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Abstract

This work provides test error bounds for iterative fixed point methods on linear predictors — specif-
ically, stochastic and batch mirror descent (MD), and stochastic temporal difference learning (TD)
— with two core contributions: (a) a single proof technique which gives high probability guaran-
tees despite the absence of projections, regularization, or any equivalents, even when optima have
large or infinite norm, for quadratically-bounded losses (e.g., providing unified treatment of squared
and logistic losses); (b) locally-adapted rates which depend not on global problem structure (such
as conditions numbers and maximum margins), but rather on properties of low norm predictors
which may suffer some small excess test error. The proof technique is an elementary and versatile
coupling argument, and is demonstrated here in the following settings: stochastic MD under real-
izability; stochastic MD for general Markov data; batch MD for general IID data; stochastic MD
on heavy-tailed data (still without projections); stochastic TD on approximately mixing Markov
chains (all prior stochastic TD bounds are in expectation).

1. Introduction

This work studies iterative fixed point methods resembling (stochastic) gradient descent, specifically

gradient descent (GD), wjy1 1= w; — NGi+1, Q8
mirror descent (MD), w;y1 := argmin {(ngi+1, w) + Dy(w,w;) : w e S}, (2)
temporal difference learning (TD), w;y1 := w; — NGit1(w;), 3)

where g;11 is stochastic or batch gradient, GG;, 1 is a superficially similar affine mapping related to
the Bellman error in reinforcement learning, and D, is a Bregman divergence. (Details will come
in Section 1.1.)

The goal here is to control the excess risk of these procedures with high probability, mean-
ing to ensure that 7 ", _, R(w;) — R(wref) is small, where the risk R in the simplest setting is
R(w) = EXg l(y,w'x) with £ a quadratically-bounded loss, which roughly speaking means
|0wl(y, w )|« can be related to ||w — wyet|| (cf. Section 1.1), and wys is some good (but not
necessarily optimal) reference solution. So far, this is not too outlandish, however the focus of the
work is (a) a single proof technique for all methods and settings without projections (e.g., S = R?
in MD in eq. (2)), constraints, or regularization, despite the possibility of all minimizers being at
infinity, as is often the case in practice, and (b) rates which depend not on global structure, but rather
on the behavior of reasonably good but low norm predictors. In more detail, these two contributions
and their relationship with prior work is as follows.
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(a) Squared loss, step size n = 0.1. (b) Logistic loss, step size n = 1.

Figure 1: 100 parallel runs of 400 SGD iterations on the same data distribution in R? using the

squared loss (cf. Figure 1(a)) and the logistic loss (cf. Figure 1()). The distribution con-
sists of two “likely” upper data points (sampled with probability 90%), and two “rare”
lower data points (sampled with probability 10%), all with common label +1. Three
types of trajectory are depicted: “population OPT” is the curve of optimal constrained
solutions {arg min |, |<B R(w) : B > 0}, “population GD” is GD applied to the popu-
lation risk R, and “stochastic GD” uses a fresh sample for each update. In all cases, the
methods procrastinate convergence towards their asymptotic destinations, respectively
the minimum norm and maximum margin solutions, and instead spend a good deal of
time heading upwards, specifically towards low norm, low risk solutions. Analyzing this
early trend is a goal of the present work, which is achieved through appropriate choices
of wrer, as detailed in the illustrative examples in Sections 2 and 3.

1. Single coupling-based proof technique. The core contribution is a single proof technique

which can handle MD (which generalizes GD) and TD, obtaining excess risk rates with high
probability without projections, constraints, regularization, or equivalents. Despite the exten-
sive history and development of these methods throughout machine learning and optimiza-
tion (Robbins and Monro, 1951; Nemirovski and Yudin, 1983; Bottou, 2010; Kingma and
Ba, 2014), prior work either requires projections, regularization, and constraints (Rakhlin
et al., 2012; Harvey et al., 2019), or makes noise and comparator assumptions which effec-
tively necessitate bounded iterates (Li and Orabona, 2020), or it provides bounds only in
expectation (Hardt et al., 2016), or is tailored to specific data and loss settings, for instance
exponentially-tailed losses and linearly separable data (Soudry et al., 2017; Ji and Telgarsky,
2018b; Shamir, 2021), to mention a few. By contrast, the present work not only handles all
such cases, it does so with an elementary and unified coupling-based proof technique for any
quadratically-bounded loss, or more generally fixed point mappings with quadratic growth,
such as the TD update, which has no prior high probability analysis (even with projections).
This lack of projections is relevant in contemporary usage, since deep learning typically has
minimal or nonexistent regularization (Neyshabur et al., 2014; Zhang et al., 2017).
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2. Locally-adapted rates. Even if there is some natural constraint or regularization in effect
within the optimization procedure, the optimal solution may be unsatisfactory: e.g., it may
simply be very large, and competing with it could require a large number of samples. On
the other hand, the present proofs and rates only rely upon properties of reasonable reference
solutions, which may fail to be optimal, but instead have much lower norm.

As an illustration, consider Figure 1, which runs stochastic GD on a single set of points with
either the squared loss (y,9) — (y — 9)%/2 (cf. Figure 1(a)), or the logistic loss (y, 7)) +
In(1+4exp(—yy)) (cf. Figure 1(b)). Many trajectories of stochastic GD are plotted along with
GD run directly on the population risk R (labeled “population GD”), as well as the curve of
optimal constrained solutions {arg min,,<p R(w) : B > 0} (labeled “population OPT”).
All trajectories take a long time to rotate towards their asymptotic targets (respectively the
minimum norm and max margin solutions); their early behavior is better characterized by
rather different low norm but higher risk comparators.

In detail, the concrete contributions and organization of this work are as follows.

1. Theorem 5: stochastic MD with realizable IID data. This first guarantee is for stochastic
MD (mirror descent with stochastic gradients, as detailed in Section 1.1) on IID realizable
data; as discussed in Section 2, realizability is encoded as the existence of wys With popu-
lation risk roughly O(1/t). Sections 1.1 and 2.1 will discuss this condition, and Section 2
will provide an outline of the general coupling-based proof technique used throughout this
work. This realizable setting not only generalizes margin-based analyses for exponentially-
tailed losses on linearly-separable data (Ji and Telgarsky, 2018b; Shamir, 2021), it extends
them to control the convex risk and not just misclassification risk, to settings with only ap-
proximate linear separability, and lastly handles realizable regression settings, where 1/t high
probability rates seem missing in the literature (even with projection).

2. Theorem 8 and Theorem 9: stochastic MD and stochastic TD on Markovian data. Drop-
ping the realizability assumption, Section 3 analyzes stochastic MD with not just IID but
Markovian data, and uses the same proof technique to handle the standard TD approximate
fixed point method used extensively in reinforcement learning (Sutton, 1988). For mirror de-
scent, the closest prior work used projections (Duchi et al., 2012). For TD, there appear to
be no prior high probability bounds, even with projections; the closest prior projection-free
analysis is in expectation only (Hu et al., 2022), and most prior works make use of not only
projections, but also full rank and mixing assumptions (Bhandari et al., 2018). For MD, the
squared loss is considered as an illustrative example, where stochastic GD is shown to adapt
to local structure in the strong sense of competing with singular value thresholding.

3. Theorem 10 and Theorem 11: heavy-tailed and batch data. As a brief auxiliary inves-
tigation to demonstrate the proof technique, rates are given in Section 4 for MD on batch
and heavy-tailed data. Once again, prior work either requires projections, or violates one of
the other goals (e.g., being custom-tailored to exponential-tailed losses (Zhang and Yu, 2005;
Telgarsky, 2013; Soudry et al., 2017)).

Rounding out the organization, this introduction concludes with notation and setting in Sec-
tion 1.1, and the work itself concludes with further related work and open problems in Section 5.
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1.1. Notation

Loss functions. In order to handle regression and classification settings simultaneously, each loss
¢ : R x R — R>( will have an auxiliary scalar function ¢ with exactly one of two forms: either / is
a classification (margin) loss {(y, §) = {(sgn(y)7), where sgn(y) := 21[y > 0] —1 € {—1,+1}, or
{ is a regression (distance) loss ((y, ) = 17 (y — 9). Subgradients of ¢ will always be in the second

argument, and always exist since £ is always convex in this work. The core loss property, quadratic
boundedness, is defined as follows.

Assumption 1.1 A loss { is (C, C2)-quadratically-bounded (for nonnegative C,C2) if
Uy, 9l < Cr+Callyl +19), V.9

This property is quite pessimistic in the sense that stronger variants can be satisfied for all
standard losses. Even so, its worst-case nature demonstrates the utility of the core proof technique
(which doesn’t explode even for this formulation), and captures standard losses via the following
lemma. (Throughout this work, ||0f(w)|| := sup{||g|| : g € df(w)}, and ¢’ means O¢.)

Lemma 1 [f( is a-Lipschitz (i.e., sup, |00(2)| < ), then { is (a,0)-quadratically-bounded. If ¢
is B-smooth (i.e., |l'(z) — U'(2)| < Blz — 2| Vz, 2), then { is (|0£(0)], 8)-quadratically-bounded.

A second crucial property is self-boundedness, which is used in the realizable rates of Section 2.
Definition 2 A loss function { is p-self-bounding if ¢ satisfies ¢’ (2)? < 2pZ(z) forall z € R.

Notably, the two primary losses in machine learning, the logistic and squared losses, are both
self-bounding and quadratically-bounded.

Lemma 3 The squared loss ((y, ) := %(y—9)? is 1-smooth, 1-self-bounding, and (0, 1)-quadratically-
bounded, whereas the logistic loss ((y,y) = In(1 + exp(—yy)) is (1/4)-smooth, 1-Lipschitz,
(1/2)-self-bounding, and (1, 0)-quadratically-bounded.

A few remarks on self-bounding are in order. Firstly, the definition has appeared before (Zhang,
2004), however in a generalized form and with a calculation for the logistic loss which implies it
is 0-self-bounding under the present definition; that the logistic loss is 1-self-bounding was first
observed in (Telgarsky, 2013), and is crucial for obtaining 1/¢ rates under realizability. Secondly,
it may seem that self-bounding is simply a reformulation of smoothness, but firstly it is satisfied for
certain nonsmooth losses (in the sense of bounded second derivatives), such as the exponential loss,
and secondly replacing self-boundedness with smoothness breaks the current proofs.

