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Abstract
Analysing statistical properties of neural networks is a central topic in statistics and machine learn-
ing. However, most results in the literature focus on the properties of the neural network minimizing
the training error. The goal of this paper is to consider aggregated neural networks using a Gaussian
prior. The departure point of our approach is an arbitrary aggregate satisfying the PAC-Bayesian
inequality. The main contribution is a precise nonasymptotic assessment of the estimation error
appearing in the PAC-Bayes bound. We also review available bounds on the error of approximating
a function by a neural network. Combining bounds on estimation and approximation errors, we
establish risk bounds which are sharp enough to lead to minimax rates of estimation over Sobolev
smoothness classes.
Keywords: shallow neural networks, PAC-Bayes, mirror averaging, exponential weights

1. Introduction

Neural networks are the most widely used parameterised functions for solving machine learning
tasks. Given a neural network architecture, the parameters of the neural network are then learned
from data. Assessing the error of the learned network on new, unobserved examples is a central topic
in statistics and learning theory (Bartlett et al., 2021; Fan et al., 2021). The most popular approach
for estimating the parameters of the network from data, referred to as weights and biases, is the
minimization of the (regularized) training error. This is usually done by the stochastic gradient
descent algorithm, or a version of it. For binary classification, risk bounds for neural network
classifiers are based on Vapnik-Chervonenkis dimension (Bartlett et al., 1998; Anthony and Bartlett,
1999; Bartlett et al., 2019). Even for simple networks containing only one hidden layer, these risk
bounds are rather involved (Xie et al., 2017; Zhong et al., 2017; Cao and Gu, 2019; Ba et al., 2020).

A well-known alternative to minimizing the regularized training error is to use a prediction
rule based on a posterior distribution. Typical example is the network obtained by sampling its
weights from the posterior, or the convex combination of the networks averaged using the posterior
distribution. Surprisingly, little is known about risk bounds of posterior-based prediction rules in
the context of neural networks. The goal of the present work is to do the first step in filling this gap
by focusing on one-hidden-layer feedforward neural networks and Gibbs posteriors using Gaussian
priors. An attractive feature of posterior-based methods is that their analysis can be carried out
using the PAC-Bayes theory McAllester (1999, 2003) as a substitute to the Vapnik-Chervonenkis
dimension or the Rademacher complexity. We refer the reader to Catoni (2007); Guedj (2019);
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Alquier (2021); Germain et al. (2009) for an enlightening account of the PAC-Bayesian approach in
statistics and learning.

PAC-Bayes theory with data-dependent prior Rivasplata et al. (2018); Lever et al. (2013) has
been already used in the framework of neural networks, mainly for providing data-driven bounds on
the generalisation error of trained (stochastic) networks and prior selection based on these bounds
Dziugaite and Roy (2017); Neyshabur et al. (2017); Zhou et al. (2019); Letarte et al. (2019); Biggs
and Guedj (2021); Perez-Ortiz et al. (2021a,b); Pérez-Ortiz et al. (2021). A derandomized approach
of such data-driven bounds has also been investigated, including for (deterministic) shallow neural
networks, in the setting of classification; by means of margins and sub-gaussian concentration in
Biggs and Guedj (2022a), and with a majority vote approach in Biggs and Guedj (2022b). In this
paper, we take a different route and propose to use in-expectation PAC-Bayes bounds — Leung
and Barron (2006); Juditsky et al. (2008); Dalalyan and Tsybakov (2012a); Rigollet and Tsybakov
(2012), for investigating the risk (or, the expected excess loss) of aggregated neural networks. To be
more specific, let FW := {fw,w ∈ W} be a parametric class of prediction rules, with a parameter
w lying in a measurable space (W,W ). One can think of FW as a set of neural networks with a
given architecture and of w as the vector of the weights and biases. Assume we are given a data
sample of size n independently drawn from an unknown distribution P over the data space, and we
wish to “aggregate” elements of FW to obtain a prediction rule f̂n that mimics the Bayes predictor
fP. This means that for a prescribed loss function `(·, ·) taking real values, we wish `(f̂n, fP) to be
small. It turns out that under some general assumptions, for a given prior distribution π on W and a
temperature parameter β > 0, there exists an aggregate f̂n such that

E[`(f̂n, fP)] ≤ CPB inf
p

{∫
W
`(fw, fP) p(dw) +

β

n
DKL(p||π)

}
, (1)

where CPB is some constant and the infimum is over all probability distributions p over W. We
say then that f̂n satisfies a PAC-Bayes inequality in-expectation. The general specification of
(1) applies, under some assumptions, to a wide range of statistical problems such as regression,
classification or density estimation. For regression with fixed design, the Gibbs-posterior mean was
shown to satisfy (1) with CPB = 1 in Leung and Barron (2006) for Gaussian noise, and in (Dalalyan
and Tsybakov, 2007) for more general noise distributions. In some other problems, including the
random design regression and the density estimation, similar bounds were established for the mirror
averaging (Yuditskii et al., 2005; Juditsky et al., 2008). PAC-Bayes bounds with CPB > 1 for the
prediction rule obtained by randomly drawing w from the Gibbs posterior were proved in (Catoni,
2007; Alquier and Biau, 2013). The recent papers (Biggs and Guedj, 2021; Fortier-Dubois et al.,
2021) studied the problem of aggregation of neural networks with sign activation.

In the present work, we elaborate on (1) to get a tractable risk bound when FW is the set of neu-
ral networks with a single hidden layer. The tractability here should be understood as the property
of showing clearly the dependence on the important problem characteristics (sample-size, input and
output dimensions) and those of the learning algorithm (variances of the prior distribution, number
of hidden layers, properties of the activation functions). Our first main contribution stated in Theo-
rem 2 is a tractable risk bound formulated as an oracle inequality. To our knowledge, this inequality
is sharper and easier to deal with than its counterparts for the training error minimizing shallow
networks. To show potential implications of this oracle inequality, we combine it with known ap-
proximation bounds when the Bayes predictor lies in a Sobolev ball. Interestingly, we show that
a proper choice of the width of the hidden layer and the variances of the prior leads to minimax
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optimal rates of convergence, up to logarithmic factors. More specifically, for the Sobolev ball of
smoothness r and input dimension D0, we obtain in Theorem 6 the rate n−2r/(2r+D0) log2 n for a
specific class of sigmoid activation functions. A similar result is obtained for the ReLU activation as
well, but with a slightly slower rate n−2r̄/(2r̄+D0+1) (up to a polylogarithmic factor) for any r̄ < r.

The rest of the paper is organized as follows. In Section 2, we define the generic PAC-Bayesian
framework and instantiate it in the setting of shallow neural networks. In Section 3, we state the
main oracle bound for shallow neural networks with a Gaussian prior. Section 4 provides exam-
ples of statistical problems where PAC-Bayesian bounds of type (1) are available. Section 5 is
devoted to a selective review of the literature on approximation properties of neural networks with
bounded (sigmoid) and unbounded (ReLU) activation functions. Finally, Section 6 contains the
upper bounds on the worst-case risk which are nearly minimax rate-optimal in the case of sigmoid
activation. Some concluding remarks are provided in Section 7. Technical proofs are deferred to
the appendices.

2. Preliminaries and notation

In this section, we set the general framework of the PAC-Bayesian bound that will be the starting
point of our work. We then instantiate it in the specific case of neural networks.

2.1. General framework and PAC-Bayesian type bounds

Let (Z,A ) be a measurable space. We observe one realisation of the random vector Zn =
(Z1, . . . , Zn) ∈ Zn drawn from an unknown distribution P on (Zn,A ⊗n). We denote by ‖x‖2
the Euclidean norm of the vector x of an Euclidean space. Let X ⊂ RD0 , D0 ≥ 1, be a Borel set
and let µ be a σ-finite measure on

(
X ,B(X )

)
such that M2

2 = D−1
0

∫
X ‖x‖

2
2 µ(dx) < +∞. In

the sequel, we denote by Lq(µ), q ∈ [1,∞), the set of all the functions f : X → RD2 such that∫
X ‖f(x)‖q2 µ(dx) <∞. Let PW be the space of all probability measures on W and let

P1(FW) =
{
p ∈ PW :

∫
W
‖fw(x)‖2 p(dw) <∞, for all x ∈ X

}
.

