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Abstract
Understanding the implicit bias of training algorithms is of crucial importance in order to explain
the success of overparametrised neural networks. In this paper, we study the role of the label noise
in the training dynamics of a quadratically parametrised model through its continuous time version.
We explicitly characterise the solution chosen by the stochastic flow and prove that it implicitly
solves a Lasso program. To fully complete our analysis, we provide nonasymptotic convergence
guarantees for the dynamics as well as conditions for support recovery. We also give experimental
results which support our theoretical claims. Our findings highlight the fact that structured noise can
induce better generalisation and help explain the greater performances of stochastic dynamics as
observed in practice.
Keywords: Label noise, Stochastic dynamics, Lasso, Sparse Regression.

1. Introduction

The many successes of deep learning are undoubtedly equal to the theoretical mysteries that surround
it. However, while theoretical explanations were quite weak a decade ago, some recent progresses
have refined our understanding of neural networks: by proving convergence in some cases (Mei et al.,
2018; Chizat and Bach, 2018), or clarifying the role of initialisation (Jacot et al., 2018; Chizat et al.,
2019). Still, one of their most surprising and unexplained aspect is their ability to generalise without
explicit regularisation despite large overparametrisation (Zhang et al., 2017).

In fact, due to the high expressivity of overparametrised neural networks, they carry a large
freedom while fitting a data set, yet without any hurt in the generalisation performance. That is to
say that the way they are trained (initialisation, algorithm, specific architecture) specifies a large
part of their generalisation abilities. This crucial aspect, often referred to as the implicit bias or
algorithmic regularisation, has been a major line of research lately. For example, in the simple and
prototypical least-square framework, it has been shown that both gradient descent and stochastic
gradient descent converge towards the global solution which has the lowest squared distance from
the initialisation (Zhang et al., 2017). For a linear parametrisation, Soudry et al. (2018) show in
a seminal paper that gradient descent selects the max-margin classifier for logistic regression on
separable data. Since then, many works have tried to characterise the implicit bias of specified
settings: for classification with neural networks (Lyu and Li, 2020; Chizat and Bach, 2020), and
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regression for a large variety of nonconvex models (Woodworth et al., 2020; Arora et al., 2019) for
which initialisation always plays a central role (Maennel et al., 2018).

A common feature of these analyses is that they study (deterministic) gradient descents (GD),
while it has been shown empirically that stochasticity may be of primary importance to match best
generalisation guarantees (Keskar et al., 2017). Hence, it is natural to try to understand the role of
stochasticity induced by the mini-batch training procedure of stochastic gradient decent (SGD). It
is often shown that SGD tends to move towards flat regions of the training loss (Zhu et al., 2019;
Chaudhari and Soatto, 2018). However, the flat minima selection phenomenon does not appear very
clearly and noise models taken to rigorously prove these are disputable. In this perspective, specific
noise models to understand the role of stochasticity are primordial: an example of that is the fact that
minibatch stochasticity of SGD is state dependent and cancels itself at global optima (Wojtowytsch,
2021; Pesme et al., 2021; Ali et al., 2020). Another important feature is that the noise has a specific
geometry, e.g. in the least-square model it belongs to the span of the data inputs (Zhang et al., 2017).

To understand this without suffering from the degeneracy at global optima one may resort to
label noise SGD, where some noise is systematically added to the output at each step of the descent.
This injected noise has been shown to be a good surrogate model that exemplifies the geometry and
the state dependence of the noise carried by SGD before reaching zero training loss (HaoChen et al.,
2021). In this perspective, local implicit bias criteria have been sketched (Damian et al., 2021; Blanc
et al., 2020) and notably, a limiting process has been introduced lately to formally explain how the
label noise drives the dynamics (Li et al., 2022). However, all these correspond to local, nonexplicit
and asymptotic results that might not be as satisfying as those proven in the deterministic case. We
study such a label noise procedure in a nonconvex model, and provide an explicit, nonasymptotic
description of the dynamics.

The quadratic parametrisations which we consider have become popular lately (Vaškevičius
et al., 2019) since, despite their simplicity, they already enable to grasp the complexity of more
general networks. Indeed, they highlight important aspects of the theoretical concerns of modern
machine learning: the neural tangent kernel regime, the roles of overparametrisation and of the
initialisation (Woodworth et al., 2020). In this literature, it has been shown that a `1-sparcifying
regularisation rules the implicit biasing, together with initialisation: indeed, when the initialisation
goes infinitely small, GD (Woodworth et al., 2020) and SGD (Pesme et al., 2021) select a sparse
interpolator of the data. However, an important drawback is that as initialisation gets very small,
optimisation time gets very large. Hence the following question

Does label noise help in recovering a sparse interpolator without infinitely small initialisation?

To tackle this question, we study the label noise (stochastic) gradient descent through its continuous
version, namely the stochastic gradient flow (SGF). We stress that in our work, we attach peculiar
attention to the adequate modelling of the noise. Tools from Itô calculus are then leveraged in order
to derive exact formulas, quantitative bounds and interesting interpretations for our problem.

1.1. Main contribution and paper organisation

In Section 2, we start by introducing the setup of our problem as well as the continuous stochastic
model. Then, in Section 3, we state the main results on the dynamics convergence, deriving precise
nonasymptotic statements, both in terms of time and noise. We informally formulate it here:

2



LABEL NOISE (STOCHASTIC) GRADIENT DESCENT IMPLICITLY SOLVES THE LASSO

Theorem [Informal] For any initialisation, the label noise stochastic gradient flow for quadratic
parametrisation implicitly solves a weighted Lasso program. In consequence, under conditions on
the design matrix, it recovers exactly the support of the ground-truth sparse estimator of the model.

To reach this goal, we analyse thoroughly the dynamics, handling precisely its stochastic fluctuations.
The proof sketch is depicted in Section 4. We support our results experimentally and validate our
model in Section 5.

1.2. Additional related work

A large part of the related work has already been covered in the introduction. Let us complete it
here. Our study leverages continuous time stochastic differential equation modelling of discrete time
dynamics. We refer to Li et al. (2019) for a technical introduction to these techniques when related
to machine learning problems.

Let us also compare the present work with the recent literature on label noise driven GD. Two
different points of view are taken in the literature. The aim of the first one pioneered by Blanc et al.
(2020) is to show that such stochastic dynamics are biased towards optimising a hidden objective
related to the curvature of the loss. However, it seems hard to conclude as their calculations are
essentially both local and asymptotic. In the same spirit, one of the most conclusive works related to
this approach is certainly the recent work of Li et al. (2022) in which the authors exhibit a proper
limiting dynamics upon the manifold of interpolators thanks to a time rescaling. Once again, the
results shown are only asymptotic, nonquantitative and difficult to apprehend. In contrast, the aim of
the present paper is to characterise quantitatively the convergence without resorting to any limiting
argument. Finally, HaoChen et al. (2021) show a similar collapsing effect due to the label noise.
However, their analysis relies on an extremely large noise (at least square of the dimension), so that
our result on the large noise regime alone can be considered finer.

1.3. Notations

For d ∈ N∗, Rd+ is the cone of vectors of Rd with nonnegative components. For vectors θ, θ′ ∈ Rd,
〈θ, θ′〉 denotes the standard scalar product of Rd and ‖ · ‖2 its associated Euclidean norm. For a
matrix X ∈ Rn×d, ‖X‖ denotes the operator norm associated with ‖ · ‖2. In case of a square matrix,
H ∈ Rd×d, diag(H) ∈ Rd denotes the vector constituted by its diagonal elements (Hkk)16k6d.
Classically, ‖θ‖1 =

∑d
k=1 |θk| stands for the `1 norm of θ. We denote by J1, dK the set of integers

between 1 and d. For vectors θ, θ′ ∈ Rd, θ � θ′ stands for the vector (θkθ
′
k)16k6d and we define

the square of a vector w.r.t this dot product: θ2 = θ � θ. Similarly log θ and exp θ (or eθ) denote
respectively the vectors (log θk)16k6d and (exp θk)16k6d. For α, α′ ∈ R, the notation α∧α′ denotes
the minimum between α and α′. N(µ, σ2) is a Gaussian law of mean µ and variance σ2. For any
subset S of J1, dK of cardinal |S|, and vector v ∈ Rd, we will denote by vS ∈ R|S|, the vector
(vk)k∈S . For any v ∈ Rd, we will often write v = [vS , vSc ], where Sc = J1, dK \ S. For the sake
of clarity we also denote sometimes the k-th component of the vector v by [v]k instead of vk as
traditionally. Finally, 0Rd and 1 ∈ Rd denote respectively the vectors of zeros and ones.
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2. Setup and preliminaries

The aim of the study is to show that the geometry of the noise induced by SGD can bias the dynamics
towards sparse data interpolators. To precisely support this claim, we introduce now the model and
the algorithms we consider.

2.1. Overparametrised noiseless sparse regression

We consider a linear regression problem with inputs-outputs (xi, yi)16i6n in Rd×R, and loss function

L(β) :=
1

4n

n∑
i=1

(〈β, xi〉 − yi)
2 =

1

4n
‖Xβ − y‖22, (1)

where X ∈ Rn×d is the data matrix whose rows are the data vectors (x>i )16i6n and y ∈ Rn is the
vector of outputs (yi)16i6n. We study the overparametrised setting d > n and assume that there
exists at least one nonnegative interpolating parameter which perfectly fits the training set, namely:

(A.1) (Existence of nonnegative interpolators) The set I+ := {β ∈ Rd+ : L(β) = 0} is nonempty.

Since we work in the overparametrised setting, the set I+ may in principle be a high-dimensional
polyhedron. We now provide assumptions on X and y ensuring the existence and characterisation
of particular sparse interpolators. The first one is very mild and ensures that the vector h :=
diag(X>X) ∈ Rd+ has only positive coordinates.

(A.2) (No degenerate coordinate) The data matrix X has no identically 0 column.

For the following, let S be a nonempty subset of J1, dK with cardinality s and define XS ∈ Rn×s
as the matrix constituted by the coordinates of the inputs (xi)16i6n solely in S. We use a similar
notation for the vector hS ∈ Rs+. Furthermore, the support of any β ∈ Rd+ is denoted and defined by
supp(β) := {k ∈ J1, dK : βk > 0}, and we introduce the set S+ := {supp(β), β ∈ I+}.

Lemma 1 (Domination condition) Under Assumptions (A.1) and (A.2), there is at most one S ∈ S+
such that either S = ∅, or X>SXS is invertible and the domination condition

hSc > X>ScXS(X>SXS)−1hS (2)

holds, where the latter inequality is understood coordinatewise in Rd−s.

