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Abstract

We study stochastic convex optimization under infinite noise variance. Specifically, when the
stochastic gradient is unbiased and has uniformly bounded (1 + )-th moment, for some x € (0, 1],
we quantify the convergence rate of the Stochastic Mirror Descent algorithm with a particular class
of uniformly convex mirror maps, in terms of the number of iterations, dimensionality and related
geometric parameters of the optimization problem. Interestingly this algorithm does not require any
explicit gradient clipping or normalization, which have been extensively used in several recent em-
pirical and theoretical works. We complement our convergence results with information-theoretic
lower bounds showing that no other algorithm using only stochastic first-order oracles can achieve
improved rates. Our results have several interesting consequences for devising online/streaming
stochastic approximation algorithms for problems arising in robust statistics and machine learning.

Keywords: Mirror descent algorithm, uniformly convex functions, heavy-tailed gradient noise,
oracle complexity, information-theoretic lower bounds.

1. Introduction

For a compact convex set S C R?, and a convex objective function f : S — R, we consider the
optimization problem

minimize f(z), (1.1)
€S

in the stochastic first-order oracle model where one has access to noisy unbiased gradients at ev-
ery iteration of an algorithm. This problem naturally emerges in many statistical learning tasks,
thus there has been a substantial amount of research dedicated to understanding convergence guar-
antees as well as information-theoretic lower bounds in the classical setting where the noise has
finite variance (Bubeck, 2014; Nesterov, 2018). However, recent studies have shown empirical and
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theoretical evidence that stochastic gradients arising from modern learning problems may not have
finite variance, in which case the optimal convergence guarantees and computational lower bounds
for solving (1.1) are not well understood.

Indeed, heavy-tailed behavior is ubiquitous in statistical learning. Such behavior may either
arise through the stochastic iterative training process (Hodgkinson and Mahoney, 2021; Camuto
et al., 2021; Giirbiizbalaban et al., 2021) or due to the underlying statistical model (for example,
this is observed in training attention models (Zhang et al., 2020) and in training convolutional
networks (Simsekli et al., 2019b; Giirbiizbalaban and Hu, 2021)). In the regime where stochas-
tic gradients have infinite variance, while the vanilla stochastic gradient descent (SGD) algorithm
converges under strong convexity-type assumptions (Wang et al., 2021), more robust methods like
gradient-clipped SGD (used, for example, by Zhang et al. (2020) for attention models) turn out to
have optimal rates under strong convexity when the dimension is treated as a constant. However, it
is not clear if gradient-clipped SGD or any other first-order method would exhibit similar optimality
guarantees in the case of convex problems or when the dimension is not treated as a constant.

In this regard, it is highly desirable to obtain a rigorous understanding of the oracle complexity
of stochastic convex optimization in the infinite noise variance setting. Such an understanding boils
down to two fundamental questions:

An information-theoretic question: What is the best achievable lower bound in convex opti-
mization in the stochastic first-order oracle model under infinite noise variance?

An algorithmic complexity question: Is there an optimal optimization algorithm that achieves
this information-theoretic lower bound, under the same stochastic first-order oracle model?

We provide concrete answers to both of these questions, where the optimal algorithm is, yet again,
stochastic mirror descent (SMD).

Mirror descent is a first-order method which generalizes the standard gradient descent to the
non-Euclidean setting by relying on a mirror map that captures the underlying geometric structure of
the problem (Nemirovski and Yudin, 1983). Although originally developed for deterministic frame-
works, SMD is known to achieve the information-theoretic lower bound in the classical stochastic
first-order oracle model where the noise has finite variance (Agarwal et al., 2012). This is remark-
able as by simply choosing the appropriate mirror map, one can design algorithms that are optimal
in their respective oracle models. This property of mirror descent has been exploited in many works
for establishing the algorithm’s optimality in classical settings (Nemirovski et al., 2009; Sridharan,
2012), and for demonstrating its universality in the online setting (Duchi et al., 2010; Srebro et al.,
2011). In this work, we show that the stochastic mirror descent with an appropriate mirror map has
an inherent robustness to heavy-tailed gradient noise, and achieves the information-theoretic lower
bound for stochastic convex optimization under infinite noise variance. Towards that we make the
following contributions.

* We establish the first non-asymptotic convergence of stochastic mirror descent algorithm in
the heavy-tailed case where the gradient noise has infinite variance. We provide explicit rate
estimates for a class of convex optimization problems in Theorem 6 and Corollary 7 for a
variety of uniformly convex mirror maps.

* We establish lower bounds for the minimax error in Theorem 9, for constrained convex opti-
mization in the first-order stochastic oracle model under infinite gradient noise variance.
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* We show that for a careful choice of mirror map (which depends on the largest defined mo-
ment order in the gradient noise), the stochastic mirror descent algorithm achieves the mini-
max lower bound. This result proves optimality of the mirror descent algorithm in the heavy-
tailed stochastic first-order oracle setting.

* Remarkably, the stochastic mirror descent algorithm achieves optimal bounds for the heavy-
tailed setting without explicit gradient clipping, To the best of our knowledge, our results
provide the first example of an optimal first-order optimization method for heavy-tailed set-
ting without gradient clipping, or normalizing the magnitude of the stochastic gradients.

1.1. Related work

Earlier works on stochastic approximation with infinite variance largely focus on investigating the
asymptotic behavior of stochastic approximation methods. Krasulina (1969) first establish the al-
most sure and LP convergence for the one-dimensional stochastic approximation process without
variance. Anantharam and Borkar (2012) demonstrate the stability and convergence properties of
multivariate stochastic approximation algorithms with the heavy-tailed noise. Recently, the works
of Simsekli et al. (2019a), Zhang et al. (2020), Chen et al. (2020), and Wang et al. (2021) investigate
the behavior of SGD under infinite noise variance with various types of objectives. Simsekli et al.
(2019a) considers non-convex optimization and analyze the SGD as a discretization of a stochastic
differential equation driven by a Lévy process. Zhang et al. (2020) and Chen et al. (2020) study
the convergence of SGD with gradient clipping, and establish the dimension-free optimal bound
with strongly convex and non-convex objectives. Wang et al. (2021) provide the convergence rate
of SGD with a strongly convex objective function under a state-dependent and heavy-tailed noise;
see also Mirek (2011). High-probability bounds under certain moment assumptions (but not infinite
variance) have also recently been established in Nazin et al. (2019); Cutkosky and Mehta (2021);
Davis et al. (2021); Gorbunov et al. (2021); Tsai et al. (2021); Lou et al. (2022).

There exists a vast literature on mirror descent algorithm in a stochastic optimization setting
with the stochastic gradient having finite variance (Nemirovski et al., 2009; Bubeck, 2014; Beck,
2017). Another line of work (Sridharan and Tewari, 2010; Srebro et al., 2011) establishes the
(near) optimal regret rate of the mirror descent with the aid of uniformly convex mirror maps in a
deterministic online setting. SMD was analyzed with almost surely bounded stochastic gradient, for
composite problems, in Duchi et al. (2010). Mirror descent in the non-i.i.d. setting was considered
in Duchi et al. (2012). We emphasize here that these works consider the standard finite variance
noise setting, and thus the uniformly convex mirror map proposed in there is inadequate to deal with
the infinite variance noise that we focus on in this work. Focusing on the finite-sum setup, D’Orazio
et al. (2021) investigate the convergence of SMD in (relative) smooth optimization under the finite
optimal objective difference assumption (Loizou et al., 2021), which allows for convergence without
bounded gradient or variance assumptions and achieves exact convergence under interpolation.

More broadly, robust statistics is a classical topic with too large a literature to summarize com-
pletely. We refer the reader to Huber (2004) for an overview. The revival of robust statistics in
modern mathematical statistics and learning theory communities arguably started with the work
of Catoni (2012). Since then, there has been intense work on robust mean and covariance estima-
tion (Minsker, 2015; Cardot et al., 2017; Minsker, 2018; Lugosi and Mendelson, 2019a,b; Hopkins,
2020), and robust empirical risk minimization (Hsu and Sabato, 2016; Diakonikolas et al., 2019;
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Geoffrey et al., 2020; Lecué and Lerasle, 2020; Bartl and Mendelson, 2021). However, such results
are mainly statistical in nature and are not directly applicable for stochastic approximation with
heavy-tailed gradients.

Outline of the paper. The rest of the paper is organized as follows. In Section 2, we provide a
definition of the stochastic first-order oracle model considered in this work, and a review of the
stochastic mirror descent (SMD) algorithm focusing on uniform convexity and smoothness prop-
erties. In Section 3, we establish the convergence of SMD with a particular choice of mirror map,
and illustrate the effect of this choice on heavy-tailed noisy gradient updates. We then provide
information-theoretic lower bounds in Section 4, proving the optimality of SMD. We conclude in
Section 5 with a discussion and future directions. All proofs are deferred to the Appendix.

