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Abstract
We consider stochastic approximation for the least squares regression problem in the non-strongly
convex setting. We present the first practical algorithm that achieves the optimal prediction error
rates in terms of dependence on the noise of the problem, as O(d/t) while accelerating the forgetting
of the initial conditions to O(d/t2). Our new algorithm is based on a simple modification of the
accelerated gradient descent. We provide convergence results for both the averaged and the last
iterate of the algorithm. In order to describe the tightness of these new bounds, we present a matching
lower bound in the noiseless setting and thus show the optimality of our algorithm.
Keywords: momentum, acceleration, least squares, stochastic gradients, non-strongly convex

1. Introduction

When it comes to large scale machine learning, the stochastic gradient descent (SGD) of Robbins and
Monro (1951) is the practitioners’ algorithm of choice. Both its practical efficiency and its theoretical
performance make it the driving force of modern machine learning (Bottou and Bousquet, 2008). On
a practical level, its updates are cheap to compute thanks to stochastic gradients. On a theoretical
level, it achieves the optimal rate of convergence with statistically-optimal asymptotic variance for
convex problems.

However, the recent successes of deep neural networks brought a new paradigm to the classical
learning setting (Ma et al., 2018). In many applications, the variance of gradient noise is not the
limiting factor in the optimization anymore; rather it is the distance separating the initialization of
the algorithm and the problem solution. Unfortunately, the bias of the stochastic gradient descent,
which characterizes how fast the initial conditions are “forgotten”, is suboptimal. In this respect, fast
gradient methods (including momentum (Polyak, 1964) or accelerated methods (Nesterov, 1983))
are optimal, but have the drawback of being sensitive to noise (d’Aspremont, 2008; Devolder et al.,
2014).

This naturally raises the question of whether we can accelerate the bias convergence while still
relying on computationally cheap gradient estimates. This question has been partially answered
for the elementary problem of least squares regression in a seminal line of research (Dieuleveut
et al., 2017; Jain et al., 2018b). Theoretically their methods enjoy the best of both worlds—they
converge at the fast rate of accelerated methods while being robust to noise in the gradient. However
their investigations are still inconclusive. On the one hand, Jain et al. (2018b) assume the least
squares problem to be strongly convex, an assumption which is rarely satisfied in practice but which
enables to efficiently stabilise the algorithm. On the other hand, Dieuleveut et al. (2017) makes a
simplifying assumption on the gradient oracle they consider and their results do not apply to the
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cheaply-computed stochastic gradient used in practice. Therefore, even for this simple quadratic
problem which is one of the main primitive of machine learning, the question is still open.

In this work, we propose a novel algorithm which accelerates the convergence of the bias
term while maintaining the optimal variance for non-strongly convex least squares regression. Our
algorithm only requires access to the stream of observations and is easily implementable. It rests on
a simple modification of the Nesterov accelerated gradient descent. Following the linear coupling
view of Allen-Zhu and Orecchia (2017), acceleration can be obtained by coupling gradient descent
and another update with aggressive stepsize. Consequently one simply has to scale down the stepsize
in the aggressive update to make it robust to the gradient noise. With this modification, the average
of the iterates converges at rate O(d‖x0−x∗‖2

t2
+ σ2d

t ) after t iterations, where x0,x∗ ∈ Rd are the
starting point and the problem solution, and σ2 is the noise variance of the linear regression model. In
practice, the last iterate is often favored. We show for this latter a convergence of O(d‖x0−x∗‖2

t2
+σ2)

which is relevant in applications where σ is small. We also investigate the extra dimensional factor
compared to the truly accelerated rate. This slowdown comes from the step-size reduction and is
shown to be inevitable.

Contributions. In this paper, we make the following contributions:

• In Section 2, we propose a novel stochastic accelerated algorithm AcSGD which rests on a
simple modification of the Nesterov accelerated algorithm: scaling down one of its step size
makes it provably robust to noise in the gradient.

• In Section 3, we show that the weighted average of the iterates of AcSGD converges at rate
O( d

t2
+ σ2d

t ), thus attaining the optimal rate for the variance and accelerating the bias term.

• In Section 4, we show that the final iterate of AcSGD achieves a convergence rate O( d
t2

+ σ2).
In particular for noiseless problems, the final iterate converges to the solution at the accelerated
rate O( d

t2
).

• In Section 5, we show that the dimension dependency in the accelerated rate is necessary for
certain distributions and therefore the rates we obtain are optimal.

• The algorithm is simple to implement and practically efficient as we illustrate with simulations
on synthetic examples in Section 7.

1.1. Related Work

Our work lies at the intersection of two classical themes - noise stability of accelerated gradient
methods and stochastic approximation for least squares.

Accelerated methods and their noise stability. Fast gradient methods refer to first order algorithms
which converge at a faster rate than the classical gradient descent—the most famous among them
being the accelerated gradient descent of Nesterov (1983). First initiated by Nemirovskij and Yudin
(1983), these methods are inspired by algorithms dedicated to the optimization of quadratic functions,
i.e., the Heavy ball algorithm (Polyak, 1964) and the conjugate gradient (Hestenes and Stiefel, 1952).
For smooth convex problems, these algorithms accelerate the convergence rate of gradient descent
from O(1/t) to O(1/t2), a rate which is optimal among first-order techniques.
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These algorithms are however sensitive to noise in the gradients as shown for Heavy ball (Polyak,
1987), conjugate gradient (Greenbaum, 1989), accelerated gradient descent (d’Aspremont, 2008;
Devolder et al., 2014) and momentum gradient descent (Yuan et al., 2016). Positive results for
accelerated gradient descent were nevertheless obt-ained when the gradients are perturbed with
zero-mean finite variance random noise (Lan, 2012; Hu et al., 2009; Xiao, 2009). Convergence rates
O(L‖x0−x∗‖2

t2
+ σ‖x0−x∗‖√

t
) were proved for L-smooth convex functions with minimum x∗, starting

point x0 and when the variance of the noisy gradient is bounded by σ2. Accelerated rates for strongly
convex problems were also derived (Ghadimi and Lan, 2012, 2013). For the stochastic Heavy ball,
almost sure convergence has been proved (Gadat et al., 2018; Sebbouh et al., 2021) but without
improvement over gradient descent.

Stochastic Approximation for Least Squares. Stochastic approximation dates back to Robbins
and Monro (1951) and their seminal work on SGD which has then spurred a surge of research. In
the convex regime, a complete complexity theory has been derived, with matching upper and lower
bounds on the convergence rates (Nemirovski et al., 2008; Bach and Moulines, 2011; Nemirovskij
and Yudin, 1983; Agarwal et al., 2012). For smooth problems, averaging techniques (Ruppert,
1988; Polyak, 1990) which consist in replacing the iterates by their average, have had an important
theoretical impact. Indeed, Polyak and Juditsky (1992) observed that averaging the SGD iterates along
the optimization path provably reduces the impact of gradient noise and makes the estimation rates
statistically optimal. The least squares regression problem has been given particular attention (Bach
and Moulines, 2013; Dieuleveut and Bach, 2015; Jain et al., 2018a; Flammarion and Bach, 2017;
Zou et al., 2021). Bach and Moulines (2013) showed that averaged SGD achieves the non-asymptotic
rate of O(1/t) even in the non-strongly convex case. For this problem, the performance of the
algorithms can be decomposed as the sum of a bias term, characteristic of the initial-condition
forgetting, and a variance term, characteristic of the effect of the noise in the linear statistical model.
While averaged SGD obtains the statistically optimal variance term O(σ2d/t) (Tsybakov, 2003), its
bias term converges at a suboptimal rate O(1/t).

Accelerated Stochastic Methods for least squares. Acceleration and stochastic approximation
have been reconciled in the setting of least-squares regression by Flammarion and Bach (2015);
Dieuleveut et al. (2017); Jain et al. (2018b). Assuming an additive bounded-variance noise oracle,
Dieuleveut et al. (2017) designed an algorithm simultaneously achieving optimal prediction error
rates, both in terms of forgetting of initial conditions and noise dependence. However this oracle
requires the knowledge of the covariance of the features and their algorithm is therefore not applicable
in practice. Jain et al. (2018b), relaxed this latter condition and proposed an algorithm using the
regular SGD oracle which obtains an accelerated linear rate for strongly convex objectives. However
the strong convexity assumption is often too restrictive for machine learning problems where the
variables are in large dimension and highly correlated. Thus the strong convexity constant is often
insignificant and bounds derived using this assumption are vacuous. We finally note that in the offline
setting when multiple passes over the data are possible, accelerated version of variance reduced
algorithms have been developed (Frostig et al., 2015; Allen-Zhu, 2017). In the same multipass
setting, Paquette and Paquette (2021) studied the convergence of stochastic momentum algorithm
and derived asymptotic accelerated rates with a dimension dependent scaling of learning rates similar
to ours. The focus of the offline setting is however different and no generalization results are given.
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2. Setup: Stochastic Nesterov acceleration for Least squares

We consider the classical problem of least squares regression in the finite dimensional Euclidean space
Rd. We observe a stream of samples (an, bn) ∈

(
Rd,R

)
, for n ≥ 1, independent and identically

sampled from an unknown distribution ρ, such that E‖an‖2 and E[b2n] are finite. The objective is to
minimize the population risk

R(x) =
1

2
Eρ (〈x, a〉 − b)2 , where (a, b) ∼ ρ.

Covariance. We denote by H
def
= E [a⊗ a], the covariance matrix which is also the Hessian of

the function R. Without loss of generality, we assume that H is invertible (by reducing Rd to a
minimal subspace where all (an)n≥1 lie almost surely). The functionR admits then a unique global
minimum, we denote by x∗, i.e. x∗ = argminx∈Rd R (x). Even if this assumption implies that
the eigenvalues of H are strictly positive, they can still be arbitrarily small. In addition, we do not
assume any knowledge of lower bound on the smallest eigenvalue. The smoothness constant of risk
R, say L, is the largest eigenvalue of H.

We make the following assumptions on the joint distribution of (an, bn) which are standard in
the analysis of stochastic algorithms for the least squares problem.

Assumption 1 (Fourth Moment) There exists a finite constant R such that

E
[∥∥a∥∥2 a⊗ a] 4 R2H. (1)

Assumption 2 (Noise Level) There exists a finite constant σ such that

E
[
(b− 〈x∗, a〉)2 a⊗ a

]
4 σ2H. (2)

Assumption 3 (Statistical Condition Number) There exists a finite constant κ̃ such that

E
[∥∥a∥∥2

H−1 a⊗ a
]
4 κ̃H. (3)

Discussion of assumptions. Assumptions 1 and 2 on the fourth moment and the noise level are
classical to the analysis of stochastic gradient methods in least squares setting (Bach and Moulines,
2013; Jain et al., 2018a). Assumption 1 holds if the features are bounded, i.e.,

∥∥a∥∥2 ≤ R2, ρa almost
surely. It also holds, more generally, for features with infinite support such as sub-Gaussian features.
Assumption 2 states that the covariance of the gradient at optimum x∗ is bounded by σ2H. In the
case of homoscedastic/well-specified model i.e. b = 〈x∗, a〉 + ε where ε is independent of a, the
above assumption holds with σ2 = E

[
ε2
]
.

The statistical condition number defined in Assumption 3 is specific to acceleration of SGD.
It was introduced by Jain et al. (2018b) in the context of acceleration for strongly convex least
squares. It was also used by Even et al. (2021) for the analysis of continuized Nesterov acceleration
on non-strongly convex least squares. The statistical condition number is always larger than the
dimension, i.e., κ̃ ≥ d, see A.2 in appendix for more details. If H is not strictly positive definite, a
general version of assumption 3 can be stated with pseudoinverse of H in place of H−1 and in this
case the lowerbound on κ̃ will be rank(H) in place of d. For sub-Gaussian distribution, κ̃ is O(d).
However, for one-hot basis distribution, i.e., a = ei with probability pi, it is equal to κ̃ = p−1min and
thus can be arbitrarily large. In the case of uniform distribution over n data points, Assumption 3
holds with κ̃ = n, check A.2 for proof.
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Nesterov Acceleration. We consider the following algorithm (AcSGD) which starts with the initial
values x0 ∈ Rd, z0 = x0 and update for t ≥ 0

yt+1 = xt − β∇tR (xt) , (4a)

zt+1 = zt − α(t+ 1)∇tR (xt) , (4b)

(t+ 2)xt+1 = (t+ 1)yt+1 + zt+1, (4c)

with step sizes α, β > 0 and where∇tR (xt) is an unbiased estimate of the gradient of∇R(xt).
This algorithm is similar to the standard three-sequences formulation of the Nesterov accelerated

gradient descent (Nesterov, 2005) but with two different learning rates α and β in the gradient steps
Eq.(4a), and Eq.(4b). As noted by (Flammarion and Bach, 2015), this formulation captures various
algorithms. With exact gradients, for different α, β for e.g. when α = 0, we recover averaged
gradient descent while with β = 0 we recover a version of the Heavy ball algorithm and with
α = β = 1/L we recover the Nesterov acceleration algorithm.

We especially consider the weighted averages of the iterates defined after T iterations by

xT
def
=

∑T
t=0(t+ 1)xt∑T
t=0(t+ 1)

. (5)

In contrast to the classical average considered by Polyak and Juditsky (1992), Eq.(5) uses weighted
average which gives more importance to the last iterates and is therefore related to tail-averaging.

Stochastic Oracles. Let (at, bt) ∈
(
Rd,R

)
be the sample at iteration t, we consider the stochastic

gradient ofR at xt

∇tR (xt) = at (〈at,xt〉 − bt) . (6)

Note that this is a true stochastic gradient oracle unlike Dieuleveut et al. (2017), where a simpler
oracle which assumes the knowledge of the covariance H is considered. As explained in App. A.1,
this oracle combines an additive noise independent of the iterate xt and a multiplicative noise which
scales with xt. Dealing with the multiplicative part of the oracle is the main challenge of our analysis.

3. Convergence of the Averaged Iterates

In this section, we present our main result on the decay rate of the excess error of our estimate. We
extend the results of Dieuleveut et al. (2017) to the general stochastic gradient oracle in the following
theorem.

Theorem 1 Consider Algorithm 4 under Assumptions 1, 2, 3 and step sizes satisfying (α+2β)R2 6
1 and α 6 β

2κ̃ . In expectation, the excess risk of estimator xT after T iterations is bounded as

E [R (xT )]−R (x∗) 6 min

{
12

αT 2
,

48

βT

}∥∥x0 − x∗
∥∥2 +

72 σ2d

T
.

The constants in the bounds are partially artifacts of the proof technique. The proof can be found in
App. B.1. In order to give a clear picture of how the rate depends on the constants R2, κ̃, we give a
corollary below for a specific choice of step-sizes.
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Corollary 2 Under the same conditions as Theorem 1 and with the step sizes β = 1
3R2 , and

α = 1
6κ̃R2 . In expectation, the excess error of estimator xT after T iterations is bounded as

E [R (xT )]−R (x∗) 6 min

{
72κ̃R2

T 2
,
144R2

T

}∥∥x0 − x∗
∥∥2 +

72 σ2d

T
.

We make the following comments on Theorem 1 and Corollary 2

Optimality of the convergence rate. The convergence rate is composed of two terms: (a) a bias
term which describes how fast initial conditions are forgotten and corresponds to the noiseless
problem (σ = 0). (b) A variance term which indicates the effect of the noise in the statistical model,
independently of the starting point. It corresponds to the problem where the initialization is the
solution x∗.

The algorithm recovers the fast rate of O
(
1/(αT 2)

)
of accelerated gradient descent for the bias

term. This is the optimal convergence rate for minimizing quadratic functions with a first-order
method. However to make the algorithm robust to the stochastic-gradient noise, the learning rate
α has to be scaled with regards to the statistical condition number κ̃. For T ≤ κ̃, the bias of
the algorithm decays as that of averaged SGD, i.e, the second component of the bias governs the
rate. However the acceleration comes in for T ≥ κ̃ and we observe an accelerated rate of O (κ̃/T 2)
afterward. This κ̃-dependence is the consequence of using computationally cheap rank-one stochastic
gradients ai 〈ai,xt − x∗〉 instead of the full-rank update H(xt − x∗) as in gradient descent. The
tightness of the rate with respect to κ̃ and consequently on the dimension d is of particular importance
and is discussed in Section 5.

The algorithm also recovers the optimal rate O (σ2d/T) for the variance term (Tsybakov, 2003).
Hence it retains the optimal rate of variance error while improving the rate of bias error over standard
SGD.

Stochastic Gradients and Error Accumulation. When true gradients are replaced by stochastic
gradients, algorithms accumulate the noisy gradient induced errors as they progress. In order to still
converge, the algorithms need to be modified to adapt accordingly. In the case of linear regression,
when comparing SGD with GD, the error accumulation due to the multiplicative noise is controlled
by scaling the step size from O(1/L) to O(1/R2). The error due to the additive noise is controlled
by averaging the iterates. In the case of accelerated gradient descent, the scaling of the step sizes
becomes intuitive if we consider the linear coupling interpretation of Allen-Zhu and Orecchia (2017).
In this view of Algorithm 4, a gradient step (on yt) and an aggressive gradient step (on zt) are
elegantly coupled to achieve acceleration. The aggressive step is more sensitive to noise since it
is of scale O(t). Therefore, the step-size α needs to be appropriately scaled down to control the
error accumulation of the zt-gradient step. Strikingly, this scaling is proportional to the statistical
condition number and therefore to the dimension of the features.

Comparison with Jain et al. (2018b). Note that as both algorithms have the optimal rate for the
variance, we only compare the rate for the bias error here. The accelerated stochastic algorithm for

strongly convex objectives of Jain et al. (2018b) converges with linear rateO
(
poly(µ−1) · e−

(
t/
√
µ−1κ̃

))
where µ is the smallest eigenvalue of H. We note that (a) this rate is vacuous for finite time horizon
smaller that

√
κ̃/µ and (b) the algorithm requires the knowledge of the constant µ which is unknown

in practice. In comparison, our algorithm converges at rate O(κ̃/t2) for any arbitrarily small µ and
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therefore is faster for reasonable finite horizon. Hence, assuming H invertible does not make the
problem strongly convex, emphasizing the relevance of the non-strongly convex setting for least
squares problems. The algorithm of Jain et al. (2018b) can also be coupled with an appropriate
regularization (Allen-Zhu and Hazan, 2016) to be directly used on non-strongly convex functions.
The resulting algorithm achieves a target error ε in O(

√
κ̃/ε log ε−1) iterations. In comparison, our

algorithm requires O(
√
κ̃/ε) iterations. Besides the additional logarithmic factor, algorithms with

the aforementioned regularization are not truly online, since the target accuracy has to be known and
the total number of iterations set in advance. In contrast, our algorithm shows that acceleration can be
made robust to stochastic gradients without additional regularization or strong-convexity assumption.

Finite sum minimization of regularized ERM. We investigate here the competitiveness of our
method when compared to direct minimization of the regularized ERM objective1. The ERM
problem can be efficiently minimized using variance reduced algorithms (Johnson and Zhang,
2013; Schmidt et al., 2017) and in particular their accelerated variants (Frostig et al., 2015; Allen-
Zhu, 2017). To achieve a target error of ε, these methods required O

(
σ2d/ε +

∥∥x∗∥∥√L σ2d/ε
)

basic vector computations. The number of vector computation of our algorithm is comparatively
O
(
σ2d/ε +

∥∥x∗∥∥√R2d/
√
ε

)
, taking κ̃ = O(d) for simplicity. Therefore, our method needs fewer

computations for small target errors ε ≤ Lσ2

R2 . In addition, accelerated SVRG needs a O(dn) memory,
where n is number of samples in ERM while our single pass method only uses a O(d) space.

