iid distributions on profiles is complicated to work with. We
show how to do this in the next section.

Covering numbers, using a different distance than KL divergence, are also used to bound min-
imax regret in Cesa-Bianchi and Lugosi (1999). Covering numbers for KL divergence are used to
determine the capacity of noisy permutation channels in Tang and Polyanskiy (2022).

4. Regret on Monotonic Probabilities

Recall that the induced distribution on profiles sums over all sequences which map to a particularly
profile (12). Since profiles disregard identities of symbols, if P1 and P2 are both probabilities on [n]
which are equivalent up to a permutation of the symbols, then µP⊗n

1
and µP⊗n

2
have the exact same
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value on every profile. Thus, to specify all the induced iid distributions on profiles of length n, it is
enough to define the following class of monotonic probabilities:

Pn
↘ = {Probability P = (p(1), . . . , p(n)) on [n] : p(1) ≥ p(2) ≥ · · · ≥ p(n)} . (27)

Each probability on profiles in In
Ψ (Definition 2) is induced by some probability in Pn

↘.
Minimax regret on profiles is defined as the following, where the distribution µ can be any

distribution on profiles.

R̂(In
Ψ) = inf

µ
sup
φ

sup
µP⊗n∈In

Ψ

log
µP⊗n(φ)

µ(φ)
(28)

= inf
µ

sup
φ

sup
µP⊗n∈In

Ψ

1

µP⊗n(φ)
µP⊗n(φ) log

µP⊗n(φ)

µ(φ)
. (29)

For an upper bound, we can restrict µ to distributions µQXn , those induced by some distribution
QXn on sequences. We chose this so that we can apply log-sum inequality next.

R̂(In
Ψ) ≤ inf

µQXn

sup
φ

sup
µP⊗n∈In

Ψ

1

µP⊗n(φ)
µP⊗n(φ) log

µP⊗n(φ)

µQXn (φ)
(30)

= inf
QXn

sup
φ

sup
P∈Pn

↘

1

µP⊗n(φ)

 ∑
xn:prof(xn)=φ

P⊗n(xn)

 log

∑
xn:prof(xn)=φ P⊗n(xn)∑
xn:prof(xn)=φQXn(xn)

(31)

≤ inf
QXn

sup
φ

sup
P∈Pn

↘

1

µP⊗n(φ)

∑
xn:prof(xn)=φ

P⊗n(xn) log
P⊗n(xn)

QXn(xn)
(32)

≤ inf
QXn

sup
φ

sup
P∈Pn

↘

1

µP⊗n(φ)

∑
xn:prof(xn)=φ

P⊗n(xn)

(
sup
xn

log
P⊗n(xn)

QXn(xn)

)
(33)

= inf
QXn

sup
P∈Pn

↘

sup
xn

log
P⊗n(xn)

QXn(xn)
. (34)

In order to evaluate the expression above, we need to determine which P ∈ Pn
↘ gives the largest

P⊗n(xn) for any xn. For this we need the following:
Let v = (v(1), . . . , v(n)) = type(xn). If v(1) ≥ v(2) ≥ · · · ≥ v(n), then we know that the

P ∈ Pn
↘ which maximizes P⊗n(xn) is where P = v/n. However, when v does not have this

monotonic form, we need to determine which P ∈ Pn
↘ is the maximum likelihood estimator for v.

Define

P↘
ML(x

n) = P↘
ML(v) = max

P=(p(1),...,p(n))∈Pn
↘

n∏
i=1

p(i)v(i) . (35)

Finding P↘
ML(x

n) is a well known problem. The solution is given by the Grenander estimator
developed in Grenander (1956). The Grenander estimator gives us the following lemma:

Lemma 5 Fix v to be the type of xn (e.g.
∑n

i=1 v(i) = n). There exists a vector u = (u(1), . . . , u(n))
where

8
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• u(1) ≥ u(2) ≥ ... ≥ u(n)

•
∑n

i=1 u(i) = n

• Let J (u0) be all indices i where u(i) = u0 for some value u0. Then

u0 =

∑
i∈J (u0)

v(i)

|J (u0)|
(36)

so that

P↘
ML(v) = P↘

ML(u) . (37)

Note that (37) gives the likelihood of xn where type(xn) = v under the maximum likelihood
estimator. The maximum likelihood estimator itself is given by u.