Probabilities, expectations, and Markov chains. When data arrives IID, then EX and PR will
respectively denote expectations and probabilities. Correspondingly, the risk R(w) is defined by
EXyy = {(y,w'z). In either case, whenever data ((x;,y;))!_, and a loss ¢ are available, define
li(v) :== L(y;, x]v), though £, , (v) := £(y, x"v) is also used, whereby R(w) = EXy s (w).

With Markov chains and stochastic processes, EX<; will be used to condition on F<;, the o-
algebra of all information up through time 4. It will not be necessary for the stationary processes
here to be exactly Markovian (or possess a precise stationary distribution); instead, inspired by the
Ergodic Mirror Descent analysis by Duchi et al. (2012), the stationarity assumption here will be
approximate.
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Definition 4 Let (z;);>0 be samples from a stochastic process, and let P} denote the conditional
distribution of x; conditioned on time i < t. For any € > 0, a triple (w, T, €) is an approximate
stationarity witness if

sup TV(PIT7, 1) < e

t€Z>0

(For a similar condition in prior work, see (Duchi et al., 2012, Assumption C).)

Note that if (z;);>0 are IID, then we can choose (7,7, ¢) = (P}, 1,0), and the corresponding
stochastic MD bounds in Section 3 exhibit no degradation in the IID case. For a broad variety of
Markov chains, for any € > 0 we can establish 7 = O(In(1/¢)), with hidden constants uniform in e
(Meyn and Tweedie, 2012). We will always bake in € = 1/+/¢, which suggests 7 = O(In(t)).

For risk minimization over Markov data as in Theorem 8, the risk will refer to R(w) :=
EXy y~nlzy(w), where 7 is an approximate stationary distribution provided by Definition 4.

Mirror descent. Mirror descent is a powerful generalization of gradient descent, which operates
as follows. Given a differentiable 1-strongly-convex mirror map v and the corresponding Bregman
divergence Dy (w,v) := ¥ (w) — [¢(v) + (Vip(v), w — v)], and a sequence of objective functions
(fi)i<t, mirror descent chooses a new iterate w;; from the old iterate w; and a step size > 0
and subgradient g; 1 € Of;11(w;) and a closed convex constraint set S (with S = R? allowed) via
eq. (3), repeated here verbatim for convenience as

Wit 1= arg Hslin ((ngit1, w) + Dy (w, wy)) .
we

In the present work, typically f;+1 = £;+1, butin Theorem 11 it will be the full batch empirical risk.
As before, we will use the notation ||0 fi+1(w)||« = sup{||gll« : ¢ € 0fi+1(w)}, and the particular
choice of subgradient will never matter. The vector space for iterates will be R% mainly for sake of
presentation, however none of the bounds have any dependence on dimension, and a future version
may simply use a separable Hilbert space. Norms without any subscript are simply general norms
(i.e., not necessarily Euclidean). Batch and stochastic gradient descent can be written as mirror
descent via ¥(v) := |[v||3/2; for more information on mirror descent, there are many excellent
texts (Duchi et al., 2012; Bubeck, 2015; Nemirovski and Yudin, 1983).
TD is only used in Theorem 9, and its presentation is deferred to Section 3.1.

The comparator wyer. The bounds will rely not on global minimizers, but rather on merely good
comparators wref. These comparators will either satisfy R (wyer) < Dy (wref, wo)/t in the realizable
case (cf. Theorem 5), or R(wrer) < Dy (Wret, wo)/ V't + inf, R(v) in the general case (cf. Theo-
rem 8, Theorem 10, Theorem 11). Here are a few sanity checks on this arguably awkward definition
(which has ws on both sides). Firstly, if a minimizer wyer exists (meaning R(wyf) = inf, R(v)),
then immediately R (wyer) < Dy (Wrer, wo)/t* +inf, R(v) for all & > 0 and all ¢. Secondly, if there
exists a wrer satisfying R(wrer) < Dy (Wret, wo)/ V't + inf, R(v), then we can also use the oracle
solution W := arg min,, [Dy(u,wp)/v/t + R(u)], since the nonnegativity of Dy, and existence of
Wref IMply

_; n sz(uawo)] < Dy (wref, wo)
Vit u Vit Tt/
meaning we can use w at an earlier time ¢/4. In general, the admissible choices for wy.s depend

on £, the data distribution, and on ¢ (i.e., different w.s are relevant at different times, as desired);
detailed discussions are given for the logistic and squared losses in Section 2 and Section 3.

R(w) < R(w) + + ir;f R(v),
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2. Realizable case, illustrative examples, and proof scheme

The first bound is for self- and quadratically-bounded losses, and requires realizability: as discussed
at the end of Section 1.1, this corresponds to the existence of wrer With R(wrer) < Doy (wWret, wo) /1,
which will be discussed momentarily for the logistic loss.

Theorem 5 Suppose { is convex, (C1,Cs)-quadratically-bounded, and p-self-bounding. Let t
be given, and suppose ((xi,yi))i<t are IID samples with max{||x;||«, |vi|} < 1 almost surely.
Let reference solution wier and initial point wg be given, and suppose wes satisfies R(wyer) <
pDy,(wref, wo) /1, and let Cy be given so that max;< [{j41(wrer)| < Cy almost surely. Then with
probability at least 1 — 2t0, every i < t satisfies

8 ZR w] (1+Cl —l—Cg(l-i— ”wref||)+04)

4
3in D’l/) Wref, wz n + HR(wref)v

]<z

where B, := max {1, 41/Dy (wrer, wo), 1/ (64C4/p) ln(1/5)} andn < 1/(2p).

All bounds in this work will have roughly the form of Theorem 5, which can be summarized
as follows. As stated in the introduction, the bound has a regret-style average risk on the left hand
side, and the risk of the comparator w;.r in the right hand side. Unusual elements are the control for
all times ¢ < ¢, the left hand side term D (wrer, w;), and the coefficient exceeding one on R (wyer).
The control for all times ¢ < ¢ is an artifact of the proof scheme, and will be discussed below.
The left hand side term Dy, (wret, w;) is crucial to the operation of the proof; it is an implicit bias
which prevents iterates from growing too large. This term is dropped in all standard presentations of
mirror descent (Bubeck, 2015; Duchi et al., 2012; Nemirovski and Yudin, 1983), but was exploited
in the original perceptron convergence proof (Novikoff, 1962). The large coefficient on R (wref) is
a consequence of realizability, and can not be removed with the current proof scheme.

2.1. Illustrative example: the logistic loss and approximate separability

To investigate Theorem 5 more closely, consider the logistic loss ¢(y,9) = In(1 4+ exp(—yg)) on
classification data. In typical implicit regularization works, the logistic loss is treated as having an
exponential tail, and inducing convergence to maximum margin directions (Zhang and Yu, 2005;
Telgarsky, 2013; Soudry et al., 2017; Shamir, 2021). As in Figure 1(b), it can take a while for
the maximum margin asymptotics to kick in; for example, the risk rate for SGD in (Ji and Telgar-
sky, 2018b, Theorem 1.1) is O(In(t)/(ty?)), where the population margin ~ can be taken to mean
PrR[u"zy > ~] = 1 for some unit vector 4. Returning to Figure 1(b), the global margin ~ is very
small, but the initial dynamics are governed by the much larger margin of the likely points oriented
vertically. As a first step towards formalizing this and connecting back to Theorem 5, consider
the following approximate realizability/separability characterization, and its consequences on the
choice of wyet.

Proposition 6 Let t be given. Suppose ((y,y) = In(1 + exp(—sgn(y)y)) is the logistic loss, the
data satisfies ||z||2 < 1 and y € {£1} almost surely, and that there exists a unit vector u; € R% and
a scalar v > 0 so that PR[ufzy > 4] > 1 — 1/t. Then the reference solution wret := u In(t)/v¢
satisfies R(wref) < (24 1n(t)/v) /t.
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(a) Another visualization of Figure 1(b). (b) Spherical data from Proposition 7.

Figure 2: These plots show SGD on the logistic loss, but rather than depicting many trajectories
as a filigree (as in Figure 1), they are histogrammed into hexagonal bins, with additional
black lines showing the vector field. The color scheme gradations are logarithmic, and
seem to exhibit an exponential concentration around the GD path, a phenomenon not
established in this work. Figure 2(a) shows this visualization technique on the same data
from Figure 1, whereas Figure 2(b) shows the spherical 0-margin data from Proposition 7.

Applying Theorem 5 with this wyf and with step size n = 1 gives, with probability at least 1 — 4,

8 5 1 In(t)2+/In(t/6)
= _ Il E N\ < SV Sl WA
3tHwt wref” + n R(wz) <0 < t’yt2

1<t

As a sanity check, if the global maximum margin v < -, is used, then this bound matches the
bound from prior work mentioned before (Ji and Telgarsky, 2018b, Theorem 1.1), and also matches
standard margin-based generalization bounds (Schapire et al., 1997). A key difference is that
is not a hard margin, but allows some fraction of margin violations. In particular, returning to
Figure 1(b), if we choose ¢ = 10, then we can choose ~; to be the large “likely data” margin, and
our convergence rate scales with this 1/~72, rather than the much smaller “rare data” margin.
Rather than relying on an opaque ~, here is another example where ~; may be calculated. Con-
sider Figure 2(b), where there is a perfect but O-margin classifier (thus breaking standard bounds),
and the marginal distribution of = along this perfect classifier is uniform. In this setting, the optimal
predictor of length r is unique and achieves risk only 1/r, in contrast to the standard margin setting
(roughly as in Proposition 6, where one hopes for a predictor of length In(r)/~ for risk 1/r).

Proposition 7 Let dimension d > 2 be given, let ng denote the uniform probability density on the
sphere Sq_1 := {x € RY : ||z|| = 1}, and let ;1 denote a reweighting of o along the axis ey so
that every orthogonal slice has equal density, meaning du(x) = p(x1) duo(z) for some p, whereby
PR {z € S4_1: -1 <a <z <b< 1} = (b—a)/2 and suppose PRly = 1|z] = L[z > 0].
Then for any norm r > 0, the vector u, := rey is the unique minimizer of R with norm r, and
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moreover if r > 1 then

71_2

12r

2
~ exp(r)’

]mu» -

Now consider applying the (approximately) realizable analysis in Theorem 5 to this setting.
Choosing 7 = 1 as suggested there, and wes = €1/ t1/3 as suggested by Proposition 7 after opti-
mizing terms, then max{||wref||, R(wret)} = O(1/tY/3) and R(wrer) = O(||wref]|?/t) as required
by the realizability conditions in Theorem 5. Thus, with probability at least 1 — 4,

8 , 1 In(t/5)
geref—th +¥ZR(wZ) SO( A1/3 .