Mini-Batch Accelerated SGD. We also consider the mini-batch stochastic gradient oracle which
queries the gradient oracle several times and returns the average of these stochastic gradients given
by the observations (at,i, bt,i)i≤b :

∇tR (xt) =
1

b

b∑
i=1

at,i (〈at,i,xt〉 − bt,i) . (7)

Mini-batching enables to reduce the variance of the gradient estimate and to parallelize the compu-
tations. When we implement Algorithm 4 with the mini-batch stochastic gradient oracle defined
in Eq.(7), Theorem 1 becomes valid for learning rates satisfying (α + 2β)R2 6 b, α ≤ bβ

2κ̃ and

α, β ≤ 1
L . For batch size b . R2/L, the rate of convergence becomes O

(
min

{
κ̃
b2t2

, 1
bt

}
+ σ2d

bt

)
.

Even if it does not improve the overall sample complexity, using mini-batch is interesting from a
practical point of view: the algorithm can be used with larger step size (α scales with b2), which
speeds up the accelerated phase. Indeed the algorithm is accelerated only after κ̃/b iterations. For
larger batch sizes b ≥ R2/L, β cannot be scaled with b due to the condition β ≤ 1/L. The learning
rate α can nevertheless be scaled linearly with b, if b ≤ κ̃ . Thus, increasing the batch size still leads
to fast rate for Algorithm 4, in accordance with the findings of Cotter et al. (2011) for accelerated
gradient methods. This behavior is in contrast to SGD—where the linear speedup is lost for batch
size larger than a certain threshold (Jain et al., 2018a). Finally, we note that when the batch size is
O(κ̃), the performance of the algorithm matches the one of Nesterov accelerated gradient descent.
This fact is consistent with the observation of Hsu et al. (2012) that the empirical covariance of κ̃
samples is spectrally close to H.

1. Generalization is not guaranteed without regularization (Györfi et al., 2006).

7



VARRE FLAMMARION

Overparameterized linear regression. The result also applies to training overparameterized linear
models where the number of samples (n) can be orders of magnitude smaller than the dimension of
the data (d). Our model naturally includes this setting by replacing the population riskR(θ) with the
training loss, whose finite sum structure can be rewritten as Eρ̂ (〈x, a〉 − b)2 where ρ̂ is the empirical
distribution over training data. Due to overparameterization, there exists a perfect interpolator and
the noise at the optimum is zero, i.e., σ = 0. Note that in this case Assumption 3 holds with κ̃ = n,
hence κ̃ < d and high dimensionality is not a hindrance like before (see A.2 for details). Hence using
Algorithm 4 with stochastic gradients sampled with replacement and choosing stepsizes as specified
by Theorem 1, we get an accelerated rate of n/t2 after t iterations. In the terms of epochs, after k
epochs, the convergence rate of the training loss is 1/nk2, obtaining a quadratic improvement over the
1/nk rate of SGD. It is interesting to further extend these results to the setting of sampling without
replacement.

4. Last Iterate

In this section, we study the dynamics of the last iterate of Algorithm 4. The latter is often preferred
to the averaged iterate in practice. In general, the noise in the gradient prevents the last iterate to
converge. When used with constant step sizes, only a convergence in a O(σ2)-neighborhood of the
solution can be obtained. Therefore variance reduction techniques (including averaging and decaying
step sizes) are required. However in the case of noiseless model, i.e., b = 〈a,x∗〉 ρ-almost surely,
last iterate convergence is possible. In such cases, the algorithms are inherently robust to the noise in
the stochastic gradients. This setting is particularly relevant to the training of over-parameterized
models in the interpolation setting (Varre et al., 2021).

When studying the behavior of the last iterate, we need to make an additional 4-th order assump-
tion on the distribution of the features.

Assumption 4 (Uniform Kurtosis) There exists a finite constant κ such that for any positive
semidefinite matrix M

E [〈a,Ma〉 a⊗ a] 4 κTr(MH)H. (8)

The above assumption holds for the Gaussian distribution with κ = 3 and is also satisfied when
H−

1
2a has sub-Gaussian tails (Zou et al., 2021). Therefore Assumption 4 is not too restrictive and is

often made when analysing SGD for least squares (Dieuleveut et al., 2017; Flammarion and Bach,
2017). It is nevertheless stronger than Assumption 1. For the one-hot-basis distribution, it only holds
for κ = 1/pmin which can be arbitrarily large. It also directly implies Assumption 3 with a statistical
condition number satisfying κ̃ ≤ κd. Yet, the previous inequality is not tight as the example of the
one-hot-basis distribution shows.

Under this assumption, we extend the previous results of Flammarion and Bach (2015) to the
general stochastic gradient oracle.

Theorem 3 Consider Algorithm 4 under Assumptions 2, 4 and step sizes satisfying κ(α +
2β)TrH ≤ 1, α ≤ β

2κd . In expectation, the excess risk of the last iterate xt after t iterations
is bounded as

E [R (xt)] 6 min

{
3

αt2
,
24

βt

}∥∥x0 − x∗
∥∥2 + 2

(
(α+ 2β) TrH +

2αd

β

)
σ2
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Let us make some comments on the convergence of last iterate. The proof can be found in App. B.2.

• When the step-sizes are set to β = 1/(3κTrH) and α = 1/(6dκ2TrH) the upper bound on the excess
risk becomes min

{
18κ2dTrH

t2
, 144κTrHt

}∥∥x0 − x∗
∥∥2 + 4

κσ
2.

• For constant step sizes, the excess error of the last iterate does not go to zero in the presence
of noise in the model. At infinity, it converges to a neighbourhood of O(σ2) and the constant
scales with the learning rate. This neighbourhood shrinks as the step size decreases, as long as the
step size of the aggressive step α should decrease at a faster rate compared to β. In comparison,
Nesterov accelerated gradient descent (α = β) is diverging.

• For noiseless least squares where σ = 0, we get an accelerated rate O(κd/t2), which has to
be compared to the O(1/t)-rate of SGD. Even et al. (2021); Vaswani et al. (2019) also study
acceleration in the context of noiseless models. The rates of Even et al. (2021) depend on∥∥x0 − x∗

∥∥
H−1 which can be arbitrarily large for ill-conditioned problem. In contrast, our rates

are independent of the conditioning. The strong growth condition of Vaswani et al. (2019) is
too stringent, indeed for linear regression their constant ρ is the condition number which can be
arbitrarily large.

• Following Berthier et al. (2020), a similar result can be obtained on the minimum of the excess
risk min

0≤k≤t
E [R (xk)] by only assuming the less stringent Assumption 1.

5. Lowerbound and open questions

In this section, we address the tightness of our result with respect to the statistical condition number
κ̃. In particular we study the impact of the distribution generating the stream of inputs. We start by
defining the class of stochastic first-order algorithms for least-squares we consider.

Definition 4 (Stochastic First Order Algorithm for Least Squares) Given an initial point x0,
and a distribution ρ, a stochastic first order algorithm generates a sequence of iterates xk such that

xk ∈ x0 + span {∇0f(x0),∇1f(x1), · · · ,∇k−1f(xk−1)} for k ≥ 1, (9)

where∇if are the stochastic gradients at the iteration i defined in Eq.(6).

This definition extends the definition of first order algorithms considered by Nesterov (2004) to the
stochastic setting. This class of algorithm defined is fairly general and includes SGD and Algorithm 4.
By definition of the stochastic oracle, the condition 9 is equivalent to xk −x0 belonging to the linear
span of the features {a1, · · · , ak}. It is therefore not possible to control the excess error for iterations
t = O(d) since the optimum is then likely to be in the span of more than d features. However it is
still possible to lowerbound the excess error in the initial stage of the process. This is the object of
the following lemma which provides a lower bound for noiseless problems.

Lemma 5 For all starting point x0, there exists a distribution ρ over Rd×R satisfying Assumption 1
with R2 = 1, Assumption 2 with σ = 0, Assumption 3 with κ̃ = d and an optimum x′∗ verifying∥∥x′∗ − x0

∥∥2 = 1, such that the expected excess risk of any stochastic first order algorithm is lower
bounded as

E
[
R
(
xbd/2c

)]
= Ω

(
1

d

)
.
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Check App. B.3 for the proof of the lemma. The excess risk cannot be decreased by more than a factor
d in less than d iterations. Fully accelerated rates O(R2

∥∥x′∗ − x0

∥∥2/t2) are thus proscribed. Indeed,
they correspond to a decrease O(1/d2) for the above problem, contradicting the lower bound. Hence,
accelerated rates should be scaled with a factor of dimension d. The rate O(dR2

∥∥x′∗ − x0

∥∥2/t2)
of Theorem 1 is therefore optimal at the beginning of the optimization process. On the other side,
the SGD algorithm achieves a rate of O(R2

∥∥x′∗ − x0

∥∥2/t) on noiseless linear regression. For the
regression problem described in Lemma 5, this rate is O(1/d) and also optimal.

The proof of the lemma follow the lines of Jain et al. (2018b) and considers the one-hot basis
distribution. It is worth noting that the covariance matrix of the worst-case distribution can be fixed
beforehand, i.e., for any covariance matrix, there exists a matching distribution such that direct
acceleration is impossible (see details in Lemma 17). Therefore the lower bound does not rely on the
construction of a particular Hessian, in contrast to the proof of Nesterov (2004) for the deterministic
setting. However, the proof strongly leverages the orthogonality of the features output by the oracle.
It is still an open question to study similar complexity result for more general, e.g., Gaussian, features.

A different approach is to consider constraints on the computational resources used by the
algorithm. Dagan et al. (2019); Sharan et al. (2019) investigate this question from the angle of
memory constraint and derive memory/samples tradeoffs for the problem of regression with Gaussian
design. Although their results do no have direct implications on the convergence rate of gradient
based methods, we observe some interesting phenomena when increasing the memory resource of
the algorithms. The stochastic gradient oracle (〈ai,xt〉 − bi) ai uses a memory O(d). If we increase
the available memory to O(d2) and consider instead the running average 1

t+1

∑t
i=0 (〈ai,xt〉 − bi) ai

as the gradient estimate, α no longer needs to be scaled with d and we empirically observe O(1/t2)
convergence (see Figure 2 in App. B.3). This empirical finding suggests that algorithms using a
subquadratic amount of memory may provably converge slower than algorithms without memory
constraints. Investigating such speed/memory tradeoff is outside of the scope of this paper, but is a
promising direction for further research.

6. Proof technique

For the least squares problem, the analysis of stochastic gradient methods is well studied and
techniques have been thoroughly refined. Our analysis follows the common underlying scheme.
First, the iterates are rescaled to obtain a time invariant linear system. Second, the estimation error is
decomposed as the sum of a bias and variance error term which are studied separately. Finally, the
rate is obtained using the bias-variance decomposition. However there are significant gaps yet to be
filled for this particular problem. The first of many is that the existing Lyapunov techniques for either
strongly convex functions or classical SGD are not applicable (see App. C.1, for more details). The
study of the variance error comes with a different set of challenges.

Time Rescaling. Using the approach of Flammarion and Bach (2015), we first reformulate the
algorithm using the following scaled iterates

ut := (t+ 1)(xt − x∗) vt := t(yt − x∗) wt := zt − x∗. (10)

Using such time rescaling, we can write Algorithm 4 with stochastic gradient oracle as a time-
independent linear recursion (with random coefficients depending only on the observations)

θt+1 = Jtθt + εt+1, (11)

10



ACCELERATING SGD

where θt
def
=

[
vt
wt

]
, Jt def

=

[
I− βata>t I− βata>t
−αata>t I− αata>t

]
and εt+1

def
= (t+ 1) (bt − 〈x∗, at〉)

[
βat
αat

]
.

The expected excess risk of the averaged iterate xT can then be simply written as

E [R (xT )]− E [R (x∗)] =
1

2

(
T+1∑
t=1

t

)−2〈[
H H
H H

]
,E
[
θT ⊗ θT

]〉
,

where we define θT =
∑T

t=0 θt the sum of the rescaled iterates. All that remains to do is to upper-
bound the covariance E

[
θT ⊗ θT

]
. It now becomes clear why we consider the averaging scheme in

Eq.(5) instead of the classical average of Polyak and Juditsky (1992): it integrates well with our time
re-scaling and makes the analysis simpler.

Bias-Variance Decomposition. To upper bound the covariance of our estimator θt we form two
independent sub-problems:

• Bias recursion: the least squares problem is assumed to be noiseless, i.e, εt = 0 for all t ≥ 0. It
amounts to the studying the following recursion

θb,t+1 = Jt θb,t started from θb,0 = θ0. (12)

• Variance recursion: the recursion starts at the optimum (x∗) and the noise εt drive the dynamics.
It is equivalent to the following recursion

θv,t+1 = Jtθv,t + εt+1 started from θv,0 = 0. (13)

The bias-variance decomposition (see Lemma 13 in App. A.4) consists of upperbounding the
covariance of the iterates as

E
[
θT ⊗ θT

]
4 2

(
E
[
θb,T ⊗ θb,T

]
+ E

[
θv,T ⊗ θv,T

])
, (14)

where θb,T
def
=
∑T

t=0 θb,T and θv,T
def
=
∑T

t=0 θv,T . The bias error and the variance error can then be
studied separately.

The bias error is directly given by the following lemma which controls the finite sum of the
excess bias risk. In contrast with the strongly convex case, no simple Lyapunov function exists and
we overcome this by a sharp characterization for the covariance of bias in the lemma below. To prove
the lemma, we relate the sum of the expected covariances of the iterates Algorithm 4 with stochastic
gradients to the sum of the covariance of iterates of Algorithm 4 with exact gradients. For detailed
proof, see Lemma 20.

Lemma 6 (Potential for Bias) Under Assumptions 1,3 and the step-sizes satisfying the conditions
of Theorem 1. For T ≥ 0,

T∑
t=0

〈[
H H
H H

]
,E [θb,t ⊗ θb,t]

〉
≤ min

{
3(T + 1)

α
,
12(T + 1)(T + 2)

β

}∥∥x0 − x∗
∥∥2.

In order to bound the variance error, we first carefully expand the covariance of θv,t and relate it to
the covariances of the θv,t (see Lemma 24 in App. C.4). We then control each of these covariances
using the following lemma which shows that they are of order O(t2). See Lemma 25 in App. C.4,
Lemma 30 in App. D for proof.

11



VARRE FLAMMARION

Lemma 7 For any t ≥ 0 and step-sizes satisfying condition of Theorem 1, the covariance is
characterized by

E [θv,t ⊗ θv,t] 4 t2σ2
[
2α(βH)−1 + (2β − 3α)I αβ−1(2β − α)I

αβ−1(2β − α)I 2α2β−1I

]
.

The lemma is proved by studying E [θv,t ⊗ θv,t] /t2 in the limit of t→∞.

Last iterate convergence. The proof for the last iterate follows the same lines and still uses the
bias variance decomposition. The main challenge is to bound the bias error. Following Varre et al.
(2021), we show a closed recursion where the excess risk at time T can be related to the excess risk
of the previous iterates through a discrete Volterra integral as stated in the following lemma.

Lemma 8 (Final Iterate Risk) Under Assumption 4 and the step-sizes satisfying α ≤ β ≤ 1/L.
For T ≥ 0, the last iterate excess error can be determined by the following discrete Volterra integral

f (θb,T ) 6 min

{
1

α
,
8(t+ 1)

β

}∥∥x0 − x∗
∥∥2 +

T−1∑
t=0

d∑
i=1

g (H, t− k) f (θb,t) ,

where f (θb,t)
def
=

〈[
H H
H H

]
,E [θb,t ⊗ θb,t]

〉
and the kernel g (H, t) is defined in Eq.(39) in

App. C.3.

We recognize here a new bias-variance decomposition. The decrease of the function value f (θb,t) is
controlled by the sum of a term characterizing how fast the initial conditions are forgotten, and a
term characterizing how the gradient noise reverberates through the iterates. The final result is then
obtained by a simple induction. For the proof, check Lemma 21 in App. C.3 .

7. Experiments

In this section, we illustrate our theoretical findings of Theorems 1, 3 on synthetic data. For d = 50,
we consider Gaussian distributed inputs an with a random covariance H whose eigenvalues scales as
1/i4, for 1 ≤ i ≤ d and optimum x∗ which projects equally on the eigenvectors of the covariance.
The outputs bt are generated through bt = 〈at,x∗〉+ εt, where εt ∼ N (0, σ2). The step-sizes are
chosen as β = 1/3TrH, α = 1/(3d TrH) for our algorithm; and γ = 1/3TrH for SGD. The parameters
of ASGD are chosen following Jain et al. (2018b). All results are averaged over 10 repetitions.

Last Iterate. The left plot in Figure 1 corresponds to the convergence of the excess risk of the
last iterate on a synthetic noiseless regression, i.e., σ = 0. We compare Algorithm 4 (AcSGD) with
the algorithm of Jain et al. (2018b) (ASGD) and SGD. Note that for the first O(d) iterations, our
algorithm matches the performance of SGD. For t > O(d), the acceleration starts and we observe a
rate O(d/t2). Finally, strong convexity takes effect only after a large number of iterations. ASGD
decays with a linear rate thereafter.

Averaging. The right plot in Figure 1 corresponds to the performance of the averaged iterate on a
noisy least squares problem with σ = 0.02. We compare our AcSGD with averaging defined in Eq.(5)
(AvAcSGD), ASGD with tail averaging (tail-ASGD) and SGD (AvgSGD) with Polyak-Ruppert
averaging. For O(d) iterations, our algorithm matches the rate of SGD with averaging, then exhibits
an accelerated rate of O(d/t2). Finally, it decays with the optimal asymptotic rate σ2d/t.
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Figure 1: Least-squares regression. Left: Last iterate convergence on a noiseless problem. The plot
exhibits a rate O(d/t2) given by Thm. 3. Right: Averaged iterate convergence on a noisy problem.
The plot first exhibits a rate O(d/t2) and then the optimal rate O(σ2d/t) as predicted by Thm. 1.

8. Conclusion

In this paper, we show that stochastic accelerated gradient descent can be made robust to gradient
noise in the case of least-squares regression. Our new algorithm, based on a simple step-size
modification of the celebrated Nesterov accelerated gradient is the first stochastic algorithm which
provably accelerates the convergence of the bias while maintaining the optimal convergence of
the variance for non-strongly-convex least-squares. There are a number of further direction worth
pursuing. Our current analysis is limited to quadratic functions defined in a Euclidean space.
An extension of our analysis to all smooth or self-concordant like functions would broaden the
applicability of our algorithm. Finally an extension to Hilbert spaces and kernel-based least-squares
regression with estimation rates under the usual non-parametric capacity and source conditions would
be an interesting development of this work.
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Appendix A. Further Setup and Preliminaries

Organization. The appendix is organized as follows,

• In Section A, we extend the setup of the problem in App. A.1 and introduce operators in
App. A.4 to study the recursions of covariance of the estimator. In the later subsection, we
give the proof for bias variance decomposition.

• In Section B, we give the proofs for Theorem 1, Theorem 3 and Lemma 5.

• In Section C, we study the recursions on expected covariance of the bias and the variance
processes.

