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Abstract
Inverse problems occur in a variety of parameter identification tasks in engineering. Such problems
are challenging in practice, as they require repeated evaluation of computationally expensive for-
ward models. We introduce a unifying framework of multilevel optimization that can be applied to a
wide range of optimization-based solvers. Our framework provably reduces the computational cost
associated with evaluating the expensive forward maps stemming from various physical models.
To demonstrate the versatility of our analysis, we discuss its implications for various methodolo-
gies including multilevel (accelerated, stochastic) gradient descent, a multilevel ensemble Kalman
inversion and a multilevel Langevin sampler. We also provide numerical experiments to verify our
theoretical findings.
Keywords: multilevel methods, optimization, inverse problems

1. Introduction

Inverse problems are ubiquitous in applied mathematics and modern machine learning. The aim is
usually to quantify information about unknown parameters which are indirectly observed through
a noisy observation model. Solutions for inverse problems are often found using optimization and
sampling methods and crucially depend on an underlying physical model incorporated through a
forward map. The physical models are typically highly complex such that associated numerical
approximations come with extensive computational costs. The multilevel Monte Carlo method
(MLMC) Giles (2008); Heinrich (2001) is a well-established variance reduction method, which
addresses this issue by shifting a large part of the work to less accurate model evaluations. In the
context of Bayesian inference, MLMC methods have been applied to Markov chain Monte Carlo
(MCMC) methods Dodwell et al. (2015) as well as to deterministic quadrature rules such as sparse
grid Haji-Ali et al. (2016); Zech et al. (2019) and quasi-Monte Carlo methods Giles and Waterhouse
(2009); Dick et al. (2017).

In this work, we apply similar ideas to the following general optimization problem

min
x∈X

Φ(x), (1)

where X is a Hilbert space and Φ : X → R+ an objective. The idea of multilevel optimization is
to replace the evaluation of Φ (or its derivatives) by some approximation that becomes increasingly
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more accurate as the optimization process converges. Intuitively, when the current state may be far
from minimum, it suffices to roughly move in the direction of the minimizer; however, as the state
approaches the minimizer of Φ, higher accuracy is required to reduce numerical bias. Multilevel
optimization strategies are targeting efficient algorithms with the aim of reducing overall computa-
tional costs.

Such ideas have recently been applied in different contexts. The works closest to ours are Martin
and Nobile (2021); Martin et al. (2021) which use multilevel optimization on an optimal control
problem, and Alsup et al. (2021), where a multilevel version of the Stein variational gradient descent
method is introduced. The aim of our manuscript is to formulate a unifying multilevel framework
which can be a applied to a wide range of optimization and sampling methods with particular focus
on inverse problems.

Contributions Our principal contributions are three-fold:

• We formulate a multilevel strategy for general iterative optimization methods where each up-
date step depends on an accuracy level. We derive an optimal choice of levels that minimizes
computational costs while ensuring to achieve a certain tolerance for the error. Compared to
the single-level framework, we prove that the computational cost can be reduced by a log-
factor, and we provide an example to show that our results are sharp.

• We use our framework to introduce a multilevel ensemble Kalman inversion method and its
extension to Tikhonov regularization. For linear forward models and with the incorporation
of variance inflation, we prove convergence rates that reduce the computational costs by the
expected log-factor when compared to single-level methods.

• We apply our framework to particle based sampling methods for Bayesian inference. We de-
velop a multilevel formulation of interacting Langevin samplers. Viewing Langevin dynamics
as gradient flow in the space of probability measures w.r.t. the Kullback-Leibler divergence,
under certain assumptions we show convergence for the mean-field limit and provide a cost
analysis that again reduces cost by a log-factor compared to the single-level method.

Outline §2 discusses optimization-based approaches for solving inverse problems while §3 presents
our unified multilevel optimization framework. In §4 and §5 we apply our framework to particle
based optimization and Bayesian inference respectively, and §6 presents numerical experiments for
these examples.

Notation f . g indicates the existence of C such that f(x) ≤ Cg(x), with C independent of x
in a certain range that will be clear from context. Moreover f ' g iff f . g and g . f .

2. Inverse Problems

Let X be a Hilbert space, ny ∈ N and F : X → Rny the so-called forward model. We consider
the task of recovering the unknown quantity x ∈ X from a (noisy) observation y ∈ Rny of F (x).
Throughout we assume an additive Gaussian noise model, i.e. y is a realization of the random
variable

Y = F (x) + η, (2)

with η ∼ N (0,Γ) Gaussian for a symmetric positive definite (SPD) covariance matrix Γ ∈ Rny×ny .
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This problem is typically ill-posed in the sense of Hadamard (1902), for instance because the
dimension of the parameter space X may be much higher than the dimension ny of the observation
space. We now recall two different methodologies to deal with these difficulties, both of which
recast the problem into one of optimization.

2.1. Regularized optimization

One classical approach to approximate x is to minimize the objective

Φ(x) := `(x, y) +R(x), `(x, y) =
1

2
‖Γ−1/2(F (x)− y)‖2Rny , (3)

where ` denotes the least-squares data misfit loss functional and R : X → R+ is a regularizer.
Common choices of regularization include Tikhonov regularization Engl et al. (1989) with R(x) =
λ
2‖C0x‖2X and total variation regularization Chambolle et al. (2010); Rudin et al. (1992). Note that
prior information can be incorporated through C0 ∈ L(X ,X ). In the following, for fixed y, we use
the shorthand `(x) := `(x, y).

We continue this discussion in Sec. 4 where we present a particle based multilevel optimization
method to minimize Φ in (3). For motivation and further discussion of regularization methods to
solve (2), see, e.g., Engl et al. (1996); Benning and Burger (2018) and references therein.