Lemma 1 is proved in Appendix A. Let us brefiely discuss some of its consequences. First, when
S 6= ∅, the invertibility condition on X>SXS implies that |S| 6 n, which gives that the interpolator
associated with S ∈ S+ is at worse n-sparse. To understand the uniqueness property of S stated in
the Lemma let us detail the case with one data point in dimension two.

Example 1 (Case n = 1, d = 2) Let us set x = (x1, x2) ∈ R2 and e.g. y = 1. Clearly (A.1) and
(A.2) are verified if and only if x1, x2 6= 0 and either x1 > 0 or x2 > 0. If either one of the coordinate
at least is negative, then the domination condition Eq. (2) is always fulfilled and uniqueness of S is
obvious. Now suppose that x1, x2 > 0: if S = {1}, then Eq. (2) is equivalent to x2 > x1 and in the
case S = {2}, Eq. (2) is true if and only if x1 > x2: hence, one possibility rejects the other one and
uniqueness of S holds. Finally, in the particular case where x1 = x2, Eq. (2) is never satisfied; we
exclude this pathological case thanks to the following assumption.
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(A.3) (Existence of the ground-truth) There exists exactly one set So ∈ S+ which satisfies the
conditions of Lemma 1.

Notice that So = ∅ if and only if y = 0. Note additionally that under Assumption (A.3), we may
define βo as the unique element of I+ with support So and when So 6= ∅, we can write explicitly
βo = [(X>SoXSo)−1X>Soy, 0Sc ]. We shall keep the notation βo, So throughout the remainder of this
article and call βo the ground-truth estimator of the model. In case the output y has been generated
by a sparse nonnegative vector βS with data matrix X, i.e. XβS = y, and a support S that satisfy the
conditions of Lemma 1, then this latter Lemma implies that βS = βo. The aim of Assumption (A.3)
is to ensure the existence of such an interpolator. In the sparse recovery literature, the conditions
asked in Lemma 1 are related respectively to the subinvertibility and mutual incoherence conditions.
We refer to page 219 of Wainwright (2019) for further discussions on these.

2.2. Architecture and algorithm

A two-homogeneous reparametrisation. We reparametrise the linear prediction x 7→ 〈β, x〉
using the nonlinear parametrisation x 7→ 〈θ2, x〉, where the square of the vector θ stands for the
coordinatewise square. This 2-positive homogeneous model can be viewed as a simple linear network
with only pairwise connections and is often used as a first step towards understanding more general
neural networks (Woodworth et al., 2020; Li et al., 2022). It is worth noting that the parametrisation
β = θ2+ − θ2− could be considered in order to attain negative values. It would only make the analysis
more technical and therefore we prefer to restrict ourselves to the simpler setting. By a slight abuse
of notation we rewrite the training loss (1) as a function of θ as

L(θ) :=
1

4n

n∑
i=1

(
〈θ2, xi〉 − yi

)2
. (3)

Even if the overall function space expressivity has not changed, the reparametrisation makes the
least-square problem associated with Eq. (3) nonconvex. Thus minimising it with gradient based
procedures is not guaranteed to converge to global optima anymore.

Label noise gradient descent. We minimise the training loss in Eq. (3) with GD and Label Noise
(LNGD). Namely, at each gradient step t > 0, we deliberately add a random noise ξ(t) ∼ N(0, δIn)
to the label y. The algorithm is started from θ0 and used with a constant step size γ > 0. Noting
explicitly the loss with input X and output y as L(θ;X, y), the update rule corresponds to

θ(t+ 1) = θ(t)− γ∇θL(θ(t);X, y + ξ(t))

= θ(t)− γ

n

[
X>
(
Xθ(t)2 − y

)]
� θ(t) +

γ

n

[
X>ξ(t)

]
� θ(t),

(4)

where � stands for the coordinatewise product between two vectors. In the previous literature,
LNGD was often studied together with SGD. However the stochasticity coming from the sampling
procedure of SGD is rapidly negligible compared to the one triggered by the label noise. Indeed the
label noise SGD update writes

θ(t+ 1) = θ(t)− γ(〈θ(t)2, xi(t)〉 − yi(t))xi(t) � θ(t)

= θ(t)− γ

n

[
X>
(
Xθ(t)2 − y

)]
� θ(t) +

γ

n

[
X>(ξ(t) + εi(t))

]
� θ(t),
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where for all t > 0, i(t) is sampled from the uniform distribution over J1, nK, and we have defined
εi(t) := Ei(t)[(〈θ(t)2, xi(t)〉−yi(t))ei(t)]−(〈θ(t)2, xi(t)〉−yi(t))ei(t) where (ei)16i6n is the canonical
basis of Rn. With this notation, εi(t) corresponds to the SGD noise: it is multiplicative, crucially
vanishes at optimum and is rapidly negligible or comparable to

√
δ. Thus there should be no

qualitative difference between SGD and GD when both are used with label noise (see Figure 1 for an
empirical validation of this fact). To understand the LNGD dynamics on the nonconvex objective
Eq. (3), we resort to its continuous time model. This approach has the advantage of leading to clean
calculations while comprehending the complexity of the model.

2.3. Label noise stochastic gradient flow

Continuous time stochastic dynamics modelling. Continuous time modelling of sequential pro-
cesses provides a large set of tools, such as differential calculus, which are valuable when trying to
understand the dynamics of a process. For this reason, many recent works have considered gradient
flows with the aim of grasping the behaviour of gradient descent on complex nonconvex problems
such as neural networks training. However the modelling of stochastic dynamics is more demanding.
Indeed these dynamics are better modelled by stochastic processes which are solutions of stochastic
differential equations (SDEs): dθ(t) = b(t, θ(t))dt+σ(t, θ(t))dB(t), where (B(t))t>0 is a standard
Brownian motion. For a proper model, the drift term b and the noise σ need to be set in a particular
manner:

(i) The drift term b should match the negative gradient: b = −∇L.

(ii) The noise covariance σσ>(t, θ) should match Cov[ γn
[
X>ξ

]
� θ(t)|θ(t) = θ], where we have

set ξ ∼ N(0, δIn) independent of θ(t).

(iii) The noise should belong to the correct space, i.e. to the manifold {θ� span[X>], for θ ∈ Rd}.

Stochastic process model. Following these rules, we propose the following SDE to model LNGD
in continuous time. This gives the label noise gradient flow (LNGF)

dθ(t) = − 1

n
[X>(Xθ(t)2 − y)]� θ(t)dt+

√
δγ

n
θ(t)� [X>dB(t)], (5)

with (B(t))t>0 a standard Brownian motion in Rn. Since LNGD is the Euler-Maruyama discretisation
with step-size γ of the SDE (5), the SDE and the discrete models match perfectly for infinitesimal
step-sizes (up to first order terms in γ). The model is said to be consistent. We also note that the same
SDE is obtained for any label noise distribution ξ with zero-mean and δ times identity covariance.
We simply assume that the injected label noise is Gaussian for clearness of exposition. In the same
way, we could consider time-dependent covariance Σ(t) ∈ Rn×n by replacing the noise term in the
SDE by

√
γ
n θ(t)� [X>Σ(t)1/2dB(t)].

Drift-Variance tradeoff. For the sake of clarity, we introduce the following renormalised variables:
X = X/

√
n, y = y/

√
n, h = h/n, δ = γδ/n. The SDE model we study reads

dθ(t) = −[X>(Xθ(t)2 − y)]� θ(t)︸ ︷︷ ︸
drift term

dt+
√
δ θ(t)� [X>dB(t)]︸ ︷︷ ︸

noise term

. (6)

As often with state-dependent noise SDEs, there is a competition between the noise and the drift
components. On the one hand, considering the drift term alone amounts to only take into account the
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gradient flow. As analysed by Woodworth et al. (2020); Wu and Rebeschini (2020), the dynamics
is, in that case, driven to a certain interpolator related to the initialisation. On the other hand, the
noise term acts as a multiplicative shrinking force akin to the one in the geometric Brownian motion
dS(t) = µS(t)dt+σS(t)dW (t). For this dynamics, the noise can counter the repulsive force of the
drift and drive S(t) to 0 almost surely if its scale satisfies σ2 > 2µ. Thus, if the noise δ dominates
the dynamics: δ � supt>0 ‖X>(Xθ(t)2 − y)‖∞, the process is similarly driven to 0 almost surely.
We note that this argument is at the crux of the analysis of HaoChen et al. (2021). However, when the
noise level δ is not infinitely large, the drift and the noise balance each other out and the dynamics
becomes much more intricate to analyse.

2.4. Hidden mirror flow structure and Lasso

Itô calculus and hidden mirror flow. Let us recall that, for such reparametrised model, when
θ follows a gradient flow dθ(t) = −∇L(θ(t))dt, then the corresponding iterate β(t) = θ(t)2

follows a mirror descent with potential defined through ∇ψ(β) = log(β), where the log is taken
componentwise (Ghai et al., 2020). This result is easily obtained using the chain rule on∇ψ(β(t)).
This hidden mirror structure is then used to describe the implicit bias of such gradient flows. It turns
out that the exact same procedure can be done based on Itô calculus (i.e. chain rule for stochastic
processes) to exhibit a stochastic mirror flow. Indeed, setting β(t) = θ(t)2, where (θ(t))t>0 is the
solution to (6), we have

dβ(t) = β(t)�
[
−2X>(Xβ(t)− y) + δh

]
dt+ 2

√
δβ(t)� [X>dB(t)], (7)

and this entails the following stochastic differential equation for log(β)

d log β(t) = −
(

2X>(Xβ(t)− y) + δh
)

dt+ 2
√
δX>dB(t). (8)

This observation has already been used to understand the implicit bias due to the sampling noise of
SGD (Pesme et al., 2021), where the authors resort to the unsigned parametrisation (β = θ2+ − θ2−)
changing the mirror map to the argsh; without affecting qualitatively the following discussion.

Stochastic mirror on the weighted lasso. The equation (8) can be explicitly rewritten as a stochas-
tic mirror-like flow

d∇ψ(β(t)) = −∇Lδ(β(t))dt+ 2
√
δX>dB(t), (9)

with
Lδ(β) := ‖Xβ − y‖22 + δ〈h, β〉, ∇ψ(β) = log β. (10)

The objective Lδ is importantly related to the celebrated weighted Lasso problem:

min
β>0

Lδ(β), (WLδ)

where the quadratic loss is regularised by a weighted `1-norm with weight h and regularisation
parameter δ. Hence, the change of variable together with the mirror interpretation provides the
following intuition:

The label noise gradient flow can be cast as a stochastic mirror flow on the weighted Lasso with
weight h and regularisation parameter δ.