1<t

There does not appear to be any prior work analyzing these infinitessimally-separable scenarios;
furthermore, such examples necessitated the realizability formulation in Theorem 5.

2.2. Proof sketch: the core coupling-based argument

This subsection provides the basic form of the coupling-based argument used within all proofs in
this work. Rather than handling the realizable setting of Theorem 5 directly, it is stated for the
simpler setting of stochastic gradient descent with IID data and a step size n = O(1/+/), with a
few remarks afterwards then adjusting it for Theorem 5.

The proof scheme consists of the following three steps.

1. Coupling unconstrained iterates (w;);; with constrained iterates (v;);<;. Because (w;);<¢
are unconstrained, it is unclear how to apply standard concentration inequalities to them. In-
stead, define projected iterates (v;);<¢ which are coupled to (w;);<; in the following strong
sense: vg = wo, and thereafter, v;41 is defined using the same randomness as w;1, meaning

Wig1 = Wi — NOWL(Yis1, Ti W),
viy1 = g (Ui — Uavf(yiJrl’xz'T—&-lvi)) )

where the constraint set S := {v € R? : ||[v — wyer|| < By} has a few key choices. Firstly,
it projects onto a ball around the desired comparator wyf; algorithmically, this would require
clairvoyantly re-running the algorithm with knowledge of wy.r, but here it is only used as a
mathematical construct. Since (v;);<+ explicitly depends on wyer, relating w; to v; will in turn
relate w; to wes. A description of the radius B,, will come shortly.

2. Implicitly-biased MD analysis of (v;);<;. Because (v;);<; are constrained to a small ball
around wr.f, we can easily apply MD and concentration guarantees and expect all quantities to
scale with properties of w.s. Concretely, following the standard MD proof scheme specialized
to GD via ¥(w) = §||wl[|3 (whereby Dy (wyer, w) = 5 |lwrer — wl|3), and writing hj41 =
Oul(Yj41,2j1v;) for the stochastic gradient at time j + 1 for vy,

041 — wret]l3 < [lv; — wret]l3 + 27 [€j11 (wrer) — £5(v;)] + 72| Rz |12,

which after recursing and rearranging (alternatively applying > ._. to both sides) gives

j<i

v — wretll3 < [Jvo — weerll3 + 20> [G11 (weer) = L1 (v5) + 0?1y ?] -
j<i
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Applying Azuma’s inequality, with probability at least 1 — J,

lvi — wref“% < flvo — wref”% +2n Z [R(wrer) — R(v;)]
j<i
+7 [deviations +1n Z |hjt1 Hﬂ . 4)
j<i
What is the magnitude of the error term on the second line? Azuma’s inequality scales with
the range of the relevant random variables, and thus if the loss has quadratic growth, we can
expect the entire second line to be O(B2), which deserves quite a bit more discussion.

This quantity O(B2) (and the choice of quadratically-bounded losses) is crucial. The left
hand side of the bound has ||v; — wyet||3, which is at most B2 by the choice of S. As such,
if the O(B2) in the right hand side has a leading constant less than 1, then the projection
operation is never invoked, and we should be able to show w; = v;. In fact, this observation
was the starting point of this work, and “quadratically-bounded loss” is merely a reverse-
engineered concept to make it go through. Moreover, it is clear that none of this would be
possible if the left hand term ||v; — wre||3 were deleted, as is standard in MD.

3. Proving (w;)i<; = (v;)i<¢ via induction. We are now in position to complete the proof.

Let F denote the failure event for the earlier regret guarantee in eq. (4), which rules out certain
wild trajectories for (v;);<;. The underlying sample space for this event is ((z;, ¥;))i<¢, and
therefore this event also controls the behavior of (w;);<;; in fact, this proof will show that
ruling out E' deletes not just the wild trajectories of (v;);<¢, but also that one may interpret
these projected iterates as mere proxies to get a handle on the wild trajectories of (w;);<¢. This
proof technique is then a truncation argument, as is standard throughout probability theory.

In detail, consider w;1, and suppose the inductive hypothesis (w;);j<; = (v;);<i. Writing
out a deterministic gradient descent inequality for w;y1 (cf. Lemma 17) and then invoking
the inductive hypothesis to transplant (v;);<;, gives (under event £)

it — wietl|3 = lwo — weetll3 + 20 Y [t (wrer) = L1 (wy)] +17 D 106501 (wj) |

J<i J<i
= [lvo — wrerll3 + 20 Y (€1 (wrer) = i1 (0)] + 07 Y [0Lj41 (07)|I?
j<i j<i
< flvo — wref“% + 2772 [R(wrer) — R(vj)] + iTl2O(Bi)~
J<i

With some tuning of 7 and B,,, the final term in?O(B2) is in fact strictly less than B2, which
suffices to imply projections are never invoked, and w;4+1 = v;4+1. This argument is repeated
for every iteration ¢ < ¢, so in fact there are ¢ different failure events (E;);<;, and unioning
them together gives the final statement.

The preceding proof was for GD not MD, but the standard MD proof scheme is identical
Lemma 17, even with the left hand implicit bias term added in.

Handling the realizable case has a few important differences. The first is that the squared gradi-
ent term ||0¢;41(v;)||? is swallowed into the loss term via the definition of p-self-bounding. More-
over, to obtain a rate 1/t not 1/+/t, Freedman’s inequality is used rather than Azuma’s inequality,
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which needs the conditional variances to be small (which invokes realizability). Lastly, to allow for
a simple step size, two separate concentration inequalities are applied: one to control norms, and
another to control risks; using just one concentration inequality would give similar rates but require
a messy step size as in Theorem 8.

3. General MD analysis, illustrative examples, and TD analysis

The section exhibits slower rates, meaning 1/ \/t rather than the 1 /t in Theorem 5, but allows an
important generalization: the data need not be IID, but instead is approximately Markovian (cf.
Definition 4), and need not be realizable.

The first bound here is for stochastic MD. As discussed in Section 1.1, the condition on wyes is
now R(Wre) < Dy (Wret, wo) /vt + inf, R(v).

Theorem 8 Suppose { is convex and (C1, Ca)-quadratically-bounded. Let t be given, and suppose
((zi,yi))i<t are drawn from a stochastic process with approximate stationarity witness (7,7, 1/+/t)
with max{||x;||«, |yi|} < 1 almost surely. Let reference solution wyer and initial point wq be given,
and suppose Wyt satisfies R(wrer) < Dy (Wref, wo)/ V't + inf, R(v). Then with probability at least
1 —t76, every i < t satisfies

2
;]Dw(wrefa wi) + % Z R(wj) < 83217”7 + R(wref))

j<i

= < 1
where B, = max {1, Cs || wret |, 41/ Do (Wref, wo)} andn < 1096 man(L.Cr.Ca) Vi)

Illustrative examples of Theorem 8 will be provided shortly in Section 3.2. The form of the
bound is similar to Theorem 5, but has a rate O(1/+/t) after expanding . Unlike Theorem 5, the
step size is messy; this seems necessary with the current proof technique, which seems to have no
recourse but to use 7 to swallow some terms; the realizable analysis was able to avoid this thanks to
applying two concentration inequalities, the first of which relied heavily on realizability.

The proof of Theorem 8 follows the sketch in Section 2.2 exactly, with two exceptions. The
first is that GD is replaced by MD, following a nearly standard analysis with an added non-standard
implicit bias term D (wrer, w;) (cf. Lemma 17). The second difference is that Azuma’s inequality
is replaced with a Markov chain concentration inequality, which itself uses a standard technique of
treating the data as 7 interleaved sequences of nearly-1ID data, and applying Azuma’s inequality to
each. This concentration inequality is detailed in Lemma 14, but is abstracted from a proof due to
Duchi et al. (2012).

3.1. TD analysis

The second Markovian guarantee on TD. It is not necessary to be familiar with any RL concepts
to make sense of this theorem, and in fact it can be stated as a fixed point property, but here is
some brief background. The sequence (z;);>0 with z; € R% is interpreted as combined state/action
vectors, and instead of labels there are scalar rewards (r;);>1, whose conditional distribution is fully
determined by the preceding state/action vector, meaning r;41|F<; = ri+1|z;. The stochastic TD
update is

Wit1 = w; — NGiy1(w;), where Giy1(v) =2x (<:cz — fnyH, v> — ri+1) , %)

10



STOCHASTIC LINEAR OPTIMIZATION NEVER OVERFITS

where the discount factor v € (0, 1) is fixed throughout.

In prior work, this method is only studied in expectation, often with a variety of bounded-
ness/projection and full rank conditions (Zou et al., 2019), or further stationarity and sampling con-
ditions (Bhandari and Russo, 2019). Some recent work has aimed to reduce these assumptions, but
still was only able to achieve bounds in expectation (Hu et al., 2022). Meanwhile, invoking essen-
tially the same proof as for Theorem 8 leads to a high probability guarantee; the only real difference
is that the deterministic MD analysis (from Lemma 17) is replaced with a similar deterministic TD
analysis (from Lemma 18), even though TD is not in any sense a gradient method.

Theorem 9 Let a stochastic process ((xi,7i))i>0 be given, where (x;); > 0 form a Markov
chain and max{||z;||, |r:|} < 1 almost surely, and define auxiliary random variables (;11 =
(w4, is1,7i11), and let (7, 7,1/\/t) denote an approximate stationarity witness for ((;)i>1. Let
reference solution wyer be given with |EX¢rGe(Wrer)|| < |Jwrer — wol|?/V/T, where G¢(wyer) :=
x ({x — v2'  weer) — 1) for ¢ = (x, 2, r). Then, with probability at least 1 — t76,

tnBy
512

Hwt - wref”2 + 7](1 - '7)2 Z EXzor <l'a w; — wref>2 < B?U + ||EX§~7rGC(wref)|| )

i<t
where By, = max{1l, 4||wyet|, 4||wo — wret||} and n < m.
Notably, as a parallel to the approximate optimality of wy.r in Theorems 5 and 8, the reference
solution in Theorem 9 need only be an approximate fixed point: |EX¢rGe¢(wrer)| = O(1/V1).