2.2. Bayesian inference

In the Bayesian approach (e.g. Stuart (2010)) the parameter and observation are modeled as a joint
random variable (X,Y ) onX×Rny . The goal is to determine the posterior, which refers to the con-
ditional distribution of X given the realization y of Y in (2). Assume X and η to be stochastically
independent, and letX ∼ Q0 for a prior distributionQ0. Under certain technical assumptions (Stu-
art, 2010, Theorem 6.31), the posterior Qy∗ is then well-defined, absolutely continuous with respect
to the prior, and Qy∗(dx) = 1

Z exp(−`(x, y))Q0(dx), where Z =
∫
X exp(−`(x, y))Q0(dx) ∈ R is

a normalizing constant and ` is given by (3).
Suppose for the moment that X = Rnx is finite dimensional and the prior Q0 = N (0, 1

λC0)
is Gaussian, C0 ∈ Rnx×nx SPD, λ > 0. Then, the posterior Qy∗ has Lebesgue density ρ∗(x) =
1
Z exp(−`(x, y) − R(x)), with R(x) = λ

2‖C
−1/2
0 x‖2Rnx . In the Bayesian framework, solving the

inverse problem amounts to sampling from the posterior. One way to achieve this is by minimizing
the objective

Φ(ψ) = KL(ψ‖ρ∗), (4)

for ψ in a given family of (tractable) probability distributions on X . Here KL stands for the Kull-
back–Leibler divergence Kullback and Leibler (1951). Hence, we end up again with an optimization
problem, but this time over a subspace of the probability measures on X . This discussion will be
continued in Sec. 5 where we present a multilevel optimization algorithm to minimize (4).

While the approaches in (3) and (4) are entirely different, the minimization of either objective
requires multiple evaluations of the forward model F , which might be very costly in practice. To
explain this further, we now discuss a simple PDE driven inverse problem (i.e. evaluating F requires
to solve a PDE) which will serve as our running example throughout. We emphasize, that our
analysis has implications far beyond this toy problem, since PDE constrained optimization has a
wide range of applications in various fields such as shape optimization, optimal control and—as
discussed in the present paper—parameter estimation, see, e.g., Hinze et al. (2008); Belov (2012).
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Example 1 Let X = L2(D) for a convex bounded polygonal domain D ⊆ R2. By classical PDE
theory, for every f ∈ X , the equation{

−∆uf (s) + uf (s) = f(s) s ∈ D,
uf (s) = 0 s ∈ ∂D,

(5)

has a unique weak solution uf ∈ H2(D) ∩H1
0 (D) ⊆ X . Let O : X → Rny be a bounded linear

map called the observation operator. The forward model F (f) := O(uf ) ∈ Rny then “observes”
the solution of (5) through the functional O.

Given noisy observations y = F (f) + η as in (2), any method minimizing the objectives in
(3) or (4) has to access Φ (or its derivatives) and thus repeatedly evaluate the forward model F .
Each such evaluation requires solving (5). Since (5) has no closed form solution, uf can only be
approximated using a numerical PDE solver such as the finite element method (FEM).

3. A unified multilevel optimization framework

In order to minimize an objective Φ as in (1), we consider an abstract optimization method described
by the fixed point iteration

xk+1 := Ψ(xk), x0 ∈ X . (6)

For certain applications, an exact evaluation of Ψ is either not possible, or computationally infeasi-
ble. In such cases, typically numerical approximations Ψl to Ψ are available. Here the “level” l is a
positive real number and can be understood as the computational cost of the approximation. Higher
accuracy comes at higher computational cost, which is accounted for by the assumption that one
evaluation of Ψl amounts to computational cost l, and Ψl → Ψ as l →∞. The precise meaning of
this statement will be quantified in the following.

Remark 1 In practice Ψl might only be available for certain l ∈ N. For simplicity we allow l ∈ R,
l > 0, but mention that our analysis extends to the discrete case by rounding l to the next larger
admissible level.

Replacing Ψ in the update rule (6) with Ψl leads to

xk+1 = Ψlk(xk), x0 ∈ X . (7)

Here, lk ∈ N is the level in iteration k of the optimization process. The goal is to choose levels
which minimize the overall computational cost while achieving fast convergence.

We denote the error of the kth iterate xk by ek. For example, if x∗ is the unique minimizer
of Φ, ek could stand for ‖xk − x∗‖X or for the distance of the objective to the minimum, i.e.
Φ(xk) − Φ(x∗). Our analysis is based on the following abstract assumption. It can be understood
as a form of linear convergence, up to an additive term stemming from the approximation of Ψ by
Ψl. Other forms of convergence, such as polynomial convergence (as occurs, e.g., for non-strongly
convex objectives), are work in progress.

Assumption 2 There exists c ∈ (0, 1) and α > 0 such that for any choice of levels lk ≥ 1 and with
xk as in (7),
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(i) error decay: for all k ∈ N
ek+1 ≤ cek + l−αk , (8)

(ii) cost model: for all k ∈ N, the cost of computing xk in (7) equals

cost(xk) =
k−1∑
j=0

lj . (9)

We motivate Assumption (2) by verifying conditions (8) and (9) on several examples.

Example 2 Suppose that the objective Φ is L-smooth and µ-strongly convex, and that for each
l ∈ N we have access to functions gl : X → X or random variables Gl(x) ∈ X for all x ∈ X , such
that for some 0 ≤ η <∞

‖∇Φ(x)− gl(x)‖X ≤
l−α

η
or E‖∇Φ(x)−Gl(x)‖X ≤

l−α

η
∀x ∈ X . (10)

Then gradient descent using the approximate gradients, i.e. iterates generated by

xk+1 = xk − ηkglk(xk) (11)

can be shown to satisfy error decay (8) with ek = ‖xk−x∗‖X . Interpreting lk as the computational
cost of evaluating glk , the overall cost to compute xk follows our cost model (9). A similar statement
holds for stochastic gradient descent after replacing glk(x) in (11) with Glk(x) and setting ek =
E[‖xk+1 − x∗‖X ]. Moreover, accelerated versions of both algorithms can be shown to satisfy (8).

Details for Example 2 and further discussion of the implications of our results for gradient descent,
accelerated gradient descent and their stochastic versions are given in Appendix B. While we do
not provide details for other variants of these basic gradient algorithms (e.g., SVRG Johnson and
Zhang (2013), FISTA Beck and Teboulle (2009) and the extragradient method Monteiro and Svaiter
(2013)), multilevel formulations of these algorithms are possible under our framework and will be
left to future work.

Remark 3 Assumption 2 states that the relation between computational cost and corresponding
error is of the type “error ∼ cost−α” for some α > 0. To clarify, consider the following examples
in the context of applying gradient descent to minimize Φ:

• Fix γ > 0. Suppose we have access to an algorithm, that for n ∈ N requires computational
cost f(n) := nγ to compute ∇Φ up to accuracy n−α. With l := nγ , this is equivalent
to saying that at level l the error is of order l−α/γ , which fits our setting. Without loss of
generality we can work with l rather than n.

• Suppose we have access to an algorithm that requires time t > 0 to approximate ∇Φ up
to accuracy t−α. Then the level lk can be understood as the CPU time t invested in the
approximate computation of∇Φ(xk).