We consider the problem of estimating a function fP ∈ L2(µ). At this stage, one may think
of fP as the multidimensional regression function when Z = X × RD2 , the Bayes classifier when
Z = X × {−1, 1} or the density of observations when Z = X (in the last two cases D2 = 1). A
common approach in statistics and statistical learning is to use a parametric set FW := {fw,w ∈
W} ⊂ L2(µ), indexed by a measurable set W ⊂ Rd, for some d ∈ N, for constructing an estimator
of fP. Instances of this approach are the empirical risk minimizer, the Bayesian posterior mean, the
exponentially weighted aggregate, etc. The quality of an estimator f̂n of fP is measured by means
of a loss function ` : L2(µ)× L2(µ) 7→ R+; an estimator f̂n is good if its risk

EP

[
`
(
f̂n(Zn), fP

)]
=

∫
Zn

`
(
f̂n(z), fP

)
P(dz)

is small. A widespread choice of the loss function, used throughout this paper except in Section 4,
is the squared `2-norm `(g, h) = ‖g − h‖2L2(µ) =

∫
X ‖g(x)− h(x)‖22 µ(dx), ∀g, h ∈ L2(µ).

We say that the estimator f̂n satisfies the PAC-Bayesian bound with prior π ∈ P1(FW) and
temperature parameter β > 0, if (1) is satisfied (where the infimum in the right hand side is over all
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p in P1(FW)). If CPB = 1, the bound is called exact or sharp. When the loss function is the squared
L2-norm, the PAC-Bayesian bound reads as

EP[‖f̂n − fP‖2L2
] ≤ CPB inf

p∈P1(FW)

{∫
W
‖fw − fP‖2L2(µ) p(dw) +

β

n
DKL(p||π)

}
. (2)

2.2. Shallow neural networks

In the rest of this section, we provide more details on the notations and assumptions that will stand
when we estimate fP by aggregation of neural networks. We consider the class of networks with a
single hidden layer and denote by D1 the number of units in this layer.

In order to merge weights and biases of a neural network, we note x = (1, x1, . . . , xD0−1)> ∈
X . The set W of the weights of a neural network can be divided into the weights of the hidden layer,
w1, and the weights of the output layer, w2 so that w1 ∈ RD0×D1 and w2 ∈ RD1×D2 . Therefore,
w = (w1,w2)> can be seen as an element of Rd with the overall dimension d = D0D1 + D1D2.
The neural network parametrized by w has the form:

fw(x) = w>2 σ̄(w>1 x) ∈ RD2 , ∀x ∈ RD0 with σ̄ : x ∈ RD1 7→

 σ(x1)
...

σ(xD1)

 ∈ RD1 , (3)

where σ : R→ R is a scalar activation function. In the next sections, we will consider both the case
of bounded and unbounded activation functions in order to cover most of the usual ones. We refer
to the bounded case by means of the following assumption.

Assumption (σ-B) The function σ is bounded by Mσ, i.e, |σ(u)| ≤Mσ for all u ∈ R.

Let us stress that only some of our results require Assumption (σ-B). However, all our results
will require the Lipschitz assumption stated below, which is satisfied by sigmoid functions as well
as piecewise continuous functions (including ReLU). Without loss of generality, we will assume
that the Lipschitz constant is equal to one.

Assumption (σ-L) For every pair of real numbers (u, u′), we have |σ(u)− σ(u′)| ≤ |u− u′|.

2.3. Spherical Gaussian prior distribution

The prior distribution π defined in the PAC-Bayesian framework can be interpreted as the initial
distribution of the weights, or as a regulariser. Most of the time, in practice, the weights are initial-
ized randomly from a Gaussian distribution. Building upon this remark, in the remaining part of
the paper, we consider the prior to be a product of spherical Gaussians. Recall that the weights of
a neural network are split into two groups: the weights w1 of the hidden layer and the weights w2

of the output layer. To take into account their different roles we assume the distribution over w is a
product of two spherical Gaussians with different variances.

Assumption (N ) The prior π satisfies π = π1 ⊗ π2 = N (0, ρ2
1ID0D1) ⊗ N (0, ρ2

2ID1D2), where
ID0D1 and ID1D2 are respectively the identity matrices of size D0D1 ×D0D1 and D1D2 ×D1D2.

We refer to π1 and π2 as the distribution of the hidden layer and the output layer respectively.
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3. Oracle inequalities for networks with one hidden layer and Gaussian prior

In this section, we first derive a bound for the risk of the estimator f̂n when the prior has an arbi-
trary centered Gaussian distribution, and subsequently provide an oracle inequality for a carefully
chosen Gaussian prior. Let w̄ ∈ W be any value of the parameter. Using the triangle inequality, in
conjunction with the fact that

√
(a+ b)2 + c2 ≤ a +

√
b2 + c2 for a, b, c ≥ 0, one can infer from

(2) that (
C−1
PB EP

[
‖f̂n − fP‖2L2(µ)

])1/2
≤ ‖fw̄ − fP‖L2(µ) + Remn(w̄)1/2, (4)

with the remainder term given by

Remn(w̄) , inf
p∈P1(FW)

{∫
W
‖fw − fw̄‖2L2(µ) p(dw) +

β

n
DKL(p||π)

}
. (5)

Considering fw̄ as an approximator of fP, the right hand side of (4) can be seen as the sum of
the approximation error ‖fw̄ − fP‖L2(µ) and the estimation error Remn(w̄). The main goal of
this paper is to analyze this estimation error and then to combine it with available bounds on the
approximation error. Our approach will consist in replacing the infinimum over all measures p
by the infinimum over Gaussian distributions, for which mathematical derivations are considerably
simpler. It is well-known (see, for example, (McAllester, 2003; Alquier, 2009; Guedj, 2019)) that
for a fixed w̄, the infinimum in (5) is attained by the Gibbs distribution

p∗(dw) ∝ exp
{
− n

β
‖fw − fw̄‖2L2(µ)

}
π(dw).

Furthermore in this case,

Remn(w̄) = −β
n

log

∫
W

exp
{
− n

β
‖fw − fw̄‖2L2(µ)

}
π(dw).

This expression is often referred to as the free energy. The content of the rest of this section can be
seen as leveraging the variational formulation (5) for obtaining user-friendly upper bounds.

Proposition 1 Let Assumption (σ-L) and Assumption (N ) be satisfied. Recall that d = D0D1 +
D1D2 is the number of weights of the neural network and n is the sample size.

i) If Assumption (σ-B) holds true, then

Remn(w̄) ≤ β

2n

{
‖w̄1‖2F
ρ2

1

+
‖w̄2‖2F
ρ2

2

+ d log

(
1 +

2n(A1ρ
2
1 +A2ρ

2
2)

dβ

)}
where A1 = D0D1M

2
2 ‖w̄2‖2F and A2 = D1D2µ(X )M2

σ .

ii) If the activation function vanishes at the origin but is not necessarily bounded, then

Remn(w̄) ≤ β

2n

{
‖w̄1‖2F
ρ2

1

+
‖w̄2‖2F
ρ2

2

+ 2d log

(
1 +

n(A1ρ
2
1 +A′2ρ

2
2 +A′3ρ

2
1ρ

2
2)

dβ

)}
where A′2 = M̄2

2 ‖w̄1‖2FD2 and A′3 = M2
2D0D2.
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Quantities A1, A2, A′2 and A′3 defined in the proposition, are independent of the sample size
n, the temperature parameter β and the variances ρ1 and ρ2 of the prior distribution, but they are
dimension-dependent.