3.2. Illustrative examples

Squared loss. First consider the squared loss £(y, ) := (y — §)?/2. Typically R in this setting
is treated as strongly convex (perhaps along a subspace), and SGD converges at a rate 1/¢t. Un-
fortunately, this rate also scales with 1/ a?nin, the inverse of the smallest positive eigenvalue of the
population covariance, which has no reason to be large or stable.

The goal of the present work is to eschew global dependencies, and depend on local properties;
this is also exhibited in Figure 1(a), where both stochastic GD as well as GD on R spend a long
time pointing away from the minimum norm solution of R they eventually converge to.

As a concrete construction of w;.f, consider the case of singular value thresholding: rather than
seeking out the population solution w := [Exzz'|" [EXzy|, where the “+” denotes a pseudoin-
verse, consider wy, := [Exz2"]} [EXzy], where k truncates the spectrum of EXzz" to have only
the k largest eigenvalues. Correspondingly, suppose wg = 0, and choose ¢ small enough so that

R(n) < ||| Dy, (wy,, wo)

T2Vt Vi

whenever this holds, this wy, and ¢ can be plugged in to Theorem 8, giving a stochastic GD guarantee
which not only competes with R(wy,), but moreover the constants in the rate scale with |jwy||?,
which is on the order 1/02, rather than being on the order 1/02;  as with the minimum norm least
squares solution w. This gives some explanation of the behavior of Figure 1(a): early in training,
the path is closer to low norm solutions such as the singular value thresholded solution wy. Said

another way, stochastic GD competes with wy, for every k without any specialized algorithm!

+ iI%f R(v) = + R(w);

11
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Geometric medians. As another example, suppose the regression problem £(y, 3) :=
which is Lipschitz, nonsmooth, and unbounded. Applying stochastic GD to this problem leads to a
pleasing algorithm especially in the univariate case: explicitly, to find the median of a stream of data
points, it simply compares its estimate w; to the new test point y; 1, and adjust by +n depending
on whether it is to the right or left. Standard analyses of this method would require projections or
regularization (and some outer doubling loop to guess the radius), but Theorem 8 can handle a direct
the projection-free stochastic GD.

4. Final examples: batch data and heavy-tailed data

This final set of results will relax two conditions which may have seemed necessary to the proof
scheme in Section 2.2: data may be heavy-tailed, and data may be handled as a batch.

4.1. Heavy-tailed data

All preceding sections required bounded data: max{||z||.,|y|} < 1 almost surely. Instead, the
following bound is similar to the non-realizable setting of Theorem 8§, except the data is IID, and
may have two types of heavy tail.

Theorem 10 Suppose ( is convex and (Cy, Cs)-quadratically-bounded. Let t be given, and sup-
pose ((z;,y;))i<t are drawn IID with auxiliary random variables Z; := max{1, ||z||%, |y|*} satis-
fying one of the following two tail behaviors with a corresponding constant C.

1. Subgaussian tails. Each Z; is subgaussian with variance proxy o2, and define C := EXZ; +
In(1/9)/t.

2. Polynomial tails. Defining a moment bound M := max{p/e, supy<,<,EX|Z; — EXZ;|"}

p, define C := EXZy + 2M (%)l/p JVT.

for each Z; for some power p satisfying 8

Let reference solution wyer and initial point wg be given, and suppose wres satisfies R(wrer) <
Dy (wret, wo) /vt + inf, R(v). Then with probability at least 1 — 2tJ, every i < t satisfies

2

1
7D¢ Wref, wz Z R w] 87 R(wref)a
n ]<z

1
} andn < 4096 max{1,01,C2}/t(1+C) In(1/5)"

where B, = max {1, Cs || wret |, 41/ Do (Wref, wo)

A few remarks are in order. Firstly, with polynomial tails, the bound is not what is generally
called a high probability bound, as the familiar In(1/6) is replaced with (1/8)'/P. This has a partic-
ularly bad interaction with union bounds: in fact, since the proof technique utilized a union bound
over all ¢ iterations, this term should in fact be interpreted as (¢/9) 1/p_Expanding the corresponding
term C' in the final bound, the rate becomes max{t /2, t~1t1/(2P)} which is reasonable, though
the dependence on 1/ is still unpleasant.

A second remark is on the proof. The mirror descent guarantee in the case of general data with
smooth losses ends up having terms of the form Y, _, max{||z[%,|y|*} appear in a few places,
which were simply upper bounded by ¢ in the earlier general analyses. The step size 7 is then made
large to swallow these terms (i.e., the C' above appears within 7)), but there are still two issues:

12
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firstly, C' must be controlled, and secondly, as this quantity is random, we can not simply invoke
Azuma’s inequality with a random range. To solve the first problem, there exist a variety of heavy
tail concentration inequalities, as detailed in the proofs in the appendix. For the second problem, we
use a very nice variant of Azuma’s inequality which allows the ranges to not be specified up front
(van Handel, 2016, Problem 3.11).

It appears guarantees of this type have not appeared before; the most similar analyses consider
specialized scenarios and moreover modify the descent method, for instance by using minibatches
with specially-tuned batch sizes to exhibit strong convexity structure assumed to hold over the pop-
ulation (Zhu et al., 2022), or by gradient clipping and similar procedures (Gorbunov et al., 2020;
Davis and Drusvyatskiy, 2020; Nazin et al., 2019).

4.2. Batch data

All the bounds in this work so far have worked with stochastic data, arriving one point at a time;
correspondingly, the concentration inequalities seemed to rely upon martingale structure. The final
bound shows that this is not necessary: data can be handled in a batch, and the concentration in-
equality can simply be a generalization bound. This method replaces the stochastic gradient g; 1
with a full batch gradient:

gir1 = &Uﬁ(wi), WhereR (w;) :== ZE Yk TLW;)- (6)

Theorem 11 Suppose { is convex and (Cy, C2)-quadratically-bounded. Suppose ((x;, yi))i<n are
drawn IID with max{||z;||«, |yi| } almost surely, and that (w;)i< are given by batch MD with t < n,
where batch gradients are given eq. (6). Let reference solution wyer and initial point wgy be given,
and suppose Wyt satisfies R(wrer) < Dy (Wref, wo)/ V't + inf, R(v). Then with probability at least
1 — 49, every i < t satisfies

1 2
sz/, Wref, wz ZR w] Tw R(wref)a

]
U ]<z

_ 1
where B,, = max {1, Co || wret |, 41/ Do (Wref, wo)} andn < 1096w (L o) i)

The proof is basically the same as Theorem 8, except the Markov chain concentration inequality
is replaced with a generalization bound for linear predictors. As a technical note, the generalization
bound is directly on a ball defined by D, rather than the corresponding norm, as happens in the
other proofs; this is thanks to a clean Rademacher bound on Bregman balls due to Kakade et al.
(2008, Theorem 3 and Example (4)).

Although the main focus of this work is on methods which process one example at a time,
general unconstrained batch guarantees as above similarly do not seem to have appeared in the
literature; as with the stochastic analyses, the closest prior work has rates depending on structural
properties of the loss and training data (Soudry et al., 2017; Ji and Telgarsky, 2018b).

5. Further related work and open problems

Implicit regularization. The extensive literature on implicit bias/regularization was a major source
of techniques and inspiration for the present work. These works typically show convergence to a

13
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specific (limiting) good solution over the training set; this has been shown for coordinate descent
(Zhang and Yu, 2005; Telgarsky, 2013). gradient descent (Soudry et al., 2017; Ji and Telgarsky,
2018b), deep linear networks (Ji and Telgarsky, 2018a; Arora et al., 2019), ReLLU networks (Lyu
and Li, 2019; Chizat and Bach, 2020; Ji and Telgarsky, 2020), mirror descent (Gunasekar et al.,
2018), and many others. One point of contrast is that the focus in the preceding works is on struc-
ture of the training set, not the structure of the population distribution as is used here. Moreover, the
relaxed criterion here (where there is no effort to prove wy — wr.r in any topology) allows treatment
of previously difficult cases, such as the spherical zero-margin data in Section 2.1.

Is there a more refined comparison between the approaches? Is there a stronger convergence
property over the distribution than the ones here? Figure 1 suggests that SGD concentrates along
the path of population GD; is there an easy way to prove this, perhaps via implicit regularization
techniques or the techniques in the present work?

That said, there is an increasing body of work which takes the view of mirror descent here,
namely of not dropping the term D, (wyef, w;) and treating it as crucial (Ji and Telgarsky, 2018b;
Shamir, 2021; Vaskevicius et al., 2020). There is also work on the unbounded online setting
(Cutkosky and Orabona, 2018), but the guarantees there contain gradient norms and other terms
which in the present statistical work can be ensured small.

Deep networks. Deep learning is a natural target for the techniques presented here. Unfortunately,
the proofs heavily rely upon convexity. Is there some adjustment that can be made to hold for general
deep networks, meaning those far outside the initial linearization regime?

Concentration-based proof technique. Is there a way to prove these results without needing a
coupled sequence (v;);<:? For instance, is there a powerful concentration inequality which can
directly establish concentration along the population GD path?

SGD vs GD. Many recent works aim to exhibit and study cases where SGD behaves differently
from GD, with an eye towards giving further justification to the extensive use of SGD in practice
(Wu et al., 2020); in this sense, the present work is a bit unambitious. Is there some way to use
the coupling-based proof technique here — perhaps by coupling with a very different path — to
establish other behaviors of SGD?
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Appendix A. Technical preliminaries

This first appendix proves basic properties of the loss functions considered, then proves a variety of
concentration inequalities, and lastly provides the proofs for the examples in Section 2.1.
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A.l. Losses

First, the proof of Lemma 1, that Lipschitzness or smoothness suffice for quadratic-boundedness.
Proof (of Lemma 1) For both assumptions, it is easiest to consider classification and regression
losses separately. If £ is a-Lipschitz, then if it is a classification loss |0¢(y, 7)| = |80(sgn(y)9)| <
o, whereas for regression |9¢(y, )| = |0¢(y — §)| < . For the case of a smooth loss, with
classification

06(y. 9)| < |9L(sgn(y)g) — DL(0)| + |0L(0)] < Blg| + 2£(0)),
and for regression

[9€(y, 9)| < 108(y — §) — DL(O)| + [9£(0)] < Bly — g| + |9£(0)].