Next, we discuss gradient descent for our running Example 1. Further details are contained in
Appendix C.
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Example 3 (Continuation of Example 1) Let F (f) = O(uf ), where uf solves (5) and O :
L2(D)→ Rny is bounded linear, i.e. O(p) =

∫
D ξp for some ξ ∈ L2(D,Rny) and all p ∈ L2(D).

Let Φ(f) = 1
2‖Γ

−1/2(F (f)− y)‖2Rny + λ
2‖f‖

2
L2(D) as in (3). Then

∇Φ(f) = uh + λf ∈ L2(D), (12)

where uh solves (5) with right-hand side h(·) = (O(uf ) − y)>Γ−1ξ(·) ∈ L2(D). To approximate
∇Φ(f), we use linear finite elements on a uniform mesh onD ⊆ R2 to first obtain an approximation
ulf satisfying ‖uf − ulf‖L2(D) . l−1, and subsequently with h̃ = (O(ulf ) − y)>Γ−1ξ, a FEM
approximation ul

h̃
satisfying ‖uh−ulh̃‖L2(D) . l−1. Here l corresponds to the dimension of the FEM

space, and can thus be interpreted as the complexity of computing ul
h̃
. Note, gl(f) := ul

h̃
+ λf ∈

L2(D) yields an approximation to ∇Φ(f) s.t. ‖∇Φ(f) − gl(f)‖L2(D) . l−1. Hence (for fixed f
and up to a constant) gl(f) satisfies the first inequality in (10) with α = 1.

Having established the basic setting, we next illustrate how accuracy levels lj can be chosen
optimally to minimize computational costs. Recursively expanding (8), we get the following upper
bound on the error

ek ≤ c(cek−2 + l−αk−1) + l−αk ≤ · · · ≤ cke0 +
k−1∑
j=0

ck−1−jl−αj =: ẽk((lj)j). (13)

In case lj = l for all j = 1, . . . ,K − 1, we will also use the notation ẽk(l).
We next determine levels achieving (almost) minimal cost under the constraint ẽk ≤ ε.

3.1. Single-level

Fix the number of iteration steps K ∈ N. For the single-level method, the level lj is fixed at
a (single) value l̄K > 0 throughout the whole iteration j = 0, . . . ,K − 1. By assumption (9),
cost(xK) = Kl̄K . We wish to minimize the cost under the error constraint ẽK ≤ ε. To slightly
simplify the problem for the moment, we instead demand both terms in the definition of ẽk in (13)
to be bounded by ε

2 (so that in particular ẽK ≤ ε). More precisely, l̄K > 0 should be minimal such
that

cKe0 ≤
ε

2
, (l̄K)−α

1− cK

1− c
≤ ε

2
. (14)

The first inequality implies K ≥ log(ε/(2e0))
log(c) , and the second inequality implies

l̄K ≥
(

2
1− cK

(1− c)ε

)1/α

. (15)

We choose l̄K so that (15) holds with equality. Given K 7→ cost(xK) = KlK is monotonically
increasing, in order to get error ε at possibly small cost the following choices suffice:

l̄K(ε) :=

(
2

1− ε
2e0

(1− c)ε

)1/α

, K(ε) :=

⌈
log(ε/(2e0))

log(c)

⌉
. (16)

We next introduce a notion of optimality, and then summarize our observations in Theorem 5.
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Definition 4 (Quasi-optimal single level choice) A family of reals l̄K(ε) > 0 and integersK(ε) ∈
N satisfying ẽK(ε)(l̄K(ε)) ≤ ε for all ε > 0, is a quasi-optimal single level choice iff

K(ε)l̄K(ε) = O
(

inf{K̂l̂ : ẽK̂(l̂) ≤ ε}, K̂ ∈ N, l̂ > 0
)

as ε→ 0.

Theorem 5 (Single-level convergence) Equation (16) defines a quasi-optimal single level choice.
It holds

costSL(ε) := K(ε)l̄K(ε) ' log(ε−1)ε−
1
α as ε→ 0. (17)

Proof For the proof see Appendix A.1.

Due to the quasi-optimality, the (single-level-) cost behaviour (17) cannot be improved as ε→ 0.

3.2. Multilevel

Fix the number of iterations K ∈ N. We now allow for varying levels throughout the optimization
process. That is, we wish to find lK,j(ε) = lK,j > 0 such that cost(xK) =

∑K−1
j=0 lK,j is minimized

under the constraint of both terms in (13) being bounded by ε
2 , i.e. such that

cKe0 ≤
ε

2
,

K−1∑
j=0

cK−1−jl−αK,j ≤
ε

2
. (18)

The first condition gives again a lower bound on the number of iterations K as in Sec. 3.1.
Minimizing cost(xk) under the second condition gives:

Lemma 6 For every K ∈ N, ε > 0

lK,j(ε) = CK,ε · c
K−1−j
1+α , CK,ε =

(ε
2

)− 1
α

(
1− c

K
1+α

1− c
1

1+α

) 1
α

(19)

minimizes
∑K−1

j=0 lK,j under the constraint
∑K−1

j=0 cK−1−jl−αK,j ≤
ε
2 .

Proof For the proof see Appendix A.2.

Let us compute the cost. Since
∑K−1

j=0 δK−1−i = 1−δK
1−δ for δ = c

1
1+α ∈ (0, 1),

K−1∑
j=0

lK,j = CK,ε

K−1∑
j=0

c
K−1−j
1+α =

(ε
2

)− 1
α

(
1− c

K
1+α

1− c
1

1+α

) 1+α
α

. (20)

As in the single-level case, this term increases in K (although it remains bounded as K →∞). To
keep the cost minimal, we choose K minimal under the first constraint in (18), which leads to

K(ε) =

⌈
log(ε/(2e0))

log(c)

⌉
, lK,j(ε) =

(ε
2

)− 1
α
c
K(ε)
1+α c−

1+j
1+α

(
1− c

K(ε)
1+α

1− c
1

1+α

) 1+α
α

∀j < K(ε).