2. Stochastic Mirror Descent: Preliminaries

Consider a setup in which a convex function f is minimized over a convex and compact set S, using
a stochastic optimization method M, which produces the iterate z; € S at iteration ¢t. We assume
that the sequence of iterates {z;};>0 is adapted to the filtration {F;}+>0 and the method M has
access to the following stochastic first-order oracle (SFO).

Assumption 1 (Stochastic First-order Oracle) For all t > 0, given the current iterate x, the
SFO produces random variables fi11 € R and gs11 € R? that are Fiy1-measurable, satisfying the
following two properties.

1. Unbiasedness: For everyt > 0, we have
Elfis1|Fi) = fz1) and Elgi1|F] € Of ().

2. Finite (1 + k)-th moment: For some . € (0,1],q € [1,00], and o > 0, we have

sup E[||ge |47 Fe] < o'
t>0

Here, 0f (x) := {v € R | f(y) > f(x) + (v,y — x) forall y € R?} denotes the sub-differential
set of f at the point x and || - ||, denotes the g-norm. We note that the bounded (1 + x)-th mo-
ment assumption with £ = 1 corresponds to the classical setting of having stochastic gradient with
finite second-moments (Agarwal et al., 2012). In this paper, we are mainly interested in the case
where k < 1, when the variance of the stochastic gradient is undefined. Perhaps, the most pop-
ular stochastic optimization method M operating under SFO is the (projected) stochastic gradient
descent (SGD) in the Euclidean setting, as given by

Y41 = Tt —NGge41  and 441 = arg Igliﬂ 2 — yea 13- (SGD)
xE

Remark 1 Any function f that is compatible with an SFO satisfying Assumption 1 must be Lips-
chitz continuous with respect to q*-norm with Lipschitz constant L < o. To see this, we note that a
convex function is L-Lipschitz on S in || - ||¢~ if and only if

sup max ||v||q < L
0D o 1Vl = L
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where q,q* € [1, 00| satisfy % + q% = 1. Moreover, for v, € Of(x;) elementary calculations imply

1
loellg = IElgeralFilllg < ElllgectllglFe] < (Ellgerally™|F) T <o, V> 1.

Mirror descent, first introduced by Nemirovski and Yudin (1983), refers to a family of al-
gorithms for first-order optimization (Beck and Teboulle, 2003; Cesa-Bianchi and Lugosi, 2006;
Bubeck, 2014), which was originally developed to exploit the geometry of the problem. Compared
to the classical gradient descent for which the iterates are updated along the direction of the negative
gradient, in mirror descent, the updates are performed in the “mirrored” dual space determined by a
transformation called the mirror map. The family of mirror descent algorithms extends naturally to
the stochastic first-order oracle setup, which is the main focus of this paper.

For a function ¥ : R? — R that is strictly-convex, continuously differentiable with a norm
coercive gradient (i.e. im | 5,00 [|V¥()||2 = 00), we denote its Fenchel conjugate and Bregman
divergence respectively as

W () i= sup {(ga) — W)} and Dyle,y) i= (o) = ¥ly) — (T¥().y )

The stochastic mirror descent (SMD) updates are defined as

Yrr1 = VI* (V\P(xt) — nng) and x4 = arg rgin Dy (z,yp41)- (SMD)
BAS
The conditions on ¥ imply that the (SMD) update is well-defined, and V¥ is an invertible map that
satisfies (VW) ™! = VU* (Cesa-Bianchi and Lugosi, 2006). The map V¥ is also referred to as the
mirror map and makes (SMD) adapt to the geometric properties of the optimization problem.

The mirror map. In the (SMD) update, the descent is performed in the dual space which is the
mirror image of the primal space under the mirror map. Different choices of the mirror maps turn
out to be suitable for different optimization problems, and the right mirror map corresponds to
understanding the geometry of the problem, the objective function we minimize as well as the noise
model. Notable examples include:

* Stochastic Gradient Descent: For the function ¥(z) = 1 ||z||3, the mirror map V¥ reduces to
the identity map, and its Bregman divergence reduces to Dy (z,y) = 1 ||z — y||3. Therefore, the
update rule (SMD) reduces to the well-known (SGD) update.

* p-norms Algorithm: For p € (1,2] and the function ¥(z) = 3 ||z||, the (SMD) update re-
duces to the so-called p-norms algorithm (Gentile and Littlestone, 1999), which is optimal for

stochastic convex optimization under finite noise variance (Agarwal et al., 2009).

s Exponentiated Gradient Descent: For the function! ¥(z) = Y ; %jlog z;, the Bregman diver-
gence becomes the unnormalized relative entropy, i.e., Dy(z,y) = >, z;log Z—j -2+
> ; Yj» and the update rule (SMD) corresponds to the exponentiated gradient descent, which is
widely used in the prediction with expert advice setting (Cesa-Bianchi and Lugosi, 2006).

In this work, we observe that the choice of mirror map is beneficial when dealing with the particular
noise model of stochastic gradients. In what follows, we will use uniformly convex mirror maps in
the infinite noise variance setting.

1. The domain of mirror map can also be defined over a smaller set containing the feasible set, see e.g. Bubeck (2014).
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Definition 2 (Uniform convexity) Consider a differentiable convex function ¢ : R* — R, an ex-
ponent r > 2, and a constant K > 0. Then, v is (K, r)-uniformly convex with respect to p-norm if
for any x,y € RY, we have

$(0) 2 9(@) + (V(a),y — ) + o — ol

Uniformly convex functions with » = 2 are known as strongly convex in p-norm, and the case p = 2
reduces to the classical notion of strong convexity in the Euclidean setting.

Definition 3 (Uniform smoothness) A function 1y : RY — R is (K,r)-uniformly smooth with
respect to p-norm if it is differentiable and if there exist a constant K > 0 and an exponent r € (1, 2]
such that for any x,y € RY, we have

9(v) < ¥(@) + (V(a),y — ) + o — ol

Similarly, uniformly smooth functions with » = 2 are known as strongly smooth and the case p = 2
reduces to the classical notion of first-order smoothness in the Euclidean setting.

Uniform convexity and uniform smoothness are dual properties by Fenchel conjugacy (Zali-
nescu, 1983; Azé and Penot, 1995), a property that is better known for their strong versions. Given
the norm || - ||, with p € [1, 00|, denote its associated dual norm by || - ||+, where 1/p + 1/p* = 1.
We recall the statement below both for completeness and to obtain quantitative statements later in
Proposition 5 for a special class of uniformly convex functions.

Proposition 4 Consider a differentiable convex function v : R* — R, an exponent r > 2, and
a constant K > 0. Then, ¢ is (K, r)-uniformly convex with respect to p-norm if and only if {* is

1
(Kﬁ r—1,155 ) -uniformly smooth with respect to p*-norm.

Next we quantify the uniform convexity and smoothness parameters of functions of the form
%H “|I5, for p, 7 € (1, 00). Gradients of these functions with an appropriate choice of 7 and p will be
used as mirror maps in the (SMD) update, which will ultimately achieve the minimax lower bound

in the heavy-tailed stochastic oracle setup. It is known in the optimization literature that %||:U||12) is
2

(p — 1)-strongly smooth for p € [2, 00) with respect to p-norm-, see e.g. (Juditsky and Nemirovski,
2008, Ex. 3.2). The next proposition extends this result to p-norm with an arbitrary exponent.

Proposition 5 For k € (0,1], p € [1 + &, 00) and p* satisfying % + z% = 1, we define

14k
lyll,& - @1

14k 1 1 K
Ky = 10max {1, (0~ )}, ow) = 1 [lel "™ and () =

Then, the following statements hold for the Fenchel conjugate functions o and p*.

1. pis (Kp, 1+ k)-uniformly smooth with respect to p-norm.

1

2. p*is (Kp_ i HT“) -uniformly convex with respect to p*-norm.

We emphasize that both ¢ and ¢* in (2.1) depend on the choice of p and consequently p*. We also
note that when x = 1, Proposition 5 recovers the strong convexity/smoothness parameter of %HxH%
up to a constant factor (Juditsky and Nemirovski, 2008; Kakade et al., 2009).

2. Equivalently, § |23+ is 1-strongly convex for p* € (1,2] with respect to. p*-norm (Kakade et al., 2009).
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3. Convergence of SMD with a Uniformly Convex Potential

We now present our main convergence result for the SMD algorithm with a uniformly convex po-
tential, under an SFO that satisfies Assumption 1.

Theorem 6 Let Assumption 1 hold for some q € [1, 00| and define q¢* through % + q% = 1. Fora

Sfunction U which is (1, 1‘);“)-uniformly convex with respect to q*-norm, the (SMD) algorithm with
the corresponding mirror map V'V, initialized at xo = arg min g V(x) and run with step size

Ve o1 e 14k
n=-—-T Ttk where R,* := sup {¥(z) — ¥(z0)}
o K zes

satisfies

1 =1 ' s
E f(Tth> —glelgf(x) < RooT 1+x, (3.1)
t=0
To our knowledge, the above result is the first convergence result for stochastic mirror descent under
a noise model that allows infinite noise variance. In contrast to other gradient-based methods in the
literature dealing with heavy-tailed noise (Zhang et al., 2020; Gorbunov et al., 2020), stochastic
mirror descent does not require (explicit) gradient clipping or gradient normalization to guarantee
convergence. In Section 3.1, we will present an instance to illustrate the intuition behind this result.
The initialization error Ry in the above bound (3.1) introduces the dimension dependency to
the convergence rate. To make this more explicit, in the next corollary, we fix the domain as S =
Boo(R), where Boo (R) is the || - ||oo-ball with radius R, centered at the origin, and use a specific
uniformly convex function as the mirror map.