Next, the special properties of the logistic and squared losses.
Proof (of Lemma 3) This proof is split into the two losses.

1. For the squared loss, ”(z) = 1 and #(2)? = 22 = 2/(z), implying 1-smoothness and 1-self-
boundedness. For (0, 1)-quadratic-boundedness, it suffices to apply Lemma 1 and note that

92(0) = 0.

2. For the logistic loss, a standard calculations reveal (1/4)-smoothness via ¢”(z) < ¢"(0) =
1/4 and 1-Lipschitz via |/(z)| < 1. The (1/2)-self-bounding property was stated in (Telgar-
sky, 2013). For (1, 0)-quadratically-bounding, it suffices to Lemma 1; it is nicer to use the
Lipschitz bound since it shrinks some of the bounds throughout this work.

Lastly, a few key consequences of the definition of quadratic-boundedness, which is used in all
proofs (except for TD).

Lemma 12 [f¢is (Cy, C2)-quadratically-bounded, then for any (x,y) with B, := max{||z||., |y
and any u, v,

}>
10€ay(w)lx < B [C1 + C2Ba (1 + [lull)]
1zy () = Loy ()| < Ballu = v][ [C1 + C2 By (1 + [[ul))].

In particular, given any reference point wyer and set S := {u € RY : ||u—wyet|| < Bo} with By > 1,
then every u,v € S satisfies

10€sy(u)ll« < Bz [C1 + 202 Bo + Ca[wet]|]
1e,y (1) = Loy (0)]| < Bellu — ]| [C1 +2C2Bo + Co || wes]|] -

Proof For the first inequality, by the chain rule,

10u€(y, z™u)l« = [l2€' (y, z"w) |l < B [CL + Ca (Jyl + |Tu[)| < B2 [C1 + CaBa (1 + [lul])] .
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For the second inequality, using a version of the fundamental theorem of calculus for subdifferentials
(Hiriart-Urruty and Lemaréchal, 2001, Theorem D.2.3.4),

1
) ~ o] = | [ {080+ tlu = )~ ) at
0
< /O 1000y (0 + £ — 0))|u — o] dt

1
< Baflu —vf| / [C1 + CaBy (1 + [[v+ t(u —v)[|)] dt
0
< Ballu = v [C1 4 C2Be (1 + [Jo]| + [Ju — v[| /2)] -
For the bounds with wy¢ and By, invoking the previous two bounds with u € S and v := wyr gives

10u(y, 2" y)|[« < By [C1 4+ CoBy (14 ||t — wret|| + [Jwret]|)]
S B;c [Cl + 202B$B0 + CZBwarefH] y
[ley(u) = Loy ()| < Byllu — vl [C1 + C2By(Bo + |[wet|| + Bo/2)]
< BIHU — ’UH [Cl + 2CQB;EBO + QCQB;E”U)refH] ,

as desired. [ |

A.2. Concentration inequalities

The first concentration inequality is a tiny bit of algebra on top of a convenient reformulation (with
elementary proof) of Freedman’s inequality due to Agarwal et al. (2014). This concentration in-
equality will be used to get 1/¢ rates in realizable settings.

Lemma 13 (See also Agarwal et al., 2014, Lemma 9) Let nonnegative random variables (X1, . . . , X})
be given with | X;| < B. Then, for any ¢ > 4, with probability at least 1 — §,

t t
1 1
=1 i=1

Proof For each i, define V; := X; — EX.; X}, whereby EX_;Y; = 0, and |Y;| < 4(e — 2)B <
c(e — 2)B, and

ExX<;Y? = EX<; (Xi — EX; X;)” = BX; X7 — (BX<;X;)? < EX;X? < BEX<;|X;|.
As such, by a version of Freedman’s inequality (Agarwal et al., 2014, Lemma 9), with probability

atleast 1 — 4,
t

t
Y vi< ZEXQYQ (e —2)eB1In(1/6) < ZEXQ | Xi| + ¢BIn(1/6).
=1 =1 =1

|

Next comes a concentration inequality for Markov chains mentioned in the body. The proof is
based on a very nice one due to Duchi et al. (2012, Proposition 1), though re-organized and fully
decoupled from mirror descent; e.g., this same bound will be used in the TD proofs. That said, all
the core ideas are from (Duchi et al., 2012, Proposition 1).
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Lemma 14 (See also Duchi et al., 2012, Proposition 1) Let ¢ > 0 be given along with approximate
stationarity witness (m, T, €) on a stochastic process (x;)i<i. Let f be given with | f(x;w)| < By
almost surely, and suppose |f(xit1;w;) — f(Tig1;Wi—rt1)| < Bj almost surely for all i. With
probability at least 1 — 76,

t—1
3 f (@iriwi) — EXgrn f (@ wi)] < 2By (27 2 te+\/tr ln(1/5)> + Y B

i<t i=7—1

A notable characteristic of this bound (also present in the version due to Duchi et al. (2012)) is
that in the IID setting with 71y (€) = 1 and € ~ 0, the bound is exactly what one would expect from
Azuma’s inequality, with no excess.

Proof The key idea of the proof is to introduce gaps of length 7 wherever x; and wj; interact,
making them approximately independent. To accomplish this, following a proof idea due to Duchi
et al. (2012), the summation over time will be replaced with 7 interleaved summations, where w;
only interacts with x;,, meaning enough time has been inserted to ensure mixing.

Before proceeding with the bulk of the proof, let’s dispense with the nuisance case ¢t < 27. If
t = 0, the bound is direct, and if £ > 0, by the definition of B, almost surely

> 1 @iraswi) — EXper f (w3 wi)] < 20By < 2Bp(27 — 1) < 2B(21 — 2+ \/t7In(1/6)).

1<t

which is upper bounded by the final desired quantity and completes the proof in the case t < 27.
For the remainder of the proof, suppose t > 27.

Due essentially to boundary conditions, a bit of additional notation and care are needed, espe-
cially to ensure that the bound loses nothing when 7 = 1 (e.g., the IID case). Let p > 7 — 1 denote
the smallest time so that 7|(t — p) and let n := (¢t — p)/7; this p is the number of iterates that will be
thrown out so that the overall sum can be split into n interleaved sums. Since ¢ > 27, then p always
exists and satisfies 7 — 1 < p < 2(7 — 1) (if ¢t — (7 — 1) is not a multiple of 7, then there must be a
multiple of 7 within {¢t — 2(7 — 1),...,t —7}),and t/(27) < n < t/7.
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To start, defining B, := Zf;Ll B; for convenience,

S f@ipsw) = D flwi;w)

i<t i<r—1
t—p+7-2
+ Z (f(@ig1;wi) — f(@ig1; Wimrg1) + f(Tig1; wimr11))
i=7—1
t—1
+ > s w)
i=t—ptr—1
t—p—1
<pBy+Br+ ) flwigsiw)
=0
t—p—1 t—p—1
< pBj+ B; + Z EX; f(igr;wi) + (f (@itr;wi) — EXi f(Tigpr;wi))
=0 i=0
< 2pBj+ By + Y EXper f (w5 w5)
i<T
t—p—1
+ (EXi f(Tigr; wi) — EXpror f (253 w5))
=0
t—p—1
+ (f(@igrswi) — BX f(@igrsw;)) - (N
=0

The rest of the proof will handle these last two summations, the first via the definition of 7 and the
mixing properties of the stochastic process, and the second via concentration inequalities and the
aforementioned interleaved sum technique.

For the first summation, fix any ¢, and let £; be a coupling between the distribution of z;, con-
ditioned on F;, and the stationary distribution 7. By the coupling characterization of total variation
(Villani, 2008, Equation 6.11), and since TV(PZHT, m) < € by the definition of 7 = 7y (€),

EX; f(%itr;wi) — EXgor f(z3wi) = EX(y oy, (f(y3wi) — f(25031))
< 2BfPR(y ), [T # Y]
< 2Bge. 3

Summing these errors adds a term 2¢(t — p) By to eq. (7).
The final summation in eq. (7) will utilize the aforementioned technique of splitting the sum
into 7 interleaved sums. Concretely,

t—p—1 7—1 [n—1

(f(@isriwi) — EXif (Tigrsw;)) = (f (@hrajrs Whrtj) — EXif (Thryjir; Whras)) | 5
=0 Lk=0

I
<)

i

and all that remains is to apply a concentration inequality to the 7 inner summations, and collect
terms. By 7 applications of Azuma’s inequality, with probability at least 1 — 74, simultaneously for
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all j € {0,...,7—1},

i
L

(f(@hrtjrs Whrtj) — BXif (Thrtjtr; Whrj)) < Byy/2nIn(1/6).

0

e
Il

Combining all this with eq. (7), the total variation bound in eq. (8), and simplifying to replace p and
n with their respective bounds gives

S [F@is1500) = EXpur f(550)] < 2(p+ €t = )) By + By + Byr/2nIn(1/5)
i<t
< 2(21 — 24 te)By + By + Byy/2tT1n(1/6),
which completes the proof. |

The last collection of concentration inequalities needed are for heavy-tailed losses. There appear
to be many such inequalities, for example here is one due to Blum et al. (2017).

Lemma 15 (See also Blum et al., 2017) Let IID random variables (Z;, . . ., Z;) be given with vari-
ance at most 0%, and suppose there exists m < to?/2 with ’EX ([lyims]|* — EX||yZ:UZ||2)T’ < o?r!
forr € {3,...,m}. If 6 > 1/(no?)%/2, then with probability at least 1 — 6,

9 oV2sn
Z (2 - ExZ{)| < =573
(2
Proof This version performs minor algebra to repackage the original. |

The conditions on the preceding are a little complicated, so here is a potentially worse bound
with many fewer conditions to check. It is presented in (Telgarsky and Dasgupta, 2013), but follows
a proof scheme due to Tao (2010, Equation 7), making adjustments to drop boundedness assump-
tions.

Lemma 16 (Appears in (Telgarsky and Dasgupta, 2013) following a proof scheme due to Tao
(2010, Equation 7).) Let IID random variables (Z;, ..., Z;) be given. Suppose p is even, and
define M := max{p/e,supy<,<, EX |Z; — EXZ;|"}. Then with probability at least 1 — ,

t

Z (Zz — EXZZ>

i=1

92 1/p
< 2MV't (5> .