There are two dual ways of drawing statistical insights from the above bounds on the estimation
error. The first way is to consider ρ1, ρ2 and D1 as “tuning parameters” of the algorithm, and to
prove that for a suitable choice of these parameters the predictor f̂n is optimal. This line of thought
is further developed in Section 6 below. The second way of interpreting the obtained bound is to
see which functions are well estimated by f̂n based on ρ1, ρ2 and D1. This leads to the following
result.

Theorem 2 Let f̂n be a method of aggregation of shallow neural networks FW = {fw(x) =
w>2 σ̄(w>1 x) : w1 ∈ RD0×D1 ;w2 ∈ RD1×D2}, based on a prior distribution π, satisfying PAC-
Bayes bound (2). Let Assumptions (σ-L) and (N ) be satisfied. Then, for B` = ρ`

√
2D`−1D`,

` = 1, 2, we have(
C−1
PBEP

[
‖f̂n − fP‖2L2(µ)

])1/2
≤ inf
‖w1‖F≤B1

‖w2‖F≤B2

‖fw̄ − fP‖L2(µ) +
{βd
n

log
(

3 +
nE

dβ

)}1/2
, (6)

where the constant E is defined by

E =

{
3B2

2(B2
1M

2
2 + µ(X )M2

σ), if σ satisfies Assumption (σ-B),
3B2

1B
2
2(M2

2 + M̄2
2 /D1), if σ(0) = 0 but σ is not necessarily bounded.

An important consequence of this result is that the estimation error, upper bounded by the second
term in (6), is of order

√
D1/n (we assume that the input and the output dimensions are fixed

and neglect logarithmic factors). This is similar to many non-parametric estimation methods. For
instance, if the regression function is estimated by a histogram with K bins, the estimation error is
generally of order

√
K/n. Thus, the number of units in the hidden layer of a neural network plays

the same role as the number of bins in a histogram. This parameter D1 has to be chosen carefully,
in order to control both the approximation error and the estimation error.

4. Examples of application

PAC-Bayes inequality is stated in (1) in a rather general form. In this section, we provide examples
of learning problems and learning algorithms for which a version of (1) is satisfied.

4.1. Fixed design regression

Regression with deterministic design and additive errors is often used in nonparametric modeling.
In the case of Gaussian errors, it corresponds to the observations

Yi = fP(xi) + σξi, ξi
iid∼ N (0, ID2), i = 1, . . . , n,

where x1, . . . ,xn are given deterministic points and Y = RD2 . In this case, the measure µ is the
empirical uniform distribution: µ = 1

n

∑n
i=1 δxi .

There are many results of type (1) in the literature for regression with fixed design. In par-
ticular, Leung and Barron (2006); Dalalyan and Tsybakov (2007, 2008); Dalalyan and Salmon
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(2012); Dalalyan and Tsybakov (2012b); Dalalyan (2020); Rigollet and Tsybakov (2012) estab-
lished a PAC-Bayesian bound for the exponentially weighted aggregate defined by f̂n(Y ,x) =∫
W fw(x) θ̂n,w(Y )π(dw) with

θ̂n,w(Z) =
exp{− 1

β

∑n
i=1 ‖Yi − fw(xi))‖22}∫

W exp{− 1
β

∑n
i=1 ‖Yi − fu(xi))‖22}π(du)

.

Note that w 7→ θ̂n,w is a probability density on (W, π), often referred to as posterior density.
As proved in Leung and Barron (2006); Juditsky et al. (2008); Dalalyan and Tsybakov (2007),
the exponentially weighted aggregate f̂n(Y ,x) satisfies sharp PAC-Bayes bound (2) as soon as
β ≥ 4σ2.

4.2. Random design regression

In the setting of iid observations, sharp PAC-Bayes inequality is valid for the mirror averaging (MA)
estimator (Juditsky et al., 2008; Dalalyan and Tsybakov, 2012a; Gerchinovitz, 2013). We define the
estimator in the case of regression with random design, and briefly mention below that similar
results hold for density estimation and classification. Interested reader is referred to (Juditsky et al.,
2008; Dalalyan and Tsybakov, 2012a) for more detailed and comprehensive account on the topic.
Note that similar inequalities are obtained for the Q-aggregation procedure (Dai et al., 2012; Lecué
and Rigollet, 2014).

The regression problem writes as in the previous example

Yi = fP(Xi) + σξi, ξi ⊥⊥Xi, i = 1, . . . , n,

with Z = X × Y , X ⊂ RD0 , Y ⊂ RD2 and (Xi,Yi) being iid. The natural choice of the measure
µ here is the marginal distribution ofXi over X .

The mirror averaging procedure satisfying (1) takes the form

f̂n(Z, x) =

∫
W
fw(x) θ̂MA

n,w(Z)π(dw) =
1

n+ 1

n∑
m=0

∫
W
fw(x) θ̂m,w(Z)π(dw) (7)

with θ̂0,w = 1 and

θMA
n,w(Z) =

1

n+ 1

n∑
m=0

exp{− 1
β

∑m
i=1Q(Zi, fw)}∫

W exp{− 1
β

∑m
i=1Q(Zi, fw̃)}π(dw̃)

, (8)

where Q : Z × L2(µ) 7→ R is a mapping satisfying some assumptions under which the minimizer
of the loss ` : g 7→ `(g, f) coincides with the minimizer of g 7→ EP [Q(Z, g)]. In the case of
regression, the mirror averaging estimator can be evaluated with the `2-norm such that in (8), the
function Q is given by Q(Zi, fw) = ‖Yi − fw(Xi)‖22.

4.3. Density estimation

Consider the case where the elements of Zn = (Z1, . . . ,Zn) ∈ Zn are iid random variables drawn
from a distribution having fP as density with respect to a measure µ. We aim to estimate fP and
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measure the risk using the squared integrated error

`(f̂n, f) = ‖f̂n − f‖2L2(µ) =

∫
X

(
f̂n(x)− f(x)

)2
µ(dx)

such that the mapping Q in (8) can by defined by Q(x, g) = ‖g‖2L2(µ) − 2g(x).

4.4. Classification for Φ-risk

Consider the binary classification problem with Z = RD0 × {−1,+1} and assume that Zn =
((X1, Y1), . . . , (Xn, Yn)) are iid observations drawn from a distribution P on Z . For a twice dif-
ferentiable convex function Φ, the Φ-risk of a classifier g : RD0 → {−1,+1} is given by RΦ

P[g] =
EP[Φ(−Y g(X))]. In this setting, the loss function can be defined as `(g, f) = RΦ

P[g]−RΦ
P[f ], and

the MA estimator given by (7)–(8) can be used with the function Q(z, g) = Φ(−yg(x)).

5. Approximation bounds

The goal of this section is to review existing bounds on the approximation error of neural networks
for different classes of functions. We are particularly interested in shallow networks and in bounds
having explicit dependence on the width of the hidden layer. The main question of interest is the
assessment of the distance between a given function and its best approximation by a one-hidden-
layer network with D1 units in the hidden layer. Our focus is on Lipchtiz activation functions such
as logistic, tanh, ReLU or quadratic (for bounded inputs). Because of major differences between
the sigmoidal and ReLU activation functions, these two cases will be presented separately.