• In Section D, we investigate the properties of the operators. In particular, we are interested in
inverting few operators.

• In Section E, we study the summations of geometric series of a particular 2 × 2 matrix by
considering its eigendecomposition.

A.1. Preliminaries

Notations. We denote the stream of i.i.d samples by (ai, bi)i≥1. We use ⊗ to denote the tensor
product and ⊗k to denote the Kronecker product. Let F t denote the filtration generated by the
samples

{
(ai, bi)

t
i=1

}
.

Additive and Multiplicative Noise. Define for t ≥ 1,

ηt = bt − 〈x∗, at〉 , (15)

since x∗ is the optimum, from the first order optimality of x∗,

E [ηtat] = 0. (16)

In context of least squares, SGD oracle can be written as follows. Let (at, bt) be the sample at
iteration t, the gradient at xt is

∇tR (xt) = at (〈at,xt〉 − bt) ,
= at (〈at,xt〉 − (〈at,x∗〉+ ηt)) = ata

>
t (xt − x∗)− ηtat.

From this, the stochastic gradient can be written as

∇tR (xt) = ata
>
t (xt − x∗)− ηtat. (17)

As the exact gradient will be H (xt − x∗) the noise in the oracle is

(H (xt − x∗))−
(
ata
>
t (xt − x∗)− ηtat

)
= (H− ata>t ) (xt − x∗) + ηtat.
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Note that the zero mean noise (H − ata>t ) is multiplicative in nature and hence called multi-
plicative noise. The zero mean noise ηtat is called additive noise. In the work of Dieuleveut et al.
(2017), stochastic gradients of form H (xt − x∗) + ε for some bounded-variance random variable ε
are considered. Hence, the results holds only in the case of stochastic oracles with additive noise.

A.2. Discussion on κ̃

Lowerbound on κ̃. From, assumption 3, we have

E
[∥∥a∥∥2

H−1 a⊗ a
]
4 κ̃H.

Multiplying both sides with H−1 and taking the trace preserves the inequality and we get,

Tr
(
E
[∥∥a∥∥2

H−1 H−1[a⊗ a]
])
≤ κ̃Tr

(
H−1H

)
≤ κ̃d.

Tr
(
E
[∥∥a∥∥2

H−1 H−1[a⊗ a]
])

= E
[∥∥a∥∥2

H−1 Tr
[
H−1[a⊗ a]

]]
= E

[[∥∥a∥∥2
H−1

]2]
Using the fact E

[
X2
]
> E [X]2, for any random variable X, we get the following,

E
[[∥∥a∥∥2

H−1

]2]
≥ E

[[∥∥a∥∥2
H−1

]]2
= Tr

(
H−1E

[
aa>

])2
, using E

[
aa>

]
= H,

= Tr
(
H−1H

)2
= d2

Combining these, we get,

κ̃d ≥ d2 =⇒ κ̃ ≥ d.

Note that the above calculation only holds when H is full rank otherwise we can do the same
calculation with pseudoinverse in place of H−1 and get a lower bound of rank(H) i.e. number of
non-zero eigen values on κ̃.

Overparameterized Linear Regression. In this subsection, we focus on κ̃ in training overpa-
rameterized linear regressions. Note that the finite sum structure can be rewritten Eρ̂ (〈x, a〉 − b)2
where ρ̂ is the empirical distribution which is uniform over training data. Let {aj}nj=1, aj ∈ Rd be
the set of training data and ρ̂x, which is a marginal of ρ̂ will be uniform distribution over aj’s. Let
A ∈ Rn×d be the the matrix where jth row is a>j . Since the regression is overparameterized n < d.
The covariance in this case is

H =
1

n

n∑
j=1

aja
>
j =

1

n
(A>A)

The expression on the left hand side of Asmp. 3 is

Ea∼ρ̂
[∥∥a∥∥2

H†
aa>

]
,
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where H† is the pseudo inverse. This is a general version of the assumption 3 with H† in place
of H−1. In this case, we show that asmp. 3 holds with κ̃ = n. The proof rests entirely on Lemma
A.1. in Liu and Wright (2016), we just restate here for completeness. For any vector x ∈ Rd,

x>Ea∼ρ̂
[∥∥a∥∥2

H†
aa>

]
x =

1

n

n∑
j=1

∥∥aj∥∥2H† x>aja>j x =
1

n

n∑
j=1

∥∥aj∥∥2H† (x>aj)2,

=
1

n

n∑
j=1

Tr
(
H†aja>j (x>aj)2

)
,

= Tr

H†
1

n

n∑
j=1

aja
>
j (x>aj)2

,
Since H = 1

n(A>A), we have H† = n(A>A)† . Using the notation of diagonal matrix D =
(Diag(Ax))2 and the other expression can be compactly written as follows

= Tr
(

(A>A)†A>DA
)
.

Using same approach as Liu and Wright (2016), consider the singular value decomposition of
A = UΣV T . We consider the compact singular value decomposition where U>U = I, V >V = I
where I is identity matrix of dimension same as the rank of A. Let U> = [u1, u2, · · · , un], it is easy
to show that

∥∥ui∥∥ ≤ 1, for i = 1, . . . , n. Using this we get,

Tr
(

(A>A)†A>DA
)

= Tr
(
V Σ−2V > (V ΣU>)D(UΣV )

)
,

using the cyclic property of trace we get,

Tr
(
V Σ−2V > (V ΣU>)D(UΣV )

)
= Tr

(
U>DU

)
=

n∑
j=1

(a>j x)2
∥∥ui∥∥2,

≤
n∑
j=1

(a>j x)2 = x>(
n∑
j=1

aja
>
j )x = n x>Hx.

As this holds for any x, we have

Ea∼ρ̂
[∥∥a∥∥2

H†
aa>

]
4 nH.

Hence, for the case of linear regression in overparameterized setting, assumption 3 holds for κ̃ = n.

A.3. Recursion after Rescaling

Using Eq.(17), we can write Algorithm 4 as follows,

yt+1 = xt − βata>t (xt − x∗) + βηtat, (18)

zt+1 = zt − α(t+ 1)ata
>
t (xt − x∗) + α(t+ 1)ηtat, (19)

(t+ 2)xt+1 = (t+ 1)yt+1 + zt+1. (20)

19



VARRE FLAMMARION

Recalling the time rescaling of the iterates

ut = (t+ 1)(xt − x∗), (21)

vt = t(yt − x∗), (22)

wt = zt − x∗. (23)

Now we rewrite the recursion using these rescaled iterates. Multiplying Eq.(18) by t+ 1, and using
Eq.(21) and Eq.(22), we get,

vt+1 = ut − βata>t ut + βηtat(t+ 1),

using Eq.(19) and Eq.(21), wt+1 = wt − αata>t (ut) + α(t+ 1)ηtat,

from Eq.(20), ut = vt +wt,

vt+1 = (I− βata>t ) (vt +wt) + βηtat(t+ 1),

wt+1 = wt − αata>t (vt +wt) + α(t+ 1)ηtat.

Writing these updates compactly in form of a matrix recursion gives,[
vt+1

wt+1

]
=

[
I− βata>t I− βata>t
−αata>t I− αata>t

] [
vt
wt

]
+ (t+ 1) ηt

[
βat
αat

]
.

The above recursion can be written as follows,

θt+1 = Jtθt + εt+1, (24)

where we defined θt
def
=

[
vt
wt

]
, the random matrix Jt def

=

[
I− βata>t I− βata>t
−αata>t I− αata>t

]
and the random

noise vector εt+1
def
= (t+ 1) ηt

[
βat
αat

]
.

Excess Risk of the estimator. The excess risk of any estimate x can be written as

R (x)−R (x∗) =
1

2
〈x− x∗,H (x− x∗)〉 . (25)

Our estimator is defined in Eq.(5) as a time-weighted averaged. Recall,

xT =

∑T
t=0(t+ 1)xt∑T
t=0(t+ 1)

,

xT − x∗ =

∑T
t=0(t+ 1) (xt − x∗)∑T

t=0(t+ 1)
=

∑T
t=0 ut∑T

t=0(t+ 1)
.

Using the above formulation of excess risk, we have(
T∑
t=0

(t+ 1)

)2

· (R (xT )−R (x∗)) =
1

2

〈
T∑
t=0

ut,H

(
T∑
t=0

ut

)〉
.
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We relate this to the covariance of θT in the following way,

θT =

T∑
t=0

θt =

T∑
t=0

[
vt
wt

]
=


T∑
t=0
vt

T∑
t=0
wt

 .
From Eq.(20) we have the fact that ut = vt +wt, for t ≥ 1. Using this,

T∑
t=0

ut =

T∑
t=0

vt +

T∑
t=0

wt.

From the above formulations, with some simple algebra we get,〈
T∑
t=0

ut,H

(
T∑
t=0

ut

)〉
=

〈[
H H
H H

]
,θT ⊗ θT

〉
.

Hence, by taking expectation, the excess risk can be related to the covariance of θT as,

E [R (xT )]−R (x∗) =
1

2

(
T∑
t=0

(t+ 1)

)−2〈[
H H
H H

]
,E
[
θT ⊗ θT

]〉
. (26)

Step sizes. We use the following conditions on the step sizes α, β

(α+ 2β)R2 6 1, α 6
β

2κ̃
. (27)

These conditions are a direct result of our analysis.

Eigen Decomposition of H. Since the covariance is positive definite, the eigendecomposition of
H is given as follows,

H
def
=

d∑
i=1

λieie
>
i , (28)

where λi > 0’s are the eigenvalues and ei’s are orthonormal eigenvectors.

A.4. Operators

As seen above, the excess risk in expectation can be related to the expected covariance of the θT ,i.e.,
E
[
θT ⊗ θT

]
. In order to aid the analysis of the covariance, we introduce different operators. The

expected value of Jt, denoted by A = E [Jt] is given by

A def
=

[
I− βH I− βH
−αH I− αH

]
. (29)

If the feature a is sampled according to the marginal distribution of ρ ,i.e., (a, b) ∼ ρ, define the
random matrices J as follows

J def
=

[
I− βaa> I− βaa>
−αaa> I− αaa>

]
. (30)

Note that Jt from Eq.(24) and J are identically distributed.
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Definition 9 For any PSD matrix Θ, the operators T , T̃ ,M are defined as follows

(a) T ◦Θ
def
= E

[
JΘJ >

]
(b) T̃ ◦Θ

def
= AΘA>

(c) M◦Θ
def
= E

[
(J −A) Θ (J −A)>

]
We proceed to show a few properties of these operators.

Lemma 10 For the operators T , T̃ ,M, the following properties holds.

(a) T , T̃ ,M are symmetric and positive

(b) T = T̃ +M

The operator O is defined as positive if for any PSD matrix Θ, O ◦Θ is also PSD.

Proof For any vector ν, consider the following scalar product,〈
ν,JΘJ >ν

〉
=
〈(
J >ν

)
, Θ

(
J >ν

)〉
.

This quantity is non-negative as Θ is a PSD. Hence T is positive. Similarly the other two operators
are also positive. For the second statement,

E
[
(J −A) Θ (J −A)>

]
= E

[
JΘJ >

]
− E

[
JΘA>

]
− E

[
AΘJ >

]
+ E

[
AΘA>

]
.

Using A = E [J ],

E
[
(J −A) Θ (J −A)>

]
= E

[
JΘJ >

]
− E

[
AΘA>

]
.

This completes the proof of the lemma.

Remark 11 For any PSD matrix Θ and any operators T ,M, T̃ , the transpose is defined as
following,

(a) T > ◦Θ
def
= E

[
J >ΘJ

]
.

(b) T̃ > ◦Θ
def
= A>ΘA.

(c) M> ◦Θ
def
= E

[
(J −A)>Θ (J −A)

]
.

Having introduced operators, we present a lemma which is central to the analysis, we give a almost
eigenvector and eigenvalue of the operators. We call it an almost eigenvector as only an upperbound
holds in this case.

Lemma 12 For step sizes satisfying Condition 27, the following properties hold on the inverse and
eigen values of operators T , T̃ ,M
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(a) For stepsizes 0 < α, β < 1
L , (1− T̃ )−1 exists.

(b) Ξ is an almost eigen vector ofM◦(1−T̃ )−1 with an eigen value less than 1 and (1−T )−1◦Ξ
exists,

M◦ (1− T̃ )−1 ◦Ξ 4
2

3
Ξ.

(c) Υ is an almost eigen vector of
(
M> ◦

(
I − T̃ >

)−1)
with an eigen value less than 1,

(
M> ◦

(
I − T̃ >

)−1)
◦Υ 4

2

3
Υ.

where

Υ
def
=

[
H H
H H

]
Ξ

def
=

[
β2H αβH
αβH α2H

]
. (31)

Proof From the diagonalization of the covariance H from Eq.(28), note that A can be diagonalized
as follows

A =
d∑
i=1

[
1− βλi 1− βλi
−αλi 1− αλi

]
⊗k eie>i .

From Property 2, 0 < α, β < 1
L the absolute value of A eigen values will be less than 1 and for any

PSD matrix Θ the inverse can be defined by the sum of geometric series as follows,

(1− T̃ )−1 ◦Θ =
∑
t≥0
AtΘ

(
A>
)t
.

To compute (1− T̃ )−1 ◦Ξ, although the calculations are a bit extensive, the underlying scheme
remains the same. After formulating the inverse as a sum of geometric series, we use the diagonaliza-
tion of the A and Ξ to compute the geometric series. In the last part to computeM◦ (1 − T̃ )−1,
we use Property 1 and Assumptions 1, 3 on distribution ρ along with the conditions on the step-
sizes Eq.(27) to get the final bounds. The remaining parts can be proven using Lemmas 30, 33, 34.

Bias-Variance Decomposition. Recall the bias recursion Eq.(12), the variance recursion Eq.(13).

θb,t+1 = Jtθb,t started from θb,0 = θ0,

θv,t+1 = Jtθv,t + εt+1 started from θv,0 = 0.

Now we prove a bias-variance decomposition lemma. Similar lemmas have been derived in the
works of Bach and Moulines (2013); Jain et al. (2018b). Following the proof in these works, we
re-derive it here for the sake of completeness.
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Lemma 13 For T ≥ 0, the expected covariance of θT can be bounded as follows,

E
[
θT ⊗ θT

]
4 2

(
E
[
θb,T ⊗ θb,T

]
+ E

[
θv,T ⊗ θv,T

])
. (32)

Proof In the first part, using induction we prove that θt = θb,t + θv,t. Note that the hypothesis holds
at k = 0 because θb,0 = θ0,θv,0 = 0. Assume that θt = θb,t + θv,t holds for 0 ≤ t ≤ k − 1. We
prove that hypothesis also holds for k. From the recursion on θt in Eq.(24), we get,

θk = Jk−1θk−1 + εk,

θk = Jk−1 (θb,k−1 + θv,k−1) + εk, from induction hypothesis,

= Jk−1θb,k−1 + Jk−1θv,k−1 + εk.

Form the recursion of bias and variance Eq.(12), Eq.(13). We show that θk = θb,k + θv,k. From
induction, this is true for all k ≥ 0. Summing these equalities from k = 0, . . . , T , we get,

θT = θb,T + θv,T .

Using the Cauchy Schwarz inequality and then taking expectation, we get the statement of the lemma.

Recursions on Covariance. In the following lemma, we show how the recursions on the expected
covariance of the bias and variance processes are governed by the operators defined above.

Lemma 14 For t ≥ 0, the recursion on the covariance satisfies

E [θb,t+1 ⊗ θb,t+1] = T ◦ E [θb,t ⊗ θb,t] ,
E [θv,t+1 ⊗ θv,t+1] = T ◦ E [θv,t ⊗ θv,t] + E [εt+1 ⊗ εt+1] .

Proof From the recursion of the bias process Eq.(12),

θb,t+1 = Jtθb,t.

Now the expectation of covariance is

E [θb,t+1 ⊗ θb,t+1] = E
[
Jt [θb,t ⊗ θb,t]J >t

]
.

Note that Jt is independent of θb,t. Hence using the definition of operator T completes the proof of
the first part. Now, from the recursion of the variance process Eq.(13),

θv,t+1 = Jtθv,t + εt+1.

As we know that θv,0 = 0 and for t ≥ 1, E [εt] = 0 from Eq.(16). As Jt is independent of θv,t , we
get E [θv,t+1] = AE [θv,t]. Combining these we have for t ≥ 0, E [θv,t] = 0. Now, the expectation
of the covariance is

θv,t+1 ⊗ θv,t+1 = (Jtθv,t + εt+1)⊗ (Jtθv,t + εt+1) ,

E [θv,t+1 ⊗ θv,t+1] = E [(Jtθv,t + εt+1)⊗ (Jtθv,t + εt+1)] .
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Using the fact that Jt, εt+1 are independent of θv,t and E [θv,t] = 0,

E [θv,t+1 ⊗ θv,t+1] = E
[
Jt [θv,t ⊗ θv,t] J >t

]
+ E [εt+1 ⊗ εt+1] .

Note that Jt is independent of θv,t. Hence using the definition of operator T ,

E [θv,t+1 ⊗ θv,t+1] = T ◦ E [θv,t ⊗ θv,t] + E [εt+1 ⊗ εt+1] . (33)

A.5. Mini-Batching

In this subsection, we discuss how we can use the same proof techniques for the mini-batch stochastic
gradient oracles. Recall the mini-batch oracle for some batch size b with samples (at,i, bt,i) ∼ ρ, for
1 ≤ i ≤ b,

∇tR (xt) =
1

b

b∑
i=1

at,i (〈at,i,xt〉 − bt,i) . (34)

Following the approach in A.3, we get the time rescaled recursion with

θt+1 = Jmbt θt + εmbt+1.

where

Jmbt =
1

b

b∑
i=1

Jt,i , Jt,i =

[
I− βat,ia>t,i I− βat,ia>t,i
−αat,ia>t,i I− αat,ia>t,i

]
,

εmbt+1 =
1

b

b∑
i=1

εt,i , εt,i = (bt,i − 〈at,i,x∗〉)
[
βat,i
αat,i

]
.

Note that Jt,i’s are independent and identically distributed to J with E [Jt,i] = A. Hence, by
linearity of expectation E

[
Jmbt

]
= A. Now we can define the operators specific to mini-batch

oracles. Note that T̃ stays the same.

Tmb ◦Θ = E
[
Jmbt Θ(Jmbt )>

]
Mmb ◦Θ = E

[(
Jmbt −A

)
Θ
(
Jmbt −A

)>]
. (35)

Using the fact that Jmbt − A = 1
b

∑b
i=1 (Jt,i −A) and Jt,i − A’s are zero mean i.i.d random

matrices, it is evident thatMmb ◦Θ = 1
bM◦Θ. Hence,

Mmb =
1

b
M.

Using this fact we give a version of Lemma 12 for mini-batch with different step size constraints.
DefineM>mb along the same line asM>.
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Lemma 15 For step sizes satisfying 0 < α, β < 1
L and (α + 2β)R2 ≤ b, α ≤ βb

2κ̃ , the following
properties hold on the inverse and eigen values of operators T̃ ,Mmb

a Ξ is an almost eigen vector ofMmb ◦ (1− T̃ )−1 with an eigen value less than 1,

Mmb ◦ (1− T̃ )−1 ◦Ξ 4
2

3
Ξ.

b Υ is an almost eigen vector of
(
M>mb ◦

(
I − T̃ >

)−1)
with an eigen value less than 1,(

M>mb ◦
(
I − T̃ >

)−1)
◦Υ 4

2

3
Υ.