Expression (36) in Lemma 5 gives the local average property of the Grenander estimator. Be-
cause of the local average property we know that

u(i) =
z

r
(38)

for z ∈ Z≥0 and r ∈ [n−1]. This is because u(i) is an average of integers and in fact it is an average
of less than n integers. If it were an average of all n integers, then u(i) = 1, so a denominator of
n is not necessary. The proof of Lemma 5, more details on the Grenander estimator and the local
average property is given in Appendix A.

There are two important points we need from Lemma 5. First, is the form of u. For any xn, let
v = type(xn). Let u be the vector given by Lemma 5 for v.

sup
P∈Pn

↘

log
P⊗n(xn)

QXn(xn)
= log

P↘
ML(v)

QXn(xn)
= log

P↘
ML(u)

QXn(xn)
= log

∏n
i=1

(
u(i)
n

)u(i)
QXn(xn)

. (39)

Now suppose that there is a set Q which is a divergence covering of Pn
↘ with radius ε. For any

u, we let Q̃ ∈ Q be the probability which covers u/n, i.e.

Q̃ = argminQ∈QD(u/n∥Q) ≤ ε . (40)

We will add an additional constraint on Q: For Q̃ = (q̃(1), . . . , q̃(n)) ∈ Q which covers P =
(p(1), . . . , p(n)), for indices i where p(i) = p(i+ 1), we require that q̃(i) = q̃(i+ 1).

Let Q̄ be such that

Q̄Xn(xn) =
1

|Q|
∑
Q∈Q

Q⊗n(xn) . (41)

While we do not know the value of QXn which achieves the infimum in (34), we can instead
use Q̄Xn(xn) and get an upper bound. Then (34) becomes
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inf
QXn

sup
P∈Pn

↘

sup
xn

log
P⊗n(xn)

QXn(xn)
≤ sup

xn
log

∏n
i=1

(
u(i)
n

)u(i)
Q̄Xn(xn)

(42)

= sup
xn

log

∏n
i=1

(
u(i)
n

)u(i)
1
|Q|
∑

Q∈QQ⊗n(xn)
. (43)

Since Q̃⊗n(xn) ≤
∑

Q∈QQ⊗n(xn), we have

log

∏n
i=1

(
u(i)
n

)u(i)
1
|Q|
∑

Q∈QQ⊗n(xn)
≤ log |Q|+ log

∏n
i=1

(
u(i)
n

)u(i)
Q̃⊗n(xn)

(44)

= log |Q|+ log

∏n
i=1

(
u(i)
n

)u(i)
∏n

i=1 q̃(i)
v(i)

(45)

= log |Q|+ log

∏n
i=1

(
u(i)
n

)u(i)
∏n

i=1 q̃(i)
u(i)

. (46)

The inequality in (44) is the key inequality used in Yang and Barron (1999). In the last equality (46),
we chose Q̃ to cover u/n. This means when u(i) = u(j), we have that q̃(i) = q̃(j). For the set of
indices J where u(i) are the same, we have that

∑
i∈J u(i) =

∑
i∈J v(i). Thus,

∏
i∈J q̃(i)v(i) =∏

i∈J q̃(i)u(i). Continuing with (46),

log |Q|+ log

∏n
i=1

(
u(i)
n

)u(i)
∏n

i=1 q̃(i)
u(i)

= log |Q|+
n∑

i=1

u(i) log

(
u(i)
n

)
q̃(i)

(47)

= log |Q|+ n
n∑

i=1

u(i)

n
log

(
u(i)
n

)
q̃(i)

(48)

= log |Q|+ nD(u/n∥Q̃) (49)

= log |Q|+ nε (50)

and thus

R̂(InΨ) ≤ sup
P∈Pn

↘

sup
xn

log
P⊗n(xn)

Q̄Xn(xn)
(51)

≤ sup
xn

(log |Q|+ nε) (52)

= log |Q|+ nε . (53)

To get an upper bound on minimax regret for profiles (and patterns), it remains to find a covering
of the space Pn

↘ with the additional constraint that if Q̃ covers P , Q̃ is equal on indices for each