5.1. Bounds for sigmoidal activation functions

For sigmoid activation functions we distinguish the probabilistic approach (Barron, 1993; Delyon
et al., 1995; Maiorov and Meir, 2000; Maiorov, 2006) from the deterministic and constructive ap-
proaches (Mhaskar and Micchelli, 1994; Petrushev, 1998; Burger and Neubauer, 2001; Cao et al.,
2008; Costarelli and Spigler, 2013a,b). For the set of univariate locally α-Hölder continuous func-
tions with α ∈ (0, 1], the constructive approach of (Cao et al., 2008) leads to an approximation
error of order of D−α1 in `∞-norm. For α > 1, Costarelli and Spigler (2013a) shows that the
approximation error is O(D−1

1 ) both for univariate and multivariate functions.
For other classes of functions, a common feature of the results is the requirement of the existence

of some type of integral transform (e.g., Fourier, Radon, wavelet) of the function fP. Each transform
is tailored to a different “smoothness” class. An early example is the constructive approach from
(Mhaskar and Micchelli, 1994) that focused on 2π-periodic functions from L2([−π, π]D0) with
absolutely convergent Fourier series. For such functions, the approximation error is shown to be
O(D

−1/2
1 ). In the case of random design, the seminal paper (Barron, 1993) established the upper

bound O(D
−1/2
1 ) for functions f satisfying

∫
RD0 ‖z‖2|F [f ](z)| dz < ∞, with F [f ] being the

Fourier transform of f .
Note that in the papers mentioned in the previous paragraphs, the smoothness of the function

and the dimension of the input variable do not appear in the error bound. In contrast with this, for
Sobolev spaces, Petrushev (1998) showed how the dimension of the input space and the smooth-
ness of the Sobolev space impact the approximation. Further, building on (Delyon et al., 1995),
Maiorov and Meir (2000); Maiorov (2006) proved that the approximation error is O(D

−r/D0

1 )
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Figure 1: Activation function satisfying the Maiorov condition with ϕ(x) = (1/
√

2)e−x
2/2

up to a log(D1)-factor. We use the results of Maiorov and Meir (2000) and Maiorov (2006) to
upper bound the approximation error in (6). For f ∈ (L2 ∩ L1)(RD0) with Fourier transform
F [f ](z) = (2π)−D0/2

∫
RD0 f(x) eiz

>xdx, we define Dαf = F−1[|z|αF [f ](z)]. The unit
Sobolev ball of smoothness r is then

W r
2 ([0, 1]D0 , µ) =

{
f : max

0≤|α|≤r
‖Dαf‖L2(µ) ≤ 1

}
.

To present the precise statement of the result, let ϕ,ψ ∈ L2(R) ∩ L1(R) be functions satisfying∫ ∞
0

1

a
F [ϕ](az) F [ψ](az) da = 1, ∀z. (9)

We define Φr as the set of all functions ϕ ∈ L2(R) ∩ L1(R) such that there exists ψ satisfying (9)
and ∀ρ ∈ [0, r], Dρϕ ∈ L2(R), D−ρψ ∈ L1(R).

Theorem 3 ( Maiorov (2006), Theorem 2.3) Let µ be a measure with a bounded density w.r.t. the
Lebesgue measure and let σ be any sigmoid function such that the function ϕ(t) = σ(t+1)−σ(t) ∈
Φr. Then, for any f ∈W r

2 ([0, 1]D0 , µ), there exists a neural network fw∗ defined as in (3) such that

‖f − fw∗‖L2(µ) ≤ c1Bϕlog(D1)D
−r/D0

1 and |fw∗(x)| ≤ c2BϕD
( 1

2
− r

D0
)+

1 , ∀x ∈ [0, 1]D0 ,

where c1 and c2 are constants depending only on the problem dimension D0 and on the regularity
parameter r, whereas Bϕ = maxρ∈[0,r]

{
‖Dρϕ‖L2(R), ‖D−ρψ‖L1(R)

}
.

Examples of functions ϕ satisfying (9) are given in Maiorov and Meir (2000); Maiorov (2006)
without a detailed analysis of the properties of the resulting function σ. The next result, proved
in Appendix E, fills this gap for the example ϕ(x) = 1√

2
e−x

2/2. This function satisfies (9) with

ψ(x) = 1√
2
(1− x2)e−x

2/2.

Lemma 4 Let ϕ(x) = (1/
√

2)e−x
2/2 and define σ : R 7→ R by σ(x) =

∑∞
j=1 ϕ(x−j). This func-

tion σ is 1-Lipschitz continuous, nonnegative, bounded from above by 2.5 and limx→−∞ σ(x) = 0.

In Figure 1 we display the function σ defined in Theorem 4, as well as its limit behaviour when
|x| → +∞. The left plot shows that σ looks very much like a standard sigmoid function. The middle
and the right plot zoom on the limit behavior at +∞ and −∞, respectively. We see, in particular,

9
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that σ is not monotone when its values get close to its upper limit, but that it is bounded everywhere
and tends exponentially fast to 0 at −∞. We can also consider the case where ϕ(x) = (1−|x|)+

3 , for
which we displayed, in Figure 2, the corresponding activation function σ. The function σ is derived
using the same methodology as for the case of Theorem 4 (see also Appendix E).

5.2. Bounds for the ReLU activation function

The literature on neural networks with ReLU activation has significantly grown these last years
thanks to the computational benefits of considering piecewise linear activation functions Yarotsky
(2017, 2018); Yarotsky and Zhevnerchuk (2020); Gühring et al. (2020); Lu et al. (2020); Shen
et al. (2019). We review below the results concerning shallow networks only, leaving aside the rich
literature on approximation properties of deep networks.

For a Lipschitz function f , approximation error of order O(ηD
−1/D0

1 ) is obtained in Bach
(2017). Following the seminal work (Makovoz, 1996), results for Barron spectral spaces were
developed in (Klusowski and Barron, 2016a; Xu, 2020; Siegel and Xu, 2020). Let Ω ⊂ RD0 be a
bounded domain and s > 0. The Barron spectral space of order s on Ω is

Bs(Ω) :=
{
f : Ω 7→ C : ‖f‖Bs(Ω) := inf

fe|Ω=f

∫
Rd

(1 + ‖z‖2)s |F [fe](z)|dz <∞
}
,

where fe is an L1(Rd) extension of f . It was shown in Klusowski and Barron (2016a) that the
approximation error over B2([0, 1]D0) is O(D

−(D0+2)/(2D0)
1 ). The same was proved to hold Xu

(2020) for ReLUk activation defined as σ(k)(x) = max(0, x)k, when the target function is in
Bk+1([0, 1]D0). Very recently, Siegel and Xu (2020) made another step forward to assess the ap-
proximation error of shallow neural networks. This result being, to the best of our knowledge, the
tightest one for shallow networks with ReLUk activations, we provide its statement in the particular
case of k = 1.

Theorem 5 (Siegel and Xu (2020), Theorem 3) Let Ω = [0, 1]D0 and s ≥ 1/2. If f ∈ Bs(Ω)
and D1 ≥ 2, then

‖f − fw∗‖L2(Ω) ≤ C‖f‖Bs(Ω)D
−K
1 logm(D1),

where C is a constant depending on s and D0 (but not on D1), whereas K and m are given by

K =

{
2 if 2s ≥ 3D0 + 4
1
2 + 2s−1

2(D0+1) if 2s < 3D0 + 4
and m =


0 if 2s < 3D0 + 4

1 if 2s > 3D0 + 4
5
2 if 2s = 3D0 + 4.

(10)

Note that in the papers summarized in this section, the values of the constants—which may
depend on the input dimension and on the smoothness—are not specified. An unfortunate conse-
quence of this is that we can not keep track of the information on the role of the input dimension in
the risk bounds stated in the next section.

6. Worst-case risk bounds over smoothness classes

This section is devoted to upper bounds on the minimax risk. We present risk bounds for networks
with sigmoid activation functions prior to treating the case of ReLU activation.