Proof
Note that 0 < α, β < 1

L is necessary for (1− T̃ )−1 to exist. The rescaling of the other condition
on step-size is due to the fact thatMmb = 1

bM. Following the Lemmas 33, 34 with this new operator
will give the required condition on the step-sizes.

For Theorem 1 with mini-batch oracles, we can follow the original proof of Theorem 1 with
stochastic oracle with this new Lemma 15 for the operatorMmb.

Appendix B. Proof of the main results

B.1. Proof of Theorem 1

The proof involves three parts. In the first part, we consider the bias recursion and bound the excess
risk in the bias process. In the second, we bound the excess error in the variance process. In the last
part, we use the bias-variance decomposition and the relation between covariance of θT and excess
error of xT from Eq.(26).

Bias Error. For the bias part, we show a relation between the finite sum of covariance of the iterates
in case of bias process Eq.(12) with stochastic gradients and the finite sum of covariance of iterates
of bias process with exact gradients in Lemma 19. Using the fact that Υ is almost a eigenvector of
M> ◦

(
I − T̃ >

)
(see Lemma 12) and using the Nesterov Lyapunov techniques to control the sum

of the covariance of the iterates of bias process with exact gradients (Lemma 27), we get the sum of
excess risk of the bias iterates (see Lemma 20). From here we have,

T∑
t=0

〈[
H H
H H

]
,E [θb,t ⊗ θb,t]

〉
≤ min

{
3(T + 1)

α
,
12(T + 1)(T + 2)

β

}∥∥x0 − x∗
∥∥2.

We use the property that
〈[

H H
H H

]
,θ ⊗ θ

〉
is convex in θ. As θb,T

def
=
∑T

t=0 θb,T , applying

Jensens inequality,〈[
H H
H H

]
,θb,T ⊗ θb,T

〉
≤ (T + 1)

T∑
t=1

〈[
H H
H H

]
,θb,t ⊗ θb,t

〉
,

≤ min

{
3(T + 1)2

α
,
12(T + 1)2(T + 2)

β

}∥∥x0 − x∗
∥∥2.
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Variance Error We expand the expected covariance of θv,T in Lemma 24 such that the coefficients
of θv,t ⊗ θv,t in the formulation are positive and any upper bound on the covariance of iterates θv,t,
for t ≤ T would give an upper bound on the expected covariance of θv,T . Then we bound the
limiting covariance of the iterates, i.e., E [θv,t ⊗ θv,t] /t2 in Lemma 25. The fact that Ξ is almost

eigen vector ofM◦
(

1− T̃
)−1

is used here. Using this upper bound in the above formulation of

covariance of θv,T to give the bound in Lemma 26. From here, we have〈[
H H
H H

]
,E
[
θv,T ⊗ θv,T

]〉
≤ 18

(
σ2d
)
T 3.

Now using the bias-variance decomposition, we get,〈[
H H
H H

]
,E
[
θT ⊗ θT

]〉
≤ 2

〈[
H H
H H

]
,E
[
θb,T ⊗ θb,T

]〉
+ 2

〈[
H H
H H

]
,E
[
θv,T ⊗ θv,T

]〉
.

and using the formulation of excess risk of xT with covariance of θT from Eq.(26),

E [R (xT )]−R (x∗) =
1

2

(
T∑
t=0

(t+ 1)

)−2〈[
H H
H H

]
,E
[
θT ⊗ θT

]〉
.

Combining these will prove Theorem 1.

B.2. Proof of Theorem 3

For the last iterate too, we employ the bias-variance decomposition. First the variance part, we
use Lemma 7. Note that if Assumption 4 holds with constant κ then Assumption 1 holds with
R2 = κTrH. and Assumption 3 holds with κ̃ = κd. Hence this satisfies the condition on step size
required for Lemma 7.

E [θv,t ⊗ θv,t] 4 t2σ2
[
2α(βH)−1 + (2β − 3α)I αβ−1(2β − α)I

αβ−1(2β − α)I 2α2β−1I

]
,〈[

H H
H H

]
,E [θv,t ⊗ θv,t]

〉
≤ 2t2σ2

(
(α+ 2β)TrH +

2αd

β

)
.

For the bias, we require uniform kurtosis ,i.e., Assumption 4. Under this assumption, one can related
the variance due to stochastic oracle to the excess risk of the iterate (see Lemma 32). Using this we
give a closed recursion for the excess risk of the last iterate as a discrete Volterra integral of risk
of the previous iterates in Lemma 22. Using simple induction to bound this (note that scaling on
step-sizes will be used here) will give,〈[

H H
H H

]
,θb,t ⊗ θb,t

〉
6 min

{
3

α
,
24(t+ 1)

β

}∥∥x0 − x∗
∥∥2

Using the bias-variance decomposition along with the fact that〈[
H H
H H

]
,E [θb,t ⊗ θb,t]

〉
= 2(t+ 1)2 · (E [R (xt)]−R (x∗))

This proves Theorem 3.
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B.3. Lower Bound

Lemma 16 For all starting point x0, there exists a distribution ρ over Rd×R satisfying Assumption 1
with R2 = 1, Assumption 2 with σ = 0, Assumption 3 with κ̃ = d and optimum x′∗ verifying∥∥x′∗ − x0

∥∥2 = 1, such that the expected excess risk of any stochastic first order algorithm is lower
bounded as

E
[
R
(
xbd/2c

)]
= Ω

(
1

d

)
.

Proof Let (ei)
d
i=1 be a set of orthonormal basis. Define the following

• The optimum

x′∗
def
= x0 +

1√
d

d∑
i=1

ei.

It can be easily verified that
∥∥x′∗ − x0

∥∥2 = 1.

• The feature distribution ρ where each ei is sampled with a probability 1/d. In this case the Hessian
H′ = (dI)−1. Note that for this distribution R2 = 1. The excess risk at any x is as follows

R (x) =
1

2

(
x− x′∗

)>
H′
(
x− x′∗

)
,

=
1

2d

d∑
i=1

(〈
x− x′∗, ei

〉)2
=

1

2d

d∑
i=1

(
〈x− x0, ei〉+

〈
x0 − x′∗, ei

〉)2
,

=
1

2d

d∑
i=1

(
〈x− x0, ei〉+

〈
x0 − x′∗, ei

〉)2
,

=
1

2d

d∑
i=1

(
〈x− x0, ei〉 −

1√
d

)2

, using construction of x′∗.

• For n ≥ 1, bn = 〈an,x∗〉 where an ∼ ρ. Hence Assumption 2 holds with σ = 0. From the
construction it can be seen that κ̃ = d.

Consider any stochastic first order algorithm S for t iterations. Lets say a1 = ei1 , · · · , at = eit be
the inputs from the stream till time t. From Definition 4, the estimator xt after t iterations

xt ∈ x0 + span {∇0f(x0),∇1f(x1), · · · ,∇k−1f(xk−1)} .

Note that for above defined noiseless linear regression the stochastic gradient at time k is∇kf(xk) =
eik 〈eik ,xk − x′∗〉. Using the fact that it is always along the direction of eik .

e
def
= xd/2 − x0 ∈ span

{
ei1 , · · · , eid/2

}
.
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Plugging this in the above expression for excess risk, we get,

ER (xt) =
1

2d

d∑
i=1

E
(
〈e, ei〉 −

1√
d

)2

.

From the construction of ρ′, e is in the span of d/2 orthogonal features. Hence, the remaining d/2
directions contribute to the excess error. In technical terms, let P be the set

{
ei1 , . . . , eid/2

}
. Note

that |P| = d/2. Then,

ER (xt) =
1

2d

d∑
i=1

E
(
〈e, ei〉 −

1√
d

)2

,

≥ 1

2d

∑
e 6∈P

1

d
=
d− |P|

2d2
=

1

4d
.

Lemma 17 For any initial point x0 and Hessian H′ with Tr(H′) = 1, there exists a distribution ρ′

which prevent acceleration.

Proof Let

H′ =
d∑
i=1

pieie
>
i .

The excess risk on any noise less problem with x′∗ as optimum and H′ as Hessian can be written as,

R (x) =
1

2

(
x− x′∗

)>
H′
(
x− x′∗

)
,

=
1

2

d∑
i=1

pi
(〈
x− x′∗, ei

〉)2
=

1

2d

d∑
i=1

(
〈x− x0, ei〉+

〈
x0 − x′∗, ei

〉)2
,

=
1

2

d∑
i=1

pi
(
〈x− x0, ei〉+

〈
x0 − x′∗, ei

〉)2
.

Let ρ′ be the one hot basis distribution where ei is sampled with probability pi. Consider any
stochastic first order algorithm S for t iterations. Lets say ei1 , · · · , eit be the inputs from the stream
till time t. From Definition 4, the estimator xt after t iterations

xt ∈ x0 + span {∇0f(x0),∇1f(x1), · · · ,∇k−1f(xk−1)} .

Note that for noiseless regression the stochastic gradient at time k is∇kf(xk) = eik(〈eik ,xk − x∗〉.
Using the fact that it is always along the direction of eik .

e
def
= xt − x0 ∈ span {ei1 , · · · , eit} .
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Plugging this in the above expression for excess risk, we get,

ER (xt) =
1

2

d∑
i=1

piE
(
〈e, ei〉+

〈
x0 − x′∗, ei

〉)2
.

If none of the eik ’s , for k ≤ t are ei then 〈e, ei〉 = 0. This event occurs with a probability (1− pi)t.
Hence, with probability (1− pi)t, 〈e, ei〉 = 0. Taking this into consideration,

E
(
〈e, ei〉+

〈
x0 − x′∗, ei

〉)2 ≥ (1− pi)t
〈
x0 − x′∗, ei

〉2
Hence,

ER (xt) ≥
1

2

d∑
i=1

pi (1− pi)t
〈
x0 − x′∗, ei

〉2
Noting that the right hand side corresponds to the performance of gradient descent with step size
1 after t/2 iterations. In conclusion, performance of gradient descent is better than any stochastic
algorithm. Hence, direct acceleration with this oracle defined by ρ′ is not possible.
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−
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O(d)-space

O(d2)-space

d/t2

1/t2

Figure 2: Least-squares regression. Comparison of Alg. 4 with space constrains. Note that the
version with O(d2)-space decrease at rate 1/t2 where Alg. 4 with O(d) decays at rate d/t2.

Space Complexity. In Figure 2, we demonstrate that the with additional space the speed of
the decay can be improved. Note that the version with O(d2)-space decrease at rate 1/t2 where
Algorithm 4 with O(d) decays at rate d/t2. The set up for this experiment is same as the setup of
the plot on Last Iterate described in Section 7. The O(d)− curve corresponds to the Algorithm 4
with SGD oracle Eq.(6) with step sizes α = 1/3 dTrH, β = 1/3TrH where H is the covariance of
Gaussian data. The O(d2)− curve corresponds to the Algorithm 4 with running average SGD oracle
in Section 5 with step sizes α = 1/3TrH, β = 1/3TrH.

Appendix C. Bias and Variance

In this section, we investigate the recursions of expected covariance of the bias and variance process.
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C.1. Our technique for Bias

The work of Jain et al. (2018b) introduces a novel Lyapunov function c1E
[∥∥yt − x∗∥∥2]+c2E [∥∥zt − x∗∥∥2H−1

]
,

for some constants c1, c2 for the analysis of bias error to show accelerated SGD rates for strongly
convex least squares. Using similar Lyapunov function on the non-strongly convex version of
Nesterov acceleration algorithm, in Even et al. (2021), a rate of convergence for E

[∥∥xt − x∗∥∥2]
,i.e,

E
[∥∥xt − x∗∥∥2] . ∥∥x0 − x∗

∥∥2
H−1

t2
.

is shown. Even with this result, it is still unclear how to relate excess error E
[∥∥xt − x∗∥∥2H] and

distance of initialization
∥∥x0 − x∗

∥∥2. Note that for non-strongly convex functions
∥∥x0 − x∗

∥∥2
H−1

can be arbitrarily large in comparison to
∥∥x0 − x∗

∥∥2. As there is an absence of direct Lyapunov
techniques for bias error, it is needed to introduce a new method.

In recent times, many works (Zou et al., 2021; Varre et al., 2021) have studied the sharp
characterization of bias process in SGD to understand the performance of SGD for over-parameterized
least squares. In Zou et al. (2021), it is shown that sum of covariance i.e.

∑t
i=0 E [θb,i ⊗ θb,i] of

SGD at the limit t → ∞ is used to give sharp bounds for bias excess risk. Even this approach
cannot be used to in our case for two reasons (a) the limit in the case of our accelerated methods still
depends on

∥∥x0 − x∗
∥∥2

H−1 which can be arbitrarily large (b) this requires more restricting uniformly
bounded kurtosis assumption. In our approach we give sharp estimates for finite sum of covariance
and relate them to the sum of covariance for the Algorithm 4 with exact gradients (see Lemma 19).
This method gives us the bounds on the excess risk of bias part. Also, note that our approach does
not require the assumption of bounded uniform kurtosis and works with standard fourth moment
Assumption 1.

C.2. Bias

Recalling the recursion Eq.(12), we have

θb,t+1 = Jt θb,t. (36)

For all t ≥ 0, we use the following notation for the sake of brevity

Ct def
= E [θb,t ⊗ θb,t] .

Lemma 18 For t ≥ 0, the covariance of the bias iterates is determined by the recursion,

Ct+1 = T̃ (t+1) ◦ C0 +
t∑

k=0

T̃ k ◦M ◦ Ct−k

Proof From the recursion on the bias covariance of Lemma 14, we have

E [θb,t+1 ⊗ θb,t+1] = T ◦ E [θb,t ⊗ θb,t] ,
Ct+1 = T ◦ Ct =

(
T̃ +M

)
◦ Ct, from Lemma 10,

= T̃ ◦ Ct +M◦ Ct,
= T̃ ◦

(
T̃ ◦ Ct−1 +M◦ Ct−1

)
+M◦ Ct = T̃ 2 ◦ Ct−1 + T̃ ◦M ◦ Ct−1 +M◦ Ct.
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Expanding this recursively we get the following expression

Ct+1 = T̃ (t+1) ◦ C0 +
t∑

k=0

T̃ k ◦M ◦ Ct−k.

Lemma 19 For T ≥ 0,(
I −

(
I − T̃

)−1
◦M

)
◦

T∑
t=0

Ct 4
(

T∑
t=0

T̃ (t)

)
◦ C0. (37)

Proof From Lemma 18,

Ct = T̃ (t) ◦ C0 +
t−1∑
k=0

T̃ t−k−1 ◦M ◦ Ck.

Consider the following summation,

T∑
t=0

Ct =
∑
t

[
T̃ (t) ◦ C0 +

t−1∑
k=0

T̃ t−1−k ◦M ◦ Ck
]
,

=

(
T∑
t=0

T̃ (t)

)
◦ C0 +

T∑
t=0

t−1∑
k=0

T̃ t−1−k ◦M ◦ Ck.

Exchanging the summations for the second part,

T∑
t=0

Ct =

(
T∑
t=0

T̃ (t)

)
◦ C0 +

T−1∑
k=0

T∑
t=k+1

T̃ t−1−k ◦M ◦ Ck,

=

(
T∑
t=0

T̃ (t)

)
◦ C0 +

T−1∑
k=0

[
T−k−1∑
t=0

T̃ t
]
◦M ◦ Ck.

Note that Ck is PSD, for k ≥ 0 andM is positive. Hence, M ◦ Ck is PSD. Since T̃ < 0 (to be
precise T̃ ◦M ◦ Ck < 0, but we drop this for simplicity of writing), we can say the following things,

∀t ≥ 0, T̃ t < 0,

for any t′ ≥ 0,
∑
t>t′

T̃ t < 0,

Hence, for any t′ ≥ 0,
∑
t≥0
T̃ t <

t′∑
t=0

T̃ t.

T∑
t=0

Ct 4
(

T∑
t=0

T̃ (t)

)
◦ C0 +

T−1∑
k=0

∑
t≥0
T̃ t

 ◦M ◦ Ck.
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Here we use the fact that ∑
t≥0
T̃ t =

(
I − T̃

)−1
.

T∑
t=0

Ct 4
(

T∑
t=0

T̃ (t)

)
◦ C0 +

T−1∑
k=0

(
I − T̃

)−1
◦M ◦ Ck,

4

(
T∑
t=0

T̃ (t)

)
◦ C0 +

(
I − T̃

)−1
◦M ◦

T−1∑
k=0

Ck.

Using the fact that CT < 0, we have
T−1∑
k=0

Ck ≤
T∑
k=0

Ck

Hence,

T∑
t=0

Ct 4
(

T∑
t=0

T̃ (t)

)
◦ C0 +

(
I − T̃

)−1
◦M ◦

T∑
k=0

Ck.

From this we can prove the lemma

(
I −

(
I − T̃

)−1
◦M

)
◦

T∑
t=0

Ct 4
(

T∑
t=0

T̃ (t)

)
◦ C0.

Lemma 20 With the stepsizes satisfying (α + 2β)R2 ≤ 1, α ≤ β
2κ̃ the sum of covariance can be

bounded by

T∑
t=0

〈[
H H
H H

]
,E [θb,t ⊗ θb,t]

〉
≤ min

{
3(T + 1)

α
,
12(T + 1)(T + 2)

β

}∥∥x0 − x∗
∥∥2.

Proof From Lemma 19,(
I −

(
I − T̃

)−1
◦M

)
◦

T∑
t=0

Ct 4
(

T∑
t=0

T̃ (t)

)
◦ C0,〈[

H H
H H

]
,

(
I −

(
I − T̃

)−1
◦M

)
◦

T∑
t=0

Ct
〉
≤
〈[

H H
H H

]
,

(
T∑
t=0

T̃ (t)

)
◦ C0

〉
.
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Using the definition of transpose of operators in Remark 11, we get〈[
H H
H H

]
,

(
I −

(
I − T̃

)−1
◦M

)
◦

T∑
t=0

Ct
〉

=

〈(
I −M> ◦

(
I − T̃ >

)−1)
◦Υ,

T∑
t=0

Ct
〉

(38)

As the condition on the stepsize is satisfied, we can use the fact that Υ is almost eigen vector of

M> ◦
(
I − T̃ >

)−1
from Lemmas 15, 34,

M> ◦
(
I − T̃ >

)−1
◦
[
H H
H H

]
4

2

3

[
H H
H H

]
(
I −M> ◦

(
I − T̃ >

)−1)
◦
[
H H
H H

]
<

1

3

[
H H
H H

]
.

Combining them we get,

1

3

〈[
H H
H H

]
,
T∑
t=0

Ct
〉
≤
〈[

H H
H H

]
,

(
T∑
t=0

T̃ (t)

)
◦ C0

〉
,

T∑
t=0

〈[
H H
H H

]
, Ct
〉
≤ 3

T∑
t=0

〈[
H H
H H

]
,
(
T̃ (t)

)
◦ C0

〉
.

Note that θb,0 = θ0 gives C0 = θ0 ⊗ θ0 . From Lemma 27, for 0 6 t 6 T ,〈[
H H
H H

]
, T̃ (t) ◦ [θ0 ⊗ θ0]

〉
≤ min

{
1

α
,
8(t+ 1)

β

}∥∥x0 − x∗
∥∥2.

Summing this for 0 ≤ t ≤ T proves the lemma.