(21)

Observing that c
K(ε)
1+α behaves like ε

1
1+α , and 1 − c

K(ε)
1+α → 1 as ε → 0, we find lK,j(ε) '

ε
− 1
α(1+α) c−

1+j
1+α , with lower and upper bounds independent of ε, K and j.
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Definition 7 (Quasi-optimal multilevel choice) A family ((lK,j(ε))j<K(ε))ε>0 of sequences sat-
isfying ẽK(ε)((lK,j(ε))j<K(ε)) ≤ ε for all ε > 0 is a quasi-optimal multilevel choice, iff

K(ε)−1∑
j=0

lK,j(ε) = O

(
inf

{ K̂−1∑
j=0

l̂j : ẽK̂((l̂j)j<K̂) ≤ ε, K̂ ∈ N, l̂j > 0 ∀j < K̂

})
as ε→ 0.

Theorem 8 (Multilevel convergence) Equation (21) defines a quasi-optimal multilevel choice for
ε ∈ (0, e0). It holds

costML(ε) :=

K(ε)−1∑
j=0

lK,j(ε) ' ε−
1
α as ε→ 0. (22)

Proof For the proof see Appendix A.3.

Due to the quasi-optimality, the asymptotic cost behaviour O(ε−1/α) required to achieve error
ẽK ≤ ε cannot be improved. Comparing with the single-level method in Theorem 8, we observe
that the multilevel method decreases the computational cost by a factor log(ε−1). In practice and
for small ε > 0, this can amount to a significant speedup as we will see in our numerical examples.

In Appendix B we provide further details of the implications of Theorem 8 for gradient descent,
accelerated gradient descent and the stochastic versions of these algorithms. As an application we
discuss a stochastic gradient descent algorithm that uses increasing batch sizes in Example 5.

Remark 9 Suppose that ek generated with levels lj satisfies instead of (8) the relaxed condition
ek+1 ≤ cek + Cl−αk for some constant C ≥ 1. Then, ẽk generated with the levels l̃k := C1/αlk
satisfies ẽk+1 ≤ cẽk+Cl̃−αk = cẽk+ l−αk . The cost quantity

∑k−1
j=0 l̃j only increases by the constant

factor C1/α compared to
∑k−1

j=0 lj . Hence, the asymptotic cost behaviour stated in Theorem 5
(single-level) and Theorem 8 (multi-level) remains valid also for C > 1.

We next continue our discussion of Example 3, for details see Appendix C.4.

Example 4 (Continuation of Example 3) It can be shown that the regularized objective Φ in Ex-
ample 3 is λ-strongly convex and L-smooth with L = ‖ξ‖2L2(D)‖Γ

−1‖+ λ. Consider the multilevel
gradient descent method fj+1 = fj − ηglj (fj), where gl is the approximation to∇Φ from Example
3. The level choice (21) then yields ‖f∗ − fK(ε)‖L2(D) . ε, for the unique minimizer f∗ of Φ.
The cost quantity, which corresponds to the aggregated computational cost of all required FEM
approximations to compute fK(ε), behaves like ε−1 as ε→ 0.

Finally we point out that our analysis and notion of quasi-optimality are based on the constraint
ẽk ≤ ε (rather than ek ≤ ε), where ẽk is an upper bound of the actual error ek. In Appendix D we
give a concrete example of biased gradient descent to show that the cost asymptotics in (22) is in
general sharp for the actual error ek as well.

4. Particle based optimization: A multilevel ensemble Kalman inversion

As our first application, we present a multilevel ensemble Kalman inversion (EKI) to solve the
problem presented in Sec. 2.1. EKI is a derivative free particle based optimization method, e.g.,
Schillings and Stuart (2017); Blömker et al. (2019); Kovachki and Stuart (2019). We first recall the
method, and subsequently present a multilevel version.
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4.1. Ensemble Kalman inversion

EKI refers to a specific dynamical system describing the evolution of an ensemble of particles. By
the well-known subspace property Iglesias et al. (2013), these particles remain within the finite
dimensional affine subspace spanned by the ensemble at initialization. Therefore, there is no loss of
generality in assuming X = Rnx finite dimensional throughout this section.

We formulate the EKI as a method to minimize the objective

Φ(x) =
1

2
‖Σ−1/2(H(x)− z)‖2Rnz . (23)

Here H : Rnx → Rnz is the forward model and Σ ∈ Rnz×nz is SPD. Letting

H = F, z = y ∈ Rny , Σ = Γ, (24)

(23) corresponds to the objective in (3) with R = 0 (i.e. unregularized). Fixing an SPD matrix
C0 ∈ Rnx×nx ,

H =

(
F
Id

)
, z =

(
y

0Rnx

)
, Σ =

(
Γ 0
0 1

λC0

)
, (25)

yields the regularized objective Φ(x) in (3) with regularizer R(x) = λ
2‖C

−1/2
0 x‖2Rnx . We refer to

EKI applied to the unregularized and regularized objective as standard EKI and Tikhonov regular-
ized EKI (TEKI), respectively. See Chada et al. (2020); Weissmann et al. (2022) for more details on
TEKI.

We consider the continuous-time formulation of EKI Blömker et al. (2018); Blömker et al.
(2021): For a fixed ensemble size M ∈ N, let v(m)

t ∈ Rnx , m = 1, . . . ,M , satisfy the coupled
system of stochastic differential equations (SDEs)

dv
(m)
t = Cv,H(vt)Σ

−1(z −H(v
(m)
t )) dt+ Cv,H(vt)Σ

−1/2 dW
(m)
t ,

v
(m)
0

i.i.d.∼ Q0 m = 1, . . . ,M.
(26)

Here W (m)
t are independent Rnz -valued Brownian motions, Q0 is a fixed initial distribution with

finite second moment on Rnx , and Cv,H ∈ Rnx×nz denotes a mixed sample covariance, see Ap-
pendix E for the precise formula. Under certain assumptions, it can be shown that (26) is well-posed,
i.e. existence of unique and strong solutions can be guaranteed, and their average converges to the
minimizer of Φ (Blömker et al. (2019)).