10
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6.1. Sigmoid activation functions

In this section we focus on real valued functions (D2 = 1) belonging to the unit ball of the Sobolev
space, fP ∈W r

2 ([0, 1]D0 , µ). Using Theorem 2 and Theorem 3, we can express both the estimation
and the approximation error as functions of the sizeD1 of the hidden layer for an activation function
that satisfies the conditions of Theorem 3. This leads to the risk bound

C−1
PBEP

[
‖f̂n − fP‖2L2(µ)

]
≤ 2c2

1B
2
ϕ

log2(D1)

D
2r/D0

1

+
4βD1D0

n
log
(

3 +
nE

dβ

)
, (11)

where c1Bϕ is as defined in Theorem 3, and E is defined in Theorem 2. We clearly see that D1,
the width of the hidden layer, controls the extent to which finer structure can be modeled. Reducing
D1 decreases the estimation error since we have fewer parameters to estimate. But it increases the
approximation error since we use a narrower class of approximators. Our goal below is to determine
the value of D1 guaranteeing the best trade-off between approximation and estimation errors.

Theorem 6 (Sigmoidal activation and Sobolev balls) Let X = [0, 1]D0 and r > 0. Let f̂n be
an aggregate of neural networks satisfying PAC-Bayes risk bound (2). If the measure µ and the
activation function σ satisfy conditions of Theorem 3, then the choice

D1 =
(βD0

n

)− D0
2r+D0 (12)

leads to the worst-case risk bound

sup
P:fP∈W r

2 (X ,µ)
EP

[
‖f̂n − fP‖2L2(µ)

]
≤ g(n)

(βD0

n

)2r/(2r+D0)
, (13)

where g(n) is the slowly varying function

g(n) = 2CPB

(
c2

1B
2
ϕ log2(n/β) + 2 log

(
3 +

3nB2
2(B2

1M
2
2 + µ(X )M2

σ)

dβ

))
.

The proof of this theorem consists in substituting D1 in (11) by its expression (12). The ob-
tained rate, n−2r/(2r+D0), is the classical minimax rate of estimation over D0-variate and r-smooth
functions. We further discuss this result and compare it to prior work in Section 6.3. Note also that
without any additional difficulty, one can extend (13) to the mis-specified case, i.e., when fP does
not necessarily belong to the Sobolev ball. The corresponding result then reads as follows:(

EP

[
‖f̂n − fP‖2L2(µ)

])1/2 ≤ inf
f∈W r

2 (X ,µ)
C

1/2
PB ‖f − fP‖L2(µ) + g(n)1/2

(βD0

n

)r/(2r+D0)
.

6.2. ReLU activation function

In the case of ReLU activation, we will state risk bounds for two classes: the Barron spectral space
and a specific Sobolev ball. Let us first assume that fP ∈ Bs([0, 1]D0) and that the conditions of
Theorem 5 are satisfied. In view of Theorem 2 and Theorem 5, we have the risk bound

EP

[
‖f̂n − fP‖2L2(µ)

]
≤ 2CPBC

2D
−2K(s,D0)
1 log2m(D1) + CPB

4βD1D0

n
log
(

3 +
nE

dβ

)
where C, K = K(s,D0), m are as in Theorem 5 and E is as in Theorem 2. The bias-variance
balance equation takes the form D−2K

1 � βD1/n and leads to the following proposition.
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Proposition 7 (ReLU activation and Barron spectral spaces) Let K = K(s,D0) be as in (10)
and let f̂n be an aggregate of neural networks satisfying PAC-Bayes risk bound (2). If the conditions
of Theorem 5 hold then the choice D1 =

(
βD0/n

)−1/(2K+1) leads to the risk bound

sup
‖fP‖Bs([0,1]D0 )

≤1
EP

[
‖f̂n − fP‖2L2(µ)

]
≤ ḡ(n)

(βD0

n

)2K/(2K+1)
,

with the slowly varying function

ḡ(n) = 2CPBC
2 log2m(n/β) + 4CPB log

(
3 +

3nB2
1B

2
2(M2

2 + M̄2
2 )

dβ

)
and C is a constant that depends on s and D0 but not on D1.

To get a risk over Sobolev spaces, we can rely on the inclusionW s+D0/2+ε,2(X ) ⊂ Bs(X ), true
for arbitrarily small ε > 0 (Xu, 2020, Lemma 2.5). This is equivalent to W r,2(X ) ⊂ Br̄−D0/2(X )
for every r, r̄ such that D0/2 ≤ r̄ < r. Depending on the order of the Barron spectral space and
the dimension of the problem, this might require a significant level of smoothness for the function
f we want to approximate. Keeping this constraint in mind, we proceed with the next proposition
which is more easily comparable to Theorem 6.

Proposition 8 (ReLU activation and Sobolev space) Let r ∈ (D0/2, 2D0 + 2) and let f̂n be an
aggregate satisfying (2). For every r̄ < r there is a slowly varying function gr̄ : N→ R+ such that

sup
fP∈W r

2 ([0,1]D0 )

EP

[
‖f̂n − fP‖2L2(µ)

]
≤ gr̄(n)n

− 2r̄
2r̄+D0+1 .

This result is weaker than the one of Theorem 6 in three aspects. First, it has the constraint r ∈
(D0/2, 2D0 + 2) limiting the order of smoothness of Sobolev classes. The constraint r < 2D0 + 2
stems from the fact that we want K(s,D0) to take the value (2s+D0)/(2D0 + 2). If r ≥ 2D0 + 2,
the claim of the last proposition holds true if we replace 2r̄/(2r̄ + D0 + 1) by 4/5. The second
weakness is that r̄, present in the rate of convergence, is strictly smaller than the true smoothness r.
Finally, the denominator in the exponent has an additional term increasing the dimension D0 by 1,
leading thus to a slightly slower rate of convergence than the minimax rate over Sobolev balls. This
is a direct consequence of approximation properties of ReLU neural nets in Sobolev spaces.

6.3. Related work on risk bounds for (penalized) ERM neural networks

For shallow neural networks with sigmoid activation, (Barron, 1994) showed that the risk of the
suitably penalized empirical risk minimizer (ERM) is O(n−1/2 log n), provided that the function f
is very smooth (

∫
‖z‖1|F [f ](z)| dz <∞). This was improved toO

(
n−2r̄/(2r̄+D0+5)

)
, ∀r̄ < r, for

specific cosine activation McCaffrey and Gallant (1994). To our knowledge, this is the best known
result for a one-hidden-layer network provided by ERM. In the case of two-hidden-layer networks
with sigmoid activation, the rate O(n−2r/(2r+D0) log3 n) was obtained in Bauer and Kohler (2019)
for functions satisfying a generalized hierarchical interaction model. Our risk bound (13), of order
O(n−2r/(2r+D0) log n), matches the nonparametric minimax rate (Stone, 1982; Tsybakov, 2008),
and is better than known rates for the ERM networks with one hidden layer. Roughly speaking, this
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shows that aggregation acts as an additional layer, so that the aggregated one-hidden-layer networks
achieve the same rate as the ERM two-hidden-layer networks.

We switch now to neural networks with ReLU activation functions. For one-hidden-layer net-
works, Bach (2017) established a risk bound of order n−2/(D0+3). On a related note, Klusowski
and Barron (2016b) considered bounded ramp activation functions and the low dimensional setting
D0 � n. For functions belonging to B2([0, 1]D0), they proved that the risk of the penalized ERM
is O(n−(D0+4)/(2D0+6)). This result can be directly compared to ours, in the particular case s = 2;
Theorem 7 and the fact that 2K/(2K + 1) = (2s+D0)/(2s+ 2D0 + 1) = (D0 + 4)/(2D0 + 5),
yield a leading term of order O

(
n−(D0+4)/(2D0+5)

)
. This improves the result of Klusowski and

Barron (2016b) by a factor O(n−(D0+4)/2(3+D0)(2D0+5)). For instance, if D0 = 3 or D0 = 4, we
get the improvement factors n−7/132 and n−4/91, respectively. This improvement vanishes when
D0 increases to infinity. For multilayer ReLU networks, Schmidt-Hieber (2020) established the
counterpart of the risk bound of Bauer and Kohler (2019) for β-Hölder functions. In particular, the
worst-case risk was shown to be O(n−2β/(2β+D0)), see also (Suzuki, 2019) for an analogous result
over Besov spaces. Hence, the minimax rate is achieved by the ERM over multilayer ReLU net-
works. In view of Theorem 8, this provides a bound for the ERM over multilayer networks smaller
by a factor O(n−2r̄/(2r̄+D0+1)(2r̄+D0)) than the bound for the aggregate of one-hidden-layer net-
works.