This picture serves as the main guideline for our study. However, the stochasticity present in the
mirror prevents from directly applying mirror-based optimisation techniques. Instead, our approach
is based on a direct analysis of the dynamics of β(t). Our results are gathered in the next section.
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3. Main results

3.1. The recovery problem for the weighted Lasso

As we have seen in the previous section, the stochastic dynamics Eq. (6) is intimately related to a
mirror gradient optimisation on the weighted `1 least-square problem (WLδ). Hence, to understand
the behaviour of the dynamical problem, it seems natural to understand first the properties of the
weighted Lasso. This problem is referred to as the variable selection consistency of the Lasso in the
literature (see e.g. Section 7.5.1 of Wainwright (2019)). Note that due to the weight h in the `1 norm
and the positivity constraint in (WLδ), the characterisation of our problem is not immediately implied
by standard theorems. We note that, since the function Lδ is convex, a vector β ∈ Rd+ is a solution
to (WLδ) if and only if there exists µ ∈ Rd+ which satisfies the Karush–Kuhn–Tucker condition

2X>(Xβ − y) + δh = µ, 〈µ, β〉 = 0. (KKTδ)

Theorem 2 Let Assumptions (A.1), (A.2) and (A.3) hold, and let βo, So be defined thereby.

1. If So = ∅, then for any δ > 0, the pair βL := 0, µL := δh satisfies the condition (KKTδ).

2. Otherwise, set

δ− := sup{δ > 0 : ∀k ∈ So, βok > δ[(2X>SoXSo)−1hSo ]k},
δ+ := inf{δ > 0 : ∀k ∈ J1, dK, δhk > 2[X>y]k}.

(i) Standard noise regime: if δ < δ−, then the pair

βL := [βoSo − δ(2X>SoXSo)−1hSo , 0Soc ]>,

µL := [0So , δ(hSoc −X>SocXSo(X>SoXSo)−1hSo)]>,

satisfies the condition (KKTδ).
(ii) Large noise regime: if δ > δ+, then the pair βL := 0, µL := δh− 2X>y > 0 satisfies

the condition (KKTδ).

In all cases, βL is the unique solution to (WLδ).

Let us comment this theorem. First, uniqueness for (i) and (ii) is nontrivial because the (WLδ)
problem is not strongly convex on account of the degeneracy caused by the affine space βo + KerX .
Second, (i) tells us that support recovery is perfectly achieved in the case of a standard noise level.
The inequality δ < δ− should be interpreted as a high enough signal to noise ratio that allows the
estimator to recover the support of the ground truth βo. To give an order of magnitude, in case of
standard i.i.d. Gaussian data inputs, X>SoXSo ∼ ISo , hSo ∼ 1

So
and X>SocXSoβS ∼ 0Soc . Hence,

δ− ∼ 2βomin and δ+ ∼ 2βomax where βomin and βomax are respectively the minimum and the maximum
value of βoSo . The signal to noise ratios δ/βomin and δ/βomax rule the difference between the two
regimes. Third, note that although our two regimes describe most of the cases we are interested in, a
band of noise scale is not treated by Theorem 2: this is typically the case when δ ∈ [2βomin, 2β

o
max] in

which case the solution could have support outside So. The proof of this result is classical: we exhibit
ad-hoc explicit solution to condition (KKTδ) and show it is unique. This reasoning is referred to as
the Primal–dual witness construction by Wainwright (2019, p.223) and is derived in Appendix A.
Finally, note that the case So = ∅ can be seen as a subcase of the large noise regime, as when y = 0,
we have δ+ = 0 and the solutions match. The distinction between standard and large noise regime
finds an echo in the next section.
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3.2. SDE convergence results

Before presenting the main results, we first recall the most important observations stated in the
previous sections. First, as drift and noise parts are locally Lipschitz continuous, for any initial
condition θ(0) ∈ Rd, Eq. (6) has a unique strong solution, which is defined up to some explosion
time τ∞ (Khasminskii, 2012). Throughout the sequel, we shall work with a fixed initial condition
θ(0) such that β(0) = θ2(0) > 0. Our results will then entail that in both regimes introduced in the
previous section, τ∞ = +∞, almost surely. Remarkably, Eq. (9) of Section 2.4 shows that it can be
cast as a Lasso stochastic mirror flow on the linear predictor β = θ2. Then, conditions are given in
Theorem 2 under which support recovery is achieved by the minimiser βL of the weighted Lasso
program (WLδ). Here, we naturally distinguished between two different regimes: (i) the large noise
regime where the best predictor is uniformly zero (Section 3.2.1) and (ii) the standard noise regime,
when the signal to noise ratio is high enough to allow for support recovery (Section 3.2.2).

Our main results show that (β(t))t>0 recovers perfectly the support of βL in these two regimes,
namely that, first, β(t)→ 0 on Soc. Second, on the support So, in the long run, β(t) fluctuates in a
neighbourhood of size

√
δ around βL and hence of βo (by Theorem 2-(ii)). To quantify the noise that

remains inherently in β(t), we introduce comparison processes that allow to precisely specify the
scale of the fluctuations. In the large noise regime, it is ruled by Brownian fluctuations, whereas in
the standard noise regime, it is ruled by a rapidly mixing process which concentrates around βo at√
δ scale.

3.2.1. THE LARGE NOISE REGIME

We first place ourselves in the large noise regime from Theorem 2. We recall that we take the
convention that this regime contains the case So = ∅ (that is to say y = 0), for which we define
δ+ = 0. In this regime, note that βL is uniformly zero. In the following result, we show that the
stochastic gradient flow we consider goes to zero almost surely at exponential speed.

Theorem 3 (Large noise regime convergence) Let the assumptions of Theorem 2 hold, with δ >
δ+. Recall that µL = δh− 2X>y > 0. Then τ∞ = +∞, almost surely; besides, there exists C > 0
depending on the data X , y and on β(0), and a one-dimensional process (ζδ(t))t>0, which has the
same law as (4δ‖B(t)‖22)t>0, such that almost surely,

∀t > 0, β(t) 6 C exp

(
‖X>‖

√
ζδ(t)1 − µLt

)
. (11)

In consequence,
lim

t→+∞
β(t) = βL = 0, almost surely. (12)

The theorem shows quantitatively that all the coordinates of our predictor go to zero exponentially
fast at some speed governed by δ (through the variable µL). Roughly speaking, as the fluctuations
of the Bessel process

√
ζδ(t) are of order

√
t (Revuz and Yor, 2013, Chapter XI), we see that they

are negligible in front of the linear deterministic term −µLt. These two terms in the exponential are
quite reminiscent of the one dimensional geometric Brownian motion (GBW). Thus, we can see this
regime as a multidimensional generalisation of the GBW. Note that the same idea has been expressed
in HaoChen et al. (2021) but with an unnecessarily large noise δ > O(β(0)d2). To conclude on the
almost sure convergence, a precise analysis is conducted in the proof using the law of the iterated
logarithm (Revuz and Yor, 2013, Corollary 1.12, Chapter II). The proof as well as the explicit value
of C can be found in Appendix B.1.
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3.2.2. THE STANDARD NOISE REGIME

In this regime, recall that by Theorem 2, βL has the same support as βo, denoted by So ⊂ J1, dK.
For technical reasons we need to assume that the initial condition β(0) satisfies the condition that
βSo(0) 6= βLSo , and moreover that n > 2. In the following result, we prove that the stochastic gradient
flow we consider goes to zero almost surely at exponential speed on Soc. We then show precisely that,
on the support So, the stochastic flow fluctuates in a region of size

√
δ around βL. To quantitatively

support this claim we introduce a comparison process (ξδ(t))t>0 which quantifies the scale of the
fluctuations.

Theorem 4 (Standard noise regime convergence) Let the assumptions of Theorem 2 hold, with
So 6= ∅ and δ < δ−. Recall that µLSoc > 0. Then τ∞ = +∞, almost surely; besides, there exists a
one dimensional stochastic process (ξδ(t))t>0, such that the following assertions hold.

(i) On the support So, almost surely,

∀t > 0, βLSoe−‖X
>
So‖
√
ξδ(t) 6 βSo(t) 6 βLSoe‖X

>
So‖
√
ξδ(t). (13)

Furthermore, ξδ(t) converges in distribution towards a random variable ξδ∞ which satisfies
the concentration property

∀u > 0, P
(
ξδ∞ > uδ

)
6 6 exp

(
−
√
uδ

κδ

)
, (14)

for some κδ > 0 such that κδ = O(δ) when δ is infinitesimally small.

(ii) Outside the support So, there exists C > 0, depending on X , y and β(0), such that, almost
surely,

∀t > 0, βSoc(t) 6 C exp

(
‖X>Soc‖

√
ξδ(t)1Soc − µLSoct

)
. (15)

This implies that
lim

t→+∞
βSoc(t) = 0, almost surely.

We make the following remarks on the theorem. In the long term limit, for δ small, Equation (14)
and the fact that κδ = O(δ) show that the random variable ξδ(t) is of order O(δ). This concentration
property follows from the fact that ξδ∞ can be expressed as the squared norm of a n-dimensional
random variable, the law of which satisfies a Poincaré inequality with a constant which can be
estimated thanks to the Laplace method. Therefore, on the support of βo, by Equation (13) we have,
in the long term limit,

βSo(t) ' βLSo + O
(√

δ
)

= βoSo + O
(√

δ
)
,

since Theorem 2 indicates that βLSo − βoSo is of order δ.
On the other hand, from Equation (15) we see that the story outside the support is simpler: as in

the large noise regime, the iterates go exponentially fast to 0 at rate µLSc > 0. Note however that the
scale of the fluctuations is much smaller than is the large noise regime: it is given by the ergodic
process (ξδ(t))t>0, and no longer by the Bessel process (ζδ(t))t>0. The reason is that in the standard
noise regime, there is an effective strong convexity effect that prevents the noise from truly fluctuating
far from some deterministic trajectory.