C.3. Bias Last Iterate

Lemma 21 (Final Iterate Risk) Under Assumptions 4 and the step-sizes satisfying α ≤ β ≤ 1/L.
For T ≥ 0, the last iterate excess error can be determined by the following discrete Volterra integral

f (θb,T ) 6 min

{
1

α
,
8(T + 1)

β

}∥∥x0 − x∗
∥∥2 +

T−1∑
t=0

g (H, t− k − 1) f (θb,t) ,

where f (θb,t)
def
=

〈[
H H
H H

]
,E [θb,t ⊗ θb,t]

〉
and the kernel

g (H, t)
def
= κ

〈
Υ, T̃ t ◦Ξ

〉
. (39)

Proof Invoking Lemma 18 and θb,0 = θ0 gives

E [θb,t ⊗ θb,t] = T̃ (t) ◦ [θ0 ⊗ θ0] +

t−1∑
k=0

T̃ t−k−1 ◦M ◦ E [θb,k ⊗ θb,k] .
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Using Lemma 32, note Υ is defined at Eq.(31)

M◦ E [θb,k ⊗ θb,k] 4 κ 〈Υ,E [θb,k ⊗ θb,k]〉Ξ.

Using this and fact that T is positive and Ξ is PSD,

E [θb,t ⊗ θb,t] 4 T̃ (t) ◦ [θ0 ⊗ θ0] +

t−1∑
k=0

T̃ t−k−1 ◦ κ 〈Υ,E [θb,k ⊗ θb,k]〉Ξ.

Taking the scalar product with Υ on both sides, gives us

〈Υ,E [θb,t ⊗ θb,t]〉 ≤
〈

Υ, T̃ (t) ◦ [θ0 ⊗ θ0]
〉

+
t−1∑
k=0

〈
Υ, T̃ t−k−1 ◦Ξ

〉
κ 〈Υ,E [θb,k ⊗ θb,k]〉 .

From Lemma 27, we get,

〈Υ,E [θb,t ⊗ θb,t]〉 ≤ min

{
1

α
,
8(t+ 1)

β

}∥∥x0 − x∗
∥∥2 +

t−1∑
k=0

〈
Υ, T̃ t−k−1 ◦Ξ

〉
κ 〈Υ,E [θb,k ⊗ θb,k]〉 .

The definition of f (θb,t) proves the lemma.

Lemma 22 With (α+ 2β) ≤ 1
κTrH , α ≤

β
2κd , after t iterations of Algorithm 4 the bias excess error,〈[

H H
H H

]
,θb,t ⊗ θb,t

〉
6 min

{
3

α
,
24(t+ 1)

β

}∥∥x0 − x∗
∥∥2.

Proof From Lemma 21,

〈Υ,E [θb,t ⊗ θb,t]〉 ≤ min

{
1

α
,
8(t+ 1)

β

}∥∥x0 − x∗
∥∥2 +

t−1∑
k=0

〈
Υ, T̃ t−k−1 ◦Ξ

〉
κ 〈Υ,E [θb,k ⊗ θb,k]〉 .

Now we will use induction to show that 〈Υ,E [θb,k ⊗ θb,k]〉 is bounded.

Induction Hypothesis There exists a constant C, for all 0 6 k 6 t− 1 , 〈Υ,E [θb,k ⊗ θb,k]〉 ≤ C.
Using this,

〈Υ,E [θb,t ⊗ θb,t]〉 ≤ min

{
1

α
,
8(t+ 1)

β

}∥∥x0 − x∗
∥∥2 +

t−1∑
k=0

〈
Υ, T̃ t−k−1 ◦Ξ

〉
κC,

= min

{
1

α
,
8(t+ 1)

β

}∥∥x0 − x∗
∥∥2 +

〈
Υ,

t−1∑
k=0

T̃ t−k−1 ◦Ξ

〉
κC.

As T is positive and Υ,Ξ is PSD,(
t−1∑
k=0

T̃ k
)
◦Ξ 4

( ∞∑
k=0

T̃ k
)
◦Ξ =

(
1− T̃

)−1

◦Ξ
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Using this upperbound,

〈Υ,E [θb,t ⊗ θb,t]〉 6 min

{
1

α
,
8(t+ 1)

β

}∥∥x0 − x∗
∥∥2 + κC

〈
Υ,
(

1− T̃
)−1

◦Ξ
〉
. (40)

As the step sizes are chosen accordingly, using Lemma 29,

κC
〈

Υ,
(

1− T̃
)−1

◦Ξ
〉
≤ 2C

3
.

Substituting these back in Eq.(40),

〈Υ,E [θb,t ⊗ θb,t]〉 6 min

{
1

α
,
8(t+ 1)

β

}∥∥x0 − x∗
∥∥2 +

2C

3
.

If we choose C such that,

C = min

{
3

α
,
24(t+ 1)

β

}∥∥x0 − x∗
∥∥2,

2C

3
= min

{
2

α
,
16(t+ 1)

β

}∥∥x0 − x∗
∥∥2,

〈Υ,E [θb,t ⊗ θb,t]〉 6 min

{
3

α
,
24(t+ 1)

β

}∥∥x0 − x∗
∥∥2 = C.

Hence we have shown that 〈Υ,E [θb,t ⊗ θb,t]〉 ≤ C. From induction we can say that for all T > 0,

〈Υ,E [θb,t ⊗ θb,t]〉 6 C where C = min

{
3

α
,
24(t+ 1)

β

}∥∥x0 − x∗
∥∥2∥∥x0 − x∗

∥∥2.

C.4. Variance

We start by extending the the definition of the random matrix Jt,

Definition 23 For every 0 ≤ i ≤ j, define the random linear operator J (i, j) as follows

J (j, i) =

j−1∏
k=i

Jk and J (i, i) = I. (41)

Recalling the variance subproblem Eq.(13) and using the above definition,

θv,0 =

[
0
0

]
, θv,t = J (t, t− 1)θv,t−1 + εt. (42)

Using this recursion for t− 1 and expanding it, we will get the following

θv,t = J (t, t− 1) (J (t− 1, t− 2)θv,t−2 + εt−1) + εt.
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Using the definition of J (i, j) Def. 23,

θv,t = J (t, t− 2)θv,t−2 + J (t, t− 1)εt−1 + εt.

Expanding it further for any 0 ≤ i ≤ t, we have the following expression

θv,t = J (t, i)θv,i +

t∑
k=i+1

J (t, k)εk. (43)

Lemma 24 With the recursion defined by Eq.(42) and the expected covariance of the θv,t

E
[
θv,T ⊗ θv,T

]
=

T∑
i=1

 T∑
j≥i
Aj−i

 {M ◦ E [θv,i−1 ⊗ θv,i−1] + E [εi ⊗ εi]}

 T∑
j≥i
Aj−i

> .
Proof Recall that

θv,T =

T∑
t=0

θv,t.

Considering the covariance of θv,T ,

θv,T ⊗ θv,T =

(
T∑
i=0

θv,i

)
⊗

 T∑
j=0

θv,j

 ,

=
∑
i

θv,i ⊗ θv,i +
∑
j>i

(θv,j ⊗ θv,i + θv,i ⊗ θv,j)

 .

Taking expectation and using the linearity of expectation we get,

E
[
θv,T ⊗ θv,T

]
=

T∑
i=1

E [θv,i ⊗ θv,i] +
T∑
j>i

(E [θv,j ⊗ θv,i] + E [θv,i ⊗ θv,j ])

 .
Note that from Eq.(43), we can write θv,j ⊗ θv,i for j > i as follows

θv,j ⊗ θv,i = J (t, i)θv,i ⊗ θv,i +

j∑
k=i+1

J (t, k)εk ⊗ θv,i.

Now taking the expectation,

E [θv,j ⊗ θv,i] = E [J (t, i)θv,i ⊗ θv,i] +

j∑
k=i+1

E [J (t, k)εk ⊗ θv,i] .

For all k > i, J (t, k), εk is independent of θv,i, J (t, k), εk are also independent from their definition.
We have E [J (t, k)] = At−k, and E [εk] = 0. Using these,

E [θv,j ⊗ θv,i] = Aj−iE [θv,i ⊗ θv,i] .
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With the same reasoning, for j ≥ i,

E [θv,i ⊗ θv,j ] = E [θv,i ⊗ θv,i]
(
A>
)j−i

.

Substituting the above here gives,

E
[
θv,T ⊗ θv,T

]
=

T∑
i=1

E [θv,i ⊗ θv,i] +
T∑
j>i

(E [θv,j ⊗ θv,i] + E [θv,i ⊗ θv,j ])

 ,

=
T∑
i=1

E [θv,i ⊗ θv,i] +

 T∑
j>i

Aj−i
E [θv,i ⊗ θv,i] + E [θv,i ⊗ θv,i]

 T∑
j>i

Aj−i
>
 .

Note that from here, a upper bound on E [θv,i ⊗ θv,i] doesnot translate to an upperbound on the
E
[
θv,T ⊗ θv,T

]
as the matrix A is not positive unlike the case of SGD. Using the following identity

for any two matrices S and a vector φ,

φ⊗ φ+ S · φ⊗ φ+ φ⊗ φ · S> = (I + S) · φ⊗ φ · (I + S)> − S · φ⊗ φ · S>.

E
[
θv,T ⊗ θv,T

]
=

T∑
i=1

I +
T∑
j>i

Aj−i
E [θv,i ⊗ θv,i]

I +
T∑
j>i

Aj−i
>

−
T∑
i=1

 T∑
j>i

Aj−i
E [θv,i ⊗ θv,i]

 T∑
j>i

Aj−i
> .

Now the first term can be written as follows,

T∑
i=1

I +

T∑
j>i

Aj−i
E [θv,i ⊗ θv,i]

I +

T∑
j>i

Aj−i
> =

T∑
i=1

 T∑
j≥i
Aj−i

E [θv,i ⊗ θv,i]

 T∑
j>i

Aj−i
> .

For the second term note that at i = T the summation will be 0. So we directly consider the
summation till T − 1.

T∑
i=1

 T∑
j>i

Aj−i
E [θv,i ⊗ θv,i]

 T∑
j>i

Aj−i
> =

T−1∑
i=1

 T∑
j>i

Aj−i
E [θv,i ⊗ θv,i]

 T∑
j>i

Aj−i
> ,

=

T−1∑
i=1

 T∑
j≥i+1

Aj−i−1
AE [θv,i ⊗ θv,i]A>

 T∑
j≥i+1

Aj−i−1
> .

By definition of T̃ and change of variable ’i+ 1→ i’ gives

T∑
i=1

 T∑
j>i

Aj−i
E [θv,i ⊗ θv,i]

 T∑
j>i

Aj−i
> =

T∑
i=2

 T∑
j≥i
Aj−i

 T̃ ◦ E [θv,i−1 ⊗ θv,i−1]

 T∑
j≥i
Aj−i

> .
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Combining both parts and noting that θv,0 = 0 we get,

E
[
θv,T ⊗ θv,T

]
=

T∑
i=1

 T∑
j≥i
Aj−i

{E [θv,i ⊗ θv,i]− T̃ ◦ E [θv,i−1 ⊗ θv,i−1]
} T∑

j≥i
Aj−i

> .
From Lemma 14,

E [θv,i ⊗ θv,i] = T ◦ E [θv,i−1 ⊗ θv,i−1] + E [εi ⊗ εi] ,
E [θv,i ⊗ θv,i] =

(
T̃ +M

)
◦ E [θv,i−1 ⊗ θv,i−1] + E [εi ⊗ εi] ,

E [θv,i ⊗ θv,i]− T̃ ◦ E [θv,i−1 ⊗ θv,i−1] =M◦ E [θv,i−1 ⊗ θv,i−1] + E [εi ⊗ εi] .

E
[
θv,T ⊗ θv,T

]
=

T∑
i=1

 T∑
j≥i
Aj−i

{E [θv,i ⊗ θv,i]− T̃ ◦ E [θv,i−1 ⊗ θv,i−1]
} T∑

j≥i
Aj−i

> ,
=

T∑
i=1

 T∑
j≥i
Aj−i

 {M ◦ E [θv,i−1 ⊗ θv,i−1] + E [εi ⊗ εi]}

 T∑
j≥i
Aj−i

> .
This proves the lemma.

Lemma 25 With the recursion defined by Eq.(42) and step sizes satisfying Condition 27, for t ≥ 0,

E [θv,t ⊗ θv,t] 4 t2σ2 (I − T )−1 ◦Ξ.

Proof From Lemma 14, we have

E [θv,t ⊗ θv,t] = T ◦ E [θv,t−1 ⊗ θv,t−1] + E [εt ⊗ εt] ,
= T 2 ◦ E [θv,t−2 ⊗ θv,t−2] + T ◦ E [εt−1 ⊗ εt−1] + E [εt ⊗ εt] ,

=

t−1∑
k=0

T k ◦ E [εt−k ⊗ εt−k] .

Recalling from the definition of εk and its covariance,

εk = kηk

[
βat
αat

]
,

εk ⊗ εk = k2η2k

[
βat
αat

]
⊗
[
βat
αat

]
,

= k2
[
β2 αβ
αβ α2

]
⊗k
[
η2k ak ⊗ ak

]
.

where ⊗k is the kronecker product. Taking the expectation, we have

E [εk ⊗ εk] = k2
[
β2 αβ
αβ α2

]
⊗k E

[
η2k ak ⊗ ak

]
.
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From the Assumption 2, we have

E
[
η2k ak ⊗ ak

]
= E

[
(bk − 〈x∗, ak〉)2 ak ⊗ ak

]
4 σ2H.

Using the fact that kronecker product of two PSD matrices is a PSD and recalling Ξ from Eq.(31),
we get [

β2 αβ
αβ α2

]
⊗k
(
σ2H− E

[
η2k ak ⊗ ak

])
< 0,[

β2 αβ
αβ α2

]
⊗k
(
E
[
η2k ak ⊗ ak

])
4

[
β2 αβ
αβ α2

]
⊗k
(
σ2H

)
,

4 σ2
[
β2H αβH
αβH α2H

]
= σ2Ξ.

Combining these we get the following,

E [εk ⊗ εk] 4 σ2k2 ·Ξ.

Using this upper bound in the expansion of E [θv,t ⊗ θv,t],

E [θv,t ⊗ θv,t] =
t−1∑
k=0

T k ◦ E [εt−k ⊗ εt−k] ,

4 σ2
t−1∑
k=0

T k ◦ (t− k)2 Ξ.

For 0 6 k 6 T , we have (t− k)2 6 t2 and using the fact that T ,Ξ are positive,

t−1∑
k=0

T k ◦ (t− k)2 Ξ 4 t2
t−1∑
k=0

T k ◦Ξ,

4 t2
∞∑
k=0

T k ◦Ξ = t2 (I − T )−1 ◦Ξ.

Hence, we have

E [θv,t ⊗ θv,t] 4 σ2t2 (I − T )−1 ◦Ξ

This completes the proof of the lemma.

Lemma 26 With α and β satisfying Condition 27, the excess error after T iterations of the variance
process, 〈[

H H
H H

]
,E
[
θv,T ⊗ θv,T

]〉
≤ 18

(
σ2d
)
T 3
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Proof From Lemma 24,

E
[
θv,T ⊗ θv,T

]
=

T∑
i=1

 T∑
j≥i
Aj−i

 {M ◦ E [θv,i−1 ⊗ θv,i−1] + E [εi ⊗ εi]}

 T∑
j≥i
Aj−i

> .
First lets upperboundM◦ E [θv,i−1 ⊗ θv,i−1] + E [εi ⊗ εi]. We have the following

• Invoking Lemma 25,

E [θv,i−1 ⊗ θv,i−1] 4 (i− 1)2σ2 (I − T )−1 ◦Ξ.

• For the choice of stepsizes from Lemma 30,

(I − T )−1 ◦Ξ 4 3
(
I − T̃

)−1
◦Ξ.

• Combining these to get

M◦ E [θv,i−1 ⊗ θv,i−1] 4 3(i− 1)2σ2M◦
(
I − T̃

)−1
◦Ξ.

the step sizes chosen allows us to invoke Lemma 33. Hence,

M◦
(
I − T̃

)−1
◦Ξ 4

2

3
Ξ,

3σ2(i− 1)2M◦
(
I − T̃

)−1
◦Ξ 4 2σ2(i− 1)2Ξ.

• The remaining E [εi ⊗ εi] can be upperbounded by σ2i2Ξ.

Combining the above gives

M◦ E [θv,i−1 ⊗ θv,i−1] + E [εi ⊗ εi] 4 2σ2(i− 1)2Ξ + σ2i2Ξ.

For 0 ≤ i ≤ T this can be bounded as follows.

M◦ E [θv,i−1 ⊗ θv,i−1] + E [εi ⊗ εi] 4 3σ2T 2Ξ.

Note that this can be used in Lemma 24 to bound E
[
θv,T ⊗ θv,T

]
because for any matrix P, P (.)P>

is a positive operator. Hence T∑
j≥i
Aj−i

 {M ◦ E [θv,i−1 ⊗ θv,i−1] + E [εi ⊗ εi]}

 T∑
j≥i
Aj−i

> 4 3σ2T 2

 T∑
j≥i
Aj−i

 ·Ξ ·
 T∑
j≥i
Aj−i

> .
Adding this and using Lemma 24,

E
[
θv,T ⊗ θv,T

]
4 3σ2T 2 ·

T∑
i=1

 T∑
j≥i
Aj−i

Ξ

 T∑
j≥i
Aj−i

> .
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Using the following identity, T∑
j≥i
Aj−i

 = (I − A)−1
(
I − A(T−i+1)

)
,

E
[
θv,T ⊗ θv,T

]
4 3σ2T 2 · (I − A)−1

[
T∑
i=1

(
I − A(T−i+1)

)
Ξ
(
I − A(T−i+1)

)>](
I − A>

)−1
.

Note that we are interested in
〈[

H H
H H

]
,E
[
θv,T ⊗ θv,T

]〉
.

〈[
H H
H H

]
,E
[
θv,T ⊗ θv,T

]〉
≤ 3σ2T 2

〈[
H H
H H

]
, (I − A)−1

[
T∑
i=1

(
I − A(T−i+1)

)
Ξ
(
I − A(T−i+1)

)>](
I − A>

)−1〉
,

= 3σ2T 2

〈(
I − A>

)−1 [H H
H H

]
(I − A)−1,

T∑
i=1

(
I − A(T−i+1)

)
Ξ
(
I − A(T−i+1)

)>〉
.

Note that

(I − A)−1 =

[
I (αH)−1 (I− βH)

−I (αH)−1 (βH)

]
,[

H H
H H

]
(I − A)−1 =

[
H H
H H

] [
I (αH)−1 (I− βH)

−I (αH)−1 (βH)

]
,

=

[
0 α−1I
0 α−1I

]
,(

I − A>
)−1 [H H

H H

]
(I − A)−1 =

[
I −I

(αH)−1 (I− βH) (αH)−1 (βH)

] [
0 α−1I
0 α−1I

]
=

[
0 0
0 α−2H−1

]
.

Substituting this,〈[
H H
H H

]
,E
[
θv,T ⊗ θv,T

]〉
≤ 3σ2T 2

〈[
0 0
0 α−2H−1

]
,

T∑
i=1

(
I − A(T−i+1)

)
Ξ
(
I − A(T−i+1)

)>〉
,

= 3σ2T 2
T∑
i=1

〈[
0 0
0 α−2H−1

]
,
(
I − A(i)

)
Ξ
(
I − A(i)

)>〉
.