1
Corollary 7 Let Uy(z) = K} ¢*(x), where K, and ©* are defined in (2.1), and S = B (R).
Under the conditions of Theorem 6, the following statements hold.

i) Forq € [1,1+ k], (SMD) with ¥ := U, for p = 1 + & satisfies

K

( th> min )]glORa(;)H”.

ii) Forq € (1+ K,00), (SMD) with ¥V := U, for p = q satisfies

1

1
( Z:{:t> mlnf ]SlOmaX{l,\/q—l}RUalN

T1l+k

iii) For q € (logd, o], (SMD) with ¥ := U, for p = 1 + log d satisfies

1

T—1
1 d a
— — mi <
E f< ;:O xt> min f(a:)] <10Ro+/logd —

T1l+k

7
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Remark 8 Note that part (ii) of Corollary 7 also covers the case q € (logd,o0); however, the
result in part (iii) provides a better convergence rate in terms of dimension dependence. Part (iii)
includes the boundary case ¢ = 0o, ¢* = 1 at the expense of additional \/log d factor in the rate.

Corollary 7 provides explicit rates for SMD in the infinite noise variance case (x < 1), with
an explicit mirror map. It also recovers the known optimal rates in the finite variance case (k =
1) (Nemirovski and Yudin, 1983; Agarwal et al., 2009, 2012), in which case it reduces to the well-
known p-norms algorithm (Gentile and Littlestone, 1999).

3.1. Robustness of SMD under heavy-tailed noise

We consider a particular instance of (SMD) to pro-

vide additional intuition behind the result. Let ¢ = 2,
W = Uy, where U is defined in Corollary 7. Denote -ng N
the current iterate by x. Based on the noisy gradient & RERAYAJ
g returned by the SFO, the (SMD) update (without D \VA!Md N
projection) is given by \\\\ g

zsmp = VU* (&) for 2 =VU¥(z) —ng ZSGD T~ (&sMD

sl —
_ T 10”“91_5. (3.2)
etiz15™ = o] e
igure 1: Illustration of SMD and SGD updates

under heavy-tailed noise.
For ¢ = 2, the primal and the dual spaces are

both (L?(R%), || - ||l2), and Figure 1 shows the updates in the same space for simplicity, and to
illustrate the robustness of (SMD) in comparison to (SGD). In the case where g is large due to
heavy-tailed noise, SGD update would be significantly impacted, whereas SMD first amplifies the
magnitude of the iterate , then performs the noisy gradient update in the “dual space” to get z, and
finally contracts the resulting value to xsyp. This mechanism of SMD is illustrated in (3.2). The
descent is performed in the dual space, and the inverse mirror map shrinks vectors that are larger in
magnitude more when mapping it back to the primal space. This provides an inherent regularization,
preventing instabilities due to heavy-tailed noise.

We formally prove in the next section that SMD remains optimal for the case x < 1 (i.e., even
for the case when the stochastic gradients have infinite noise variance).

4. Information-theoretic Lower Bounds

In this section, we prove that the rates obtained in Theorem 6 and Corollary 7 are minimax optimal
in an information theoretical sense, up to constants and log(dimension) factors. To prove this result,
we provide lower bounds on the convergence of any algorithm with access to an SFO satisfying
Assumption 1, by extending ideas of Nemirovski and Yudin (1983) and Agarwal et al. (2009, 2012)
to the infinite noise variance setting. We now give a formal definition of minimax complexity of
optimization algorithms in the heavy-tailed setting.
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For a convex and compact set S, consider the function class H.,, consisting of all convex
functions f : S — R, that are L-Lipschitz with respect to ¢*-norm. That is,

Heva (S, L,q") :={f : S — R : fis convex and L-Lipschitz with respect to ¢* norm} .

Recall from Remark 1 that any oracle satisfying Assumption 1 must operate on an objective function
f € Hewx(S, L, ¢*) with L < o. Thus in our minimax bounds in the sequel, we will only consider
such convex and Lipschitz functions.

Recall that a SFO, which we denote as ¢, takes the current iterate x; and returns the noisy
unbiased pair (f;, g;) satisfying Assumption 1. We denote by ®(k, ¢, o), the class of all such SFOs
with parameters (k, ¢, o) appearing in Assumption 1. Given an oracle ¢ € ®(k,q,0), let Mp
represent the class of all optimization methods that query the oracle ¢ exactly 7" times and return
Zr € S as an estimate of the optimum argmin, g f(z) based on those queries. For any method
My € M, consider the error in optimizing f after T iterations,

6(]\47‘7 f7‘97 qb) = f(jT) - mlnf(x) :
€S

Here, 1 should be seen as the output of the method M after T iterations, not necessarily the ¢-th
iterate of the optimization method. For example, Theorem 6 and Corollary 7 provide upper bounds
on the expected value of ¢(Mr, f, S, ¢) for optimization method My corresponding to specific
instances of (SMD), and Z7 corresponds to the average of (SMD) iterates.

To provide lower bounds on the best possible performance, uniformly over all functions f €
H vz, of any optimization method M7 € M, we define the minimax error as

& (Heve, S, @) := MTHel/fvtT feslrllpw Egle(M7, f,S,9)].

The following theorem characterizes the minimax oracle complexity of optimization over the func-
tion class H.,, where the constraint set S is convex and contains B, (R), the || - ||s-ball of radius
R centered at the origin.

Theorem 9 Assume that S O Boo(R). We have the following minimax lower bounds

1. Forallq € [1,1+ k|, we have

d 1+k
sup  ep(Hevpa, S,¢) > C1RL| = .

2. Forall q € (1 + K, 0], we have

sup  ep(Hepa, S, ) > CoRL—— .
¢€®(k,q,0) Ti+w

Here, C'y > 0 and Cy > 0 are universal constants.
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Remark 10 The above minimax lower bounds match the rate estimates in Corollary 7 up to con-
stants for q € [1, 00), and an additional \/log d factor for the case of ¢ = oo, proving the optimality
of the stochastic mirror descent in the infinite noise variance setting.

In contrast to existing lower bounds on the oracle complexity in stochastic convex optimiza-
tion (Agarwal et al., 2009, 2012; Ramdas and Singh, 2013; Iouditski and Nesterov, 2014), The-
orem 9 covers a wider range of stochastic first-order oracles. It extends existing minimax lower
bounds to the heavy-tailed noise setting with x < 1. Our results recover the information-theoretic
lower bound in the classical finite variance setting (Agarwal et al., 2009, 2012, Theorem 1). For the
fixed dimension, those bounds can also be linked to limits of results in (Ramdas and Singh, 2013;

__pP
Iouditski and Nesterov, 2014) who establish the optimal rate {2 (T 2(/’_1)> for p-uniformly con-

vex functions under finite noise variance. Letting p — oo, which corresponds to convex functions,
yields the convergence rate Q(T‘l/ 2), which is recovered by our results with x = 1. Moreover,
our lower bounds provide sharp dimension dependence. This extends the findings in (Raginsky and
Rakhlin, 2009, Theorem 3) and (Nemirovski and Yudin, 1983, Section 5.3.1) who proved a rate of

K
the form (2 (T - m) for the first-order stochastic convex optimization under the heavy-tailed noise
setting while treating the dimension d as a constant.

The proof strategy of the above oracle complexity lower bound involves a standard reduction
from stochastic optimization to a hypothesis testing problem. Similar arguments appeared in earlier
works (Agarwal et al., 2009, 2012; Raginsky and Rakhlin, 2009; Zhang et al., 2020). However,
those works either considered finite-variance noise or treated the dimension as fixed. Covering
heavy-tailed stochastic gradient noise and providing explicit dimension dependence requires a more
delicate construction of the function class and the first-order oracles, which may be of independent
interest. We refer to Appendix D for the details.

5. Discussion

In this work, we showed that stochastic mirror descent, with a particular choice of mirror map,
achieves the information-theoretically optimal rates for stochastic convex optimization when the
stochastic gradient has finite (1+ «)-th moment, for x € (0, 1]. To do so, on the algorithmic side we
showed that our choice of mirror-map has an inherent regularization property to prevent instabilities
that might occur due to heavy-tailed noise in the stochastic gradient. On the information-theoretic
side, we provided minimax lower bounds that match the upper bound achieved by the stochastic
mirror descent algorithm that we analyze. Our work opens up several interesting directions:

1. The current choice of our step-size parameter requires knowledge of the noise level and « (this
is true for all optimization methods that deal with the heavy-tailed noise setting). It is extremely
interesting and practically relevant to develop adaptive procedures that achieve optimal rates
without knowledge of the problem parameters.