Precise derivations on (ξδ(t))t>0 and explicit constants can be found in Appendix B.2.
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4. Dynamics description and proof sketch

4.1. Going beyond the mirror shape: a dual process

The time dependent mirror. Previous analysis (Gunasekar et al., 2018; Woodworth et al., 2020;
Pesme et al., 2021) on the implicit bias of such models rely on the crucial observation that the dual
iterates∇ψ(β(t)) belong to the linear span of the observations span(X>). However, in our case, the
additional drift term does not belong to such a space: i.e. δh /∈ span(X>). This is why we introduce
a time dependent mirror map ∇βψ(t, β) = log(βeδht). By Eq. (8), the process (β(t))06t<τ∞ then
satisfies

d∇βψ(t, β(t)) = −2X>(Xβ(t)− y)dt+ 2
√
δX>dB(t),

which is a stochastic mirror-like descent with a geometry that depends on time. The vector
∇βψ(t, β(t)) can then be decomposed in a unique way along span(X>) and (span(X>))⊥ =
KerX . More precisely, there exist u∗ ∈ KerX and v(0) ∈ Rn such that log β(0) = u∗ +X>v(0).
We next consider the unique strong solution to the SDE

dv(t) = −2
(
X exp(X>v(t) + u∗ − δht)− y

)
dt+ 2

√
δdB(t),

and notice that exp(u∗+X
>v(t)−δht) then satisfies the SDE (7). Therefore, by pathwise uniqueness,

β(t) = exp(u∗ +X>v(t)− δht) and both processes β and v share the same explosion time τ∞.

Defining a dual process. We next remove the constant term 2y in the drift of v(t) by defining
ṽ(t) := v(t)− 2yt ∈ Rn. Denoting by F (t, ṽ) := ‖ exp(X>ṽ+u∗− (δh− 2X>y)t)‖1, we remark
that (ṽ(t))06t<τ∞ satisfies the SDE

dṽ(t) = −2∇vF (t, ṽ(t))dt+ 2
√
δdB(t). (16)

We define as well the associated gradient flow (w̃(t))06t<τ̃∞ :

dw̃(t) = −2∇vF (t, w̃(t))dt, (17)

initialised similarly, that is w̃(0) = ṽ(0) = v(0), and defined up to some (deterministic) explosion
time τ̃∞. For t > 0 we also introduce, with a slight abuse of notation, the map β(t, ·) defined from
Rn to Rd as β(t, ṽ) := exp(X>ṽ + u∗ − (δh− 2X>y)t). This map represents the unique way to
go from the process ṽ(t), solution of the SDE (16), to the associated process of linear predictors β(t)
that follows the SDE (7). Thus, we refer to ṽ(t) as the dual process associated to β(t). It is also
worth noting that F (t, ṽ) = ‖β(t, ṽ)‖1 is a convex function of the second variable. This equality
emphasises the sparse promoting effect of the dynamics on the linear predictor. Finally, an important
quantity appearing in the exponential is the vector

c := δh− 2X>y.

In the two next sections, we show that, depending on its sign, the behaviour of Eq. (16) and (17) is
very different.

11
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4.2. Large noise regime and the lack of strong convexity

In the setting of Theorem 3, the vector c coincides with µL defined in Theorem 2, and thus satisfies
c > 0. Hence the noise dominates the dynamics and entails that all coordinates of β(t, ṽ(t)) are
shrunk by a e−µ

Lt factor. Here, we proceed in two steps:

(i) First, we show that the gradient flow (17) on the dynamics of the process (w̃(t))06t<τ̃∞ is
bounded. Therefore, τ̃∞ = +∞ and the associated linear estimator β(t, w̃(t)) goes to 0 at
rate e−µ

Lt.

(ii) Then, we show that the stochastic process (16) on ṽ(t) fluctuates from the gradient flow w̃(t)
at a distance controlled by the norm of an n-dimensional Brownian motion, i.e. a Bessel
process. Hence, as Brownian fluctuations are of order

√
t, these are negligible in front of the

−µLt gradient flow decay rate, which yields in particular τ∞ = +∞.

We put emphasis on the fact that this regime suffers form a lack of strong convexity. This is
reminiscent of optimizing the Lasso outside of the support of the sparse ground-truth βo (see the
discussion section 2.2 of Agarwal et al. (2012) on Restricted strong convexity and smoothness).

4.3. Standard noise regime and strong convexity

Failing of the previous reasoning. In the setting of Theorem 4, it is expected that the dual gradient
flow (17) drives the primal iterate β(t, w̃(t)) towards the solution of the weighted Lasso βL. The
strategy of comparison with the gradient flow, outlined in the previous section, only works for the
coordinates of β(t, ṽ(t)) outside of the support So of βL. For these coordinates, the fluctuations
are still dominated by the linear exponential shrinking. Unfortunately, when applying the same
technique for coordinates in the support So, the fluctuations totally blur the sparse recovery problem.
To overcome this obstacle, we leverage the strong convexity of the function ṽ 7→ F (t, ṽ) on the
support So, as explained in the following paragraph.

A linear classification problem structure. The reasoning rests on the following observation: the
dual gradient flow (17) is similar to the one that solves a linear classification problem with the
exponential loss on the data points given by the coordinates of the (xi)16i6n. More precisely, let
us define the d data (zk)16k6d ∈ (Rn)d such that Z = X>, i.e for all k ∈ J1, dK, i ∈ J1, nK
[zk]i = [xi]k. Then (17) is equivalent to

dw̃(t) = −2Z> exp(Zw̃(t) + u∗ − ct)dt = −2

d∑
k=1

zk exp (〈zk, w̃(t)〉+ [u∗]k − ckt) dt,

and the same goes for (16). Note that this observation is reminiscent of the primal-dual analysis
presented in Ji and Telgarsky (2021). We leverage this equivalence and show that the selection
of the support vectors (i.e, the samples with the smallest margin) of separable linear classification
problem (Soudry et al., 2018) enables to recover the true support So. In this aim, we show that
the only terms that matter in the exponential sum are those in the set S′ of indices k for which
〈zk, w̃(t)〉 ∼ ckt when t → +∞, since the other terms go to zero exponentially fast. Hence,
β(t, w̃(t)) is asymptotically supported by the coordinates of S′. As in the separable classification
problem (Soudry et al., 2018), it turns out that we can totally identify S′ as in fact S′ = So. Finally,
we show that the fluctuations due to the stochastic remaining terms are controlled by the strong
convexity upon the support and are of order

√
δ.
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5. Experiments

We consider the following sparse regression setup for our experiments. We choose n = 40, d = 100
and randomly generate a sparse model βS such that the cardinality of its support is s = 4. We
generate Gaussian features as xi ∼ N(0, Id), labels as yi = 〈βS , xi〉 and check that this model
satisfies the assumptions required in Theorem 2. We consider four different algorithms: the two first
are the one we model i.e, Gradient descent + label noise and Stochastic gradient descent + label noise,
and for comparison we also considered the Gradient descent and the Stochastic gradient descent.
They are initialised at the same point and run with the same step size γ = 0.1 and noise δ = 10−3.

The experiment presented in Figure 1 perfectly illustrates Theorem 3 (right plot) and Theorem 4
(center plot). Overall, sparse recovery is achieved up to scale

√
δ =

√
δγ/n ∼ 1.6 · 10−3. Note

that there is no qualitative difference between SGD + label noise (shadowed orange) and GD + label
noise (orange). This validates our SDE model.

Figure 1: Sparse regression on synthetic data. Left: Square error on the parameters. GD and SGD
do not recover the sparse truth whereas GD + label noise and SGD + label noise achieve
recovery up to scale

√
δ. Center: Recovery of the support in case of noisy label dynamics.

A unique and prototypical coordinate is displayed here. Right: Convergence to 0 outside
the support in case of noisy label dynamics for a prototypical coordinate.

6. Conclusion

In this paper, we have shown that, for quadratically parametrised predictors, the label noise gradient
descent solves implicitly a weighted Lasso optimisation program. Hence, this stochastic descent is
able to perfectly recover the support of the sparse ground-truth when the injected noise is not too
large. In contrast with previous works, we derived precise nonasymptotic results, both it terms of
time and noise. Surprisingly, the heart of the proof is based on an equivalence between the selection
of support vectors for a classification problem and the one of the nonzero coordinates of the sparse
ground-truth. Whether this is only a technical equivalence or a deep relationship could be of great
interest. Also, we characterise the equivalence between our label noise dynamics and an optimisation
problem enforcing sparsity. Whether it can be done for other architecture remains an interesting open
question.
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Appendix

Appendix A. Proof of Lemma 1 and Theorem 2

We first recall the notation S+ introduced after Assumption (A.1), and set

S′+ :=
{
S ∈ S+ : S 6= ∅, X>SX is invertible, and hSc > X>ScXS(X>SXS)−1hS

}
=
{
S ∈ S+ : S 6= ∅, X>S X is invertible, and hSc > X>ScXS(X>S XS)−1hS

}
.

By construction, for any S ∈ S′+, there is a unique βo,S ∈ Rd+ such that Xβo,S = y. Besides, the
statement of Lemma 1 rewrites as: either ∅ ∈ S+ and S′+ is empty, or ∅ 6∈ S+ and S′+ contains at
most one element. Therefore, the proof of Lemma 1 stems from the following result.

Lemma 5 (Weighted Lasso in the standard noise regime) Let Assumptions (A.1) and (A.2) hold.

1. If ∅ ∈ S+, then β = 0 is the unique solution to (WLδ), for any δ > 0.

2. Assume that the set S′+ is nonempty. Define

δ− := sup{δ > 0 : ∀S ∈ S′+, ∀k ∈ S, β
o,S
k > δ[(2X>S XS)−1hS ]k} > 0,

and assume that δ < δ−.

(a) For any S ∈ S′+, the pair

βS = [βo,S−δ(2X>S XS)−1hS , 0Sc ]
>, µS = [0S , δ(hSc−X>ScXS(X>S XS)−1hS)]>,

satisfies the condition (KKTδ); in particular, βS is a solution to (WLδ) with support S.

(b) All solutions to (WLδ) coincide.

Proof We first assume that ∅ ∈ S+. Then y = 0 and, for any δ > 0, Lδ(β) = ‖Xβ‖22 + δ〈h, β〉. It
is obvious that β = 0 is a global minimiser of Lδ, and by Assumption (A.2), it is the only one.

We now assume that the set S′+ is nonempty, fix δ ∈ (0, δ−), let S ∈ S′+ and define (βS , µS)
accordingly. It is simple linear algebra to show that this pair satisfies the condition (KKTδ); besides,
it follows from the condition that δ ∈ (0, δ−) and the definition of S′+ that supp(βS) = S and
µSSc > 0. We therefore deduce that βS solves (WLδ).