10
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P has equal values on. The second fact we use from Lemma 5 is that the minimum non-zero value
of u(i)/n is some positive integer divided by n(n − 1). If p(i) is not zero, then p(i) > 1/n2. Our
covering only needs to look at P of this type. We formally define this class of distributions which
is a subset of the class Pn

↘ but with a lower bound on the minimum non-zero value:

Definition 6 (Monotonic Class with Minimum) Let

Pn
↘{α} ={Probability P = (p(1), . . . , p(n)) on [n] : p(1) ≥ p(2) ≥ · · · ≥ p(n)

and ∀i, p(i) ≥ α or p(i) = 0} . (54)

5. Divergence Covering of Monotonic Distributions with a Minimum

For the next lemma, we will look at covering the subset Pn
↘{1/n2} at the radius necessary for our

result.

Lemma 7 For the set of probabilities Pn
↘{1/n2}, we have that

M

(
n, c0

log2/3 n

n2/3
,Pn

↘{1/n2}

)
= nc1n1/3 log1/3 n (55)

for some absolute constants c0 and c1. This covering also satisfies the condition that if P =
(p(1), . . . , p(n)) is covered by some Q = (q(1), . . . , q(n)) and p(i) = p(i+1), then q(i) = q(i+1).

This proof is inspired by some of the ideas Acharya et al. (2013) used to prove (2).
Proof

We want to choose a set Q of centers for a divergence covering for some appropriate radius ε on
Pn
↘{1/n2}. We generate the centers for our covering by grouping ‘similar’ probability distributions

together and then providing a center for each group. Each probability distribution P ’s values p(x)
will be divided among t + 1 tiers T1, . . . , Tt and Tzero (we will define t later) according to their
magnitude; this division defines the tier structure of distribution P , and distributions with the same
tier structure (the same number of values in each tier) are ‘similar’ and hence placed in the same
group. We define the tiers as follows:

For i ∈ [t],

x ∈ Ti if p(x) ∈

(1− log2/3 n

n1/3

)i

,

(
1− log2/3 n

n1/3

)i−1
 (56)

and

x ∈ Tzero if p(x) = 0 . (57)

To ensure that all x belong to some tier (recall either p(x) ≥ 1/n2 or p(x) = 0), it is sufficient
that the last tier Tt is such that (

1− log2/3 n

n1/3

)t

≤ 1

n2
. (58)

11
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If we let (ignoring integer constants, since at most it affects the result by a constant),

t =
n1/3 log(n2)

log2/3 n
= 2n1/3 log1/3 n (59)

then (
1− log2/3 n

n1/3

)n1/3 log(n2)

log2/3 n

≤ (e−1)log(n
2) ≤ 1

n2
(60)

For each P ∈ Pn
↘{1/n2}, the tier structure of P is defined as T (P ) = (a1, . . . , at, azero) where

aj = |{x : x ∈ Tj}|. Because P is sorted by value, knowing T (P ) specifies exactly which x
belongs to each tier. If T (P1) = T (P2), then P1 and P2 must have the same values of x in each
tier (because P1(x) and P2(x) are sorted). The tier structure defines an equivalence class on the
probabilities and we place P1 and P2 in the same group if T (P1) = T (P2).

Let G be the set of all groups. We will assign one QG ∈ Q to each group G ∈ G. We want to
have that ∀P ∈ G, the QG assigned is such that

D(P ||QG) ≤ 30
log4/3 n

n2/3
. (61)

and thus set ε = 30 log4/3 n
n2/3 .

To define the probability QG = (qG(1), . . . , qG(n)) for each group G, we pick any (arbitrary)
PG = (pG(1), . . . , pG(n)) ∈ G and let

qG(x) =
1

|Tj |
∑
y∈Tj

pG(y) if x ∈ Tj (62)

for all x ∈ [n]. Since for every P ∈ G, the same symbols x are in the same tiers, if x ∈ Ti, then for
all P ∈ G (including PG)

p(x) ∈

(1− log2/3 n

n1/3

)i

,

(
1− log2/3 n

n1/3

)i−1
 . (63)

and thus

qG(x) ∈

(1− log2/3 n

n1/3

)i

,

(
1− log2/3 n

n1/3

)i−1
 . (64)

(So p(x) and qG(x) should be pretty close.) For x ∈ Tzero, qG(x) = p(x) = 0 for every p ∈ G. For
every p ∈ G, if p(x) = p(y), then x and y will be in the same tier. If x and y are in the same tier,
then qG(x) = qG(y).