2. While our current results are in expectation, establishing results that hold with high-probability
in the infinite-noise variance setting would provide an interesting complement to our results.

3. Developing distributional convergence results for the iterates of (SMD), along with related
statistical inferential procedures is important for uncertainty quantification.

10
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4. Finally, examining the performance of (SMD) in the non-convex setting with infinite-noise
variance, is interesting both theoretically and practically.
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Appendix A. Proofs for Section 2
A.1. Proof of Proposition 4

Proof [Proof of Proposition 4] (=) Since % : R - Ris uniformly convex and differentiable, by
Proposition 20, 1* is differentiable. Moreover, since ¢ is continuous and convex, by (Rockafellar,
1970, Corollary 23.5.1.), (V¢*)™! = (V). Let y1,y2 € R? be two arbitrary vectors, and let
V*(y1) = x1. Then, we have V(1) = y; and by (Rockafellar, 1970, Theorem 23.5)

Y(x1) + " (Y1) = (w1, y1). (A.1)
We can write that

Y*(y2) = sup {(y2, ) — ¥(x)}

z€R4

K
< sup {(y2,x) — <w($1) + (Vy(x1), 2 — z1) + 7Hx — xl\\;)} (by the uniform convexity of )

{

= sup { (2 — 1w~ 1) - %Hx iy} — ) + (o, 1) Gince Tt = )
{
{

x€R4
K
= sup {y2 —yro —a1) — —Ja - 961”;} + 9" (y1) + (VY™ (y1), y2 — v1) (A.2)
z€R
__1 K _ 1 r * *
= sup {y2 =y, K" 7Ta) — —|K **1x|\p} + " (y1) + (VY™ (Y1), y2 — v1)
z€R

r—1

=97 (1) + (VO () ye — ) + KT "

Hyz —-y1”;fi,(byI%0poﬁﬁonl9)

where we use V*(y;) = z1 and (A.1) to obtain (A.2). Then, for arbitrary y; and yo € R%, we

have
r—1

r

U () < 0 () + (VO (), w2 — 1) + KTy —

1
Therefore, ¢* is (K~ =1, 5 )-Holder smooth with respect to p*-norm.

(<) Since ¥ is continuous and convex, by (Rockafellar, 1970, Theorem 12.2), we have

¥(x) = sup {{z,y) — " (y)}.

y€ER4

Let 1, zo € R? be two arbitrary vectors, and let Vi(z1) = yi1. Then, we have Vip*(y;) = z1, and
— 1
(A.1). Let K = K =1, Then,

¥(xg) = sup {(z2,y) — V" (y)}

yERY

* * —r—1 ﬁi
Z;:ﬂg{(xz,w - (w (1) + (Vo ),y = y1) + K——ly = vl )}

—r—1 L
= sup {(962 ey —y) - K——ly—un ”551} — " (y1) + (T2, 41) Gsince V' (1) = 2)
yeR?
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_r—1 o
= sup {(@y — a1y —y1) ~ K——ly — il |+ oe) + (Ve(e),as—a1)  (A3)
yeRd T
——(r— —r—1 (= 5
= sup {(v2 =21, K" y) = K=K "yl + ) + (Vi) 2o — 1)

yERd

——(r—1)
K
:1/)(301) + <v¢(CL‘1), To — I‘1> + T”ZUQ — -Tln;; (by Proposition 19)

=g(en) + (Vi) a2 — ) + s — ],

where we use Vi)(x1) = 1 and (A.1) in (A.3). Therefore, v is (K, 7)-uniformly convex with
respect to p-norm. |

A.2. Proof of Proposition 5
In this part, we use the following notation.
» Forx = (x1,--- ,74)T € R%and p > 1, we let

207V = (sgn(an) | P sgn(aa) el )T

Y

where for t € R,

1, ift>0
sgn(t) =40, ift=0
1, ift<0.

* We note that ||z

» T E R?, is continuously differentiable for all p, 7 > 1, with a gradient of

PP f 0
0, ifx =0.

In the following, for the sake of convenience, we use an abuse of notation, 0], 0%~ := 0, for
any p,r > 1.

A.2.1. AUXILIARY RESULTS

We start with proving some auxiliary results. Let z € R? — {0} and y € R? be two arbitrary vectors.

We let h € R% be
(P~ y)

h =
(7

x, where p € [1 + K, 00).

Proposition 11 Forp € [1 + K, 00), we have
i) (@Y, y) = (@7, h)

i) |hlp < lylp-

16
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Proof

(i) Note that

me sgn(z; ml_Z\mp sgn(x;)|z|sgn(z;)

=1

d
= lzil’ = |zl
i=1

Hence,
(p=1)
S C AT ) ) S )
(ii) Note that |h|, = 21 )] . By using Holder’s inequality, we can write that

1
H II”

d

g < (S 7E) T (Z\yz\p) = 1 1yl

i=1

Hence,

HhH _ ‘<x<p*1>7y>| ”x” Hy”P _ ”y”
P 1 — - p
=] lz]p~

Proposition 12 Let o(x) = - |x|},, where p,r € [1 + K, 00). Then, we have
(Ve(z + h),y — h) =0.

Proof Note thatif x+h = 0, the statement is trivially correct. Therefore, without loss of generality,
we assume that = + h # 0.
By (A.4), we have

(V@(@ +h),y — h) = |z + bl (@ + )P~y — h).

Note that

(@ + h)®D = ((1 N M>x> (p—1)

ER
=a
= (az)P
= (laz [~ sgn(az), -+, Jazal” sgn(aza)) "
= la["~ sgn(a) (sgn(w1)|ea| """, sgn(wa) lzal 71"

= |a[P"'sgn(a)z PV,
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Then,

AV h),y—h) = h|"—P )1 —h
(Vo(z +h),y—h)=|z+h],7( (z+h) ,y —h)

=ax =lajr=1sgn(a)a (1)

= |a|" " |z|5P|a["'sgn(a)(xP~V, y — h) = 0 (by Proposition 11).

Proposition 13 For any p € [1 + k, 00), we have
2+ hlp ™ — 2l = (14 &)l PP (@ h) < 2h)t.
Proof We have

<:C<p_1>7y> 1+kK
R R e M

(p—1) (p—1)
g /a0 )

1+k 1ok N
”x”p HiL’”p ‘ > ”l‘”p (by Proposition 18)
p p

<(1+@+x)
<x<P_1> , y) ‘I—Hi
Ela

=zl + (L4 w) 2l PP P y) + 20n) T

= lally™ + (1 + &)l (71, ) + 2|

Proposition 14 For any p € (1,2] and z,y € R% we have
&+ yls — |z — pla® 1, y) < 2[y|?.
Proof Since p € (1, 2], we have
d
2 +ylp = "lai + wil?
i=1
d
< Z’%“p + p|x¢]pflsgn(xi)yi + 2]yi]p (by Proposition 18)
i=1

= [z} + pz® 1, ) + 2[y .

By rearranging the terms, we can obtain the statement.

Proposition 15 For any p > 2 and .,y € R? we have

Il + gl — Ll — 2l (@~ y) < (0 = Dyl

18
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Proof Since p — 1 > 1, the statement holds when x = 0. Therefore, in the following, without loss
of generality, we assume = # 0.
We prove the statement in two different cases, separately.

o If , then y = tx for some ¢ € R. In that case,

Hl‘llz Tl ||

lo+ylp = (1+)22l; = (1 + 2t + )]zl
= ol + 2tl= ] + ]
= |l + 22 ;P eV, t2) + |t
= 2l + 2laly (@0, y) + Jyl;
<zl + 20l (@0, y) + (0 = Dyl

c If o # ilyl\ ,then z # ty (i.e., x —ty # 0) forall ¢ € R. Then, g(t) = |z +ty|3 is twice
continuously differentiable on R, and

g'(t) = —=2(p—2)|z + tyHQ’Qp(«w +ty) P y))?