To motivate this behaviour, suppress for the moment the diffusion term in (26), and consider a
linear forward map H ∈ Rnz×nx . Then

dv
(m)
t

dt
= −C(vt)H

>Σ−1(Hv
(m)
t − z) = −C(vt)∇vΦ(v

(m)
t ),

for Φ(x) = 1
2‖Σ

−1/2(Hx − z)‖2Rnz . Hence, in the linear and deterministic setting the EKI is a
preconditioned gradient flow w.r.t. the data misfit ` (or w.r.t. the Tikhonov regularized data misfit).
We refer to Chada and Tong (2022); Weissmann (2022) for more details on the nonlinear setting.
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4.2. Multilevel ensemble Kalman inversion

To formulate the multilevel EKI, assume given approximations Hl, l > 0, to H in (26). Fixing
τ > 0, with tj := j · τ we denote by v(m),lj

tj+1
the solution of the coupled system of SDEs in integral

form

v
(m),lj
tj+1

=v
(m),lj−1

tj
+

∫ tj+1

tj

C
v,Hlj (v

lj
t )Σ−1(z−Hlj (v

(m),lj
t )) dt+

∫ tj+1

tj

C
v,Hlj (v

lj
t )Σ−1/2 dW

(m)
t ,

(27)
initialized via v(m),lj

tj
= v

(m),lj−1

tj
. We then introduce a discrete-time process (xj)j as the ensemble

mean of the particles at time tj :

xj :=
1

M

M∑
m=1

v
(m),lj
tj

. (28)

We discuss a discretization scheme for the SDE (27) and summarize the multilevel EKI as an
algorithm in Appendix F. The goal in the following is to show that xj approximately minimizes the
objective (23) for large j.

4.3. Error analysis for linear forward operators

Assume F to be linear, specifically F ∈ Rny×nx with ny < nx and rank(FF>) = ny. We
make the following assumptions on the forward operator arising through numerical approximation
which is typically satisfied for ODE- or PDE-based forward models. We verify this assumption for
Example 1 in Appendix C, but emphasize that this is typically satisfied and known for numerical
approximations (e.g., using finite elements or boundary elements) to forward maps described by
PDE solutions, see for example Ern and Guermond (2021); Sauter and Schwab (2011).

Assumption 10 (Approximation of the forward operator) There exist b > 0 and α > 0 such
that for each l > 0 there exists Fl ∈ Rny×nx satisfying ‖F − Fl‖2Rny×nx ≤ bl

−α.

In the following we use the notation Hl to denote H as in (24) or (25) but with F replaced by
Fl, i.e. Hl ∈ Rnz×nx . We consider EKI and TEKI with covariance inflation, which is a standard
data assimilation tool to stabilize the scheme, e.g., Anderson (2007, 2009); Tong et al. (2016).
Specifically, for some fixed SPD matrix B ∈ Rnx×nx , (27) is replaced by the stabilized dynamics

v
(m),lj
tj+1

=

∫ tj+1

tj

(C(v
lj
t ) +B)H>lj Σ−1(z−Hljv

(m),lj
t ) dt+

∫ tj+1

tj

C(v
lj
t )H>lj Σ−1/2 dW

(m)
t . (29)

Assume that an evaluation of Fl has cost O(l). Then, approximating (29) using for example an
Euler-Maruyama scheme with a fixed number of time steps T , requires O(M ·T ) evaluations of Fl.
With M and T interpreted as constants, this amounts to cost O(l). In this sense the cost quantity∑K−1

j=0 lj introduced in (9), can be interpreted as the computational cost of computing xK in (28).
We give convergence result for EKI and TEKI in the case of noise-free and noisy data respectively.

Let xj in (28) be the mean of the particle system driven by (29), with H (and Hl) as in (24).

10
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Proposition 11 (Multilevel EKI) Let Assumption 10 be satisfied, y = Fx† ∈ Rny for some truth
x† ∈ Rnx and let Q0 have finite second moment on Rnx . For τ > 0 sufficiently small, there exists
c ∈ (0, 1) depending on F and B such that for levels lK,j(ε), j = 0, . . . ,K(ε)− 1, given by (21),

eK(ε) := E[Φ(xK(ε))]− Φ(x†) = E[‖Γ−1/2(FxK(ε) − y)‖2Rny ] ≤ ε,

for all small enough ε > 0. Furthermore, costML(ε) =
∑K(ε)−1

j=0 lK,j(ε) ' ε−
1
α .

Proof For the proof see Appendix G.1.

Now let xj in (28) be the mean of the particle system driven by (29), withH (andHl) as in (25).

Proposition 12 (Multilevel TEKI) Let Assumption 10 be satisfied, x∗ ∈ Rnx be the unique min-
imizer of Φ in (23) with H given by (25), and let Q0 have finite second moment on Rnx . For
τ > 0 sufficiently small there exists c ∈ (0, 1) depending on F and B such that for levels lK,j(ε),
j = 0, . . . ,K(ε)− 1, given by (21),

eK(ε) := E
[

1

2
‖Γ−1/2F (xK(ε) − x∗)‖2Rny +

λ

2
‖C−1/2

0 (xK(ε) − x∗)‖2Rnx
]
≤ ε,

for all small enough ε > 0. Furthermore, costML(ε) =
∑K(ε)−1

j=0 lK,j(ε) ' ε−
1
α .

Proof For the proof see Appendix G.2.

In both cases there holds an analogous statement for the single-level choice in (16) with (the
worse) asymptotic cost behaviour ε−1/α log(ε−1) as ε→ 0.

5. Optimization over probability measures: Multilevel Bayesian inference

As our second application, we consider an interacting particle system, to solve the problem pre-
sented in Sec. 2.2. To derive the method, we apply the multilevel optimization of Sec. 3 to a gradient
flow in the space of probability measures. Appendix H gives details on the algorithm.

Throughout this section we adopt the assumptions of Sec. 2.2, i.e. X = Rnx , the forward model
F : Rnx → Rny may be nonlinear and the prior Q0 ∼ N (0, 1

λC0) is Gaussian. We denote it’s
density by q0. The posterior density then equals

ρ∗(x) =
1

Z
exp(−`R(x)), `R(x) :=

1

2
‖Γ−1/2(F (x)− y)‖2Rny +

λ

2
‖C−1/2

0 x‖2Rnx (30)

with Z =
∫
Rnx exp(−`R(x)) dx. To explain the idea of approximating ρ∗ by an ensemble of

particles, we first recall the Langevin dynamics. Let vt ∈ Rnx initialized as v0 ∼ q0 solve

dvt = −∇x`R(vt) dt+
√

2dWt, v0 ∼ q0. (31)

The evolution of its distribution ρt is described by the Fokker-Planck equation, see e.g. Pavliotis
(2014),

∂tρt = ∇ · (ρt∇`R) + ∆ρt, ρ0 = q0. (32)

Under certain assumptions on `R the Markov process vt is ergodic and ρ∗ is its unique invariant
distribution. Furthermore, it is possible to describe the rate of convergence in terms of the gradient
flow structure given by (32), see for example (Pavliotis, 2014, Theorem 4.9).