It remains to prove that all solutions to (WLδ) coincide. To proceed, we let β′ ∈ Rd+ be another
minimiser of Lδ. Using the condition (KKTδ), which yields∇L0(β

S) + δh = µS and 〈µS , βS〉 = 0,
we get

L0(β
′)− L0(β

S) = Lδ(β
′)− δ〈h, β′〉 − Lδ(βS) + δ〈h, βS〉

= δ〈h, βS − β′〉
= 〈µS −∇L0(β

S), βS − β′〉
= −〈µS , β′〉+ 〈∇L0(β

S), β′ − βS〉.

Since L0 is convex, L0(β
′)−L0(β

S) > 〈∇L0(β
S), β′−βS〉 and therefore 〈µS , β′〉 6 0. Since both

µS and βS are nonnegative, 〈µS , β′〉 = 0, and since µSSc > 0, we deduce that S′ := supp(β′) ⊂ S.
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Finally, we let µ′ ∈ Rd+ be such that (β′, µ′) satisfies the condition (KKTδ). On the one hand, the
same convexity argument for L0 as above yields 〈µ′, βS〉 = 0, which implies that µ′S = 0. On the
other hand, we deduce from the condition (KKTδ) for both (βS , µS) and (β′, µ′) that

2X>X(βS − β′) = µS − µ′,

which entails βSS − β′S = −(2X>S XS)−1(µSS − µ′S) = 0 and completes the proof.

Lemma 5 implies in particular that S′+ contains at most one element, and that if ∅ ∈ S+ then
S′+ is empty. This proves Lemma 1. We now let Assumption (A.3) hold, which defines βo, So, and
makes the statement of Theorem 2 in the case where So = ∅ a straightforward consequence of
the first part of Lemma 5. Likewise, in the case where So 6= ∅, the statement of Theorem 2 in the
standard noise regime immediately follows from Lemma 5. To complete the proof of the statement
in the large noise regime, we resort to the following lemma.

Lemma 6 (Weighted Lasso in the large noise regime) Under the assumptions of Theorem 2, let
So 6= ∅ and assume that δ > δ+. Then βL := 0, µL := δh − 2X>y > 0 is the unique pair of
nonnegative vectors which satisfies the condition (KKTδ).

Proof It is clear that (βL, µL) satisfies the condition (KKTδ). For uniqueness, let (β′, µ′) be another
solution. Then by the same convexity argument as in the proof of Lemma 5, we get 〈µL, β′〉 = 0,
which yields β′ = 0 and then µ′ = µL.

Appendix B. Proof of Theorems 3 and 4

Recall the following facts that are developed in Section 4.1 of the main text. For t ∈ [0, τ∞), we
introduced a dual variable ṽ(t) ∈ Rn associated to β(t) such that β(t) = β(t, ṽ(t)) = exp(X>ṽ(t)+
u∗ − ct) ∈ Rd, with u∗ ∈ KerX and c = δh − 2X>y ∈ Rd. Denoting F (t, ṽ) := ‖β(t, ṽ)‖1, we
see that (ṽ(t))06t<τ∞ follows a nonautonomous overdamped Langevin dynamics with respect to
the function ṽ 7→ F (t, ṽ) (16), and we also introduce the related gradient flow (w̃(t))06t<τ̃∞ (17),
which we recall here:

dṽ(t) = −2∇vF (t, ṽ(t))dt+ 2
√
δdBt, dw̃(t) = −2∇vF (t, w̃(t))dt, w̃(0) = ṽ(0).

The following statement, the verification of which is straightforward, shall play an important role in
the study of (16) and (17).

Lemma 7 For any t > 0, the function ṽ 7→ F (t, ṽ) is convex on Rn.

B.1. The large noise regime: Theorem 3

Here we place ourselves in the setting of Theorem 3. Then the vector c coincides with the vector
µL > 0 from Theorem 2. Let us denote c > 0 its smallest entry. As depicted in Section 4.2, we
divide the proof in two steps.

(i) First we show that the gradient flow (w̃(t))06t<τ̃∞ is bounded, which implies that τ̃∞ = +∞.
This is presented in Proposition 8 of Section B.1.1.

(ii) Then we show that (ṽ(t))06t<τ∞ remains in its vicinity with Brownian fluctuations of order√
t, which implies that τ∞ = +∞. This is presented in Proposition 10 of Section B.1.2.

We finally prove Theorem 3 in Section B.1.3.
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B.1.1. BOUNDING THE GRADIENT FLOW

Proposition 8 Let (w̃(t))06t<τ̃∞ be the solution of the gradient flow (17). For all t ∈ [0, τ̃∞),

∀w ∈ Rn, ‖w̃(t)− w‖2 6 ‖w(0)− w‖2 + 2‖eX>w+u∗‖2
‖X‖
c
.

In particular, τ̃∞ = +∞.

Proof Thanks to Lemma 7, we have, for all w ∈ Rn, for all t ∈ [0, τ̃∞),

d

dt

1

2
‖w̃(t)− w‖22 =

〈
d

dt
w̃(t), w̃(t)− w

〉
= −2〈∇vF (t, w̃(t)), w̃(t)− w〉
= −2〈∇vF (t, w̃(t))−∇vF (t, w), w̃(t)− w〉 − 2〈∇vF (t, w), w̃(t)− w〉
6 −2〈∇vF (t, w), w̃(t)− w〉
6 2‖∇vF (t, w)‖2‖w̃(t)− w‖2
= 2‖XeX

>w+u∗−ct‖2‖w̃(t)− w‖2
6 Ce−ct‖w̃(t)− w‖2,

with C = 2‖X‖‖eX>w+u∗‖2. Then, denote f(t) := ‖w̃(t)− w‖22, we have,

1

2
f ′(t) 6 Ce−ct

√
f(t),

so that, for any ε > 0, gε(t) :=
√
f(t) + ε satisfies

[gε(t)]′ =
f ′(t)

2
√
f(t) + ε

6 Ce−ct
√
f(t)√

f(t) + ε
6 Ce−ct,

and by direct integration,

gε(t) 6 gε(0) + C

∫ t

0
e−csds = gε(0) +

C

c
(1− e−ct) 6

√
f(0) + ε+

C

c
.

By letting ε→ 0, we have
√
f(t) 6

√
f(0) + C

c , which proves the proposition.

B.1.2. CONTROL OF THE STOCHASTICITY: COMPARISON BETWEEN GRADIENT AND

STOCHASTIC GRADIENT FLOW

The aim of this section is to bound the difference between the SDE solution of Eq. (16) and the
gradient flow solution of Eq. (17). By Itô calculus, we have for t ∈ [0, τ∞),

d‖ṽ(t)− w̃(t)‖22 = 2〈ṽ(t)− w̃(t), dṽ(t)− dw̃(t)〉+ 4nδdt

= −4 (〈ṽ(t)− w̃(t),∇vF (t, ṽ(t))−∇vF (t, w̃(t))〉 − nδ) dt

+ 4
√
δ〈ṽ(t)− w̃(t), dB(t)〉.

We begin by rewriting the previous equation with a one dimensional Brownian motion.
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Lemma 9 There exists a one dimensional Brownian motion (W (t))t>0 such that, almost surely, for
t ∈ [0, τ∞),

d‖ṽ(t)− w̃(t)‖22 = −4 (〈ṽ(t)− w̃(t),∇vF (t, ṽ(t))−∇vF (t, w̃(t))〉 − nδ) dt

+ 4
√
δ‖ṽ(t)− w̃(t)‖2dW (t).

Proof From regularity theory of elliptic equations, for any t > 0 the law of ṽ(t) on the event
{t < τ∞} is absolutely continuous with respect to the Lebesgue measure and hence P(t < τ∞, ṽ(t) =
w̃(t)) = 0. As a consequence, E[

∫ t
0 1{s<τ∞,ṽ(s)=w̃(s)}ds] =

∫ t
0 P(s < τ∞, ṽ(s) = w̃(s))ds = 0,

hence
∫ t
0 1{s<τ∞,ṽ(s)=w̃(s)}ds = 0, almost surely. Therefore, by Levy’s characterisation, the local

martingale (W (t))t>0 defined by

∀t > 0, W (t) =

∫ t

0

(
1{s<τ∞}

〈ṽ(s)− w̃(s),dB(s)〉
‖ṽ(s)− w̃(s)‖2

+ 1{s>τ∞}dB
1(s)

)
,

where (B1(t))t≥0 is the first coordinate of (B(t))t≥0, is a Brownian motion. This completes the
proof.

From this, using Lemma 7, we have

d‖ṽ(t)− w̃(t)‖22 6 4nδdt+ 4
√
δ‖ṽ(t)− w̃(t)‖2dW (t).

Then, define Y (t) := ‖ṽ(t)− w̃(t)‖22, we have Y (0) = 0, and for t ∈ [0, τ∞),

dY (t) 6 4nδdt+ 4
√
δY (t) dW (t).

To control Y (t), it is interesting to introduce the process that saturates the constraint in the inequality
above. It turns out that we can provide an exact representation of the distribution of this process,
which is the squared norm of an n-dimensional Brownian motion.

Proposition 10 The stochastic differential equation

dζδ(t) = 4nδdt+ 4
√
δζδ(t)dW (t), ζδ(0) = 0, (18)

has a unique strong solution (ζδ(t))t>0, which is defined globally in time. Besides:

(i) the process (ζδ(t))t>0 has the same law as (4δ‖B(t)‖22)t>0;

(ii) almost surely, for any t ∈ [0, τ∞), Y (t) 6 ζδ(t).

Proof First, we define ζ̃δ(t) := 4δ‖B(t)‖22 and deduce from Itô’s formula that

dζ̃δ(t) = 4nδdt+ 8δ〈B(t),dB(t)〉.

By the same arguments as in the proof of Lemma 9, there exists a one-dimensional Brownian motion
(W̃ (t))t>0 such that 〈B(t), dB(t)〉 = ‖B(t)‖2dW̃ (t), which yields

8δ〈B(t),dB(t)〉 = 4

√
δζ̃δ(t)dW̃ (t)
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and shows that (ζ̃δ(t), W̃ (t))t>0 is a weak solution to the SDE (18). On the other hand, by Theorem
3.5-(ii) of (Revuz and Yor, 2013, Chapter IX), pathwise uniqueness is known to hold for this SDE.
Therefore, by the Yamada–Watanabe theorem (Karatzas and Shreve, 2012, Chapter 5, Corollary 3.23),
strong existence also holds. Besides, by uniqueness in law (Karatzas and Shreve, 2012, Chapter 5,
Proposition 3.20), the strong solution (ζδ(t))t>0 driven by (W (t))t>0 has the same law as (ζ̃δ(t))t>0.