7. Conclusion and outlook

We have analyzed the estimation error of an aggregate of neural networks having one hidden layer
and Lipschitz continuous activation function, under the condition that the aggregate satisfies the
PAC-Bayes inequality. We focused our attention on Gaussian priors and obtained risk bounds in
which the dependence on all the involved parameters is explicit. All these bounds on the estimation
error come with explicit constants. We then combined our bounds on the estimation error with
bounds on approximation error available in the literature. This allowed us to prove that aggregation
of one-layer neural networks achieves the minimax risk over conventional smoothness classes. On
the down side, since the constants in the bounds on the approximation error available in the literature
are not explicit, the same is true for risk bounds of the present work. Therefore, it would be highly
relevant to refine the existing approximation bounds to make appear all the constants.

The results of the present work can be extended in different directions. First, it would be in-
teresting to consider the problem of aggregation of deep neural networks in order to understand
possible benefits of increasing the depth. Second, it might be relevant to analyze the case of a prior
with heavier tails, such as the Laplace prior or the Student prior, with a hope to cover the case of
high dimension D0 > n under some kind of sparsity assumption. Finally, another avenue of fu-
ture research is to explore the computational benefits of considering aggregated neural networks in
conjunction with the Langevin-type algorithms.
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prior. Ann. Inst. Henri Poincaré Probab. Stat., 56(2):1465–1483, 2020.

Arnak S. Dalalyan and Joseph Salmon. Sharp oracle inequalities for aggregation of affine estimators.
The Annals of Statistics, 40(4):2327 – 2355, 2012.

Arnak S Dalalyan and Alexandre B Tsybakov. Aggregation by exponential weighting and sharp
oracle inequalities. In International Conference on Computational Learning Theory, pages 97–
111. Springer, 2007.

Arnak S. Dalalyan and Alexandre B. Tsybakov. Aggregation by exponential weighting, sharp PAC-
Bayesian bounds and sparsity. Mach. Learn., 72(1-2):39–61, 2008.

Arnak S Dalalyan and Alexandre B Tsybakov. Mirror averaging with sparsity priors. Bernoulli, 18
(3):914–944, 2012a.

Arnak S Dalalyan and Alexandre B Tsybakov. Sparse regression learning by aggregation and
Langevin Monte-Carlo. Journal of Computer and System Sciences, 78(5):1423–1443, 2012b.

B. Delyon, A. Juditsky, and A. Benveniste. Accuracy analysis for wavelet approximations. IEEE
Transactions on Neural Networks, 6(2):332–348, 1995. doi: 10.1109/72.363469.

Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization bounds for
deep (stochastic) neural networks with many more parameters than training data. UAI, 2017.

Jianqing Fan, Cong Ma, and Yiqiao Zhong. A Selective Overview of Deep Learning. Statistical
Science, 36(2):264 – 290, 2021.
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Appendix A. Preliminary remark

As a preliminary remark let us note that, as a mixing measure, we expect the distribution p to
aggregate the predictors fw so that the resulting estimator is almost as good as the best predictors
in FW. A direct consequence of it is that “a good choice” of p should be centered in w̄. This is an
heuristic way to choose the mean, and all along the appendix we will fix the distribution of p as

p = p1 ⊗ p2 ∼ N (w̄1, τ
2
1 ID1D0)⊗N (w̄2, τ

2
2 ID1D2), τ1, τ2 > 0 (14)

where w̄ ∈ argminw∈W‖fw − fP‖L2(µ). The additional condition (14) is the starting point of our
choice for p, it is now left to set values for the variance (τ2

1 , τ
2
2 ).

Appendix B. Some useful lemmas

In what follows, when appropriate, we will write fw1,w2 instead of fw.
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Lemma 9 If the probability distribution p is such that p(dw) = p1(dw1)p2(dw2) with∫
W2

w2p2(dw2) = w̄2

then∫
W
‖fw − fw̄‖2L2(µ) p(dw) =

∫
W
‖fw − fw1,w̄2‖2L2(µ) p(dw) +

∫
W1

‖fw1,w̄2 − fw̄‖2L2
p1(dw1).

Proof Simple algebra yields∫
W

(
fw − fw̄

)2
(x) p(dw) =

∫
W

(fw − fw1,w̄2 + fw1,w̄2 − fw̄)2(x) p(dw)

=

∫
W

(fw − fw1,w̄2)2(x) p(dw) +

∫
W

(fw1,w̄2 − fw̄)2(x) p(dw)

+ 2

∫
W

(fw1,w2 − fw1,w̄2)(x)(fw1,w̄2 − fw̄1,w̄2)(x) p(dw)︸ ︷︷ ︸
,A

.

To complete the proof it suffices to integrate the previous equality with respect to µ(dx) in virtue
of Fubini-Tonelli theorem and to check that A = 0. The latter property follows from the fact that p
is a product measure and, for all w1 ∈W1,∫

W2

(fw1,w2 − fw1,w̄2)(x) p2(dw2) =

∫
W2

(w2 − w̄2)>σ̄(w>1 x) p2(dw2) = 0.

This yields the claim of the lemma.

In this section and the next one, let us define the two quantities:

G1(w) = ‖fw − fw1,w̄2‖2L2(µ), and G2(w1) = ‖fw1,w̄2 − fw̄‖2L2(µ).

Lemma 10 If Assumptions (σ-L) and M2 <∞ are satisfied, and p is chosen as in (14), then∫
W1

G2(w1) p1(dw1) ≤ D0

(
M2τ1‖w̄2‖1,2

)2 ≤ C1D0D1τ
2
1

with C1 = (M2‖w̄2‖F)2.

Proof [Proof of Theorem 10] We first use the fact that σ is 1-Lipschitz. On the one hand, in
conjunction with the Fubini-Tonelli theorem, this yields∫

W1

G2(w1) p1(dw1) =

∫
X

∫
W

∥∥∥w̄>2 {σ̄(w>1 x)− σ̄(w̄>1 x)
}∥∥∥2

2
p(dw)µ(dx)

≤
∫
X

∫
W

D2∑
j=1

(
D1∑
i=1

|w̄2,ij ||(w1 − w̄1)>i x|

)2

p(dw)µ(dx)

≤
∫
X

D2∑
j=1

(
D1∑
i=1

|w̄2,ij |
{∫

W
|(w1 − w̄1)>i x|2p(dw)

}1/2
)2

µ(dx)

= D0M
2
2 τ

2
1

D2∑
j=1

(
D1∑
i=1

|w̄2,ij |

)2

≤ D0M
2
2 τ

2
1D1‖w̄2‖2F
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and the claim of the lemma follows.

In view of Theorem 9 and Theorem 10, we have∫
W
‖fw − fw̄‖2L2(µ) p(dw) =

∫
W
G1(w) p(dw) +

∫
W
G2(w1) p1(dw1).

and ∫
W
G2(w1) p(dw) ≤ D1(M2‖w̄2‖F)2τ2

1 .

We now state two distinct lemmas to bound the quantity
∫
WG1(w) p(dw). Theorem 11 account for

bounded activation functions whereas Theorem 12 focuses on unbounded ones.

Lemma 11 Under Assumption (σ-B) and M2 <∞, if p is given by (14), we have∫
W
G1(w) p(dw) ≤ (Mστ2)2µ(X )D1D2.