+2(p - Dl + tyl2 (me %7

<2p— 1)l + tyl2” (Zm + iyl )
<2(p—-1)|z+ ty||123 Pl 4+ ty||§ 2||y||12) (by Holder’s inequality)
2(p— Dyl
Then, we have

l + yl2 = 1} — 2227 (=P~ Y, y) = g(1) — g(0) — ¢'(0)

1
= [ g =g

/ / " u) du dt

< (p =Dyl

A.2.2. PROOF OF PROPOSITION 5

Proof [Proof of Proposition 5]

1. We want to show that for all z,y € R,

K
Tk

Tl = el ) <

1+x
oyl -

1
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Note that since K, > 1, the statement is correct when z = 0. Therefore, in the following,
without loss of generality, we assume x # 0. Let
(ztP=1) y)

h =
]

x, forp € [1 + K, 00).
We will prove the p € [1 + &, 2] and p € (2, 00) cases separately.
For p € [1 + k, 2], by using Proposition 14, we can write that

=+l = |+ ki = p((e + 1),y — h) < 2|y - Al

=0 (by Prop. 12)

Therefore, we have
|z +ylh <=+ R} + 2]y — Al

Then,
|+ 15 < (I + L + 2y - Ap) ¥
<|z+ ]”LH;—Hi + 2]y — h”ll)—‘% (since 1 + x < p, by Proposition 17)
<[yt + (14 &)y P @ P y) + 20hly T 4 2y — b, by Proposition 13)
<[l + (L m)laly P @ P, y) + 20yl + 2 21y, by Proposition 11)
<[yt + (14 &)y PP y) + 10]y], ™ since s € (0,1]). (A.5)

For p € (2, 00), by using Proposition 15, we can write that

= + gl = o+ Rl = 2l + ;7@ + )P,y - h) < (p=Dly = Al

=0 (by Prop. 12)

Therefore, we have
|z +yl2 < |z +hl;+ (p— 1]y — Al

Then,

1tk
o+l < (o + h||§ (p—=Vly —nlp)
<|z + hHH_"i +(p— 1) % ||y h”l—Hi (since 1 + k < 2, by Proposition 17)

<lalp™ 4 (14 m) |2l P @@ y) 4 2B + (p— 1) |y — A5 by Proposition 13)
<ol 4 (14 )llS P01, ) + 2yl + (p — 1) FE 2] oy Proositon )
§||$||111,—~_"€ +(1+k) ||l‘||11)+'i_p<l‘<p_l>, y) + 10(p — 1)1%€ ||y||11)—~_"i (since p > 2 and & € (0,1]). (A.6)

By multiplying both sides in (A.5) and (A.6) with m, the statement follows.
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2. Letus fix an arbitrary p € [1 + k, c0). Note that by Proposition 19,

() = — 2l and @*(y) = "yl
X)) = x an = K
v 1+ ! Flp LS e L

are convex conjugate pairs. By the previous part, we know that ¢ is (K, 1 + «)-Holder smooth

1
with respect to p-norm. Then, by Proposition 4, ¢* is (K, *, 1+T"‘)—uniformly convex with re-
spect to p*-norm.

Appendix B. Proofs for Section 3
B.1. Proof of Theorem 6

We start with an auxiliary result, given in (Bubeck, 2014, Lemma 4.1).

Proposition 16 (Bubeck, 2014, Lemma 4.1) Let U be the mirror function defined in Theorem 6. For
y € R let §j = arg min,cs Dy(z,y). Then, for any x € S,

1) (V¥(g) = V¥(y),§ —z) <0

Proof [Proof of Theorem 6] For notational convenience, we let z* = argmin, g f(z). We start
with two observations:

* git+1 = %(V‘I’(ﬂﬁt) — V¥(ys41)),
* Dy(x*,2¢) + Dy (2, Y1) — Do (2*, yeq1) = (VU (2¢) — VU (yq1), 20 — 7).

Then, we write

1
(Gt+1,20 — ) = HW‘I’(%) = VU (yes1), v — %)

1
B E(D‘I’(l’*y r¢) + Dy (24, Y1) — Dw (2™, ye41))
1
< E(D\IJ (1‘*, .Z‘t) + D\p(iﬁt, yt+1) — Dy (l‘*, .Z‘t+1) — D\p(l't_H, yt+1)) (by Proposition 16)
1
= E(D\If(ff*, xy) — Dy (2™, 2¢41) + Dw(@, Yir1) — Do (Ti41, Yeg1))- (B.1)

Note that Dy (z*, ) — Dy (2*, x441) will lead to a telescoping sum when summing over ¢ = 1
to ¢t = T'. Therefore, it remains to bound the other term:
Dy (1, ye1) — Du(es1, ye1) = V() — W(@e1) = (VY (Yer1), 20 — e41)

K
<(V¥(x) = VU (yiq1), T — Tyg1) — 1+ 5

14k
2t = eqa o
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K 1tk
= 0{(gt+1, Tt — Teg1) — T Iint — @yl F (B.2)
K 1tk
< nllgerllgllze — zeallgr — m”xt — zpqal - (B.3)
1
< — 0" gealli T (B.4)

14k

where we use that W is (1, HT“) uniformly convex in (B.2), and maximize the right-hand side of
(B.3) to obtain (B.4).
By (B.1) and (B.4), we have

T-1 T
1 D\I’(‘T*al‘l)) K
— <
; Git1,T¢ — =) T 4 i + T Z Hgt-i-lHq
1 1=t

* \II K

e nl < T 12_ T Z Hgtﬂ”q (since xp = argergin W(z) and S is convex)
e -

K Ry" n

< Ln,
STan T 1+/£TZHgt+1H

Note that x; is F;-measurable. Hence, we can write that

T-1 1w T-1
© B T LR[S Eflgen |5IF
Filw—a”)| < 75 ]
tz:; 911 Fe)s 2 =) “ 14k T +1—|—/~<JT — Jtttlly !
Ry 1
K " n 1
< 0 - +K
1+ 0T +1+/€T;J ’
which for v; € 0 f(z¢), leads to
T-1 e T-1
1 R, A |
TE (vi, 20 — T >] 1 - OT 177 T ol tr
P +K 7 +~K P
Then,
i T—1
R,*" 1
1 i - 7;]T 11 EUIJFH >E T 2 flx) — Ig‘cnelg f(x)] (by the convexity of f)

T-1
1
f ( l‘t> — min f(x)] (by Jensen’s inequality).  (B.5)

€S

;
1

By using n = 0 — in (B.5), we can obtain the statement. |
TTHR
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B.2. Proof of Corollary 7
Proof [Proof of Corollary 7]

i) For ¢ € [1,1 4+ k], we have

EllgelliTx] < Elllgellg™] < L' (since ¢ < 1+ k).

Moreover, zg = 0 and

1 1+k
Ryr = sup  (¥(x) — ¥(xo)) < 10%  sup |z, 5,
K 2eBoo(R) 2€Boo (R) "

Then,

Ry <1077 sup o] es < 10RAT.
z€Bs (R) r

Since ¥ = U, forp = 1+ s is (1, 1JFT“)—uniformly convex with respect to 1+T"“—norm (see

Proposition 5), by Theorem 6, we have

1 T-1 dN\ 2=
f<T ZL‘t> - Iglelgl f(x)] <10 Ra(f) e

ii) For q € (1 + k,00), we have xg = 0 and

e 14k s\ % ya
Ry* = sup (¥(x) — ¥(xp)) < (IOmaX{l,(q— 1) }> Sup Hx”q*n :
K 2€Bo(R) 2€Boo (R)
Then,

1
Ry < 10T+ max{l,y/¢—1} sup || <10max{l,/q— 1}Rd1_5.

E€Boo (R)

Since ¥ = U), forp = qis (1,
5), by Theorem 6, we have

1JFT’*)—uniformly convex with respect to ¢*-norm (see Proposition

1
di~a

T-1
f(; ; azt> - glelgf(x)] < 10max{l,+/q — 1} Ro—=.

E

K
Ti+k

iii) If ¢ € (logd, oc|, we have

14k 14K

11 _
E[Hgt”iiﬁ)gd] < E[(dH—logd q ||gt||q)1+l€] = (T1+logd q E[Hgtué-‘rn] (since ¢ > logd)

14+~ _ 14k
< d1+logd q 0-1+“i.

Moreover, zg = 0 and

e 14k Lhr\ % Lix
Ry = sup (W(@) ~ W(ag)) < (1001 +logd = 1)5*)" sup [|o] e
K 2eBs(R) €Bo (R) log d
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Then,
log d
Ry < 10T+ Viogd sup ||z] 1tieea < 10\/10ngd1+1§>gd.
2B (R)  1ogd

(1+logd)

As ¥ = U, for p = 1+ logd is (1, X%)-uniformly convex with respect to Togd

K
Theorem 6, we have

-norm, by

1—1

T-1
1 d a
— — mi < .
f( ;20 xt> min f(ﬂs)] <10 Roy/logd—

T1i+s

E

Appendix C. Auxiliary Results for Sections 2 and 3
Proposition 17 Let z,y > 0 and k € (0, 1]. Then,

(i) (x+y)" < a4y~

(ii) o +y~ < 217F (x4 y)~
Proof

(i) Without loss of generality, assume x > y. By concavity, we have

(x+y)" <2 4wy

< 2" 4+ y®. (Since k € (0,1] and y < x)
(ii) By using p = 1/k and p* = 1/(1 — k) in Holder’s inequality, we write
2yt < (1P 1)V (1 4 ) VP = 21K (1 4 )",

Proposition 18 Let 2,y € R and k € (0, 1]. Then,
|+ y[TH — |2 — (14 k)2 “sgn(z)y < 21 %[y

Proof Let g(x) = |z|'** for # € R. Note that g is convex and continuously differentiable, where
g (z) = (1 4 k)|z|"sgn(z). Then,

‘1+n ’1+n

— (1+r)|z|"sgn(z)y = g(z +y) —g(z) — ¢'(x)y
r+
- [ - g

a4y — o

T4y
< [0 - o)

T+
=(1+ Ii)/ ! ‘|t|5sgn(t) — ]:c|ﬁsgn(:c)‘ dt. (C.1)

In the following, we will find an upper-bound for the integrand in (C.1).
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e If sgn(t) = sgn(z), we have

|[t]"sgn(t) — |z|"sgn(z)| = [|t[* — |z|"]
< |t — z|" (By Proposition 17).