11
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5.1. Interacting Langevin sampler

We consider an interacting Langevin particle system introduced in Garbuno-Inigo et al. (2020). Let
(v

(m)
t )Mm=1 solve

dv
(m)
t = −C(vt)∇`R(v

(m)
t ) dt+

√
2C(vt) dW

(m)
t , (33)

with v(m)
0 ∼ q0 i.i.d., where (W

(m)
t )Mm=1 denote independent Brownian motions on Rnx and with

C(v) the empirical covariance, see Appendix E. Observe that the mean field limit satisfies the
following preconditioned version of (31)-(32) (e.g. Ding and Li (2021b)):

dvt = −C(ρ)∇`R(vt) dt+
√

2C(ρ) dWt,

where

m(ρ) =

∫
Rnx

vρ(v) dv, C(ρ) =

∫
Rnx

((v −m(ρ))⊗ (v −m(ρ))) ρ(v) dv (34)

and
∂tρt = ∇ · (ρtC(ρt)∇`R) + Tr(C(ρt)∇2ρt), ρ0 = q0. (35)

5.2. Mean-field and discrete multilevel interacting Langevin sampler

Fix τ > 0 and set tj := j · τ . In the following let `lR be given by (30) with the forward model F :
Rnx → Rny replaced by an approximation Fl. We consider the discrete time process (ρj)j=1,...,K

iteratively defined by ρj+1 = ρ
lj
tj+1

, where ρl10 = q0 and ρljt solves (35) on a time interval of length
τ initialized with the previous distribution, i.e.

∂tρ
lj
t = ∇ · (ρljt C(ρ

lj
t )∇`ljR) + Tr(C(ρ

lj
t )∇2ρ

lj
t ), ρ

lj
tj

= ρ
lj−1

tj
. (36)

While the subsequently discussed analysis will be based on the mean field limit (36), we present
a discretized version by introducing a particle based approximation based on (33). To this end let
(ρ̂j)j iteratively be defined by

ρ̂j+1 =
1

M

M∑
m=1

δ
v
(m),lj
tj+1

,

where δv denotes the dirac-measure at v and v(m),lj
tj+1

initialized by v(m),lj
tj

= v
(m),lj−1

tj
solves

v
(m),lj
tj+1

= v
(m),lj
tj

−
∫ tj+1

tj

C(v
lj
t )∇`R(v

(m),lj
t ) dt+

∫ tj+1

tj

√
2C(v

lj
t ) dW

(m)
t , m = 1, . . . ,M.

(37)

5.3. Mean-field error analysis for the Kullback–Leibler divergence

Under convexity assumptions on `lR and assuming thatC(ρlt) does not degenerate, one can prove ex-
ponential convergence to equilibrium for the mean-field limit of the interacting Langevin dynamics
for any fixed level l (Garbuno-Inigo et al., 2020, Proposition 2). These assumptions can for example
be verified for linear forward models and Gaussian priors (Garbuno-Inigo et al., 2020, Corollary 5).
We make the following additional assumption:

12
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Assumption 13 (Approximation of the forward operator) There exist b > 0 and α > 0 such
that for each j ∈ N there exists Flj : Rnx → Rny satisfying∫

Rnx
‖F (x)− Flj (x)‖2Rny ρj(x) dx ≤ bl−αj .

For linear forward models and Gaussian priors, the pdf ρj remains Gaussian and Assumption 13 can
be inferred from Assumption 10. Extending the convergence result of Garbuno-Inigo et al. (2020)
to error decay (8) allows us to apply our results from Sec. 3. This leads to the following Proposition:

Proposition 14 (Multilevel interacting Langevin sampler) Suppose KL(q0‖ρ∗) < ∞ and let
Assumption 13 be satisfied. Suppose there exist σ1, σ2 > 0 such that ∇2`lR > σ1Id and C(ρj) >
σ2Id (cp. (34)) for all j ≥ 0. For τ > 0 sufficiently small there exists c ∈ (0, 1) depending on
σ1, σ2, such that lK,j(ε), j = 0, . . . ,K(ε)− 1 given by (21) yields

eK(ε) := KL(ρK(ε)‖ρ∗) ≤ ε,

for all small enough ε > 0 where ρj solves (36). Moreover, costML(ε) '
∑K(ε)−1

j=0 lK,j(ε) ' ε−
1
α .

Proof For the proof see Appendix I.1.

An analogous results holds for the single-level choice in (16) with cost behavior log(ε−1)ε−
1
α .

6. Numerical experiments

We consider an adaptation of our running example in a one-dimensional setting with D = (0, 1).
Instead of working on L2(D) directly, we parametrize L2(D) via

f(x) = f(x, ·) =
∑
i∈N

xi

√
2

π
sin(iπ·) ∈ L2(D),

for x ∈ Rnx . We used the observation operator O : H2(D) → Rny : uf 7→ (uf (si))
ny
i=1 with the

equispaced points si = i
ny+1 , i = 1, . . . , ny = 15. The forward model is F (x) = O(uf(x)) ∈ Rny

for x ∈ Rnx , where uf denotes the solution of (5). We used piecewise linear FEM on a uniform
mesh to approximate F by Fl. This setup corresponds to α = 1 in Sec. 3. As a prior on the
parameter space Rnx we chose Q0 = N (0, C0) with C0 = diag(i−2, i = 1, . . . , nx).

We ran multilevel TEKI (Algorithm 1) and the multilevel interacting Langevin sampler (Algo-
rithm 2) on this problem and plotted the error convergence in Fig. 1. For TEKI, the plotted error
quantity is E[1

2‖Γ
−1/2Fref(xK(ε)− x∗)‖2Rny + λ

2‖C
−1/2
0 (xK(ε)− x∗)‖2Rnx ] with Fref = F214 . For

the interacting Langevin sampler we consider the convergence of the posterior mean, and the error
quantity is E[1

2‖f(·, xK(ε)) − f(·, x∗)‖2L2(D)]. The observed convergence rates roughly coincide
with the ones proven in Sec. 4 and Sec. 5. In particular, the multilevel algorithms are superior to
their single-level counterparts. Even though the reduction in cost is only by the factor log(ε−1), as
the plot shows this can amount to significant gains in practice. More details on all chosen parameters
and the setup can be found in Appendix J.
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Figure 1: Computational costs vs. estimated error for TEKI (left) and the interacting Langevin sam-
pler (ILS) (right). We ran all Algorithms 100 times to estimate the expected error.