Proof This is the same as (Telgarsky and Dasgupta, 2013, Lemma A.3), except the requirement
M > p/e simplifies the bound, in particular the requirement ¢ > p/(Me) is now simply t > 1. W
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A.3. Analysis of examples in Section 2.1

To conclude this section of technical preliminaries, here are full proofs corresponding to the illus-
trative examples presented in Section 2.1. First is the simple margin-like bound.

Proof (of Proposition 6) First note that if u'zy > ~, then w/xy > Int; otherwise, w,xy >
—||wyet]] > —1In(t)/~ almost surely. Using the provided choice of wys and the elementary upper
bounds £(y, §) = In(1 +exp(—yy)) < exp(—yy) whenyy > vand £(y,§) < 1—yj whenyj < 0
gives

EX, l(y, 2 weet) < £ (In(t)) PRuTzy > ] + € (— In(t) /) PR[u 2y < 7]

<exp(-m(0) + (14 21) 1

()

Next is the characterization of the optimal path corresponding to the sphere data depicted in
Figure 2(b).
Proof (of Proposition 7) The proof first establishes that u, := re; (for » > 0) is the unique risk
minimizer with norm 7, which will be established via symmetry argument. Consider any other
solution v with ||v|| = r. To avoid dealing with labels, let ;1 denote the density on the points
{z € §4-1 : z1 > 0} obtain by sampling (z, y) and then multiplying to obtain z := xy. For any z
in the support of 11, consider the behavior of v on z and 2’ := 2z1e; — 2, which reflects z around
z1e1. With probability 1, z # e1, and thus z # 2/, and by strict convexity

IN

%ln(l +exp(—v'z2)) + %ln(l +exp(—v"2)) > In(1 + exp(—v"(z + 2')/2))

=1In(1+ exp(—v'ei21))
> In(1 + exp(—u, 2)).

Since z and 2z1e; — z have equal probability density, letting po denote the probability density
obtained from p; by conditioning on 29 > 0,

R(v) = /ln(l +exp(—v'2))duy(2)

— [+ exp(-e72)) dpa(2)

— ;/ (In(1 4+ exp(—v"2)) + In(1 + exp(—v" (22161 — 2)))) du2(2)
> /ln(l + exp(—u,z)) dua(z)
— 5 [ (a0 + expl-uf(2ares = 2)) + In(1 + exp(-uf2))) dial)
= [ In(1 + exp(—u,2)) dpu (2)

= R(Ur),
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establishing that w, is the unique optimal solution of norm r.

Next, still letting p denote the uniform measure on the hemisphere with combined variable z,
to compute R(u,) exactly, recall the dilogarithm function Lis(z) (Wikipedia contributors, 2021),
which satisfies

d_.
Lis(z Z 5L ang(z) = —In(1 —2).
k>1

Then

1
R(w) = [ (1 + exp(=u}2)do(z) = [ (1 + exp(=rs) ds

_ _% Li(— exp(—TS))|(1)

S e

== <—Li(— exp(—7)) + g) :

To control this further, Li(— exp(—7)) can be written

—exp(—7))*
Li(—exp(—r)) = Z (Ze(=n)” pk( )

E>1

/ Zexp —kr))
k>l

—Z/ exp(—kr))
E>17"
Zexp k‘r
E>1

which is at least exp(—r), implying

For the lower bound, if » > 1, then

ZeXp(k_kr)<exp )+ = Zexp —kr)

E>1 k>2
1 exp(—2r)
=ep(-r)+ 3 21 —exp(—r)
1
= exp 1+ )
=) (4 Sty =T
< 2exp(—r),
which completes the proof. |
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Appendix B. Analysis of mirror descent (MD)

This section collects all proofs related to mirror descent.

B.1. Deterministic mirror descent analysis

While the core deterministic proof for mirror descent is completely standard, the standard presen-
tation always omits the term Dw(wref, wy), which as mentioned is the basis for this entire work.
As such, the standard guarantee is re-proved with this term included; the proof itself has otherwise
nothing new over other versions, and most closely follows one due to Duchi et al. (2012).

Lemma 17 Let closed convex S be given, let wg € S and wees € S be given, and define w;11 =
arg min, g ((ngit1, w) + Dy (w,w;)) with a corresponding given sequence of functions (f;)t_,
and arbitrary subgradients g;11 € 0 fir1(w;) (whereby ||giy1]|« < |10 fir1(w;)||«), where Dy (w,v) :=
Y(w) —[Y(v) + (Vip(v),w — v)] and 1 is 1-strongly-convex with respect to some norm || - ||. Then,
foralli <t,

2
Dy (wret, we) < Dy (wWref, wo) + 1 Z (Ofir1(w;), wer — wy) + Z %Hafi—i-l(wi)uzy
i<t i<t
and it holds for every i < t that ||wit1 — w;|| < n||gi+1||« If additionally each f; is convex, then
2
Dy (wre, wy) < Doy (wrer, wo) + 1Y _ [fir1(weer) = fir1(wi)] + Y %Hafi+1(wi)”i-
i<t i<t
Proof Fix any iteration 7. By the first-order conditions on the choice of w; 1, forany v € S,
(ngit1 + Vi (wit1) — Vo (w;),v — wit1) > 0.
Instantiating this first-order condition with v = w; rearranges to give
NG | clwimwira |l = (ngi+1,wi — wisr) = (Vip(wirr) — Vip(w;), wips — wi) 2 [lwipr—wi?,

which implies ||wi+1 — wi|| < nllgi+1]l« < 0|0 fit1(w;)||« from the statement. On the other hand,
instantiating the first-order condition with v = wy.r gives

(Vi(w;) — Vo (wig1), Wref — Wig1) < (NGig1, Wref — Wit1)
<N [{git1, Wrer — wi) + (git1, Wi — wit1)],

which combines with the definition of Dy, to give

Dy (Wref, Wit1) — Dy (wWrer, wi) = Y(w;) — Y(wit1) — (Vp(wit1), Wrer — wit1) + (VP (w;), Wrer — wj)
= —Dy(wit1, w;) + (Vip(wi) — Vp(wig1), Weef — wis1)
1
<N {(Gig1, Wret — W) + 1 | (Gik1, Wi — Wig1) — qub(wz#la w;)
To simplify this further, by the Fenchel-Young inequality and strong convexity of D,
1 n 9 1 9 1
(Ofir1(wi), wi — wiy1) — 5Dw(wz‘+17wz‘) < §Hafz‘+1(wz‘)H* + 27]\\@% —wi1|]* = EDw(wm,wi)

n
< §Hafz‘+1(wz‘)H§~
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which after summing for all ¢ < ¢, telescoping and rearranging gives

Dy (wre, wy) < Doy (wrer, wo) + 1Y (g1, Wrer — wi) +1 Y g|!8fi+1(wi)H3-
i<t i<t

Lastly, the version of the claim with convexity follows from (g1, Wt — w;) < fir1(Wref) —
fir1(wi). u

B.2. The realizable case: Theorem 5

This proof makes use of the variant of Freedman’s inequality restated in Lemma 13.

Proof (of Theorem 5) As in the other proofs, let (v;);<; be coupled iterates projected onto the ball
S = {v € R?: ||v — wet|| < By}, where vy = wp and common random data ((z;,y;))!_; are
used. The proof will apply concentration inequalities on the common sample space, and then show
that (w;)i<¢ = (v;)i<+ and that both share good risk and norm guarantees.

Unlike the other proofs, this realizable setting will apply two separate concentration inequal-
ities in order to allow cleaner step sizes. Concretely, the first concentration inequality will be on
> j<i j+1(wrer) alone. Since £ 11 (wrer)| < C4 almost surely by assumption, then by ¢ applica-
tions of Lemma 13 with constant ¢ = 4 gives, with probability at least 1 — ¢4, simultaneously for
all: <,

ont ont B2
7 ij+1(wref) < TR(wref) +4nCyIn(1/0) = TR(wref) + 16

J<i

The second concentration inequality will as usual involve both £;41(z) and £;1;(v;). To start,
again using the constant Cy but also Theorem 12, and defining C5 := (Cy + (C1 + 2C2 By, +
Csl|wyet||) By ) /2 for convenience, for any j < t and any u € S,

12651 (wret) — i1 (V)] < |1 (wres) | + €51 (wret) — €1 (v)] < 2C5.

Combining this bound with with another ¢ applications of Lemma 13 with constant ¢ = 4, with
probability at least 1 — ¢4, simultaneously for all ¢ < ¢,

D W (weer) = (1/2)€551(0)] < Y [(5/9)R(wrer) — (3/8)R(v;)] + 4C5 In(1/8).

1< 7<t

For the remainder of the proof, discard the combined failure event from the preceding bounds, which
together removes 2td probability mass.

The first concentration alone will now be used to prove w; = v; € S by induction; the base
case wy = vg € S is direct, thus consider some ¢ > 0. By the concentration inequality on
> j<i 11 (wrer), the fact that €1 (w;) > 0, and using additionally R (wyer) < pDay (Wret, wo) /1,
and lastly the definition of p-self-bounding, the deterministic mirror descent guarantee from Lemma 17
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becomes

77
Dy (wrer, w;) < Doy (wrep, wo) + 1 Y (i1 (weer) — L1 (wy)] + Z 1 (W) |21y

1<t 1<t
BQ
<t > 1 (wre) — (1= np)Lygr (w;)] ©)
j<i
B2
<t D L (wer)
j<i
B2 gL B2
=~ 4 nR(wref) + f
< B | 5Dy (wre, wo) LB B2 ’ 3B2’
4 8 16 8

which establishes the desired norm control since Dy (wret, w;) > [Jw; — wref||?/2, but also since
v;—1 = w;—1, then the construction of v; will not invoke the constraint and v; = w;.

For the risk control, for any ¢ < ¢, by the second concentration inequality above, using (v;)j<; =
(wj)j<i and continuing with the deterministic mirror descent bound from eq. (9),

2
Dt wi) < 2 S €1 (i) = (1/2)51(0)]

Jj<i
2
=t > 1 (weer) = (1/2)€551 (v;)]
J<i
< T“’ 1> [(5/4)R(wret) — (3/8)R(v;)] + 4nCs In(1/6),
i<t
which after expanding the choice of C’5 gives the desired bound. |

B.3. The non-realizable, Markov case: Theorem 8

This proof makes use of the Markov chain concentration inequality in Lemma 14.
Proof (of Theorem 8) Let (v;);<; denote the coupled projected mirror descent iterates using pro-
jection ball S := {v € R? : ||[v — wreg| < By}, which are coupled in the strong sense that that
vo = wyp, and thereafter (v;);<; and (w;);<; use the exact same data sequence ((x;,y;))!_;. As in
the general proof scheme, the first step is to apply a concentration inequality on this shared data
((zi,vi))!_,, and then show that (v;);<; = (w;)i<¢ by induction.