Proof [Proof of Theorem 11] Using Fubini-Tonelli theorem, we get∫
W
G1(w) p(dw) =

∫
X

∫
W1

∫
W2

∥∥∥(w2 − w̄2)>σ̄(w>1 x)
∥∥∥2

L2(µ)
p2(dw2)︸ ︷︷ ︸

:=I(x,w1)

p1(dw1)µ(dx).

For the inner integral, simple algebra yields

I(x,w1) =

∫
W
σ̄(w>1 x)>(w2 − w̄2)(w2 − w̄2)>σ̄(w>1 x) p(dw)

= σ̄(w>1 x)>
{∫

W2

(w2 − w̄2)(w2 − w̄2)> p2(dw2)

}
σ̄(w>1 x)

= τ2
2D2‖σ̄(w>1 x)‖22. (15)

Therefore, ∫
X

∫
W1

I(x,w1) p1(dw1)µ(dx) ≤M2
σµ(X )τ2

2D1D2.

This completes the proof of the lemma.

Lemma 12 Let M̄2 = ‖
∫
X xx

>µ(dx)‖sp be the spectral norm of the “covariance” matrix of the
design. Under Assumption (σ-L), if p is given by (14) and σ(0) = 0, we have∫

W
G1(w) p(dw) ≤M2

2D0D1D2τ
2
1 τ

2
2 + M̄2

2D2‖w̄1‖2Fτ2
2 .
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Proof [Proof of Theorem 12] Using (15), we get∫
W
G1(w) p(dw) = τ2

2D2

∫
X

∫
W1

‖σ̄(w>1 x)‖22 p1(dw1)µ(dx)

≤ τ2
2D2

∫
X

∫
W1

‖w>1 x‖22 p1(dw1)µ(dx)

= τ2
2D2

∫
X

∫
W1

‖(w1 − w̄1)>x‖22 p1(dw1)µ(dx) + τ2
2D2

∫
X
‖(w̄1)>x‖22 µ(dx)

= M2
2D0D1D2τ

2
1 τ

2
2 + M̄2

2D2‖w̄1‖2Fτ2
2 .

This completes the proof of the lemma.

Lemma 13 Under Assumption (σ-L) and M2 <∞, if p is given by (14), then∫
W
‖fw − fw̄‖2L2(µ) p(dw) ≤M2

2 ‖w̄2‖2FD0D1τ
2
1 + M̄2

2D2‖w̄1‖2Fτ2
2 +M2

2D0D1D2τ
2
1 τ

2
2 . (16)

If, in addition, Assumption (σ-B) is satisfied, then∫
W
‖fw − fw̄‖2L2(µ) p(dw) ≤M2

2 ‖w̄2‖2FD0D1τ
2
1 + µ(X )M2

σD1D2τ
2
2 . (17)

Proof In Theorem 9 we have checked that∫
W
‖fw − fw̄‖2L2(µ) p(dw) =

∫
W
G1(w) p(dw) +

∫
W
G2(w1) p1(dw1).

Theorem 11 and Theorem 10 take care of both integrals in the right hand side of the equality for
bounded activation functions and we directly get (17). Similarly, Theorem 12 and Theorem 10 can
be applied for unbounded activation functions, leading to (16).

Appendix C. Proof of Proposition 1

Recall that the goal is to find an upper bound for the remainder term

Remn(w̄) , inf
p∈P1(FW)

{∫
W
‖fw − fw̄‖2L2(µ) p(dw) +

β

n
DKL(p||π)

}
.

We start this proof by considering the case where Assumptions (σ-L), (σ-B) and (N ) are satisfied.
We choose as p the product of two spherical Gaussian distributions with variances τ2

1 and τ2
2 , as

specified in (14). In this case, the Kullback-Leibler divergence DKL(p||π) is given by

DKL(p||π) =
1

2

2∑
`=1

{
‖w̄`‖2F
ρ2
`

+D`−1D`

[(
τ`
ρ`

)2

− 1− log

(
τ2
`

ρ2
`

)]}
.
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It is now left to find good values for τ2
1 and τ2

2 . Combining with the result (17) of Theorem 13, we
get the inequality

Remn(w̄) ≤
β‖w̄1‖2F

2nρ2
1

+
β‖w̄2‖2F

2nρ2
2

+
β

2n

2∑
`=1

D`−1D`

{
C`

(
τ`
ρ`

)2

− 1− log

(
τ2
`

ρ2
`

)}
where

C1 =
2nM2

2 ‖w̄2‖2Fρ2
1

β
+ 1, C2 =

2nµ(X )M2
σρ

2
2

β
+ 1.

One can easily check that the minimum of the function u 7→ Cu−1−log u is attained at umin = 1/C
and the value at this point is logC. This implies that

Remn(w̄) ≤
β‖w̄1‖2F

2nρ2
1

+
β‖w̄2‖2F

2nρ2
2

+
β

2n

2∑
`=1

D`−1D` logC` (18)

(1)

≤
β‖w̄1‖2F

2nρ2
1

+
β‖w̄2‖2F

2nρ2
2

+
βd

2n
log

(
D0D1C1 +D1D2C2

d

)
≤
β‖w̄1‖2F

2nρ2
1

+
β‖w̄2‖2F

2nρ2
2

+
βd

2n
log

(
1 +

2n(D0D1M
2
2 ‖w̄2‖2Fρ2

1 +D1D2µ(X )M2
σρ

2
2)

βd

)
,

where in (1) we have used the concavity of the function u 7→ log u. This completes the proof of the
first claim of Theorem 1.

In the case where Assumption (σ-B) is not fulfilled, but instead σ(0) = 0, we repeat the same
scheme of proof as above by using (16) instead of (17). This leads to

Remn(w̄) ≤ βd

2n

{
C ′1

(
τ1

ρ1

)2

+ C ′2

(
τ2

ρ2

)2

+ C ′3

(
τ1

ρ1

)2( τ2

ρ2

)2

− 2− log

(
τ2

1 τ
2
2

ρ2
1ρ

2
2

)}
+
β‖w̄1‖2F

2nρ2
1

+
β‖w̄2‖2F

2nρ2
2

. (19)

where

C ′1 =
2nD0M

2
2 ‖w̄2‖2Fρ2

1

β(D0 +D2)
+ 1, C ′2 =

2nM̄2
2 ‖w̄1‖2FD2ρ

2
2

β(D0 +D2)D1
+ 1, C ′3 =

2nM2
2ρ

2
1ρ

2
2D0D2

β(D0 +D2)
.

We choose τ1 and τ2 so that(
τ1

ρ1

)2

=
1

C ′1 + C ′3(τ2/ρ2)2
,

(
τ2

ρ2

)2

= 1/C ′2.

With this choice of τ1 and τ2 in (19) and simple algebra, we get

Remn(w̄) ≤ βd

2n
log
(
C ′1C

′
2 + C ′3

)
+
β‖w̄1‖2F

2nρ2
1

+
β‖w̄2‖2F

2nρ2
2

.
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To complete the proof, we use the following inequalities

ln(C ′1C
′
2 + C ′3) ≤ log

(
C ′1(C ′2 + C ′3)

)
= logC ′1 + log(C ′2 + C ′3)

≤ 2 ln((C ′1 + C ′2 + C ′3)/2),

where the first inequality follows from the fact that C ′2 ≥ 1 whereas the last inequality is a conse-
quence of the concavity of the logarithm.

Remark 14 The distribution p is centered on the oracle choice w̄ for the weights of the neural
network and we observe that the optimized variances (τ2

1 , τ
2
2 ) in the proof of Theorem 1 are of the

form τ2
l = ρ2

`/(1 + c`nρ
2
` ), ` = 1, 2, for some positive constants c1, c2. These values of τ` arbitrate

between the prior beliefs and the information brought by data. Indeed, (1) when no training data
is available the uncertainty around w̄ corresponds to the prior uncertainty (ρ2

1, ρ
2
2), (2) when the

amount of observations n is unlimited and goes to infinity the uncertainty around the oracle value
converges to 0 and p becomes close to the Dirac mass in w̄.