From Cauchy Schwarz, we know(
I − A(i)

)
Ξ
(
I − A(i)

)>
4 2Ξ + 2A(i)Ξ

(
A>
)(i)

= 2Ξ + 2T̃ i ◦Ξ,

Using this,〈[
H H
H H

]
,E
[
θv,T ⊗ θv,T

]〉
≤ 3σ2T 2

T∑
i=1

〈[
0 0
0 α−2H−1

]
, 2Ξ + 2T̃ i ◦Ξ

〉
.
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Using Lemma 28 for the right part, we get the following,〈[
H H
H H

]
,E
[
θv,T ⊗ θv,T

]〉
≤ 3σ2T 2

T∑
i=1

6d = 18
(
σ2d
)
T 3.

C.5. Potentials for Nesterov Method

In this section, we will use the potential functions used in the proof of nesterov accelerated method
to bounding the terms in our recursion. Consider the Algorithm 4 with exact gradients in that setting,

y′t+1 = x′t − βH
(
x′t − x∗

)
, (44a)

z′t+1 = z′t − α(t+ 1)H
(
x′t − x∗

)
, (44b)

(t+ 2)x′t+1 = (t+ 1)y′t+1 + z′t+1. (44c)

By similar rescaling and the definition of the operator, it can be seen that[
t(y′t − x∗)
z′t − x∗

]
= At ◦

[
0

x0 − x∗.

]
(45)

Lemma 27 For the step sizes satisfying 0 < α ≤ β ≤ 1/L,〈[
H H
H H

]
, T̃ (t) ◦ [θ0 ⊗ θ0]

〉
≤ min

{
1

α
,
8(t+ 1)

β

}∥∥x0 − x∗
∥∥2.

Proof From the above equivalence Eq.(45), we can see that〈[
H H
H H

]
, T̃ (t) ◦ [θ0 ⊗ θ0]

〉
= (t+ 1)2

∥∥x′t − x0

∥∥2.
Now using the potential function, Vt = (t)(t+ 1)

∥∥y′t − x∗∥∥2H + 1
α

∥∥z′t − x∗∥∥2, for α ≤ β we can
see that Vt ≤ Vt−1 ≤ . . . V0. Using this

t2
∥∥y′t − x∗∥∥2 ≤ 1

α

∥∥z′0 − x∗∥∥2 =
1

α

∥∥x0 − x∗
∥∥2,∥∥z′t − x∗∥∥2 ≤ ∥∥z′0 − x∗∥∥2 =

∥∥x0 − x∗
∥∥2.

Noting that (t+ 1)(x′t − x∗) = t(y′t − x∗) + (z′t − x∗) and using Cauchy-Schwarz inequality,

(t+ 1)2
∥∥x′t − x0

∥∥2 ≤ 2t2
∥∥y′t − x∗∥∥2 + 2

∥∥z′t − x∗∥∥2 =

(
2

α
+ 2

)∥∥x0 − x∗
∥∥2.

But doing exact computations gives better bounds. The above algorithm is exactly equivalent to the
algorithm considered in Flammarion and Bach (2015) as seen below

ηt+1 = (I− αH)ηt + (I− βH)(ηt − ηt−1).

where ηt = (t+1)(x′t−x∗). Hence we can apply their results giving the bound min
{

1
α ,

8(t+1)
β

}∥∥x0 − x∗
∥∥2.
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Lemma 28 〈[
0 0
0 α−2H−1

]
, T̃ (t) ◦Ξ

〉
≤ 2.

Proof Both A and Ξ are diagonizable wrt to the eigen basis of H. We will now project these block
matrices onto their eigen basis and compute the summation of each component individually. Note
that,

A =
d∑
i=1

Ai ⊗k eie>i , Ξ =
d∑
i=1

Ξi ⊗k eie>i . (46)

where Ai and Ξi are

Ai =

[
1− βλi 1− βλi
−αλi 1− αλi

]
, Ξi =

[
β2λi βαλi
βαλi α2λi

]
. (47)

Now, the scalar product using the properties of Kronecker product,〈[
0 0
0 α−2H−1

]
, T̃ (t) ◦Ξ

〉
=

d∑
i=1

〈[
0 0

0 α−2λ−1i

]
,Ati ·Ξi ·

(
Ati
)>〉

.

To compute
〈[

0 0

0 α−2λ−1i

]
,Ati ·Ξi ·

(
Ati
)>〉 we invoke Lemma 67, with

Γ = Ai, ℵ = λiΞi,

b = βλi, a = αλi.

which gives, 〈[
0 0

0 α−2λ−1i

]
,Ati ·Ξi ·

(
Ati
)>〉 ≤ 1 +

αλi

(1− βλi)2
.

Note from condition on step sizes Eq.(27) that α ≤ β/2, βλi ≤ βL ≤ βR2 ≤ 1/2,〈[
0 0

0 α−2λ−1i

]
,Ati ·Ξi ·

(
Ati
)>〉 ≤ 1 +

αλi

(1− βλi)2
≤ 2.

Computing the sum across dimension, we get the desired bound.

Appendix D. Inverting operators

In this section, we give proof for the almost eigenvalues of the operators M ◦ (1 − T̃ )−1 ,

M> ◦
(
I − T̃ >

)−1
. As described earlier, although the calculations are a bit extensive, the under-

lying scheme remains the same. To compute (1− T̃ )−1,
(
I − T̃ >

)−1
, we formulate inverse as a

summation of geometric series. Then we use the diagonalization of the H and compute the geometric
series. In the last part, we use Property 1 and Assumptions 1, 3 on the data features to get the final
bounds.
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Property 1 Using E
[
aa>

]
= H, the following property holds for any PSD matrix (·),

E
[(

H− aa>
)

(·)
(
H− aa>

)]
= E

[
aa>(·)aa>

]
− E [H(·)H] 4 E

[
aa>(·)aa>

]
.

Lemma 29 With 0 < α, β < 1/L and (α+ 2β)L < 1,(
I − T̃

)−1
◦Ξ 4

1

3

[
2α(βH)−1 + (2β − 3α)I αβ−1(2β − α)I

αβ−1(2β − α)I 2α2β−1I

]
. (48)

Proof We will compute the inverse by evaluating the summation of the following infinite series,(
I − T̃

)−1
◦Ξ =

∞∑
t=0

T̃ t ◦Ξ =
∞∑
t=0

At ·Ξ · (At)>.

BothA and Ξ are diagonizable wrt to the eigen basis of H. We will now project these block matrices
onto their eigen basis and compute the summation of each component individually. Note that,

A =
∑
i

Ai ⊗k eie>i , Ξ =
∑
i

Ξi ⊗k eie>i . (49)

where Ai and Ξi are

Ai =

[
1− βλi 1− βλi
−αλi 1− αλi

]
, Ξi =

[
β2λi βαλi
βαλi α2λi

]
. (50)

Using these projections,

∞∑
t=0

At ·Ξ · (At)> =

∞∑
t=0

∑
i

(
Ati ·Ξi ·

(
Ati
)>)⊗k eie>i , (51)

=
∑
i

[ ∞∑
t=0

Ati ·Ξi ·
(
Ati
)>]⊗k eie>i . (52)

We invoke Lemma 37 with

Γ = Ai, ℵ = λiΞi,

b = βλi, a = αλi.

∞∑
t=0

Ati · λiΞi ·
(
Ati
)>

=
1

βλi(4− (α+ 2β)λi)

[
2αλi + βλi(2βλi − 3αλi) αλi(2βλi − αλi)

αλi(2βλi − αλi) 2(αλi)
2

]
,

∞∑
t=0

Ati ·Ξi ·
(
Ati
)>

=
1

(4− (α+ 2β)λi)

[
2α(βλi)

−1 + (2β − 3α) αβ−1(2β − α)
αβ−1(2β − α) 2α2β−1

]
.

We have

(α+ 2β)λi ≤ (α+ 2β)L ≤ 1,

Hence, 4− ((α+ 2β)λi) ≥ 3.
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Also,
∞∑
t=0
Ati ·Ξi ·

(
Ati
)> is PSD as T̃ ,Ξ are positive. Hence, the following holds

3
∞∑
t=0

Ati ·Ξi ·
(
Ati
)>

4 4− ((α+ 2β)λi)
∞∑
t=0

Ati ·Ξi ·
(
Ati
)>
,

=

[
2α(βλi)

−1 + (2β − 3α) αβ−1(2β − α)
αβ−1(2β − α) 2α2β−1

]
.

This given the following

∞∑
t=0

Ati ·Ξi ·
(
Ati
)>

4
1

3

[
2α(βλi)

−1 + (2β − 3α) αβ−1(2β − α)
αβ−1(2β − α) 2α2β−1

]
. (53)

Using the fact that kronecker product of two PSD matrices is positive,

∞∑
t=0

Ati ·Ξi ·
(
Ati
)> ⊗k eie>i 4

1

3

[
2α(βλi)

−1 + (2β − 3α) αβ−1(2β − α)
αβ−1(2β − α) 2α2β−1

]
⊗k eie>i .

Now adding this result along all directions we get

∑
i

∞∑
t=0

Ati ·Ξi ·
(
Ati
)> ⊗k eie>i 4

1

3

∑
i

[
2α(βλi)

−1 + (2β − 3α) αβ−1(2β − α)
αβ−1(2β − α) 2α2β−1

]
⊗k eie>i ,(

I − T̃
)−1
◦Ξ 4

1

3

[
2α(βH)−1 + (2β − 3α)I αβ−1(2β − α)I

αβ−1(2β − α)I 2α2β−1I

]
,

where the last inequation comes from the facts

I =
∑
i

eie
>
i H−1 =

∑
i

λ−1i eie
>
i .

Lemma 30 With (α+ 2β)R2 ≤ 1, α ≤ β
2κ̃ ,

Φ∞
def
= (I − T )−1 ◦Ξ 4 3 ·

(
I − T̃

)−1
◦Ξ =

[
2α(βH)−1 + (2β − 3α)I αβ−1(2β − α)I

αβ−1(2β − α)I 2α2β−1I

]
.

(54)

Proof Writing the inverse as a sum of exponential series gives us

Φ∞
def
= (I − T )−1 ◦Ξ =

∞∑
t=0

T t ◦Ξ.
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Recursion for T t ◦Ξ will be as follows,

T t ◦Ξ = T̃ ◦ T t−1 ◦Ξ +M◦ T t−1 ◦Ξ,

= T̃ 2 ◦ T t−2 ◦Ξ + T̃ ◦M ◦ T t−2 ◦Ξ +M◦ T t−1 ◦Ξ,

= T̃ t ◦Ξ +

t−1∑
k=0

T̃ t−k−1 ◦M ◦ T k ◦Ξ.

Taking the sum of these terms from 0 to∞
∞∑
t=0

T t ◦Ξ =

∞∑
t=0

T̃ t ◦Ξ +

∞∑
t=0

t−1∑
k=0

T̃ t−k−1 ◦M ◦ T k ◦Ξ.

Interchanging the summations in the second part,

∞∑
t=0

T t ◦Ξ =

( ∞∑
t=0

T̃ t
)
◦Ξ +

∞∑
k=0

( ∞∑
t=k+1

T̃ t−k−1
)
◦M ◦ T k ◦Ξ

Using
∞∑

t=k+1

T̃ t−k−1 =

∞∑
t=0

T̃ t = (I − T̃ )−1,

∞∑
t=0

T t ◦Ξ =
(
I − T̃

)−1
◦Ξ +

∞∑
k=0

(
I − T̃

)−1
◦M ◦ T k ◦Ξ,

=
(
I − T̃

)−1
◦Ξ +

(
I − T̃

)−1
◦M ◦

∞∑
k=0

T k ◦Ξ,

Φ∞ =
(
I − T̃

)−1
◦Ξ +

(
I − T̃

)−1
◦M ◦Φ∞.

From this we have,

Φ∞ −
(
I − T̃

)−1
◦M ◦Φ∞ =

(
I − T̃

)−1
◦Ξ,(

I −
(
I − T̃

)−1
◦M

)
◦Φ∞ =

(
I − T̃

)−1
◦Ξ,

Φ∞ =

(
I −

(
I − T̃

)−1
◦M

)−1
◦
(
I − T̃

)−1
◦Ξ.

Writing the inverse as a sum of exponential series gives us

Φ∞ =
∞∑
t=0

((
I − T̃

)−1
◦M

)t
◦
(
I − T̃

)−1
◦Ξ, (55)

Note (α+ 2β)R2 ≤ 1 =⇒ (α+ 2β)λmax ≤ 1. Hence we can invoke Lemma 33 here.

M◦ (1− T̃ )−1 ◦Ξ 4

[
2ακ̃

3β
+

(α+ 2β)R2

3

]
Ξ
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Using

(α+ 2β)R2 ≤ 1, α ≤ β

2κ̃
,

M◦ (1− T̃ )−1 ◦Ξ 4

[
1

3
+

1

3

]
Ξ 4

2

3
Ξ.

Using this in Eq.(55),

Φ∞ =
∞∑
t=0

((
I − T̃

)−1
◦M

)t
◦
(
I − T̃

)−1
◦Ξ,

Use
((
I − T̃

)−1
◦M

)t
◦
(
I − T̃

)−1
=
(
I − T̃

)−1
◦
(
M◦

(
I − T̃

)−1)t
,

Φ∞ =
(
I − T̃

)−1
◦
∞∑
t=0

(
M◦

(
I − T̃

)−1)t
◦Ξ,

Using
(
M◦

(
I − T̃

)−1)t
4

[
2

3

]t
Ξ,

Φ∞ 4
(
I − T̃

)−1
◦
∞∑
t=0

[
2

3

]t
·Ξ,

4
(
I − T̃

)−1
◦ 3 ·Ξ.

This completes the proof.

Lemma 31 For any block matrix
[
P Q
R S

]
,

M◦
[
P Q
R S

]
=

[
β2 αβ
αβ α2

]
⊗k E

[(
H− aa>

)
(P +Q+R+ S)

(
H− aa>

)]
Proof

M◦
[
P Q
R S

]
= E

[[
βHa βHa

αHa αHa

] [
P Q
R S

] [
βHa αHa

βHa αHa

]]
where Ha =

(
H− aa>

)
[
βHa βHa

αHa αHa

] [
P Q
R S

]
=

[
βHa(P +R) βHa(Q+ S)
αHa(P +R) αHa(Q+ S)

]
,[

βHa(P +R) βHa(Q+ S)
αHa(P +R) αHa(Q+ S)

] [
βHa αHa

βHa αHa

]
=

[
β2Ha(P +Q+R+ S)Ha αβHa(P +Q+R+ S)Ha

αβHa(P +Q+R+ S)Ha α2Ha(P +Q+R+ S)Ha

]
,

=

[
β2 αβ
αβ α2

]
⊗k Ha(P +Q+R+ S)Ha.
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Taking expectation,

M◦
[
P Q
R S

]
=

[
β2 αβ
αβ α2

]
⊗k E [Ha(P +Q+R+ S)Ha] .

This completes the proof.

Lemma 32 Under Assumption 4, for any t ≥ 0,

M◦ E [θt ⊗ θt] 4 κ 〈Υ,E [θt ⊗ θt]〉Ξ.

Proof

M◦ E [θt ⊗ θt] = E
[
JE [θt ⊗ θt]J >

]
,

θt ⊗ θt =

[
vt
wt

]
⊗
[
vt
wt

]
=

[
vtv
>
t vtw

>
t

wtv
>
t wtw

>
t

]
,

E [θt ⊗ θt] =

[
E
[
vtv
>
t

]
E
[
vtw

>
t

]
E
[
wtv

>
t

]
E
[
wtw

>
t

]] .
As J and E [θt ⊗ θt] are independent, invoking Lemma 31 with[

P Q
R S

]
=

[
E
[
vtv
>
t

]
E
[
vtw

>
t

]
E
[
wtv

>
t

]
E
[
wtw

>
t

]] .
Now P +Q+R+ S in our case will be

P +Q+R+ S = E
[
vtv
>
t + vtw

>
t +wtv

>
t +wtw

>
t

]
,

= E
[
(vt +wt) (vt +wt)

>
]

= E
[
utu

>
t

]
, from Eq.(4c) .

Using this we get

M◦ E [θt ⊗ θt] =

[
β2 αβ
αβ α2

]
⊗k E

[(
H− aa>

)
E
[
utu

>
t

] (
H− aa>

)]
.

Using Property 1,

E
[(

H− aa>
)
E
[
utu

>
t

] (
H− aa>

)]
4 E

[
aa>E

[
utu

>
t

]
aa>

]
= E

[〈
a,E

[
utu

>
t

]
a
〉
aa>

]
.

Using Assumption 4 with M = E
[
utu

>
t

]
,

E
[〈
a,E

[
utu

>
t

]
a
〉
aa>

]
4 κTr

(
E
[
Hutu

>
t

])
H.

As kronecker product of two PSD matrices is positive,

M◦ E [θt ⊗ θt] 4
[
β2 αβ
αβ α2

]
⊗k κTr

(
E
[
Hutu

>
t

])
H,

= κTr
(
E
[
Hutu

>
t

]) [β2H αβH
αβH α2H

]
= κTr

(
E
[
Hutu

>
t

])
Ξ.

Noting that 〈Υ,E [θt ⊗ θt]〉 = Tr
(
E
[
Hutu

>
t

])
completes the proof.
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Lemma 33 With (α+ 2β)R2 ≤ 1, α ≤ β
2κ̃ ,

M◦ (1− T̃ )−1 ◦Ξ 4
2

3
Ξ

Proof Note (α+ 2β)R2 ≤ 1 =⇒ (α+ 2β)λmax ≤ 1. Hence we can invoke Lemma 29 here.

M◦ (1− T̃ )−1 ◦Ξ 4M◦ 1

3

[
2α(βH)−1 + (2β − 3α)I αβ−1(2β − α)I

αβ−1(2β − α)I 2α2β−1I

]
.

Invoking the Lemma 31 for a block matrix,[
P Q
R S

]
=

1

3

[
2α(βH)−1 + (2β − 3α)I αβ−1(2β − α)I

αβ−1(2β − α)I 2α2β−1I

]
.

Now P +Q+R+ S in our case is

3 ∗ (P +Q+R+ S) = 2α(βH)−1 + (2β − 3α)I + 2αβ−1(2β − α)I + 2α2β−1I,

= 2α(βH)−1 + (2β − 3α)I + 4αI− 2α2β−1I + +2α2β−1I,

= 2α(βH)−1 + (α+ 2β)I.

M◦ (1− T̃ )−1 ◦Ξ =
1

3

[
β2 αβ
αβ α2

]
⊗k E

[(
H− aa>

) [
2α(βH)−1 + (α+ 2β)I

] (
H− aa>

)]
.

(56)

Using Property 1,

E
[(

H− aa>
) [

2α(βH)−1 + (α+ 2β)I
] (

H− aa>
)]

4 E
[
aa>

[
2α(βH)−1 + (α+ 2β)I

]
aa>

]
,

= 2
α

β
E
[∥∥a∥∥2

H−1 aa
>
]

+ (α+ 2β)E
[∥∥a∥∥2 aa>] .