Before starting on the general proof scheme, to simplify the interaction with the loss condi-
tions, define C3 := Cy + 2C3B,, + B, for convenience, and note by Theorem 12 and since
max{||z||«,|y|} <1, forany u € S,

sup (|04 (w)|[« < C3, sup [[411(w) — 41 (v)|| < Csflu —v]|. (10)
Jj<t j<t

Lastly, C3 < 4B, max{1, Cy, Ca}.
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The concentration inequality will be the general stochastic process bound in Lemma 14, applied
0 7)< [lj+1(wrer) — €j41(vj)] for all ¢ < ¢, which requires almost sure bounds on two quanti-
ties. The first is a uniform control on individual differences within this summation, which thanks to
eq. (10) is simply

s‘up ’€j+1(wref) - j+1(vj)| < Cng a.s..
1<t

The second almost sure bound is on a similar difference but on iterates which are 7 apart, which
follows by combining eq. (10) with the per-iteration guarantee from Lemma 17:

i+7—1
[itr i1 (Vigr) = lirir ()| < Csllvirr —vill < Cs Y 0l Ve (v))]l« < nrC5.
=i

As such, union bounding t applications of Lemma 14 with probability at least 1 — ¢76, simultane-
ously forall 7 < ¢,

1> [t (wrer) — £1(05) = R(wer) + R(v;)] < 29C3Bu, [2T Ve ++/irIn(l /5)] +irCR.

j<i

If ¢ > 27, then this bound simplifies to

1Y [ (weer) = £i41(v;) = R(wrer) + R(v))] < 20C3By Vit + Vi+ /it In(1/ 5)} +irn° 3
7<i
6B2 + B2
- 1024

2
< Bu

—
0]

On the other hand, if ¢ < 27, then forgoing Lemma 14 entirely and using the almost sure bounds on
the left hand side directly,

. . B2
nz (1 (Wrer) — £j4+1(v5) — Ryp(wref) + Ry (v5)] < 20iC3By, < 20V 2iT7C3B,y, < 28"

j<i

The remainder of the proof discards the common #79 failure probability on the underlying sample
space ((x,y:))%, which is shared by (v;)i<; and (w;)i<;.

The proof now proceeds by induction, establishing v; = w; for ¢« < t and the corresponding
risk bound. The base case wyg = vg is by definition of the coupling, thus consider the construction
of some w; with 7 > 0; by the deterministic mirror descent guarantee in Lemma 17, the inductive
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hypothesis (v;);j<; = (w;);<i, and the above concentration inequality on (v;) j<;,

2
Dy (wret, wi) < Dy (wrer, wo) + 1Y (€1 (wrer) = i (wy)] + D % IV 1 (wy) |2

7<t 7<t
2
N
= Dy(wrer, wo) +1 ) (41 (wrer) — i1 (0)] + Y S IV ()12
j<i j<i
B2 B2 in?C3?
< W _ . —w
< gt n; [R(wier) = R(w)] + 155 + 5
B2
< 772 [R(wre) — R(vj)] + %»
j<i

which establishes the risk guarantee on (w;);<; after substituting (v;);j<; = (w;);<; back in. To

verify w; = v; € S, it suffices to establish ||w; — wyet|| < By, which means v; will not encounter its
D’d) (wrefuwo) +

projection and w; = v;; to this end, combining the preceding with the fact R (wyer) < 7

inf, R(v) < %\g}i + inf, R(v), then

1 By, By, By, w
5”71}1 - wrefH2 < Dw(wreﬁ wi) < —+ 772 [R(wref) - R(w])} < —+ 772 < —

as desired. |

B.4. Heavy-tailed data: Theorem 10

This proof makes use of the heavy-tail concentration inequalities at the end of Appendix A.2.
Proof (of Theorem 10) This proof will follow the usual scheme — applying concentration to pro-
jected iterates (v;)i<¢ with vg = wp which are coupled to (w;);<; and satisfy v; € S, and then
separately apply concentration to (v;)i<; and derive v; = w; € S and a risk bound on both — but
will additionally apply concentration to ||a;3;]|2. To this end and to simplify a few terms, define
Cs := Cy 4+ C3 By, + By, whereby Theorem 12 grants, for any j < t and any v € S,

10€j+1 (V)| < Zj+1C3, |01 (Weer) — L5411 (v)| < Z7,1C3By. an
To this end, the first step is to use one of the two assumptions to control 23:1 max{1, ||lz; |1, |y;|*}.

1. (Subgaussian tails.) Union bounding over 2¢ standard subgaussian bounds (van Handel,
2016), simultaneously for every ¢ < ¢,

> Zj <tEXZy + 20/tIn(1/6) =: tCr.
j=1

2. (Polynomial tails.) Union bounding over 2¢ applications of Theorem 16, simultaneously for
every ¢ < t,

¢ 2 1/p
Z Zj <tExXZ; + 2M\/¥ <5> =: th.

Jj=1
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The rest of the proof will simply use C' to denote either C7 or Cg, and the final bounds will be
obtained by using the appropriate setting to expand the definition of C'.

Next comes the concentration inequality on >, _; [¢j11(wref) — £j41(v;)] for all ¢ < ¢. It will
not be possibly to apply Azuma’s inequality directly, since the increments do not have a uniform
control; instead, a very nice extension of Azuma’s inequality, presented by (van Handel, 2016, Prob-
lem 3.11), will allow us to use the varying increments which were controlled with high probability
above. In particular, combining the above moment bounds with the loss bounds from eq. (11) gives

> i (wer) — L1 (vy)]? < Z}C3B2, < 16tCC3 By,
J<t 1<t

As such, applying the variant of Azuma’s inequality from (van Handel, 2016, Problem 3.11) to each
7 < t and union bounding, and using the earlier control on the data norms to remove the “and”
case from the bound in (van Handel, 2016, Problem 3.11), then with probability at least 1 — ¢4,
simultaneously for every ¢ < {,

2 n
Z [ej-l—l(wref) — fj+1(vj) — R(wref) + 'R(Uj)} < \/16tCC3BQ?Ul (1/5)

1<t
< 4C3B,\/tC'In(1/3).

This completes the expanded concentration part of the proof technique.

The induction part now proceeds as usual. The base case has wy = vg € S by the initial
conditions, thus consider ¢ > 0. By the deterministic mirror descent guarantee in Lemma 17 and
since (w;);j<; = (vj);j<i, and also controlling the gradient norm via eq. (11),

2
Dy (wres, wi) < Dyp(rer, w0) + 1Y 641 (weet) = Ligr (wy)] + Y %Haﬁjﬂ(wj)llf
j<i j<i

2C
< Dy(wre, wo) + 1) (U1 (weer) = £j1(v;)] Y Zia

1<t 7<t
<16 —|— n Z (Wre) — R(v;)] + 4nC3By+/tC'n(1/5) + n*CitC
7<i
e "' Ui Z (wret) — R(v;)]
Jj<t
which establishes the risk guarantee for (w;);<; after substituting (v;)j<; = (w;);<i back in.

To see that the projection is not invoked and in fact v; = w;, then using the bound R (wyf) <
Dy (wrer, wo)/v/t + inf, R(v), the preceding simplifies further to give

1 2 i By
inref - wz” < Dw(wreﬁ wz < — 772 wref (Uj)] < T’
1<t
meaning the projection set is not exceeded, and v; = w;. |
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B.5. Batch data: Theorem 11

This batch data proof uses a generalization bound over Bregman balls to handle concentration
(Kakade et al., 2008, Theorem 3 and Example (4)).

Proof (of Theorem 11) Let (v;);<; denote full batch projected mirror descent iterates onto a con-
straint set S, using initial condition vy = wy and the same sample as (wj)i<¢. Unlike other invoca-
tions, the constraint set here is defined in terms of the Bregman divergence:

Sw = {U S RY Dlp(wrefa U) < 33/2} :

Due to strong convexity, if follows that v € Sy, satisfies [|v — wref]|?/2 < Dy (wrer, v) < B2,/2; the
reason for this altered constraint set is for the application of an appropriate concentration inequality.
As usual, this will be the first step, and then the risk control will come second.

The concentration inequality will in fact be a generalization bound, which allows for data re-use
across iterations, unlike the martingale concentration inequalities in the other sections. It is still
necessary to bound the Lipschitz constant and range of the predictors; by Theorem 12, defining
C3 := C1 + 203 By, + By, for convenience, for all v € Sy,

|€j (y’ J:TU) - gj (y’ JJ’Twref)| < O3By,
‘EI(ya xTv)‘ < 037

[oR| < - SS9t < s
<n

Combining these bounds with the fundamental theorem of Rademacher complexity and its Lipschitz
composition lemma (Shalev-Shwartz and Ben-David, 2014), as well as a Rademacher complexity
bound for predictor sets of the form Sy, (Kakade et al., 2008, Theorem 3 and Example (4)), with
probability at least 1 — 44, simultaneously for every v € Sy,

~ ~

R(wref) — R(v) — R(wref) + R(v)

.

< Rad ({(€1(v), ..., n(v) 1 v € Sy)}) + 6C3B,,

:T

< C3Rad ({(z{v,...,2v) 1 v € Sy)}) + 6C3B,,

< 220 (14 6V/m(1).