* If sgn(t) # sgn(x),
|[t]"sgn(t) — |z|"sgn(z)| = [¢|" + |2
< 21_"/”(|t‘H + |z|") (By Proposition 17)

=2t — 2",

Then, we have

T+y

Yy
(c.1><21—*f/ (1+/€)|t—x\”dt:21_“/ (1+ r)[t]" dt
T 0

=217 py|"
< 2Jy".

Proposition 19 Letr > 1, p € [1, 00],

B(e) = el and 3 (y) = sup {{y.2) — B(a)}.
r zcRd
Then, for 1/p + 1/p* = 1, we have
r—1
r

=1
Iyl

P (y) =

Proof Let us fix an arbitrary y € R%. By using Hélder’s inequality, for any = € R%, we can write
that

1 1
(s ) = a2l < lylplelp = ~lzl;

r—1 -
< — Hy” ;I ! (by maximizing the right-hand side).
r

Therefore, we have
r—1

r

$*(y) < lylp-"-

Moreover, since dual norm can be formulated as a supremum on a compact set, there exists a z € R?
such that (y, ) = [yl [, and [yl = |]j~". n this case,
1, ., r—=-1 2
(v, 2) = ~laly = Iyl

Therefore, we have
r—1

r

¢ (y) = Iyl

- o1y T
Consequently, ¢*(y) = TTHy”p* e "
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Proposition 20 If v : RY — R is differentiable and uniformly convex, 1* is everywhere differen-
tiable.

Proof Let us say that ¢ is (K, r)-uniformly convex with respect to some p-norm. First, we will
show that 1/* is subdifferentiable by proving that it is everywhere finite. For any y € R?, we have

Y*(y) = sup {{y,z) — ¥(z)}

zER?
K r
< sup {(.2) + (V(y).a —y) + [y~ al}) |
K

= sup { {y— Vu(y x—y>—7uy—xn;;>}—w<y>+||y||%

rER

1 K !

:sup{y Vuy), K7 Ta) = KT Tal) b —w(y) + [yl

zER?

T

W)y —v(y) + llyl3.

Therefore, for any y € RY, 1*(y) is finite. By (Rockafellar, 1970, Theorem 23.4), ¢* is a subdif-
ferentiable convex function.
Next, we prove an intermediate result. Since ) is differentiable and uniformly convex, we have

K
¥(y) = o) + (Vo(a)y —2) + —ly =zl Vaye RY, (C2)

and %
(@) = ¥(y) = (Vo) y - z) + —ly -zl Yo,y e R (C3)

By summing (C.2) and (C.3), we can write that
2 T
(Vip(2) = V(y),x —y) > ==y —al;, Yo,y €R? (C4)

We show that * is differentiable by using proof by contradiction. Choose an arbitrary o € R
Since v* is subdifferentiable, we know that 9v(yg) # (). Let us assume that z1, x5 € 9Y*(yo), and
1 # x2. Since v is continuous and convex, by (Rockafellar, 1970, Corollary 23.5.1.),

Vi(z1) = Vi(x2) = 0. (C5)

However, (C.4) contradicts with (C.5). Since 9* is subdifferentiable, there must be a unique element
in 0Y*(yo). Therefore, by (Rockafellar, 1970, Theorem 25.1), ¢)* is differentiable at yg. Since yo
was chosen arbitrarily, 1)* is everywhere differentiable. |

Appendix D. Proofs for Section 4
D.1. Auxiliary lemmas

To prove Theorem 9, we need the following lemmas.
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Lemma 21 (KL-divergence between Bernoulli distributions) The Kullback Leibler divergence
between Bernoulli distributions BERNOULLI(1 — 242p) and BERNOULLI(1 — 25%p) is bounded by

p, Le.,

2 —«

Dy, (BERNOULLI(l — QTTOZ]))HBERNOULLI(l — p)> <p

2 — 2
Dx1, (BERNOULLI(I — Tap)HBERNOULLI(l — Zap)> <p,

where o € {—1,+1},p € (0, %)

Proof [Proof of Lemma 21] Denote the Bernoulli distributions BERNOULLI(1—3p) and BERNOULLI(1—
% p) by Pt and P, respectively. By the definition KL divergence, it holds that

1-3 3 3 3
4p) + —plog (‘%p> < -plog3 <p

Dice(BH[B7) =(1 -~ 2p) log (

We now prove

47

_ 1—gpy 1 P
Dicu (B |[B4) =(1 = 3p)log (+—22) + gplog (££) <.
3p 3p

Define the function 2 (p) = p — 1p 1og(%) —(1-1p) log(+=L). Then, we obtain

4—3p
1 1N 1 4—p 2
Vhip) = I_Zlog(§> +Zlog<4—3p> 43
and
16
V2h(p) =

(4—p)(4—3p)?

When p € (0, %], it follows that
2 1
VZh(p) <0, VA(3) =05 and h(0) =0,

which implies h(p) > 0, that is

1 1 1 4—p
> plog () + (1= 30) e (7—5,)-
p=plog(g)+ P) e (13,

[ |
Lemma 22 (Lower bound 1 with d > 2) Suppose a vector o* = (af,. .. ,043)T is chosen uni-
formly at random from the set V, where V is a subset of the hypercube {—1,+1}¢ such that
Ag(a, @) = Zle Heo; # @i} > %for any a,& € V. Given the vector o*, k € (0,1], and
§ € (0, ], set the parameter

" 2 p K T
:(1—220‘1(45) - T gyt
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Suppose the oracle ¢ tosses a set of d coins with bias &* a total of T times, and the outcome of only
one coin chosen uniformly at random is given at each round. When d > 2, it holds for any holds for
any estimator & € ) that

(46) 5 T+ log 2

Pla#a*)>1— a7

Here, the probability is taken over the randomness of o and ¢.

Proof [Proof of Lemma 22] Let U; € {1,...,d} be the variable indicating the U;-th coin revealed
at time ¢, and let X; € {0, 1} denote its outcome. By (Pollard et al., 2012, Sec 15.3.2, Lemma 4)
and (Scarlett and Cevher, 2019, Theorem 1), if the parameter «* is uniform on V), it holds for any
estimator & € V that

B I({Ut,Xt}le;a*) + log 2

P(a >

where I({Uy, X¢}1_;; a*) denotes the mutual information between the data sequence {Uy, X;}1
and o*. By the Varshamov-Gilbert bound (Massart, 2007, Lemma 4.7), there exists such a packing
set V C {—1,+1}4 with [V| > exp(§) satisfies Ay (a, &) = 2?21 ey # &} > 4 forany a, & €
V. It suffice to show that I({Us, X;}1 ;;a%) < (4(5)%1T. By the independent and identically
distributed the sampling, we have

T

I{U, XM 0%) =D I((Un, X1); o) = TI((U1, Xa);07)

t=1
By chain rule of mutual information and the sampling scheme, it holds that
I((Ur, X1); o) = I(Xq;*|Uy) + I(a*;07)

Note that Uj is sampled independent of o, this implies /(a*;U;) = 0. It remains to show that

I(Xy;0*|Uy) < (45) . By definition of the conditional mutual information, and the factoriza-
tion Py, o7, = Pox v, Pxyjax v, » it holds that

I(X1;0|Ur) = Ey, [DkL(Px, jox,0, [[Pxy 07 )] -

Assume a random vector « is uniform on V, by the convexity of KL divergence, it then follows that

DxL(Px, o0 [P x, o) < W Z DxL(Px, o+, P x,ja,07) -
acy

For any pair o*,a € V, the KL divergence Dkr(Px, o+, |/Px,|a,r,) can be at most the KL
divergence between a pair of Bernoulli variables with parameters

2+C¥z 2+O£J

1- (40) = 0, and 1-— (46) H:I, Va, a5 € V.
By Lemma 21 ( setting p = (45)%1), we have Dkr(Px, o0, |[IPx ]a,00) < (45) . This com-
plete the proof.
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Lemma 23 (Lower bound 1 with d = 1) Given a constant k. € (0, 1] and a parameter o* € V),
where V = {—1, +1}, the oracle ¢ generates the data sequence { X }1_, where X, are i.i.d random
variables following from the Bernoulli distribution with parameter 1 — 2+4a* (49) = Then, for any

§ € (0, ], it holds for any estimator é € V based on the data sequence {X;}{_, that

max P(& # o) > ;(1 - W) .

a*ey 2

Proof [Proof of Lemma 23] Set p = (4(5)%1. Define & := 1 — 2£9p o =1 — %p. It then
follows that P(& # o*) = P(&' # a*'). Note that