To prove the last statement of the proposition, we follow the lines of (Revuz and Yor, 2013,
Theorem 3.7, Chapter IX). First, for any M > 0, we set τM := inf{t > 0 : ‖β(t)‖2 >M}, so that
τ∞ = lim supM→+∞ τM . We may then write, for any t > 0,

(Y (t ∧ τM )− ζδ(t ∧ τM ))+ 6 4
√
δ

∫ t∧τM

0
1{Y (s)>ζδ(s)}

(√
Y (s)−

√
ζδ(s)

)
dW (s),

which then implies that E[(Y (t ∧ τM ) − ζδ(t ∧ τM ))+] = 0 and therefore, by continuity of the
trajectories of Y (t ∧ τM )− ζδ(t ∧ τM ), we have almost surely

∀t > 0, ∀M > 0, Y (t ∧ τM ) 6 ζδ(t ∧ τM ).

The final claim easily follows.

B.1.3. CONVERGENCE OF THE INITIAL STOCHASTIC FLOW TO THE ORIGIN

We are now in place to give a bound on the iterates β(t, ṽ(t)) for all t > 0.

Theorem 11 Let (ζδ(t))t>0 be defined by Proposition 10. Almost surely,

∀t ∈ [0, τ∞), β(t) 6 e‖X
>‖(
√
ζδ(t)+2‖X‖‖β(0)‖2/c)β(0)� e−ct.

In consequence, τ∞ = +∞ and limt→+∞ β(t) = 0 almost surely.

Proof Thanks to Propositions 8 and 10, we have the following almost sure inequality

‖ṽ(t)− ṽ(0)‖2 6 ‖ṽ(t)− w̃(t)‖2 + ‖w̃(t)− w̃(0)‖2

6
√
ζδ(t) + 2‖β0‖2

‖X‖
c
.

Transferring this estimation to the iterates of the initial flow, we get,

β(t) = exp
(
X>ṽ(t) + u∗ − ct

)
= β(0)� exp

(
X>(ṽ(t)− ṽ(0))− ct

)
6 e‖X

>‖‖ṽ(t)−ṽ(0)‖2β(0)� e−ct

6 e‖X
>‖(
√
ζδ(t)+2‖β0‖2‖X‖/c)β(0)� e−ct,

which proves the first inequality in the theorem and implies that τ∞ = +∞, almost surely. To prove
that β(t) goes to 0, we first note that, by the law of the iterated logarithm (Revuz and Yor, 2013,
Corollary 1.12, Chapter II),

lim sup
t→+∞

‖B(t)‖22
2t log log(t)

6 n, almost surely,
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which by Proposition 10 then implies that

lim sup
t→+∞

‖X>‖
√
ζδ(t)1 − ct = −∞, almost surely,

and completes the proof.

B.2. The standard noise regime: Theorem 4

B.2.1. INTRODUCTION OF THE DUAL VARIABLES

We now work in the setting of Theorem 4, where in particular So 6= ∅ and δ < δ−. We recall the
explicit form of βL and its conic dual variable µL as derived in Theorem 2,

βL = [βoSo − δ(2X>SoXSo)−1hSo︸ ︷︷ ︸
βL
So
>0

, 0Soc ], µL = [0So , δ(hSoc −X>SocXSo(X>SoXSo)−1hSo)︸ ︷︷ ︸
µL
Soc

>0

].

As said in Section 4.3, the conceptual crux is to see the problem like a maximum margin selection
of a linearly separable classification problem on the data points given by the coordinates of the
(xi)16i6n. Let us recall the definition of this transposed dataset more precisely: define the d data
inputs (zk)16k6d ∈ (Rn)d such that Z = X>, i.e for all k ∈ J1, dK, i ∈ J1, nK [zk]i = [xi]k. Let us
define, the following dual variables of Rn:

vL := XSo(X>SoXSo)−1 log(βLSo),

v∞ := −2XβL = −2XSoβLSo .

The two variables have the following property that will be crucial to derive the behaviour of the dual
process (16), and easily follows from the definitions of vL, v∞ together with the condition (KKTδ).
We recall here that c = δh− 2X>y.

Lemma 12 We have the following properties on (vL, v∞):

(i) v∞ = −2XSoeX
>
Sov

L
, i.e translated in terms of the z’s variables as v∞ = −2

∑
k∈So zke

〈zk,vL〉.

(ii) −X>v∞+c = µL. This translates in terms of z’s variables as for k ∈ So,−〈zk, v∞〉+ck = 0
and for k ∈ Soc, −〈zk, v∞〉+ ck = µLk > 0.

B.2.2. THE RESIDUAL PROCESS

We have introduced such vectors for a concrete purpose. Indeed, we are going to show that at first
order, the process (ṽ(t))06t<τ∞ defined in Eq. (16) will approximately diverge as t along the ray
{v∞t+ vL, t > 0}. Define, for t ∈ [0, τ∞), what can be called the residual process,

r(t) := ṽ(t)− v∞t− vL +XSo(X>SoXSo)−1[u∗]So ,
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where [u∗]So ∈ Rs is the restriction of u∗ ∈ Rd on the support So. We also define u′∗ :=
X>SocXSo(X>SoXSo)−1[u∗]So ∈ Rd−s, and deduce from Itô calculus and Lemma 12 that

d‖r(t)‖22 = 2〈dr(t), r(t)〉+ 4nδdt

= −4〈XeX
>ṽ(t)+u∗−ct − v∞, r(t)〉dt+ 4nδdt+ 4

√
δ〈r(t), dB(t)〉

= −4〈XeX
>r(t)+X>vL+u∗−u′∗+(X>v∞−c)t + v∞, r(t)〉dt+ 4nδdt+ 4

√
δ〈r(t),dB(t)〉

= −4〈X
(

eX
>r(t)+X>vL+u∗−u′∗−µLt − βL

)
, r(t)〉dt+ 4nδdt+ 4

√
δ〈r(t),dB(t)〉

= −4
∑
k∈So

e〈zk,v
L〉
(

e〈zk,r(t)〉 − 1
)
〈zk, r(t)〉dt

− 4
∑
k∈Soc

e〈zk,v
L〉+[u∗]k−[u′∗]k−µLkte〈zk,r(t)〉〈zk, r(t)〉dt+ 4nδdt+ 4

√
δ〈r(t), dB(t)〉.

By the same argument as in Lemma 9, there exists a one dimensional Brownian motion (W (t))t>0

such that for all t ∈ [0, τ∞),

d‖r(t)‖22 = −4
∑
k∈So

βLk

(
e〈zk,r(t)〉 − 1

)
〈zk, r(t)〉dt

− 4
∑
k∈Soc

e〈zk,v
L〉+[u∗]k−[u′∗]k−µLkte〈zk,r(t)〉〈zk, r(t)〉dt+ 4nδdt+ 4

√
δ‖r(t)‖dW (t).

Using that for any x ∈ R, −xex 6 |x|, defining µ = mink∈Soc µLk, and finally noting the sum b =∑
k∈Soc e〈zk,v

L〉+[u∗]k−[u′∗]k‖zk‖2, we get that the second term is upper bounded by be−µt‖r(t)‖2.
The first term is a bit more involved and crucially rests on the strong convexity on the support

given by the invertibility of X>SoXSo . Indeed, first note that for any x ∈ R, x(ex−1) > x2/(1 + |x|).
Moreover if we denote a = mink∈So βLk , Ω = supk∈So ‖zk‖2, and let ρSo > 0 such that X>SoXSo >
ρSoISo ,

−4
∑
k∈So

βLk

(
e〈zk,r(t)〉 − 1

)
〈zk, r(t)〉 6 −4a

∑
k∈So

〈zk, r(t)〉2

1 + |〈zk, r(t)〉|

6 −4a
∑
k∈So

〈zk, r(t)〉2

1 + Ω‖r(t)‖2

6 − 4a

1 + Ω‖r(t)‖2

∑
k∈So

〈zk, r(t)〉2

6 −4aρSo
‖r(t)‖22

1 + Ω‖r(t)‖2
.

Finally,

d‖r(t)‖22 6
(

4nδ − 4aρSo
‖r(t)‖22

1 + Ω‖r(t)‖2
+ 4be−µt‖r(t)‖2

)
dt+ 4

√
δ‖r(t)‖2dW (t). (19)

B.2.3. THE COMPARISON PROCESS (ξδ(t))t>0 AND THE FIRST PART OF THE THEOREM

Everything is now in order to apply the same SDE comparison argument we detailed in the non-
strongly convex case in Subsection B.1.2.
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Proposition 13 Assume that n > 2 and r(0) 6= 0. The stochastic differential equation

dξδ(t) =

(
4nδ − 4aρSo

ξδ(t)

1 + Ω
√
ξδ(t)

+ 4be−µt
√
ξδ(t)

)
dt+ 4

√
δξδ(t)dW (t), (20)

initialised at ξδ(0) = ‖r(0)‖22, has a unique strong solution (ξδ(t))t>0, which is defined globally in
time. Besides:

(i) the process (ξδ(t))t>0 has the same law as (‖Rδ(t)‖22)t>0, where (Rδ(t))t>0 is the unique
strong solution to the n-dimensional SDE

dRδ(t) =

(
−2aρSo

Rδ(t)

1 + Ω‖Rδ(t)‖2
+ 2be−µt

Rδ(t)

‖Rδ(t)‖2

)
dt+ 2

√
δdB(t), (21)

initialised at Rδ(0) = r(0);

(ii) almost surely, for any t ∈ [0, τ∞), ‖r(t)‖22 6 ξδ(t).

Proof The well-posedness of (21) follows from Veretennikov (1981), and Itô’s formula together with
Lévy’s characterisation show that the process (‖Rδ(t)‖22)t>0 is a weak solution to (20). However,
in contrast with the proof of Proposition 10, the presence of the square root in the drift of the
SDE (20) prevents us from using standard results to claim pathwise uniqueness. To recover this
property, we note that since the drift remains Lipschitz continuous, uniformly in time, on all sets
of the form [ε,+∞), ε > 0, any two strong solutions to (20) coincide, and have the same law as
the process ‖Rδ(t)‖2, until they hit 0. As a consequence, to obtain pathwise uniqueness for (20)
it suffices to check that, almost surely, Rδ(t) never hits 0. But since the drift in (21) is bounded,
uniformly in time, the Girsanov theorem shows that for any T > 0, the laws of (Rδ(t))t∈[0,T ] and
(r(0) + 2

√
δB(t))t∈[0,T ] are equivalent, and therefore

P
(
∃t ∈ [0, T ] : Rδ(t) = 0

)
= P

(
∃t ∈ [0, T ] : r(0) + 2

√
δB(t) = 0

)
= 0,

where the second equality is well-known in dimension n > 2. This implies that, almost surely,
Rδ(t) 6= 0, for any t > 0, and therefore completes the proof of pathwise uniqueness for (20).