The proof now proceeds by induction. The base case wg = vg € Sy, is direct, thus consider
1 > 0. By the deterministic mirror descent guarantee applied to w; but now with batch gradients
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Vﬁ(wi), and using (w;);<; = (v;);j<i, and lastly using ¢t < n,

Dy, w9) < Dyt w0) + 0 3 [Rlutr) — Rlwy)] + 72 3 [ 0R w) |

j<i j<i
< U +nZ[ (Wref) (v]]+7722HVR vj) ’
1<
S + 0y [R(wner) = R(0;)] +1CsBuV/E (1+ GW) +°C3
7<t
2
< % + Y [Rlwe) — R(w3)].
7<t

which establishes the risk guarantee on (w;),<; after using (v;);j<; = (w;); <. For w; = v; € Sy,
continuing from the preceding inequality but additionally making use of R (wyef) < Dy (wrer, wo)/ Vit
inf, R(v),

Dq/;(wrefa wz > + n Z wref (Uj)} ’

B? Dq/;(wref wO)
< Wy § —w TR T
B g ﬁ

8 —
1<t

By

47

as desired. ]

Appendix C. Analysis of Temporal Difference learning (TD)

As with the proof schemes for mirror descent, there is both a deterministic part (provided for mirror
descent in Lemma 17), and a random part (using fact:conc:markov for concentration of Markov
chains).

C.1. Deterministic TD analysis

Even though TD is not a gradient-based method, the analysis here follows the same expand-the-
square plan as described for gradient descent in Section 2.2, which is also the idea behind the mirror
descent bound in Lemma 17.

Lemma 18 Ler S C RY denote an arbitrary closed convex constraint set, let wyes € S be arbitrary
and wy € S, and given any vectors (z;);>0 with ||z;|| < 1 and scalars (r;)i>1 with |r;| < 1, con-
sider the corresponding projected TD iterates w; 1 := Ilg (w; — 9i+1Giy1(w;)) (where Git1(-) is
defined in eq. (5)). Then, for any t,

Jeor = wnel|? < oo — w40 > [ = i, w01 = wien)? + (i1, w5 — wer)
i<t

-2 <Gi+1(wref), Wi — wref> + 477‘|Gi+1(wref) ||2] .
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Proof Proceeding just as in mirror descent, first note for any ¢ that

[wit1 — Wrerl|* = | s (w; — 0i41Gis1 (W) — wrer?
< lwi — i1 Gig1 (w;) — Wit
= [|Wi — Wref|| — 4Mi+1 \Gi+1(W;), Wi — Wref m; i+1 (W) ||
| 1 -2 (Giv1(w;) )+ 07| Gigr (wi) |2

To simplify the two latter terms, since G;41(w;) — Git1(Wref) = x; (T; — YTi41, Wi — Wret), NOtE
firstly that

— (Gig1(wi), wi — Wref) = — (Gig1(wi) — Gip1 (Wref), Wi — Wrer) — (Git1(Wrer), Wi — Wrer)
= — (@i, Wi — Wrer) (Ti — YTip1, Wi — Wrer) — (Git1(Wref), Wi — Wrer)
)

X
= — (xi, W; — Wref 2 + <1'z'7 w; — wref) <7$i+17 w; — wref) - <Gi+1(wref)7 w; — wref> s

and secondly

1
§||Gz'+1(wi)\|2 < |Gig1(wi) — Gigr (Weer) |* + [|Gir1 (wrep) ||

= ll2il® (@i — it1, wi — weer)® + 2/|Gip1 (weer) ||

< (@i — VP41, Wi — Wret)” + 2] G (weer) ||

= (i, Wi — Wrer)” — 2 (@4, Wi — Weet) (VTit1, Wi — Wre)
+ (Y&ip1, Wi — Wrep)” + 2|| G (wrep) ||,

“{hiCh together with 2 (;, w; — Weer) (YTis1, Wi — Wrer) < (Ti, Wi — Wrer)” + (Vi 1, Wi — Wrer)”
give
= 2(Gig1(wi), wi = wrer) + 0| Gigr (wy) ||
< =2(1 =) (i, wi — Weer)® + 2(1 = 20) (i, Wi — Weer) (Y41, Wi — W)
+ 20 (YT 1, Wi — Wret) — 2 (Gl 1 (Wret)s Wi — Wret) + 4n[|Gi1 (wiet)]|>
< — (i, wi — Weet)? + (Vi 1, Wi — Wrer)”
= 2(Git1(Wref), Wi — Wref) + 477‘|Gi+l(wref)||2-

Combining all the inequalities so far gives

||wi+1 - wrefH2 - sz - wref”2 < -n <xiawi - wref>2 +n <7$i+17wi - wref>2

— 27 <Gi+1(wref)7 Ww; — wrcf> + 4772‘|Gi+1(wref) ”2’

while applying ) . _, to both sides and rearranging gives the final overall inequality. |

C.2. Stochastic TD analysis

As mentioned in the body, the underlying Markov chain is (z;);<;: the distribution of ;1 is wholly
determined by x;. Moreover, there are additional scalars (r;);" ;, where the distribution of 7 is
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also fully specified given x;, but meanwhile r;; says nothing about x;4;. Confusing matters, the
TD update makes use of a triple { = (x;, zj+1,7i+1); in particular, define

Ge(v) =z ({z —ya',v) —r) and Giy1(v) =z ((&; — yajy1,0) — riv1) .

The underlying mixing assumptions will be placed on (;)i<¢, not on (x;);<¢; this is simply
to avoid messiness arising from the use of multiple indexes. This is all smoothed over with the
approximate stationarity of Definition 4. That said, there is a place in the proof where the Markov
structure on (x;);< is needed (and explicitly mentioned).

Proof (of Theorem 9) Following the standard proof structure, let (v;);<; denote projected TD iter-
ates constrained to lie within S := {v € R? : ||v — wyet|| < By }. The (v;)i<; are coupled to (w;)i<;
in the strong sense used throughout this work: vg := wyp, and thereafter both are updated using the
exact same random data sequence ((;);<¢. The next step of the proof will be to apply concentration
inequalities to control the underlying sample space ((;)i<¢, and then use these to show that in fact
w; = v; € S via the deterministic TD guarantees in Lemma 18.

The concentration inequality will be the one for stochastic processes in Lemma 14, which first
requires a variety of uniform bounds. For convenience, define j := ¢ — 7 + 1 and a mapping f as

f(Ca U) == <x7 v — wref>2 + <’)/.’L‘/, U= wref>2 -2 (Gc(wref)y v — wref> + 477HGC(wref)”2§

the uniform controls will be on this mapping f, which corresponds to the f in Lemma 14, and is the
stochastic term in lemma 18. The first step is to bound | f|, which is direct: using 7 < 1 and v < 1,

1F(G0)] < lzlPlo — wrerl? + 72|12 1P [|lv — wret]?
+ |G (ween) |2 + 1o = wietl|? + dnllzl|? ((z — 2", wret) — 7)°
< By +7°Bi + Bi + (1+40)(2 + (24 297 [lweet )
< 30(3121; + eref”Q)
< 31B2 =: By,

To bound | f((i+1;vi) — f(Cit1;v4)], first note that

i—1
lvi = w5l = 1> 1 (Grra(vr) = G (wrer) + Grpa (weer)
k=j

i—1

= 0wk @k — VTRt v — Wrer) + Tk (T — VTt 1, Wrer) — o1 |
k=j

< 2n(7 = 1) (1 + By + [|wret]])

S 6"7311) = BG)
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whereby

| f(Git15vi) — f(Gir15v9) = ’ — (@i, 0 — v + V) — Weer)® + (T3, V) — Weer)
+ (Y41, 0 — ) 4 V) — Wrer)® — (Y41, 05 — Wer)”
+ 2(G¢(Wref), vj — ;)
= ‘ — (xj,v; — vj>2 — 2(xj, v; — vj) (T4, Vj — Wref)
9 {@ig1, v — v5)? + 297 (i1, 00— V) (Tig1, 05 — Wrer)
+ 2w, v; — Vi) (T5 — VTig1, Wrer) — 27541 (T4, Vj — ;)
< B% + 2B, Bg + v*B% + 2y*Ba By + 2(1 + v) B wre| + 2Ba
< Bg (2 + 4|wrerl| + 4Bw) + 2B
< 42nB2 + 36n°B2,
< 80nB2 =: B;.

Applying Lemma 14 to each ¢ < ¢ and union bounding, then with probability at least 1 — ¢4,
simultaneously for every ¢ < t,

772 [f(Cj415v5) — EXenrn f(C05)] < 2nBy (27’ —2+te+ \/tTln(l/é)) +nZBi

j<i i<t
< nBZ (62(27 — 2+ te) + 80ty + \/2tT ln(l/é))
2

B? B
< (124 +80+2) < —=.
< qopq 180D =

/N

Henceforth, condition away the failure event for the preceding inequalities.

What remains is to inductively invoke the deterministic TD guarantee from Lemma 18 to bound
the error of (w;);<¢ and simultaneously show w; = v; € S for all 7. The base case

Throw out the preceding failure event; the remainder of the proof proceeds by induction, es-
tablishing that the iterate sequence never exits S, The proof now proceeds by induction; the claim
holds automatically for vg, since vg = wg € S by construction, thus consider w; for some ¢ > 0.
Invoking the deterministic TD guarantee from Lemma 18 to w;, together with the inductive hypoth-
esis (wj)j<i = (vj)j<i, the earlier concentration inequalities, and lastly making the single appeal
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to the Markov property on (x;);<; to obtain EX¢,, , z;41 = EX¢, 2, note

[|; — wref” < Jwo — wrefH + 772 { (), wj — wref>2 + (Y241, w5 — wref>2
7<t

= 2(G(wier), w5 — wrer) + 4| G (wier) 2

< HwO - wrefH + 772 |: x]avj - wref> + <7$j+1avj - 'U~)ref>2
1<t

—2(Gy (’wref) — Wrer) + 40| G (Wrer) | }

< JJwo — wret]|* + + Ny Ech[ (@, 05 — wrer)” + (Y2, 0j — Wrer)”
7<t
2 (Ge(wrer), 05 — wre) + 40(2 + 2(1+ 7))
By

< Hwo - 'wrefH2 + 9
+n Z EXCNW |: - (1 - '72) <$7 w; — wref>2 -2 <G§(wref)7 wy — wref) , (12)
Jj<i
which rearranges to give the desired TD error bound. To control the norms from here, since

_ 2
|BXr G weer) | < st
can be dropped, then eq. (12) implies

. 2. .
, and moreover since —(1 — 7?) (z,v; — wyef)” is negative and

2
+ "+ 2772 |G (wre) [ [[vj — wret|

sz - wref||2 < ||UO - wrefH2
2
7<i

- 16 2 8
< B2,

BQ+BiU+Bw

meaning the new unconstrained iterate w; satisfies w; € S, whereby v; will also not encounter the
constraint since v;_1 = w;_1 and the update is the same, and thus w; = v; € S. ]
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