For each QG, we want compute the KL divergence to any P ∈ G. We need to define some
helpful quantities first. Fix some P . For each tier Ti, for i ∈ {[t] ∪ zero}, define

βi(P ) =
∑
x∈Ti

p(x) . (65)

12
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Naturally
∑

i∈{[t]∪zero} βi(P ) = 1.
Let mi(P ) be the number of symbols in Ti. Then for i ∈ [t], we can bound

mi(P ) ≤ βi(P )(
1− log2/3 n

n1/3

)i . (66)

This uses the fact that the smallest possible value of p(x) is where x ∈ Ti is given by
(
1− log2/3 n

n1/3

)i
.

Now we can compute the KL divergence.

D(P ||QG) ≤
∑
x

(p(x)− qG(x))2

qG(x)
(67)

≤
∑
i∈[t]

mi(P )

((
1− log2/3 n

n1/3

)i
−
(
1− log2/3 n

n1/3

)i−1
)2

(
1− log2/3 n

n1/3

)i . (68)

In (67) we use an upper bound on KL divergence given in Csiszar and Talata (2006). Next we use
(66).

D(P ||QG) ≤
∑
i∈[t]

βi(P )(
1− log2/3 n

n1/3

)i
(
1− log2/3 n

n1/3

)2i−2 (
1− log2/3 n

n1/3 − 1
)2

(
1− log2/3 n

n1/3

)i (69)

=
∑
i∈[t]

βi(P )

(
− log2/3 n

n1/3

)2
(
1− log2/3 n

n1/3

)2 (70)

=

∑
i∈[t]

βi(P )



(
− log2/3 n

n1/3

)2
(
1− log2/3 n

n1/3

)2
 (71)

=
log4/3 n

n2/3
(
1− log2/3 n

n1/3

)2 . (72)

The quantity 1/
(
1− log2/3 n

n1/3

)2
in (72) has a maximum occurring at n = 7, where

1(
1− log2/3 n

n1/3

)2 ≤ 29.1542 . (73)

This shows (61).
Next, we want to count the total number of groups, i.e. determine |G|. We do this by counting

the number of possible values of T (P ). There are t + 1 different tier levels. While it is true that
tiers corresponding to larger values of p(x) cannot possibly contain too many x’s, for the purposes
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of getting an upper bound, we assume the values ai in each T (P ) can be of any value between 0
and n. Then

|G| =
(
n+ 1 + t+ 1

t+ 1

)
(74)

≤
(
e(n+ 1 + t+ 1)

t+ 1

)t+1

(75)

≤

(
e(n+ 2n1/3 log1/3 n+ 2)

2n1/3 log1/3 n+ 1

)2n1/3 log1/3 n+1

(76)

≤ (e2n)2n
1/3 log1/3 n+1 (77)

≤ n8n1/3 log1/3 n (78)

Finally, |Q| = |G|, because we have one center for every group.

To prove Theorem 1:
Using (53) and Lemma 7,

R̂(In
Ψ) ≤ log |Q|+ nmin

Q∈Q
max

P∈Pn
↘{1/n2}

D(P ||Q) (79)

= log
(
n8n1/3 log1/3 n

)
+ n · 30log

2/3 n

n2/3
(80)

= 8n1/3 log4/3 n+ 30n1/3 log2/3 n (81)

≤ 38n1/3 log4/3 n . (82)

Remark 8 The constant term in (82) is generous since it is an upper bound for all n. In the limit
as n → ∞, we can replace the constant with 2.
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Appendix A. Grenander Estimator

Suppose we draw n samples from a discrete set X = [k]. In these draws, symbol i occurs v(i) times
out of the n draws. The maximum likelihood estimator (MLE) for the probability of the n draws is
defined as

PMLE
△
= argmaxP

k∏
i=1

p(i)v(i) . (83)
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A basic fact is that the empirical distribution of the samples gives the MLE, that is, if PMLE =
(pMLE(1), . . . , pMLE(n)), then for each i ∈ X we have pMLE(i) = v(i)/n.