Appendix D. Proof of Theorem 2

The main idea is to choose ρ1 and ρ2 minimizing the upper bound of the worst-case value of the
remainder term

sup
w̄:‖w̄`‖F≤B`

Remn(w̄)

furnished by Theorem 1. Instead of using the exact minimizer, we use a surrogate obtained by
simplifying expressions of ρ1 and ρ2. This is done by the following result.

Corollary 15 Let Assumptions (σ-L) and (N ) be satisfied, set B` = ρ`
√

2D`−1D` for ` = 1, 2.

i) If Assumption (σ-B) holds true, then

sup
w̄:‖w̄`‖F≤B`

Remn(w̄) ≤ βd

n
log

(
3 +

3nB2
2(B2

1M
2
2 + µ(X )M2

σ)

dβ

)
.

ii) If the activation function is unbounded but vanishes at the origin, then

sup
w̄:‖w̄`‖F≤B`

Remn(w̄) ≤ βd

n
log

(
3 +

3nB2
1B

2
2(M2

2 + M̄2
2 /D1)

dβ

)
.

The rest of this section is devoted to the proof of this claim, which implies the claim of Theo-
rem 2. In view of (18), we have

Remn(w̄) ≤
β‖w̄1‖2F

2nρ2
1

+
β‖w̄2‖2F

2nρ2
2

+
β

2n

2∑
`=1

D`−1D` log(1 + F`ρ
2
` )
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with

F1 =
2nM2

2 ‖w̄2‖2F
β

and F2 =
2nµ(X )M2

σ

β
.

Taking the maximum over all w̄ such that the Frobenius norms of w̄1 and w̄2 are bounded by B1

and B2, we get

sup
‖w̄1‖F≤B1

sup
‖w̄2‖F≤B2

Remn(w̄) ≤ βB2
1

2nρ2
1

+
βB2

2

2nρ2
2

+
β

2n

2∑
`=1

D`−1D` log(1 + F̄`ρ
2
` ) (20)

with

F̄1 =
2nM2

2B
2
2

β
and F̄2 =

2nµ(X )M2
σ

β
.

The first order necessary condition for optimizing the right hand side with respect to ρ2
1 and ρ2

2 reads
as

−
B2
`

ρ4
`

+
D`−1D`F̄`
1 + F̄`ρ

2
`

= 0 ⇐⇒ ρ4
` −

B2
`

D`−1D`
ρ2
` −

B2
`

D`−1D`F̄`
= 0.

This second-order equation has only one positive root given by

ρ2
` =

B2
`

2D`−1D`
+

(
B4
`

4D2
`−1D

2
`

+
B2
`

D`−1D`F̄`

)1/2

=
B2
`

2D`−1D`

{
1 +

(
1 +

4D`−1D`

B2
` F̄`

)1/2}
.

We simplify computations by choosing

ρ2
` =

B2
`

2D`−1D`
.

Replacing these values of ρ2
` in (20), we get

sup
‖w̄`‖F≤B`

Remn(w̄) ≤ β

n

2∑
`=1

D`−1D`

{
1 +

1

2
log

(
1 +

B2
` F̄`

2D`−1D`

)}

≤ βd

n

2∑
`=1

{
1 +

1

2
log

(
1 +

B2
1F̄1 +B2

2F̄2

2d

)}
,

where the last inequality follows from the concavity of the logarithm. Replacing F̄1 and F̄2 with
their respective expressions, we get the inequality

sup
‖w̄`‖F≤B`

Remn(w̄) ≤ βd

n

(
1 +

1

2
log

(
1 +

nB2
2(B2

1M
2
2 + µ(X )M2

σ)

dβ

))

≤ βd

n
log

(
3 +

3nB2
2(B2

1M
2
2 + µ(X )M2

σ)

dβ

)
,

which coincides with the first claim of the corollary.
The second claim of the proposition is obtained by replacing ρ`’s by their respective expressions

in the second claim of Theorem 1.

24



RISK BOUNDS FOR AGGREGATED NEURAL NETS

Figure 2: Sigmoid function satisfying the Maiorov condition with ϕ(x) = (1− |x|)+/3.

Appendix E. Proof of Lemma 4

Since

σ(x) =
∞∑
j=1

ϕ(x− j).

we have

σ(x+ 1)− σ(x) =

∞∑
j=1

ϕ(x+ 1− j)−
∞∑
j=1

ϕ(x− j)

=

∞∑
j=0

ϕ(x− j)−
∞∑
j=1

ϕ(x− j)

= ϕ(x).

Now, recall that we use the function ϕ(x) = 1√
2
e−x

2/2. It is clear, that the series

∞∑
j=1

|ϕ′(j − x)|

converges uniformly on any bounded interval. This implies that σ is differentiable and

σ′(x) =
∞∑
j=1

(j − x)√
2

e−(x−j)2/2.

Let us denote by [x] the integer part of x and by {x} = x− [x] the fractional part of x. Recall also
that the function u 7→ e−u

2/2 is increasing on (−∞, 0] and decreasing on [0,+∞). Therefore, we
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have

σ(x) =
1√
2

[x]∑
j=1

e−(x−j)2/2 +
1√
2

∞∑
j=[x]+1

e−(x−j)2/2

≤ 1√
2

[x]−1∑
j=1

∫ x−j

x−j−1
e−u

2/2 du+
e−{x}

2/2 + e−(1−{x})2/2

√
2

+
1√
2

∞∑
j=[x]+2

∫ j−x

j−x−1
e−u

2/2 du

≤ 1√
2

∫ x−1

{x}
e−u

2/2 du+
e−{x}

2/2 + e−(1−{x})2/2

√
2

+
1√
2

∫ {x}−1

−∞
e−u

2/2 du

≤ 1√
2

∫ +∞

−∞
e−u

2/2 du+
1√
2

=
√
π +

1√
2
.

For x > 0, using similar arguments and the fact that the function u 7→ ue−u
2/2 is decreasing on

[1,∞), we get

√
2σ′(x) = −

[x]∑
j=1

(x− j)e−(x−j)2/2 +
∞∑

j=[x]+1

(j − x)e−(j−x)2/2

≤ (1− {x})e−(1−{x})2/2 +
∞∑

j=[x]+2

∫ j−x

j−x−1
ue−u

2/2 du

≤ (1− {x})e−(1−{x})2/2 +

∫ ∞
1−{x}

ue−u
2/2 du

= (2− {x})e−(1−{x})2/2 ≤
√

2.

In the same way, one can check that
√

2σ′(x) ≥ −
√

2 for every x > 0. Therefore, |σ′(x)| ≤ 1 for
every positive x. On the other hand, for x ≤ 0, we have σ′(x) ≥ 0 and

σ′(x) ≤ σ′(0) =
1√
2

∞∑
j=1

je−j
2/2

≤ 1√
2

(
e−1/2 +

∞∑
j=2

∫ j

j−1
ue−u

2/2 du

)
=

1√
2

(
e−1/2 + e−1/2

)
≤ 1.

This completes the proof of the fact that σ is 1-Lipschitz.

Appendix F. Proof of Proposition 8

Proof Let assume r ∈ (D0
2 , 2D0 + 2) and r̄ ∈ [D0/2, r). Then, W r,2(X ) ⊂ Br̄−D0/2(X ) (Xu,

2020, Lemma 2.5), and since 2K
2K+1 = 2s+D0

2s+2D0+1 , substituting s by r̄ −D0/2, we obtain:

2K

2K + 1
=

2r̄

2r̄ +D0 + 1
.
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Substituting the terms in Theorem 7, this yields the result with

ḡr̄(n) = 2CPBC
2 + 4CPB log

(
3 +

3nB2
1B

2
2(M2

2 + M̄2
2 )

dβ

)
.
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