We now detail the comparison between ‖r(t)‖22 and ξδ(t). For anyM > M0 := 1∨‖r(0)‖−22 , we
set τ ′M := inf{t ∈ [0, τ∞) : ‖r(t)‖22∧ξδ(t) 6 1/M or ‖β(t)‖2 >M}, so that lim supM→+∞ τ

′
M =

τ0 ∧ τ∞, with τ0 := inf{t ∈ [0, τ∞) : ‖r(t)‖2 = 0} (we recall that, almost surely, ξδ(t) never hits
0). With similar arguments to (Revuz and Yor, 2013, Theorem 3.7, Chapter IX), we may write

E
[(
‖r(t ∧ τ ′M )‖22 − ξδ(t ∧ τ ′M )

)
+

]
6 E

[∫ t∧τ ′M

0
1{‖r(s)‖22>ξδ(s)}

∣∣∣g(s, ‖r(s)‖22)− g(s, ξδ(s))
∣∣∣ ds] ,
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where g(t, ξ) = 4nδ − 4aρSoξ/(1 + Ω
√
ξ) + 4be−µt

√
ξ is the drift of (20). Denoting by CM the

Lipschitz constant of g(s, ·) on [1/M,+∞), which is uniform in s, we get

E
[(
‖r(t ∧ τ ′M )‖22 − ξδ(t ∧ τ ′M )

)
+

]
6 CME

[∫ t∧τ ′M

0
1{‖r(s)‖22>ξδ(s)}

∣∣∣‖r(s)‖22 − ξδ(s)∣∣∣ds
]

= CME

[∫ t∧τ ′M

0

(
‖r(s)‖22 − ξδ(s)

)
+

ds

]

6 CM

∫ t

0
E
[(
‖r(s ∧ τ ′M )‖22 − ξδ(s ∧ τ ′M )

)
+

]
ds,

which by Gronwall’s lemma and the continuity of the trajectories of ‖r(t ∧ τ ′M )‖22 − ξδ(t ∧ τ ′M )
yields, almost surely,

∀t > 0, ∀M > M0, ‖r(t ∧ τ ′M )‖22 6 ξδ(t ∧ τ ′M ),

and therefore, almost surely,

∀t ∈ [0, τ∞ ∧ τ0), ‖r(t)‖22 6 ξδ(t).

To complete the proof, let us fix T ∈ [0, τ∞) and call z := inft∈[0,T ] ξ
δ(t) > 0. The previous

argument shows that ‖r(t)‖22 6 ξδ(t) for all t 6 T∧τ0, and if τ0 < T , this inequality remains trivially
true as long as t 6 τ

(1)
z := inf{t ∈ [τ0, T ] : ‖r(t)‖22 > z}. But if τ (1)z < T , the argument above can

be repeated to show that the inequality holds up to τ (1)0 := inf{t ∈ [τ
(1)
z , T ] : ‖r(t)‖2 = 0}, and

then, if τ (1)0 < T , up to τ (2)z := inf{t ∈ [τ
(1)
0 , T ] : ‖r(t)‖22 > z}. Iterating the argument, we thus

construct two sequences τ (l)0 , τ
(l)
z 6 T such that ‖r(τ (l)0 )‖2 = 0 if τ (l)0 < T , and ‖r(τ (l)z )‖22 > z

if τ (l)z < T , and such that the inequality ‖r(t)‖22 6 ξδ(t) holds on [0, τ
(l)
0 ]. By continuity of the

trajectory of r(t) on [0, T ], there are only finitely many τ (l)0 , τ
(l)
z which are strictly below T , and

therefore the inequality ‖r(t)‖22 6 ξδ(t) finally holds on [0, T ].

We are now in place to give a bound on the iterates β(t, ṽ(t)) for all t ∈ [0, τ∞).

Theorem 14 Let (ξδ(t))t>0 be defined in Proposition 13.

(i) On the support: almost surely,

∀t ∈ [0, τ∞), βLSoe−‖X
>
So‖
√
ξδ(t) 6 βSo(t) 6 βLSoe‖X

>
So‖
√
ξδ(t).

(ii) Outside the support: there exists C > 0, depending on X , y and β(0), such that, almost surely,

∀t ∈ [0, τ∞), βSoc(t) 6 C exp

(
‖X>Soc‖

√
ξδ(t)1Soc − µLSoct

)
.

In particular, τ∞ = +∞, almost surely.

26



LABEL NOISE (STOCHASTIC) GRADIENT DESCENT IMPLICITLY SOLVES THE LASSO

Proof We transfer the estimates on ṽ(t) to the iterates of the initial flow on the linear predictor β(t).
Indeed as X>ṽ(t) = X>r(t) +X>v∞t+X>vL − [[u∗]So , u′∗]

>, we get for t ∈ [0, τ∞),

β(t) = exp
(
X>ṽ(t) + u∗ − ct

)
= exp

(
X>r(t) +X>v∞t+X>vL − [[u∗]So , u′∗]

> + u∗ − ct
)

= exp
(
X>r(t) +X>vL + [0So , [u∗]Soc − u′∗]> + (X>v∞ − c)t

)
= exp

(
X>r(t) +X>vL + [0So , [u∗]Soc − u′∗]> − µLt

)
,

thanks to Lemma 12. On the support, we have [eX
>vL ]So = βLSo and µLSo = 0. Hence, βSo(t) =

βLSo � exp
(
X>Sor(t)

)
, and the first part of the Theorem follows from Proposition 13. The second

part of the Theorem follows similarly, with C = maxk∈Soc exp([X>vL]k + [u∗]k − [u′∗]k). Finally,
the fact that ξδ(t) does not explode yields τ∞ = +∞, which completes the proof.

B.2.4. STUDY OF THE PROCESS (Rδ(t))t>0 AND THE SECOND PART OF THE THEOREM

This section is dedicated to a detailed study of the long-time behaviour of the process (Rδ(t))t>0,
and therefore of (ξδ(t))t>0. To proceed, we first rewrite (20) under the form

dRδ(t) = G(t, Rδ(t))dt+ 2
√
δdB(t), G(t, r) := −∇V (r) + 2be−µt

r

‖r‖2
,

where V : Rn → R is the C1 function with globally bounded gradient defined by

V (r) :=
2aρSo

Ω2
(Ω‖r‖2 − log(1 + Ω‖r‖2)) . (22)

We also introduce the time-homogeneous diffusion process

dR
δ
(t) = −∇V (R

δ
(t))dt+ 2

√
δdB(t), R

δ
(0) = r(0).

We first state a trajectorial comparison result between Rδ(t) and Rδ(t).

Proposition 15 Almost surely,

sup
t>0
‖Rδ(t)−Rδ(t)‖2 6

b

µ
, and lim

t→+∞
‖Rδ(t)−Rδ(t)‖2 = 0.

Proof Step 1. Convexity of V . We start the proof by showing that V is convex on Rn and bounding
∇2V (r) from below. To proceed, we compute

∇2V (r) =
2aρSo

(1 + Ω‖r‖2)2

(
(1 + Ω‖r‖2)In − Ω

rr>

‖r‖2

)
, (23)
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so that, for any u ∈ Rn,

〈u,∇2V (r)u〉 =
2aρSo

(1 + Ω‖r‖2)2

(
(1 + Ω‖r‖2)‖u‖22 − Ω

〈r, u〉2

‖r‖2

)
>

2aρSo

(1 + Ω‖r‖2)2
(
(1 + Ω‖r‖2)‖u‖22 − Ω‖r‖2‖u‖22

)
=

2aρSo

1 + Ω‖r‖2
‖u‖22.

As a consequence, for any r, r ∈ Rn,

〈r − r,∇V (r)−∇V (r)〉 =

〈
r − r,

∫ 1

0

d

dt
∇V (tr + (1− t)r)dt

〉
=

∫ 1

0

〈
r − r,∇2V (tr + (1− t)r)(r − r)

〉
dt

> 2aρSo

∫ 1

0

‖r − r‖22
1 + Ω‖tr + (1− t)r‖2

dt

> 2aρSo
‖r − r‖22

1 + Ω(‖r‖2 ∨ ‖r‖2)
.

Step 2. Global estimate. Using only the nonnegativity of 〈Rδ(t) − Rδ(t),−∇V (R
δ
(t)) +

∇V (Rδ(t))〉, we get, for any t > 0,

d

dt
‖Rδ(t)−Rδ(t)‖22 = 2

〈
R
δ
(t)−Rδ(t),−∇V (R

δ
(t)) + 2be−µt

Rδ(t)

‖Rδ(t)‖2
+∇V (Rδ(t))

〉
6 2be−µt‖Rδ(t)−Rδ(t)‖2,

and therefore the global estimate on ‖Rδ(t)−Rδ(t)‖2 follows from Lemma 16.
Step 3. Long time convergence. We shall make use of this global estimate to prove the long time

convergence of ‖Rδ(t)−Rδ(t)‖2 to 0. We first note that, for any r, r ∈ Rn, if ‖r− r‖2 6 b/µ, then
‖r‖2 ∨ ‖r‖2 6 ‖r‖2 + b/µ and thus

〈r − r,∇V (r)−∇V (r)〉 > 2aρSo
‖r − r‖22

1 + Ω(‖r‖2 + b/µ)
.

Let us now fix M > 1 large enough for the inequality

µ′ := 2aρSo/(1 + Ω(M + b/µ)) < µ

to hold, and define

τ−0 := inf{t > 0 : ‖Rδ(t)‖2 6M − 1},

τ+` := inf{t > τ−` : ‖Rδ(t)‖2 >M}, ` > 0,

τ−` := inf{t > τ+`−1 : ‖Rδ(t)‖2 6M − 1}, ` > 1.
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Since ‖Rδ(t)‖22 satisfies a time-homogeneous SDE and is ergodic, the sequences of positive random
variables (τ+` − τ

−
` )`>0 and (τ−`+1 − τ

+
` )`>0 are well-defined, and by the strong Markov property

they are iid and therefore τ−` , τ
+
` → +∞ with `. Besides, on account on the previous discussion, we

have

d

dt
‖Rδ(t)−Rδ(t)‖22 6 −2µ′‖Rδ(t)−Rδ(t)‖22 + 2be−µt‖Rδ(t)−Rδ(t)‖2, on [τ−` , τ

+
` ],

and
d

dt
‖Rδ(t)−Rδ(t)‖22 6 2be−µt‖Rδ(t)−Rδ(t)‖2, on [τ+` , τ

−
`+1].