7. Conclusion

We have presented an abstract multilevel optimization framework, and provided quasioptimal level
choices. We showed improved convergence compared to single-level methods, and demonstrated
the wide applicability by introducing a novel multilevel ensemble Kalman inversion, as well as a
new multilevel Langevin sampler. While our main focus was on inverse problems, we additionally
discussed different versions of multilevel gradient descent, which in principle are applicable to any
kind of optimization problem where the evaluation of the (derivatives of the) objective function is
expensive or impossible, and demands approximation by numerical methods. Further directions
or research could include developing optimization procedures for sampling with respect to other
metrics (than KL), such as the Wasserstein distance. The proof could proceed along similar lines as
Proposition 14. Moreover, developing a framework for adaptive step sizes and levels would be an
interesting extension.
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Appendix A. Proofs of the main theorems

A.1. Proof of Theorem 5

Proof Let ε ∈ (0, e0). With ẽK in (13), denote

ẽK((lj)j) = cKe0 +

K−1∑
j=0

cK−1−jl−αj =: ẽK,1 + ẽK,2((lj)j). (38)

By definition, K(ε) ∈ N in (16) is minimal such that ẽK(ε),1 ≤ ε
2 . Moreover, by definition l̄K(ε) >

0 in (16) is minimal such that ẽK,2((l̄K(ε))j) ≤ ε.
Now let K̂ ∈ N and l̂ > 0 be any numbers such that ẽK̂((l̂)j) ≤ ε. Then

ẽK̂,1 ≤ ẽK̂,1 + ẽK̂,2((l̂)j) = ẽK̂((l̂)j) ≤ ε,

and by the optimality property of K(ε) we obtain K̂ ≥ K(2ε). Similarly, since

ẽK̂,2((l̂)j) ≤ ε, (39)

the optimality property of l̄K(ε) implies l̂ ≥ l̄K(2ε). Taking the infimum over all such l̂ and K̂

K(2ε)l̄K(2ε) ≤ inf{K̂l̂ : ẽK(l̂) ≤ ε} ≤ K(ε)l̄K(ε), (40)

where the second inequality holds due to ẽK(ε)(l̄K(ε)) ≤ ε.
By definition of K(ε) and l̄K(ε) in (16)

costSL(ε) = K(ε)lK(ε) = log(c)−1 log

(
ε

2e0

)(K−1∑
i=0

c
K−1−i
1+α

) 1
α (ε

2

)− 1
α
.

Since with δ := c
1

1+α ∈ (0, 1) holds 1 ≤
∑K−1

i=0 c
K−1−i
1+α ≤ (1 − c)−1 we have costSL(ε) '

ε−
1
α log(ε−1) as ε→ 0. Together with (40) we find

costSL(ε) ' ε−
1
α log(ε−1) ' inf{K̂l̂ : ẽK̂(l̂) ≤ ε} as ε→ 0.

This shows (17) and quasi-optimality in the sense of Def. 4.

A.2. Proof of Lemma 6

Proof Define aj := cK−1−j for all j = 0, . . . ,K − 1. We wish to minimize
∑K−1

j=0 lj for lj > 0

and under the constraint
∑K−1

j=0 ajl
−α
j − ε. To this end we use a Lagrange multiplier and consider

min
l1,...,lK ,λ

K−1∑
j=0

lj + λ

(
K−1∑
j=0

ajl
−α
j − ε

)
.
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Taking the derivatives w.r.t. lj and λ leads to the following first order optimality conditions

1− λαajl−(1+α)
j = 0,

K−1∑
j=0

ajl
−α
j − ε = 0.

The first condition gives lj = CK,εa
1

1+α

j for some constant CK,ε. Plugging lj into the second
condition we find

C−αK,ε

K−1∑
j=0

aja
− α

1+α

j = ε.

Hence CK,ε = ε−
1
α (
∑K−1

j=0 a
1

1+α

j )
1
α . Finally,

K−1∑
j=0

a
1

1+α

j =

K−1∑
j=0

c
j

1+α =
1− c

K
1+α

1 + c
1

1+α

.

This shows (19).

Remark 15 The constant CK,ε in (19) increases for decreasing tolerance ε > 0. Moreover, CK,ε
is bounded from below and above uniformly for all K ∈ N as for c ∈ (0, 1) holds

K−1∑
j=0

c
K−1−j
1+α =

1− (c
1

1+α )K

1− c
1

1+α

∈

(
1,

1

1− c
1

1+α

)
.

A.3. Proof of Theorem 8

Proof With lK,j(ε) and K(ε) as in (21), the calculation in (20) and Rmk. 15 show

costML(ε) =

K(ε)−1∑
j=0

lK,j =
(ε

2

)− 1
α

(
1− cK(ε)/(1+α)

1− c1/(1+α)

) 1+α
α

' ε−
1
α as ε→ 0, (41)

as claimed.
The proof of quasi-optimality in the sense of Def. 7 follows the same argument as in the proof

of Theorem 5: Let ε ∈ (0, e0). Split ẽK((lj)j) in (13), in the terms ẽK,1 and ẽK,2((lj)j) as in (38).
Now let K̂ ∈ N and (l̂j)

K̂−1
j=0 > 0 be arbitrary such that ẽ((l̂j)j) ≤ ε. Moreover, define

l̃K,j := CK̂,ε · c
K̂−1−j
1+α , CK̂,ε = ε−

1
α

(
K−1∑
i=0

c
K̂−1−i
1+α

) 1
α

which by Lemma 6 minimizes
∑K̂−1

j=0 l̃K,j under the constraint ẽK̂,2((l̃K,j)j) ≤ ε. Since also

ẽK̂,2((l̂j)j) ≤ ẽK̂((l̂K,j)j) ≤ ε, this implies

K̂−1∑
j=0

l̂j ≥
K̂−1∑
j=0

l̃K,j = ε−
1
α

(
1− cK̂/(1+α)

1− c1/(1+α)

) 1+α
α

(42)
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where the equality holds by the calculation in (20).
Next observe that by definition, K(2ε) ∈ N in (21) is minimal such that ẽK(ε),1 ≤ ε. Since also

ẽK̂,1 ≤ ẽK̂((l̂j)j) ≤ ε, this gives K(2ε) ≤ K̂. Therefore

ε−
1
α

(
1− cK̂/(1+α)

1− c1/(1+α)

) 1+α
α

≥ ε−
1
α

(
1− cK(2ε)/(1+α)

1− c1/(1+α)

) 1+α
α

=

K(2ε)∑
j=0

lK,j(2ε), (43)

where the last inequality holds by the calculation in (20). In all, (42) and (43) yield

K(2ε)−1∑
j=0

lK,j(2ε) ≤
K̂∑
j=0

l̂j .