1
E[ld/ - o) = JpP(d' £ o).

Based on the proof of Lemma 4 in Agarwal et al. (2012), we have

1 1
max  E[d — o] >-p|1- \/QTDKL (IP’+HIP’—> ,
a*'e{l—4p,1-3p} 4 2

where P, P~ denote the Bernoulli distributions BERNOULLI(1 — 2p) and BERNOULLI(1 — 1p),
respectively. Combining these two displays with Lemma 21 gives

maXa*’G{l—ip,l—%p} EHdl - Oé*,H

max P& # o*) =

a*'e{l-3p,1-3p} 3P
el
S Ly W) T
-2 2
as desired.
|
Lemma 24 (Lower bound 2 with d > 2) Suppose the vector o* = (af,...,a%)" is chosen uni-

formly at random from the set V, where V is a subset of the hypercube {—1,+1}¢ such that
Ag(a, @) = Z?Zl ey # a;} > 4 for any a, & € V. Set the parameter

ar = (1—1—04*5 1+oz*5>T
5 10,5 5 y .
Given the parameter &*, a constant 6 € (0, ﬁ], and the time horizon T, at each round t =
1,...,T, the oracle ¢ flips a coin with bias % (the probability of the coin landing heads up is %)
at first. If the coin has a head, the oracle tosses set of d coins with bias &*, and then reveal the
outcomes of the d coins. If the coin has a tail, the oracle reveals nothing. When d > 2, it holds for
any estimator & € 'V that

16d6? + log 2

Pla#a*)>1— 78

Here, the probability is taken over the randomness of o and ¢.
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Proof [Proof of Lemma 24] Let U; € {0,1} following the Bernoulli distribution with parame-
ter T be the random variable indicating whether the oracle reveals the information. Let X; :=
(Xt .- ,Xt7d) denote the outcome of oracle’s coin toss at time ¢ with the components X;; €
{0, 1} denote the outcome for coordinate .. When U; = 0, set X;; = —1,i = 1,...,d. By (Pollard
etal., 2012, Sec 15.3.2, Lemma 4) and (Scarlett and Cevher, 2019, Theorem 1), if the parameter o*
is uniform on V, it holds for any estimator & € V that

I({U, X, }E ;%) + log 2
log V| ’

P& #a*) >1—

where I({U;, X;}_,; @*) denotes the mutual information between the data sequence {U;, X;},
and o*. By the Varshamov-Gilbert bound, there exists such a packing set V C {—1,+1}% with
V| > exp(g) satisfies Ay (o, &) = Ele Na; # &} > % for any a, & € V. It suffice to show that
I({Uy, X1} 1; %) < 16d62. By the independent and identically distributed the sampling, we have

T
I{U, XM 0%) = I((Un, X1)s ) = TI((Ur, Xa);07)

By chain rule of mutual information and the sampling scheme, it holds that
I((Ur, X1);0) = I(Xq;*|Uy) + I(a*;07)

Note that U; is sampled independent of o*, this implies I(«*;U;) = 0. It remains to show that
I(X1;0*|Uy) < £16d6°. By definition of the conditional mutual information, and the factoriza-
tion Py, o+, = Pox v, Pxy a0, » it holds that

I(X1; a*|U1) = By, [ DL (Pxyjar 0, [Px,j0,)] -

Assume a random vector « is uniform on V, by the convexity of KL divergence, it then follows that

DkL(Px, o+, [Px,j0,) < ] Z DxL(Px, o0, [P xy o) -
acV

Combing these two displays with fact that U; ~ BERNOULLI(l) gives

I(Xy;07|Uy) < W ZEUlpKL(PXM U P o)
acVy
11
= Dk (Pxyjar,tr=1]P X, ja,00=1)
T\V!aezv o, Ur= 1o U=
1y 1
* (1 N 7)7 Z DKL(PX1|OK*7U1:0||PX1|047U1:0)
)V 2
11
T Y Dri(Pxyjas 0y =1 |Pxy ot =1) -

acy

For any pair o*,a € V, the KL divergence DxL(Px,|o* v, |/Px,|a,v;) can be at most the KL
divergence between d independent pairs of Bernoulli variables with parameters % + 6 and % —9.By
Lemma 3 in Agarwal et al. (2012), it holds that

DKL(Pxy (o 01 =1 1P, ja,0y =1) < 16d6% . (D.1)
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Thus, we have
1
I(Xq;a*|Uy) < T16d52

as desired.
[ |

Lemma 25 (Lower bound 2 with d = 1) Given a parameter o € V, where V = {—1,+1}, a
constant § € (0, ﬁ], and the time horizon T. At each roundt = 1,...,T, the oracle ¢ flips a coin
with probability of getting heads being % If the coin lands on heads, the oracle tosses a coin with
bias % + a*6§ and then reveal the outcome. If the coin has a tail, the oracle reveals nothing. Then,
it holds for any estimator & €V that

max P(& # o) > 1— v82.

a*ey
Proof [Proof of Lemma 25] Define &' := 5+ &6, a* := 5 +a*d. It then follows that P(& # o) =
P(&" # o*'). Note that

E[ld — o*'|] = 26P(&" # o).
Based on the proof of (Agarwal et al., 2012, Lemma 4) and display (D.1), we have

max  E[ld —a*|] >26(1 — V8§2),
a*'e{i+6,1 -6}

Combining these two displays gives

max P(@ #a*) >1— V852

o' e{ 146,26}

as desired.

D.2. Proofs of minimax lower bounds

We are now ready to prove the minimax lower bounds. In this section, we use the subscript ¢ to
denote the ¢-th digit of a vector and use the superscript ¢ to denote the time index. For instance,
given the ¢-th iteration 2t € RY, 2! represents the i-th element of x*.

i
Proof [Proof of Theorem 9]

Proof of lower bound (1)

At first, we consider the special case S = S, (R). The proof consists four steps. We first construct
a subclass of functions parametrized by a subset of the vertices of a d-dimensional hypercube with
finite cardinality. Then, we construct a stochastic oracle based on Bernoulli random variables, each
of which corresponds to the parameters of the constructed function in the previous step. Next, we
convert the parameter estimation to the stochastic optimization problem by showing that optimizing
any function in this subclass to certain tolerance requires identifying the hypercube vertices. Finally,
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we employ Fano types of inequality to lower bound the probability of misspecification error, along
with the results obtained in the previous steps, to finish the proof. The four mentioned steps now
read in detail.

1. Construct a subclass of functions

Assume V C {—1,+1}% is a subset of the hypercube such that

d
Ag(a, @) = Z Na; # &} > g;

i=1

for any o, & € V. Given a vector o = (ay,...,aq)" € V, consider the convex function g, () :
S — R defined via

d
L 24 oy
gal@) == = > = (L4 @)l + Bl + (1 - a))les — B}
i=1

with § € (0, §]. Define the function h(a, z) via

h:{-1,41} xS — [0,00)

1
(o, ) 5[(1 +a)lz+ R+ (1—a)lz—R|].

We then have |Vh(a, )| < 1. Hence, it holds for any ¢ € [1,1 + x| that

Q|

d
I9ga@)le < = (32 (F5 201V hitas, @))") " < L.
=1

This implies g, (x) is L-Lipschitz with respect to ¢* norm, where ¢* satisfies % + q% = 1. It follows
that go, € Heys, Voo € V. Define the function class G(0) := {gq : @ € V}. Set

K+1

Al 1
p:=(46) =, and A:= §p71+%, where € (0,1].
It then follows that

2+

4aipAh(ozi,xi) .

d
L
p€(0,1/2], pA=25€(0,1/4] and galz) =~ )
=1

2. Construct an oracle

Now, we describe the stochastic first order oracle ¢ which satisfies the conditions stated in As-
sumption 1. Given a vector a € V), consider the oracle ¢ that returns noisy value and gradient
sample as following fort =1..... T:

1). Pick an index i; € {1,...,d} uniformly.

2). Draw b;, € {0, 1} according to BERNOULLI(1 —
3). For the given input z € S, return the function value go(x) = L(1 — b;,)Ah(cy,,x) and its
subgradient.

2+fit p) _
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Now, we verify the constructed oracle satisfies the conditions stated in Assumption 1. Note that

d 2+ q;

Blga (a7 = 5 >0 2 S (s, ad) = gala')
=1

Moreover, note that

88 L(l — bi)Ah(aZ‘, (E,) = L(l - bz‘)AVh(Ozi, $z) .
ZT;
‘We then find
E[Vga(xt”ft] = v.ga(wt) )
and
. 14k r w12+ 14k
E[|Vga(x )H |Fi] < ZA TPSL , Vge[l,1+k].
i=1

3. Optimizing well is equivalent to function identification
In this step, we employ the same quantification of the function separation as in Agarwal et al.
(2012). Define the discrepancy measure between two functions f, g over the same domain S as

p(f,9) = if[f(2) +g(x) = flaF) = g(zg)].