But suppose that we want the MLE but with an additional shape constraint. Let this constraint
be the monotone constraint given by Pk

↘ (see (27)), where we must have

pMLE(1) ≥ pMLE(2) ≥ · · · ≥ pMLE(k) . (84)

The PMLE meeting this constraint for these n discrete samples turns out to be the Grenander
estimator, developed in Grenander (1956). The Grenander estimator is formally described as the
left derivative of the least concave majorant (LCM) of the cumulative distribution of the data points.
(This property applies to both continuous and discrete data, though we are only concerned with the
discrete case.) For our discrete data problem, to define the Grenander estimator, we use the notation
of Robertson (1988) and first define the function

W (i) =
i∑

j=1

v(j)

n
. (85)

Define W (0) = 0.
Let W ∗(i) be the infimum, at each point i (integer or non-integer), of all concave functions

which lie entirely above W (this is equivalent to W ∗ being the the upper convex hull of W ). The
function W ∗ is the LCM. Since W ∗ is concave, there are well-defined left-derivatives at each point
j which we denote as w∗(i).

We make the following observations about w∗ at integer points i:

• If W (i) < W ∗(i), then w∗(i) = w∗(i + 1). If W (i) = W ∗(i), due to concavity, w∗(i) ≥
w∗(i+ 1). Thus, we must have that w∗(i) ≥ w∗(i+ 1) for all i.

• W (k) = W ∗(k) and W (0) = W ∗(0).

• We can compute w∗(i) = W ∗(i)−W ∗(i−1). This gives that
∑k

j=1w
∗(j) =

∑k
i=1W

∗(i)−
W ∗(i− 1) = W ∗(k) = 1. Hence, w∗ = (w∗(1), . . . , w∗(k)) is a probability distribution on
[k].

The Grenander estimator is w∗.

Proposition 9 The MLE PMLE with constraint (84) is equal to w∗.

Proposition 9 was shown in Grenander (1956) for continuous data points (where Grenander used
it to study estimating the laws of mortality.) Proposition 9 is given in Jankowski and Wellner (2009)
specifically for discrete data. The Grenander estimator on discrete data is equivalent to the isotonic
regression given in Robertson (1988). Modification of the proof in Robertson (1988) can be used to
prove Proposition 9.

The form of w∗ naturally gives it the local average property. This property is described below:

Corollary 10 If the set J is a maximal set of adjacent symbols i that have the same value of w∗(i),
then ∑

i∈J
w∗(i) =

∑
i∈J

v(i)

n
(86)

=⇒ w∗(i) =
1

|J |
∑
i∈J

v(i)

n
(87)
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The value of w∗(i) is the average of the frequency, v(i)/n, over an adjacent set of values, hence
why it is a local average.
Proof For a set J , let ia be the first (smallest) index in the set and ib be the last (largest) index in
the set. All points in J have the same left-derivative and therefore W ∗ between ia − 1 and ib is
linear. At ia − 1 and ib, the slope of W ∗ changes. Since W ∗ is an upper convex hull, it must be that
W (ia − 1) = W ∗(ia − 1) and W (ib) = W ∗(ib). The slope between ia − 1 and ib is then

W ∗(ib)−W ∗(ia)

ib − ia + 1
=

W (ib)−W (ia − 1)

ib − ia + 1
=

∑ib
i=ia

v(i)
n

|J |
(88)

which is the value of w∗(i) for all i ∈ J .

Proof of Lemma 5
Let w∗ be the Grenander estimator with k = n and let u = nw∗. Based on the properties of

w∗, we can directly get that u(1) ≥ · · · ≥ u(n) and
∑n

i=1 u(i) = n. We get (36) from Corollary
10.

Since w∗ = u/n is the MLE under the shape constraint as given by Proposition 9,

P↘
ML(v) =

n∏
i=1

(
u(i)

n

)v(i)

=
n∏
u

(u
n

)∑
i∈J (u) v(i)

(89)

Next we apply (36):

n∏
u

(u
n

)∑
i∈J (u) v(i)

=

n∏
u

(u
n

)∑
i∈J (u) u

=

n∏
i=1

(
u(i)

n

)u(i)

= P↘
ML(u) . (90)

This shows (37).
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