We deduce from Lemma 16 that

‖Rδ(τ−0 )−Rδ(τ−0 )‖2 6
b

µ

(
1− e−µτ

−
0

)
,

and for any t ∈ [τ−` , τ
+
` ],

‖Rδ(t)−Rδ(t)‖2 6 e−µ
′(t−τ−` )‖Rδ(τ−` )−Rδ(τ−` )‖2 +

be−µ
′t

µ− µ′
(

e−(µ−µ
′)τ−` − e−(µ−µ

′)t
)
,

and for any t ∈ [τ+` , τ
−
`+1],

‖Rδ(t)−Rδ(t)‖2 6 ‖R
δ
(τ+` )−Rδ(τ+` )‖2 +

b

µ

(
e−µτ

+
` − e−µt

)
.

As a consequence, the sequence Q` := ‖Rδ(τ−` ) − Rδ(τ−` )‖2 satisfies the recursive inequation
Q`+1 6 α`Q` + β`, where

α` := e−µ
′(τ+` −τ

−
` ), β` :=

be−µ
′τ+`

µ− µ′
(

e−(µ−µ
′)τ−` − e−(µ−µ

′)τ+`

)
+
b

µ

(
e−µτ

+
` − e−µτ

−
`+1

)
,

and moreover we have the intermediate (rough) control

sup
τ−` 6t6τ−`+1

‖Rδ(t)−Rδ(t)‖2 6 Q` +
b

µ− µ′
e−(µ−µ

′)τ−` +
b

µ
e−µτ

+
` ,

so that, since τ−` , τ
+
` → +∞, to show that ‖Rδ(t)−Rδ(t)‖2 → 0 is suffices to show that Q` → 0.

The recursive inequation yields, for any ` > 1,

Q` 6

(
`−1∏
m=0

αm

)
Q0 +

`−1∑
m=0

(
`−1∏

k=m+1

αk

)
βm.

On the one hand,
`−1∏
m=0

αm = exp

(
−µ′

`−1∑
m=0

(τ+m − τ−m)

)
,
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and since the sequence (τ+m−τ−m)m>0 is iid with P(τ+0 −τ
−
0 > 0) = 1, we have

∑`−1
m=0(τ

+
m−τ−m)→

+∞, almost surely. On the other hand, we first note that

βm =
b

µ− µ′
(

e−µ
′(τ+m−τ−m)e−µτ

−
m − e−µτ

+
m

)
+
b

µ

(
e−µτ

+
m − e−µτ

−
m+1

)
6

b

µ− µ′
(

e−µτ
−
m − e−µτ

−
m+1

)
,

so that
`−1∑
m=0

(
`−1∏

k=m+1

αk

)
βm 6

b

µ− µ′
`−1∑
m=0

(
`−1∏

k=m+1

αk

)(
e−µτ

−
m − e−µτ

−
m+1

)

=
b

µ− µ′
`−1∑
m=0

e−µτ
−
m(1− αm)

(
`−1∏

k=m+1

αk

)
− e−µτ

−
` .

Since τ−` → +∞ when `→ +∞, the remainder e−µτ
−
` vanishes when `→ +∞. Besides, for any

ε > 0, there exists m0 such that for all m > m0, e−µτ
−
m 6 ε. We may then write, for `− 1 > m0,

`−1∑
m=0

e−µτ
−
m(1−αm)

(
`−1∏

k=m+1

αk

)
6

m0−1∑
m=0

e−µτ
−
m(1−αm)

(
`−1∏

k=m+1

αk

)
+ε

`−1∑
m=m0

(1−αm)

(
`−1∏

k=m+1

αk

)
.

Each one of the m0 terms of the sum in the first term of the right-hand side goes to 0 when `→ +∞,
while the second term is telescopic and rewrites

ε
`−1∑

m=m0

(1− αm)

(
`−1∏

k=m+1

αk

)
= ε

`−1∑
m=m0

(
`−1∏

k=m+1

αk −
`−1∏
k=m

αk

)
6 ε.

Therefore, for any ε > 0, we get lim sup`→+∞Q` 6 ε, which proves that Q` → 0, almost surely,

and finally ‖Rδ(t)−Rδ(t)‖2 → 0 as well.

Lemma 16 (A Gronwall-type estimate) Let 0 6 µ′ < µ and b > 0. Assume that u(t) > 0
satisfies

u′(t) 6 −2µ′u(t) + 2be−µt
√
u(t)

on some interval [t1, t2]. Then

∀t ∈ [t1, t2],
√
u(t) 6 e−µ

′(t−t1)
√
u(t1) +

be−µ
′t

µ− µ′
(

e−(µ−µ
′)t1 − e−(µ−µ

′)t
)
.

Proof We first set û(t) = e2µ
′tu(t), so that

û′(t) 6 2be(2µ
′−µ)t√u(t) = 2be(µ

′−µ)t√û(t).

For any ε > 0, we therefore deduce that the function ûε defined by ûε(t) = û(t) + ε satisfies
ûε(t) > 0 and, for any t ∈ [t1, t2],

û′ε(t) = û′(t) 6 2be(µ
′−µ)t√û(t) 6 2be(µ

′−µ)t√ûε(t).
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Therefore √
ûε(t)−

√
ûε(t1) =

∫ t

t1

û′ε(s)

2
√
ûε(s)

ds 6 b

∫ t

t1

e(µ
′−µ)sds.

We deduce that √
e2µ′tu(t) + ε 6

√
e2µ′t1u(t1) + ε+ b

∫ t

t1

e(µ
′−µ)sds,

in which we take the ε→ 0 limit to rewrite√
u(t) 6 e−µ

′(t−t1)
√
u(t1) + be−µ

′t

∫ t

t1

e(µ
′−µ)sds,

and obtain the claimed estimate.

We are now ready to complete the proof of Theorem 4 (see next subsection for the concentration
property). To proceed, we first note that it is easily checked that

Zδ :=

∫
Rn

exp

(
−V (r)

2δ

)
dr < +∞,

which allows to define the probability measure

µδ∞(dr) :=
1

Zδ
exp

(
−V (r)

2δ

)
dr

on Rn. By standard arguments, the process (R
δ
(t))t>0 is ergodic with respect to the probability

measure µδ∞. In particular, Rδ(t) converges in distribution towards Rδ∞ ∼ µδ∞, which combined
with Proposition 15 entails that Rδ(t) converges in distribution to Rδ∞, and therefore ξδ(t) converges
in distribution to ξδ∞ = ‖Rδ∞‖22.

Outside the support, it remains to show that

lim sup
t→+∞

‖X>Soc‖
√
ξδ(t)1Soc − µLSoct = −∞, almost surely.

We start by noting that, for any t > 0,

R
δ
(t)

t
=
r(0)

t
− 1

t

∫ t

0
∇V (R

δ
(s))ds+ 2

√
δ
B(t)

t
.

Since V is even, by the ergodic theorem,

lim
t→+∞

1

t

∫ t

0
∇V (R

δ
(s))ds =

∫
Rn
∇V (r)µδ∞(dr) = 0, almost surely,

while by the law of the iterated logarithm,

lim
t→+∞

r(0)

t
+ 2
√
δ
B(t)

t
= 0, almost surely.

31



PILLAUD-VIVIEN REYGNER FLAMMARION

Therefore,

lim
t→+∞

R
δ
(t)

t
= 0, almost surely,

and by Proposition 15 we deduce that

lim
t→+∞

Rδ(t)

t
= 0, almost surely.

Since the processes (‖Rδ(t)‖)t>0 and (
√
ξδ(t))t>0 have the same law, we deduce that

lim
t→+∞

√
ξδ(t)

t
= 0, almost surely,

which proves the claim.

B.2.5. POINCARÉ INEQUALITY AND CONCENTRATION PROPERTIES

We first show, in Lemma 17, that the probability measure µδ∞ satisfies a Poincaré inequality with
a constant κδ on which we provide an explicit bound. We recall that it means that, for any smooth
function f on Rn,∫

Rn

(
f(r)−

∫
Rn
f(r′)µδ∞(dr′)

)2

µδ∞(dr) 6 κδ
∫
Rn
‖∇f(r)‖2µδ∞(dr).

From this result, the concentration inequality (14) stated in Theorem 4 follows from Eq. (4.4.6),
p. 192 in Bakry et al. (2014). Last, the fact that κδ = O(δ) in the δ → 0 regime follows from a basic
application of the Laplace method, which is detailed in Remark 18.

Lemma 17 (Poincare constant) The probability measure µδ∞ satisfies a Poincaré inequality with
constant κδ 6 13(σδ)2/n, where

σδ :=

√∫
Rn
‖r‖22µδ∞(dr) =

√
E[‖Rδ∞‖22].

Proof Let us denote by µδ∞(r) the density of the probability measure µδ∞(dr) with respect to the
Lebesgue measure on Rn. It is an immediate computation to show that the probability density µ̃δ∞
defined by

µ̃δ∞(r̃) :=

(
σδ√
n

)n
µδ∞

(
σδ√
n
r̃

)
satisifes ∫

Rn
‖r̃‖22µ̃δ∞(r̃)dr̃ = n,

and that this density writes as a log-concave function of ‖r̃‖2. Therefore, by Theorem 1 in Bobkov
(2003), it satisfies a Poincaré inequality with constant κ̃δ ≤ 13, and the final statement follows from
an elementary rescaling argument for Poincaré inequalities.
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Remark 18 (Estimate of the Poincare constant) Finally let us give some estimate on the Poincaré
constant when δ is small. To give an equivalent of (σδ)2 =

∫
Rn ‖r‖

2
2µ

δ
∞(dr) with the Laplace method,

we approximate V by a quadratic near its minimum in 0Rn , V (r) ' V (0) + 1
2〈r,∇

2V (0)r〉 =
aρSo‖r‖22 by the equation (22). Therefore by the Laplace method, in the small δ regime, the
distribution with density µδ∞ should approximately behave as a centered Gaussian random variable,
with covariance matrix δ/(aρSo)In. In particular, this gives an upperbound of the Poincaré constant:

κδ 6
13(σδ)2

n
' 13δ

aρSo
= O(δ).

Finally remark that in the small δ limit, this estimate is tight up to the numerical constant as a lower
bound with numerical constant 1 is also given in Bobkov (2003).
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