Given the function class G(6), define /(G (0)) := ming+gecy p(ga, 98)-

Given an vector a* € V, we have corresponding function g,~. Suppose the method M, makes
T queries to the oracle ¢, and thus obtains the information sequence {¢(x; go+), ..., d(21; gax)},
denoted by ¢(z1; go~ ). By (Agarwal et al., 2012, Lemma 2), for any method My € Mo one can
construct a hypothesis test & : ¢(z1; go+) — V such that

Bo(a(Mr) # 0%) < By(c(Mr.g0-.5.9) 2 PI) var ey
This implies
51 3 Bolalitn) £ a%) <30 3 Bo(elMrgan, 50 = M) 02

a*eV a*ey

Moreover, by the definition of €*(Hcyz, S, @), we have

CUJHS f E M ) Oé*787 .
€ (H ¢) > MTIQMTSIE% sle(Mr, g })]

By Markov’s inequality, we then find

Egyle(Mr, gar, S, §)] Zw(g?)(é))m <€(MT,ga*787¢) S ¢(93(5))> |
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Combining this with previous display provides us with

* : Gg(o Gg(o
¢ (Mo S.0) = inf sup w(?’())%(e(MT,ga*,g’(j,) _ U 3( )))
$(G0) . ¥(G(9))
SO0 g LS b0 > YO
Plugging inequality (D.2) into it gives
" ¥(G(9)) |
€ (Hcvxasa¢) > 3 MTEMT |V| *zejv 7£ aQ ) ’
which implies
) $(G(9)
€ (Meve, S, ) 2—=3 3}25 \V! *ZG:VI% a(Mr) # o). (D.3)

In the next step, we will ﬁnish the proof by providing the lower bounds for the discrepancy (G (0))

and the probability infaey = i > arev Po(@(Mr) # o*) with some specific choice of 6.

4. Complete the proof
Note that the minimizer of g, () is 2, = — Ra, and minges go(x) = 0. Then, it holds that

9a(@) + 95(2) — 9a(w) = 93(3)
d
==y { 2A 0 (o) + 2 AR, xi)}
i=1
d

=Y I(zi; i, Bi)

i=1

where I(z;; i, 5;) = %{%p/\h(ai,xi) + 2+T’gipAh(ﬁi,aci)}. When «; = f;, it holds that
minges I(x; a4, §;) = 0. When «; # f3;, it holds that

Iws1,8) = 2w+ B+ Lo~ RI},

it then follows that min,es I (z; o, 5;) = L—aR. Thus, we obtain

RL(5 RLS d RL(5
— >
which implies
RLS
G0 >

Recall that we obtain the following in step 3

] ¥(G(9))
€ (HC’UJHS)(Z)) Z 3 aev ‘V’

> Py(a(Mr) # o).

a*eV
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Combining the previous two displays gives

RL
* CUX ) Z f ]P) . D4
€ (Heves S, 6) 25 olfelv \V| *Ze:v o(0 o) ©4

When d > 8, invoking Lemma 22 yields

€* (Hcvxv S, ¢) >

RLS 46)55 T 4 log 2
= 12( oy e ) (D-5)

d/3

LetT > dwithd > 9, and set § := 3—12 (%) B It then follows that

1
0<éd< =,
8
and
(46) %% T+10g2S 81+810g2§§.
d/8 ] d 4
Plugging these into display (D.5) then gives
d\ e
8.0 2L R (4.
¢ (Heus 8.0) 2535 RN 7

When d < 9, we restrict to the case where d = 1. The lower bounds corresponding 1 < d < 8
can be established based on the case of d = 1. Combining the lower bound in Lemma 23 with the
display (D.4) gives

. RL5 1 46)5 T
> ).
" (Heps, S, 9) > T (1 5

Set § := 3—12T71+%. Then we have § € (0,1/8] and

(45)2 TS (1)

Combing these two displays yields

¢ Hev, S,9) 2 7680R (;) .

This completes the proof for the special case S = So(R). Note that the Lipschitz constant of g,
does not depend on S, z}, = argmin, g go(x) € S, and thus the preceding proof goes through
when S O So(R). Hence, the desired general claim follows.

Proof of lower bound (2)
The proof strategy is similar to the proof of lower bound (1), but with a different function class
and the first-order oracle. At first, we consider the special case S = S (R). The proof consists
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four steps as follows.

1. Construct a subclass of functions
Assume V C {—1, +1}% is a subset of the hypercube such that

d

- . d
Ap(o, &) = Z oy # a;} > "
=1
for any a, @ € V. Given the time horizon 7, and a vector a = (v, .. ., Ozd)T € V, we consider the

convex function g, (z) : S — R defined via

dalz) = —= i{(;—kaié)]xi—irm—i—(;—aié)]a:i—R]}

==
Tireda =

with § € (0,1/100]. Define the function h(c, x) via
h:{-1,+1} x § = [0, 00)
1 1
(o, ) — (5 + ad)|z + R| + (5 —ad)|z — R|.
We then have |Vh(a, )| < 1. Hence, it holds for any ¢ € [1, oo] that
L d 1
IVga(@)lly < —— (X IVAil?) " < L.
Trinda =

This implies g, () is L-Lipschitz with respect to ¢* norm, where ¢* satisfies % + qi* = 1. It follows
that go, € Heyz, Voo € V. Define the function class G(0) := {g, : a € V}.

2. Construct an oracle

Now, we describe the stochastic first order oracle ¢ which satisfies the conditions stated in As-
sumption 1. Given the time horizon 7', and a vector « € V, consider the oracle ¢ that returns noisy
value and gradient sample as following fort =1,...,T"

1). Draw Y; € {0, 1} according to BERNOULLI(%).

2a). When Y; = 1, draw b; € {0,1} according to BERNOULLI(3 + ;6),i = 1,...,d. For the
given input x € S, return the function value

d
dal@) = LTT=d"5 S {bila; + R + (1 - by)|z; — R|}
i=1

and its subgradient.
2b). When Y; = 0, for any input x € S, return g, (x) = 0 and its subgradient.

Now, we verify the conditions in Assumption 1 for the constructed oracle. It is obvious that
E[ga(xt”ft] = ga(xt) :
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and
E[Via(z")|Fi] = Vga(z!).

Moreover, it holds that

ij(bz’x + R+ (1—b)|z— R|> <1
It then follows that

1+k

E[|V oz >\|1+“|f]<TL1*“Td‘*“dq ey

3. Optimizing well is equivalent to function identification

In this step, we employ the same quantification of the function separation as in step 3 of the proof
of Theorem 9, where the discrepancy measure between two functions f, g over the same domain S
is

p(f,9) = nf[f(z) +g(x) = f(z}) = g(z,)].

Given the function class G(9), define ¢)(G(6)) := min,+gey p(ga, g3)- Invoking display (D.3), we
have

& (Houe: 5,6) 2290 e LS~ p(a(07) £ )

In the next step, we will ﬁnish the proof by providing the lower bounds for the discrepancy (G (0))

and the probability infaey = i > arev Po(@(Mr) # o*) with some specific choice of 6.

4. Complete the proof
We note that the function g, (z) is a specification of the function class considered in part (a) of
in (Agarwal et al., 2012, Theorem 1)

ga(z) : d2{< —i—a,)\xi—FRI—F(%—aié)\xi—Rl}

by setting ¢ = ﬁ By the last display in the proof of Theorem 1 of Agarwal et al. (2012), it
TIitrkda

holds that p(ga, gs) > B9, Va # 3 € V. We then have
1 _r 91
Y(G(0)) > 5R(SLT e Ll

Recall that we obtain the following in step 3

; 1/}(9
€ (Hcvz787¢) > ozEV ‘V’ Z ]P)d) ) .

a*eV
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Combining the previous two displays gives

. 1 w71 1 . *
€ (Hevz, S, D) ZgRéLT e d érg} Wa*zejvm(a(MT) #a*). (D.6)

When d > 8, invoking Lemma 24 yields

1 s g1 16d6? + log 2
*(Hevs, S, ¢) >=ROLT T+ d (1——). D.7
(M S¢)_6R a a7s (D.7)
Note that when d > 9, and set § = ﬁ, it holds that
16d6? + log 2 5 log2 128 1
2% 11286 -8 —1———— —log2> -.
d/8 d 10000 8°= 1

Plugging these into display (D.7) then gives

1 sk 11
. > 5 .
€ (Hcvx7$;¢) _2400RLT Ttrd 4

When d < 9, we restrict to the case where d = 1. Combining the lower bound derived in
Lemma 25 with display (D.6) gives

1 K
¢ (Hevs, S, 6) 2 G ROLT 755 (1~ V857

When § = ﬁ, it holds that

1 1\ %
* 8,6) = RL(7) 7
¢ (Moo, §,9) 21555 R 7
This completes the proof for the special case S = So(R). Note that the Lipschitz constant of g,
does not depend on S, z}, = argmin,cggo(x) € S, and thus the preceding proof goes through

when § O So(R). Hence, the desired general claim follows.
|
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