Using the Assumptions 1, 3 of the feature distribution, we have

E
[(

H− aa>
) [

2α(βH)−1 + (α+ 2β)I
] (

H− aa>
)]

4
2ακ̃

β
H + (α+ 2β)R2H,

Using the above in Eq.(56) and that fact that kronecker product of two PSD matrices is positive we
get,

M◦ (1− T̃ )−1 ◦Ξ 4
1

3

[
β2 αβ
αβ α2

]
⊗k
[

2ακ̃

β
H + (α+ 2β)R2H

]
,

=

[
2ακ̃

3β
+

(α+ 2β)R2

3

]([
β2 αβ
αβ α2

]
⊗k H

)
,

=

[
2ακ̃

3β
+

(α+ 2β)R2

3

]
Ξ.

where the last step is from the definition of Ξ. Using

(α+ 2β)R2 ≤ 1, α ≤ β

2κ̃
,
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M◦ (1− T̃ )−1 ◦Ξ 4

[
1

3
+

1

3

]
Ξ 4

2

3
Ξ.

Lemma 34 With (α+ 2β)R2 ≤ 1, α ≤ β
2κ̃ , and Υ from Eq.(31), we have,

M> ◦
(
I − T̃ >

)−1
◦Υ 4

2

3
Υ. (57)

Proof Compute the inverse by evaluating the summation of the following infinite series,(
I − T̃ >

)−1
◦Υ =

∞∑
t=0

(
T̃ t
)>
◦Ξ =

∞∑
t=0

(At)> ·Υ · At.

From this it follows that,

M> ◦
(
I − T̃ >

)−1
= E

[
J > ·

(
(At)> ·Υ · At

)
· J
]
.

• Both A and Υ are diagonizable wrt to the eigen basis of H. We will now project these block
matrices onto their eigen basis and compute the summation of each component individually.
Note that,

A =
∑
i

Ai ⊗k eie>i , Υ =
∑
i

Υi ⊗k eie>i . (58)

where Ai and Υi are

Ai =

[
1− βλi 1− βλi
−αλi 1− αλi

]
Υi =

[
λi λi
λi λi

]
.

Using these projections,

(At)> ·Υ · (At) =
∑
i

(
(Ati)> ·Υi · Ati

)
⊗k eie>i .

• Now the random matrix

J =

[
β
(
H − aa>

)
β
(
H − aa>

)
α
(
H − aa>

)
α
(
H − aa>

)] =

[
β β
α α

]
⊗k
(
H − aa>

)
.

From the mixed product property of kronecker product i.e for any matrices of appropriate
dimension P,Q,R, S

(P ⊗k Q) (R⊗k S) = PR⊗k QS.

E
[
J > ·

[(
(Ati)> ·Υi · Ati

)
⊗k eie>i

]
· J
]

=

[
β α
β α

](
(Ati)> ·Υi · Ati

)[β β
α α

]
⊗k E

[(
H − aa>

)
eie
>
i

(
H − aa>

)]
.

(59)
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Using the above observations,

∞∑
t=0

(At)> ·Υ · (At) =

∞∑
t=0

∑
i

((
Ati
)> ·Υi ·

(
Ati
))
⊗k eie>i ,

E

[ ∞∑
t=0

J >(At)> ·Υ · (At)J
]

=

∞∑
t=0

∑
i

E
[
J > ·

[(
(Ati)> ·Υi · Ati

)
⊗k eie>i

]
· J
]
,

=
∑
i

∞∑
t=0

[
β α
β α

](
(Ati)> ·Υi · Ati

)[β β
α α

]
⊗k E

[(
H − aa>

)
eie
>
i

(
H − aa>

)]
.

Hence,

M> ◦
(
I − T̃ >

)−1
◦Υ =

∑
i

( ∞∑
t=0

[
β α
β α

](
(Ati)> ·Υi · Ati

)[β β
α α

])
⊗k E

[(
H − aa>

)
eie
>
i

(
H − aa>

)]
.

(60)

From the definition of Υi,

λi

( ∞∑
t=0

[
β α
β α

](
(Ati)> ·Υi · Ati

)[β α
β α

])
=
∞∑
t=0

[
βλi αλi
βλi αλi

](
(Ati)> ·

[
1 1
1 1

]
· Ati

)[
βλi βλi
αλi αλi

]
.

With b = βλi, a = αλi,

Ai =

[
1− b 1− b
−a 1− a

]
.

Hence to compute this series we can invoke Lemma 38 with Γ = Ai,
∞∑
t=0

[
βλi αλi
βλi αλi

](
(Ati)> ·

[
1 1
1 1

]
· Ati

)[
βλi βλi
αλi αλi

]
=

(
2a

b(4− (a+ 2b))
+

a+ 2b

(4− (a+ 2b))

)[
1 1
1 1

]
,

λi

( ∞∑
t=0

[
β α
β α

](
(Ati)> ·Υi · Ati

)[β α
β α

])
=

(
2αλi

βλi(4− (αλi + 2βλi))
+

αλi + 2βλi
(4− (αλi + 2βλi))

)[
1 1
1 1

]
,( ∞∑

t=0

[
β α
β α

](
(Ati)> ·Υi · Ati

)[β α
β α

])
=

(
2α

βλi(4− (αλi + 2βλi))
+

α+ 2β

(4− (αλi + 2βλi))

)[
1 1
1 1

]
.

We have

(α+ 2β)λi ≤ (α+ 2β)λmax ≤ (α+ 2β)R2 ≤ 1,

Hence, 4− ((α+ 2β)λi) ≥ 3,

1

4− ((α+ 2β)λi)
≤ 1

3
,

2α

βλi(4− (αλi + 2βλi))
+

α+ 2β

(4− (αλi + 2βλi))
≤ 1

3

(
2α

βλi
+ (α+ 2β)

)
.
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As the matrix
[
1 1
1 1

]
is PSD,

( ∞∑
t=0

[
β α
β α

](
(Ati)> ·Υi · Ati

)[β α
β α

])
4

1

3

(
2α

βλi
+ (α+ 2β)

)[
1 1
1 1

]
.

Using the Property 1,

E
[(
H − aa>

)
eie
>
i

(
H − aa>

)]
4 E

[
aa> · eie>i · aa>

]
.

Using the above two results and the fact that for any PSD matrices P,Q,R, S, P 4 Q and R 4 S
then P ⊗k R 4 Q⊗k S. Hence from Eq.(60) we can get the bound as follows

M> ◦
(
I − T̃ >

)−1
◦Υ =

∑
i

( ∞∑
t=0

[
β α
β α

](
(Ati)> ·Υi · Ati

)[β β
α α

])
⊗k E

[(
H − aa>

)
eie
>
i

(
H − aa>

)]
,

4
∑
i

1

3

(
2α

βλi
+ (α+ 2β)

)[
1 1
1 1

]
⊗k E

[
aa> · eie>i · aa>

]
,

=

[
1 1
1 1

]
⊗k E

[
aa> ·

∑
i

[(
2α

3βλi
+

(α+ 2β)

3

)
eie
>
i

]
· aa>

]
,

=

[
1 1
1 1

]
⊗k E

[
aa> ·

[
2α

3β
H−1 +

(α+ 2β)

3
I

]
· aa>

]
,

=

[
1 1
1 1

]
⊗k
[

2α

3β
E
[∥∥a∥∥2

H−1aa
>
]

+
(α+ 2β)

3
E
[∥∥a∥∥2aa>]] .

Using the Assumptions 1, 3 of the feature distribution, we have

2α

3β
E
[∥∥a∥∥2

H−1aa
>
]

+
(α+ 2β)

3
E
[∥∥a∥∥2aa>] 4 (2ακ̃

3β
+

(α+ 2β)R2

3

)
H.

Using

(α+ 2β)R2 ≤ 1, α ≤ β

2κ̃
,

2α

3β
E
[∥∥a∥∥2

H−1aa
>
]

+
(α+ 2β)

3
E
[∥∥a∥∥2aa>] 4 (1

3
+

1

3

)
H =

2

3
H.

Using this bound, kronecker product of two PSD matrices is positive completes the proof.

M> ◦
(
I − T̃ >

)−1
◦Υ 4

[
1 1
1 1

]
⊗k

2

3
H =

2

3

[
H H
H H

]
.
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Appendix E. Technical Lemmas

Property 2 (Eigen Decomposition of Γ) For the matrix

Γ =

[
1− b 1− b
−a 1− a

]
(61)

The eigen values of Γ are given by

r+ = 1− (a+ b)

2
+

√(
a+ b

2

)2

− a r− = 1− (a+ b)

2
−
√(

a+ b

2

)2

− a (62)

The eigen decomposition Γ = UΛU−1 where

U =
1

∆

[
r−

(1−r−) 1

1 1−r+
r+

]
U−1 =

[
−a (1− r−)r+

(1− r−)r+ −r+r−

]
(63)

Λ =

[
r+ 0
0 r−

]
(64)

∆ = r+ − r− (65)

The following observations hold

• U and U−1 are symmetric and r+, r− can be complex as Γ is not symmetric.

• For 0 < a, b < 1 , |r+|, |r−| < 1

Lemma 35 For r+, r− given in the Property 2, the following bound holds[
(1− r+) rt+ − (1− r−) rt−

∆

]2
≤ 1 +

a

(1− b)2
. (66)

Proof To prove this conside the one-dimensional nesterov sequences starting form x0 = 1, z0 = 0

yt+1 = xt − bxt, (67a)

zt+1 = zt − a(t+ 1)xt, (67b)

(t+ 2)xt+1 = (t+ 1)yt+1 + zt+1 (67c)

We can easily check that, for t ≥ 0,[
(t+ 1)yt+1

zt+1

]
= Γt+1

[
1
0

]
. (68)

Using the eigen decomposition of Γ = UΛU−1 we can check that

U−1
[
1
0

]
=

[
−a (1− r−)r+

(1− r−)r+ −r+r−

] [
1
0

]
=

[
−a

(1− r−)r+

]
,

UΛt+1U−1
[
1
0

]
=

1

∆

[
r−

(1−r−) 1

1 1−r+
r+

] [
−art+1

+

(1− r−)r+r
t+1
−

]
=

1

∆

[
−r+r−

[
(1− r+)rt+ − (1− r−)rt−

]
−a
[
rt+1
+ − rt+1

−

] ]
,

Γt+1

[
1
0

]
=

1

∆

[
−r+r−

[
(1− r+)rt+ − (1− r−)rt−

]
−a
[
rt+1
+ − rt+1

−

]
.

]
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Hence, [
(t+ 1)yt+1

zt+1

]
=

1

∆

[
−r+r−

[
(1− r+)rt+ − (1− r−)rt−

]
−a
[
rt+1
+ − rt+1

−

]
.

]
(69)

Now use the potential function defined by Vt = t2y2t + 1
az

2
t , for t ≥ 1. If 0 < a ≤ b < 1 then

for t ≥ 1 we can show that Vt+1 ≤ Vt. Hence, for any t ≥ 1, Vt ≤ V1. Note that V1 < V0 does not
hold due to different initialization. From this,

(t+ 1)2y2t+1 ≤ (t+ 1)2y2t+1 +
1

a
z2t+1 ≤ V1, (70)

V1 = (1− b)2 +
1

a
a2 = (1− b)2 + a. (71)

Using the expression of (t+ 1)2y2t+1, we get

[
(1− r+) rt+ − (1− r−) rt−

∆

]2
≤ 1

(r+r−)2
[
(1− b)2 + a

]
,

= 1 +
a

(1− b)2
.

This proves the lemma.

Lemma 36 For 0 < a ≤ b < 1, for Γ,ℵ in Lemma 37,〈[
0 0

0
1

a2

]
,ΓTℵ

(
ΓT
)>〉 ≤ 1 +

a

(1− b)2
. (72)

Proof In the following Lemma 37, we compute the closed form for ΓTℵ
(
ΓT
)> =

[
ν11(t) ν12(t)
ν21(t) ν22(t)

]
.

Using this 〈[
0 0

0
1

a2

]
,ΓTℵ

(
ΓT
)>〉

=
ν22(t)

a2
.

From Eq.(76), 〈[
0 0

0
1

a2

]
,ΓTℵ

(
ΓT
)>〉

=

[
(1− r+) rt+ − (1− r−) rt−

∆

]2
. (73)

From Lemma 35, the lemma holds.

Lemma 37 For 0 < a, b < 1, with Γ and ℵ of form

Γ =

[
1− b 1− b
−a 1− a

]
, ℵ =

[
b2 ba
ba a2

]
.

The series
∞∑
t=0

Γtℵ
(
Γt
)>

=
1

b(4− (a+ 2b))

[
2a+ b(2b− 3a) a(2b− a)

a(2b− a) 2a2

]
. (74)
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Proof To calculate the exponents of Γ we use the eigen decomposition in Property 2,

Γ = UΛU−1,

Γt = UΛtU−1,

Γt · ℵ ·
(
Γt
)>

= UΛtU−1 · ℵ ·
(
UΛtU−1

)>
,

From Property 2 that U,U−1 are symmetric.

Γt · ℵ ·
(
Γt
)>

= UΛt
[
U−1ℵU−1

]
ΛtU.

Computing U−1ℵU−1: From Property 2,

U =
1

∆

[
r−

(1−r−) 1

1 1−r+
r+

]
, U−1 =

[
−a (1− r−)r+

(1− r−)r+ −r+r−

]
,

U−1ℵU−1 = U−1
[
b2 ab
ab a2

]
U−1 = U−1

([
b
a

])
⊗
([

b
a

])
U−1,

=

(
U−1

[
b
a

])
⊗
(

U−1
[
b
a

])
,

UΛt
[
U−1ℵU−1

]
ΛtU =

(
UΛtU−1

[
b
a

])
⊗
(

UΛtU−1
[
b
a

])
,

U−1
[
b
a

]
=

[
−a (1− r−)r+

(1− r−)r+ −r+r−

] [
b
a

]
=

[
−ab+ (1− r−)r+a

(1− r−)r+b− r+r−a

]
,

using a = (1− r+) (1− r−) , b = (1− r+r−) ,

=

[
−a(1− r+r−) + (1− r−)r+a

(1− r−)r+(1− r+r−)− r+r− (1− r+) (1− r−)

]
,

=

[
a (− (1− r+r−) + (1− r−) r+)

r+(1− r−) (1− r−r+ − r− (1− r+))

]
=

[
a (r+ − 1)
r+(1− r−)2

]
.

ΛtU−1
[
b
a

]
=

[
rt+ 0
0 rt−

] [
a (r+ − 1)
r+(1− r−)2

]
=

[
art+ (r+ − 1)
r+r

t
−(1− r−)2

]
.

UΛtU−1
[
b
a

]
=

1

∆

[
r−

(1−r−) 1

1 1−r+
r+

] [
art+ (r+ − 1)
r+r

t
−(1− r−)2

]
,

=
1

∆

[ r−
(1−r−)ar

t
+ (r+ − 1) + r+r

t
−(1− r−)2

art+ (r+ − 1) + (1− r+) rt−(1− r−)2

]
.

Using a = (1− r+) (1− r−) , b = (1− r+r−) ,

=
1

∆

[
−r−rt+ (r+ − 1)2 + r+r

t
−(1− r−)2

art+ (r+ − 1) + art−(1− r−)

]
,

=
1

∆

[
−
[
r− (r+ − 1)2 rt+ − r+ (1− r−)2 rt−

]
−a
[
(1− r+) rt+ − (1− r−) rt−

] ]
.
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Γt · ℵ ·
(
Γt
)>

=

(
UΛtU−1

[
b
a

])
⊗
(
UΛtU−1

[
b
a

])
,

=
1

∆

[
−
[
r− (1− r+)2 rt+ − r+ (1− r−)2 rt−

]
−a
[
(1− r+) rt+ − (1− r−) rt−

] ]
⊗ 1

∆

[
−
[
r− (r+ − 1)2 rt+ − r+ (1− r−)2 rt−

]
−a
[
(1− r+) rt+ − (1− r−) rt−

] ]
,

=

[
ν11(t) ν12(t)
ν12(t) ν22(t)

]
.

where

∆
2 ν11(t)

def
=
[
r− (1− r+)2 rt+ − r+ (1− r−)2 rt−

]2
, (75)

∆
2 ν22(t)

def
= a2

[
(1− r+) rt+ − (1− r−) rt−

]2
, (76)

∆
2 ν12(t)

def
= a

(
r− (1− r+)2 rt+ − r+ (1− r−)2 rt−

) (
(1− r+) rt+ − (1− r−) rt−

)
. (77)

Using these,

∞∑
t=0

Γt · ℵ ·
(
Γt
)>

=


∞∑
t=0

ν11(t)
∞∑
t=0

ν12(t)

∞∑
t=0

ν12(t)
∞∑
t=0

ν22(t)

 .
Evaluating

∞∑
t=0

ν11(t) :

∆
2
∞∑
t=0

ν11(t) =
∞∑
t=0

[
r− (1− r+)2 rt+ − r+ (1− r−)2 rt−

]2
,

=
[
r− (1− r+)2 − r+ (1− r−)2

]2
+

∞∑
t=1

[
r2− (1− r+)4 r2t+ + r2+ (1− r−)4 r2t− − 2r− (1− r+)2 r+ (1− r−)2 rt+r

t
−

]
.

From Property 2, when 0 < a, b < 1 then |r+|, |r−| < 1. Hence, the following holds,

∞∑
t=1

r2t+ =
r2+

1− r2+
,

∞∑
t=1

r2t− =
r2−

1− r2−
,

∞∑
t=1

rt+r
t
− =

r+r−
1− r+r−

,

r− (1− r+)2 − r+ (1− r−)2 = (1− (1− r−)) (1− r+)2 − (1− (1− r+)) (1− r−)2

= (1− r+)2 − (1− r−)2 − (1− r−) (1− r+)2 + (1− r+) (1− r−)2 ,

= (r− − r+) (2− r− − r+)− (1− r−) (1− r+) (r− − r+) ,

= (r− − r+) [(2− r− − r+)− (1− r−) (1− r+)] ,

= (r− − r+) [1− r+r−] = −∆b.

From here, the first term of the sumation is as follows,

r− (1− r+)2 − r+ (1− r−)2 = −∆b. (78)

57



VARRE FLAMMARION

To calculate the sum of the remaining terms,

∆
2

( ∞∑
t=0

ν11(t)− b2
)

=

∞∑
t=1

[
r2− (1− r+)4 r2t+ + r2+ (1− r−)4 r2t− − 2r− (1− r+)2 r+ (1− r−)2 rt+r

t
−

]
,

= r2+r
2
−

∞∑
t=0

[
(1− r+)4 r2t+ + (1− r−)4 r2t− − 2r− (1− r+)2 r+ (1− r−)2 rt+r

t
−

]
,

= r2+r
2
−

∞∑
t=0

[
r2− (1− r+)2 rt+ − (1− r−)2 rt−

]2
.

Invoking Lemma 39,

∆
2

( ∞∑
t=0

ν11(t)− b2
)

= ∆
2r2+r

2
−

[
a(4− (a+ 2b)) + (a+ 2b)2

2b(4− (a+ 2b))

]
,( ∞∑

t=0

ν11(t)− b2
)

= (1− b)2
[
a(4− (a+ 2b)) + (a+ 2b)2

2b(4− (a+ 2b))

]
.

Using simple algebraic manipulations summation of ν11(t)’s can be compactly written as follows,
∞∑
t=0

ν11(t) = b2 + (1− b)2
[
a(4− (a+ 2b)) + (a+ 2b)2

2b(4− (a+ 2b))

]
,

= b2 + (1− b)2
[

4a+ (a+ 2b) ((a+ 2b)− a)

2b(4− (a+ 2b))

]
,

= b2 + (1− b)2
[

4a+ 2b(a+ 2b)

2b(4− (a+ 2b))

]
,

= b2 +
(a+ 2b)(1− b)2
(4− (a+ 2b))

+

[
4a(1− b)2

2b(4− (a+ 2b))

]
,

=
b2(4− (a+ 2b)) + (a+ 2b)(1− b)2

(4− (a+ 2b))
+

[
4a(1− b)2

2b(4− (a+ 2b))

]
.

b2(4− (a+ 2b)) + (a+ 2b)(1− b)2 = b2(4− (a+ 2b)) + (a+ 2b)
(
1− 2b+ b2

)
= 4b2 + (a+ 2b) (1− 2b) = a+ 2b− 2ab,

∞∑
t=0

ν11(t) =
a+ 2b− 2ab

(4− (a+ 2b))
+

[
2a(1− b)2

b(4− (a+ 2b))

]
,

=
b(a+ 2b− 2ab) + 2a(1− b)2

b(4− (a+ 2b))

=
ab+ 2b2 − 2ab2 + 2a− 4ab+ 2ab2

b(4− (a+ 2b))
=

2a+ b(2b− 3a)

b(4− (a+ 2b))
.

Hence,
∞∑
t=0

ν11(t) =
2a

b(4− (a+ 2b))
+

2b− 3a

4− (a+ 2b)
. (79)
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Evaluating
∞∑
t=0

ν22(t) : From Eq.(77),

∆
2 ν22(t) = a2

[
(1− r+) rt+ − (1− r−) rt−

]2
,

∆
2
∞∑
t=0

ν22(t) = a2
∞∑
t=0

(1− r+)2 r2t+ + (1− r−)2 r2t− − 2 (1− r+) (1− r−) rt+r
t
−.

From Property 2, when 0 < a, b < 1 then |r+|, |r−| < 1. Hence, the following holds,
∞∑
t=0

r2t+ =
1

1− r2+
,

∞∑
t=0

r2t− =
1

1− r2−
,

∞∑
t=0

rt+r
t
− =

1

1− r+r−
,

∆
2
∞∑
t=0

ν22(t) = a2
[
(1− r+)2

1

1− r2+
+ (1− r−)2

1

1− r2−
− 2

(1− r+) (1− r−)

1− r+r−

]
.

= a2
[

1− r+
1 + r+

+
1− r−
1 + r−

− 2
(1− r+) (1− r−)

1− r+r−

]
.

∆
2
∞∑
t=0

ν22(t) = a2
[

1− r+
1 + r+

+
1− r−
1 + r−

− 2
(1− r+) (1− r−)

1− r+r−

]
. (80)

Considering the computation in the right part,

1− r+
1 + r+

+
1− r−
1 + r−

=
(1− r+) (1 + r−) + (1− r−) (1 + r+)

(1 + r+) (1 + r−)
=

2 (1− r+r−)

(1 + r+) (1 + r−)
,

1− r+
1 + r+

+
1− r−
1 + r−

− 2
(1− r+) (1− r−)

1− r+r−
=

2 (1− r+r−)

(1 + r+) (1 + r−)
− 2

(1− r+) (1− r−)

1− r+r−

= 2
(1− r+r−)2 −

(
1− r2+

) (
1− r2−

)
(1 + r+) (1 + r−) (1− r+r−)

.

Computing the numerator, we get the following,

(1− r+r−)2 −
(
1− r2+

) (
1− r2−

)
= 1− 2r+r− + r2+r

2
− −

(
1− r2+ − r2− + r2+r

2
−

)
,

= r2+ + r2− − 2r+r− = ∆
2.

The denominator from Eq.(94),

(1 + r−) (1 + r+) (1− r+r−) = b(4− (a+ 2b)).

Substituting these back in Eq.(80), we get

∆
2
∞∑
t=0

ν22(t) =
2a2∆2

b(4− (a+ 2b))
.

Hence,
∞∑
t=0

ν22(t) =
2a2

b(4− (a+ 2b))
. (81)
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Evaluating
∞∑
t=0

ν12(t) : From Eq.(77),

∆
2 ν12(t) = a

(
r− (1− r+)2 rt+ − r+ (1− r−)2 rt−

) (
(1− r+) rt+ − (1− r−) rt−

)
,

= a
[
r− (1− r+)3 r2t+ + r+ (1− r−)3 r2t− − {r− (1− r+) + r+ (1− r−)} (1− r+) (1− r−) rt+r

t
−

]
,

∆
2
∞∑
t=0

ν12(t) = a
∞∑
t=0

[
r− (1− r+)3 r2t+ + r+ (1− r−)3 r2t− − {r− (1− r+) + r+ (1− r−)} (1− r+) (1− r−) rt+r

t
−

]
.

For 0 < a, b < 1 , we have |r+|, |r−| < 1 from Property 2. Hence, the following holds,
∞∑
t=0

r2t+ =
1

1− r2+
,

∞∑
t=0

r2t− =
1

1− r2−
,

∞∑
t=0

rt+r
t
− =

1

1− r+r−
.

= a

[
r− (1− r+)3

1− r2+
+
r+ (1− r−)3

1− r2−
− {r− (1− r+) + r+ (1− r−)} (1− r+) (1− r−)

1− r+r−

]
.

= a

[
r− (1− r+)2

1 + r+
+
r+ (1− r−)2

1 + r−
− {r− (1− r+) + r+ (1− r−)} (1− r+) (1− r−)

1− r+r−

]
.

Using

2 (1− r+r−) = (1− r−) (1 + r+) + (1− r+) (1 + r−) ,

2r− (1 + r−) (1− r+)2 (1− r+r−) = r− (1− r+)
(
1− r2−

) (
1− r2+

)
+ r− (1 + r−)2 (1− r+)3 .

(82)

Similarly by symmetry

2r+ (1 + r+) (1− r−)2 (1− r+r−) = r+ (1− r−)
(
1− r2−

) (
1− r2+

)
+ r+ (1 + r+)2 (1− r−)3 .

(83)

[r− (1− r+) + r+ (1− r−)]
(
1− r2+

) (
1− r2−

)
,

= r− (1− r+)
(
1− r2+

) (
1− r2−

)
+ r+ (1− r−)

(
1− r2+

) (
1− r2−

)
.

(84)

Combining them,

Eq.(82) + Eq.(83)− 2 ∗ Eq.(84) = r− (1 + r−)2 (1− r+)3 + r+ (1 + r+)2 (1− r−)3

− r− (1− r+)
(
1− r2+

) (
1− r2−

)
− r+ (1− r−)

(
1− r2+

) (
1− r2−

)
,

= r− (1 + r−)2 (1− r+)3 − r− (1− r+)
(
1− r2+

) (
1− r2−

)
,

+ r+ (1 + r+)2 (1− r−)3 − r+ (1− r−)
(
1− r2+

) (
1− r2−

)
,

= r− (1 + r−) (1− r+)2 [(1 + r−) (1− r+)− (1 + r+) (1− r−)] ,

+ r+ (1 + r+) (1− r−)2 [(1 + r+) (1− r−)− (1− r+) (1 + r−)] ,

= 2r− (1 + r−) (1− r+)2 [r− − r+] + 2r+ (1 + r+) (1− r−)2 [r+ − r−] ,

= −2∆

[
r− (1 + r−) (1− r+)2 − r+ (1 + r+) (1− r−)2

]
.
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Evaluating

r− (1 + r−) (1− r+)2 − r+ (1 + r+) (1− r−)2 = r− (1− r+)2 − r+ (1− r−)2 + r2− (1− r+)2 − r2+ (1− r−)2 .

From Eq.(78), we have the following,

r− (1− r+)2 − r+ (1− r−)2 = −∆b,

r2− (1− r+)2 − r2+ (1− r−)2 = [r− (1− r+)− r+ (1− r−)] [r− (1− r+) + r+ (1− r−)] ,

= −∆ [r+ + r− − 2r+r−] = −∆ [2− (a+ b)− 2(1− b)] ,
= −∆ [b− a] .

r− (1 + r−) (1− r+)2 − r+ (1 + r+) (1− r−)2 = −∆b−∆ [b− a] = −∆ (2b− a) .

So the numerator of ∆2
∞∑
t=0

ν12(t)

a

2
(Eq.(82) + Eq.(83)− 2 ∗ Eq.(84)) =

a

2
(−2∆(−∆ (2b− a))) ,

= ∆
2a (2b− a) .

the denominator is

(1 + r−) (1 + r+) (1− r+r−) = b(4− (a+ 2b)).

Finally, we have

∞∑
t=0

ν12(t) =
a(2b− a)

b(4− (a+ 2b))
. (85)

From Eq.(85), Eq.(81), Eq.(79)

∞∑
t=0

Γtℵ
(
Γt
)>

=


2a

b(4− (a+ 2b))
+

2b− 3a

4− (a+ 2b)

a(2b− a)

b(4− (a+ 2b))
a(2b− a)

b(4− (a+ 2b))

2a2

b(4− (a+ 2b))


=

1

b(4− (a+ 2b))

[
2a+ b(2b− 3a) a(2b− a)

a(2b− a) 2a2

]
.

This proves the lemma.

Lemma 38 For 0 < a, b < 1, with Γ and ℵ of form

Γ =

[
1− b 1− b
−a 1− a

]
, ℵ =

[
1 1
1 1

]
.

The series[
b a
b a

] ∞∑
t=0

(
Γt
)> ℵΓt

[
b b
a a

]
=

(
2a

b(4− (a+ 2b))
+

a+ 2b

(4− (a+ 2b))

)[
1 1
1 1

]
. (86)
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Proof To calculate the exponents of Γ we use the eigendecomposition from Property 2,

Γ = UΛU−1,

Γt = UΛtU−1,(
Γt
)> · ℵ · Γt = U−1ΛtU · ℵ ·

(
U−1ΛtU

)>
.

Using the fact in Property 2, that U,U−1 are symmetric.[
b a
b a

] (
Γt
)> · ℵ · Γt [b a

b a

]>
=

[
b a
b a

]
U−1Λt [UℵU] ΛtU−1

[
b a
b a

]>
.

UℵU = U

[
1 1
1 1

]
U = U

([
1
1

])
⊗
([

1
1

])
U,

=

(
U

[
1
1

])
⊗
(

U

[
1
1

])
,

U−1Λt [UℵU] ΛtU−1 =

(
U−1ΛtU

[
1
1

])
⊗
(

U−1ΛtU

[
1
1

])
,[

b a
b a

] (
Γt
)> · ℵ · Γt [b a

b a

]>
=

([
b a
b a

]
U−1ΛtU

[
1
1

])
⊗
([
b a
b a

]
U−1ΛtU

[
1
1

])
.

From eigendecomposition given in Property 2,

∆U =

[
r−

(1−r−) 1

1 1−r+
r+

]
,

∆U

[
1
1

]
=

[
r−

(1−r−) 1

1 1−r+
r+

] [
b
a

]
=


1

(1− r−)
1

r+

 ,

∆ΛtU

[
1
1

]
=

[
rt+ 0
0 rt−

]
1

(1− r−)
1

r+

 =


rt+

(1− r−)
rt−
r+

 .
Again from Property 2 using U−1

U−1 =

[
−a (1− r−)r+

(1− r−)r+ −r+r−

]
,

∆U−1ΛtU

[
1
1

]
=

[
−a (1− r−)r+

(1− r−)r+ −r+r−

] rt+
(1−r−)
rt−
r+

 ,
=

[ −art+
(1−r−) + (1− r−)rt−

rt+1
+ − rt+1

−

]
.
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Using a = (1− r+) (1− r−) ,

∆U−1ΛtU

[
1
1

]
=

[
−(1− r+)rt+ + (1− r−)rt−

rt+1
+ − rt+1

−

]
=

[
−
[
(1− r+)rt+ − (1− r−)rt−

]
rt+1
+ − rt+1

−

]
.

∆

[
b a
b a

]
U−1ΛtU

[
1
1

]
=

[
b a
b a

] [
−
[
(1− r+)rt+ − (1− r−)rt−

]
rt+1
+ − rt+1

−

]
,

=

[
−b
(
(1− r+)rt+ − (1− r−)rt−

)
+ a

(
rt+1
+ − rt+1

−

)
−b
(
(1− r+)rt+ − (1− r−)rt−

)
+ a

(
rt+1
+ − rt+1

−

)] ,
=

[
−
[
(b(1− r+)− a(r+)) rt+ − (b(1− r−)− a(r−)) rt−

]
−
[
(b(1− r+)− a(r+)) rt+ − (b(1− r−)− a(r−)) rt−

]
.

]
Using a = (1− r+) (1− r−) , b = 1− r−r+,

b(1− r+)− a(r+) = (1− r+r−)(1− r+)− (1− r+) (1− r−) r+,

= (1− r+) ((1− r+r−)− r+ (1− r−)) ,

= (1− r+) (1− r+r− − r+ + r+r−) = (1− r+)2 .

By symmetry,

b(1− r−)− a(r−) = (1− r−)2 .

Substituting this back we get

∆

[
b a
b a

]
U−1ΛtU

[
1
1

]
=

−((1− r+)2 rt+ − (1− r−)2 rt−

)
−
(

(1− r+)2 rt+ − (1− r−)2 rt−

) = −
(

(1− r+)2 rt+ − (1− r−)2 rt−

)[1
1

]
.

∆

[
b a
b a

]
U−1ΛtU

[
1
1

]
⊗∆

[
b a
b a

]
U−1ΛtU

[
1
1

]
=
(

(1− r+)2 rt+ − (1− r−)2 rt−

)2 [1 1
1 1

]
,

∆
2

[
b a
b a

] (
Γt
)> · ℵ · Γt [b a

b a

]>
=
(

(1− r+)2 rt+ − (1− r−)2 rt−

)2 [1 1
1 1

]
.

[
b a
b a

] ∞∑
t=0

(
Γt
)> · ℵ · Γt [b a

b a

]>
=

 ∞∑
t=0

(
(1− r+)2 rt+ − (1− r−)2 rt−

∆

)2
[1 1

1 1

]
.

Using Lemma 39,[
b a
b a

] ∞∑
t=0

(
Γt
)> · ℵ · Γt [b a

b a

]>
=

(
2a

b(4− (a+ 2b))
+

a+ 2b

(4− (a+ 2b))

)[
1 1
1 1

]
.
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Lemma 39 With r+, r− defined by Property 2, and ν(t) defined by

ν(t)
def
=

[
(1− r+)2 rt+ − (1− r−)2 rt−

∆

]2
.

the series
∞∑
t=0

ν(t) =
2a

b(4− (a+ 2b))
+

a+ 2b

(4− (a+ 2b))
.

Proof

∆
2

( ∞∑
t=0

ν(t)

)
=
∞∑
t=0

[
(1− r+)4 r2t+ + (1− r−)4 r2t− − 2 (1− r+)2 (1− r−)2 rt+r

t
−

]
.

From Property 2 when 0 < a, b < 1 then |r+|, |r−| < 1 . Hence, the following holds,

∞∑
t=0

r2t+ =
1

1− r2+
,

∞∑
t=0

r2t− =
1

1− r2−
,

∞∑
t=0

rt+r
t
− =

1

1− r+r−
.

∆
2

( ∞∑
t=0

ν(t)

)
= (1− r+)4

1

1− r2+
+ (1− r−)4

1

1− r2−
− 2 (1− r+)2 (1− r−)2

1

1− r+r−
,

=

[
(1− r+)3

1 + r+
+

(1− r−)3

1 + r−
− 2

(1− r+)2 (1− r−)2

1− r+r−

]
.

∆
2

( ∞∑
t=0

ν(t)

)
=

[
(1− r+)3

1 + r+
+

(1− r−)3

1 + r−
− 2

(1− r+)2 (1− r−)2

1− r+r−

]
. (87)

∆
2

( ∞∑
t=0

ν(t)

)
=

[
(1− r+)3 (1 + r−) + (1− r−)3 (1 + r+)

]
[1− r+r−]

(1 + r+) (1 + r−) [1− r+r−]

− 2 (1− r+)2 (1− r−)2 (1 + r−) (1 + r+)

(1 + r+) (1 + r−) [1− r+r−]
.

(88)

Note,
(1 + r−) (1 + r+) = 1 + r− + r+ + r−r+.

Using r− + r+ = 2− (a+ b), r−r+ = 1− b,

(1 + r−) (1 + r+) = 4− (a+ 2b). (89)

Using

2 [1− r+r−] = (1− r+) (1 + r−) + (1 + r+) (1− r−) ,

2 [1− r+r−] (1− r+)3 (1 + r−) = [(1− r+) (1 + r−) + (1 + r+) (1− r−)] (1− r+)3 (1 + r−) .
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2 [1− r+r−] (1− r+)3 (1 + r−) = (1− r+)4 (1 + r−)2 +
(
1− r2−

) (
1− r2+

)
(1− r+)2 , (90)

Symetrically,

2 [1− r+r−] (1− r−)3 (1 + r+) = (1− r−)4 (1 + r+)2 +
(
1− r2+

) (
1− r2−

)
(1− r−)2 . (91)

4 (1− r+)2 (1− r−)2 (1 + r−) (1 + r+) = 2 (1 + r−) (1− r+)2 (1 + r+) (1− r−)2

+ 2
(
1− r2−

) (
1− r2+

)
(1− r−) (1− r+) .

(92)

Combining the above calculations,

Eq.(90) + Eq.(91)− Eq.(92) =
[
(1− r+)2 (1 + r−)− (1− r−)2 (1 + r+)

]2
+
(
1− r2−

) (
1− r2+

)
[(1− r+)− (1− r−)]2 ,

(93)

Computing the two terms,

(1− r+)2 (1 + r−)− (1− r−)2 (1 + r+) = (1− r+)2 (2− (1− r−))− (1− r−)2 (2− (1− r+)) ,

= 2
[
(1− r+)2 − (1− r−)2

]
−
[
(1− r+)2 (1− r−)− (1− r−)2 (1− r+)

]
,

= 2 (r− − r+) (2− r− − r+)− (1− r−) (1− r+) (r− − r+) ,

= (r− − r+) (4− 2r− − 2r+ − 1 + r− + r+ − r−r+)

= −∆ (4− (1 + r−) (1 + r+)) = −∆(a+ 2b), from Eq.(89) ,(
1− r2−

) (
1− r2+

)
[(1− r+)− (1− r−)]2 = ∆

2 (1− r−) (1− r+) (1 + r−) (1 + r+) ,

= ∆
2a(4− (a+ 2b)).

The numerator of Eq.(88) as per Eq.(93) is 1
2

(
∆2a(4− (a+ 2b)) + ∆2(a+ 2b)2

)
. From Eq.(89) ,

the denominator is

(1 + r−) (1 + r+) (1− r+r−) = b(4− (a+ 2b)). (94)

Now from Eq.(88), we have

∆
2

( ∞∑
t=0

ν(t)

)
= ∆

2

[
a(4− (a+ 2b)) + (a+ 2b)2

2b(4− (a+ 2b))

]
.

Hence,( ∞∑
t=0

ν(t)

)
=

[
a(4− (a+ 2b)) + (a+ 2b)2

2b(4− (a+ 2b))

]
,

=
4a+ (a+ 2b)(a+ 2b− a)

2b(4− (a+ 2b))
=

4a

2b(4− (a+ 2b))
+

2b(a+ 2b)

2b(4− (a+ 2b))
,

=
2a

b(4− (a+ 2b))
+

a+ 2b

(4− (a+ 2b))
.

This completes the proof.
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