Since K̂ and l̂j were arbitrary such that ẽ((l̂j)j) ≤ ε,

K(2ε)−1∑
j=0

lK,j(2ε) ≤ inf

{ K̂−1∑
j=0

l̂j : ẽK̂((l̂j)j) ≤ ε, K̂ ∈ N, l̂j > 0 ∀j
}
≤

K(ε)−1∑
j=0

lK,j(ε), (44)

where the second inequality holds due to ẽK(ε)((lK,j(ε))) ≤ ε. By (41) all terms in (44) behave
like ε−1/α as ε→ 0, and this shows quasi-optimality in the sense of Def. 7.

Appendix B. Gradient descent and accelerated gradient descent

In this appendix we discuss the implications of our results for gradient descent, accelerated gradient
descent and the stochastic versions of those algorithms. Throughout this section we assume that X
is a Hilbert space and Φ : X → R is Fréchet differentiable, µ-strongly convex, i.e.

Φ(y) ≥ Φ(x) + 〈∇Φ(x), y − x〉+
µ

2
‖y − x‖2X ∀x, y ∈ X , (45)

and satisfies L-smoothness so that

Φ(y) ≤ Φ(x) + 〈∇Φ(x), y − x〉+
L

2
‖y − x‖2X ∀x, y ∈ X . (46)

Moreover, we denote by x∗ ∈ X the unique minimizer of Φ.
For the deterministic algorithms we assume the existence of approximate gradients gl : X → X

such that

‖∇Φ(x)− gl(x)‖X ≤
l−α

η
∀x ∈ X , (47)

where η > 0 will denote the step-size in the following. For the stochastic variants we will work
under the assumption that for every x ∈ X there exists a random variable Gl(x) ∈ X such that

E‖∇Φ(x)−Gl(x)‖X ≤
l−α

η
∀x ∈ X . (48)
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B.1. Gradient Descent (GD)

The gradient descent update with step-size η and approximate gradient at level lk reads

xk+1 = xk − ηglk(xk). (49)

Proposition 16 Let 0 ≤ η ≤ 1/L and let gl satisfy (47). Then xk generated by (49) satisfies the
bound (8) with ek = ‖xk+1 − x∗‖X and c =

√
1− ηµ.

Proof Observe that

‖xk+1 − x∗‖X = ‖xk − x∗ − η∇xΦ(xk) + η∇xΦ(xk)− ηglk(xk)‖X
≤ ‖xk − x∗ − η∇xΦ(xk)‖X + η‖∇xΦ(xk)− glk(xk)‖X .

Using µ-strong convexity (45) and L-smoothness (46) we obtain the following upper bound,

‖xk − x∗ − η∇xΦ(xk)‖2X = ‖xk − x∗‖2X − 2η〈xk − x∗,∇xΦ(xk)〉+ η2‖∇xΦ(xk)‖2X
≤ ‖xk − x∗‖2X − ηµ‖xk − x∗‖2X − 2η(Φ(xk)− Φ(x∗)) + η2‖∇xΦ(xk)‖2X
≤ (1− ηµ)‖xk − x∗‖2X − η(1/L− η)‖∇xΦ(xk)‖2X
≤ (1− ηµ)‖xk − x∗‖2X .

Combining these inequalities with assumption (47) leads to desired recursion (8)

ek+1 = ‖xk+1 − x∗‖X ≤
√

1− ηµ‖xk − x∗‖X + l−αk = cek + l−αk .

It now follows from Thm. 8 that:

Corollary 17 (MLGD) Consider the setting of Proposition 16. Then with the levels lK,j(ε) as
in (21), xK generated by (49) satisfies eK := ‖xK − x∗‖X ≤ ε, and it holds

∑K−1
j=0 lK,j(ε) =

O(ε−1/α) as ε→ 0.

B.2. Stochastic Gradient Descent (SGD)

We now consider the stochastic setting, i.e. we assume given random variables Gl(x) as in (48).
The stochastic gradient descent update with step-size η and approximate stochastic gradient at level
lk then reads

xk+1 = xk − ηGlk(xk). (50)

Proposition 18 Let 0 ≤ η ≤ 1/L and let Gl satisfy (48). Then xk generated by (50) satisfies the
bound (8) with ek = E[‖xk+1 − x∗‖X ] and c =

√
1− ηµ.
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Proof The proof proceeds in the exact same manner as for gradient descent (taking expectations
and replacing glk(xk) with Glk(xk)). To be more precise, taking the expectation w.r.t. the filtration
up to iteration k, i.e. Ek[·] := E[· | σ(Glj (xj), j = 1, . . . , k − 1)], we have

Ek[‖xk+1 − x∗‖X ] ≤
√

1− ηµ‖xk − x∗‖X + ηEk[‖∇xΦ(xk)−Glk(xk))‖X ],

where we again applied the inequality ‖xk − x∗ − η∇xΦ(xk)‖2X ≤ (1 − ηµ)‖xk − x∗‖2X under
µ-strong convexity and L-smoothness. Taking the expectation (this time without conditioning), we
obtain

ek+1 = E[‖xk+1−x∗‖X ] ≤
√

1− ηµE[‖xk−x∗‖X ]+ηE[‖∇xΦ(xk)−Glk(xk))‖X ] ≤ cek+l−αk .

Corollary 19 (MLSGD) Consider the setting of Proposition 18. Then with the levels lK,j(ε) as
in (21), xK generated by (50) satisfies eK := E[‖xK − x∗‖X ] ≤ ε, and it holds

∑K−1
j=0 lK,j(ε) =

O(ε−1/α) as ε→ 0.

We next discuss a standard example of stochastic gradient descent, namely with Gl being a
Monte Carlo estimator. However, we emphasize that other approximation schemes are applicable
as well in this setting.

Example 5 (SGD with dynamic sampling) We consider a stochastic optimization problem in the
form of (1) by

min
x∈X

Φ(x), Φ(x) := Eξ[ϕ(x, ξ)], (51)

where ξ is a random variable on a underlying probability space (Ω,F ,P) with state space (E, E)
and ϕ : X × E → R is the stochastic objective function. The expected value Eξ[ϕ(x, ξ)] and
its gradient are often not available analytically. Assuming access to i.i.d. samples {ξnk }

lk
n=1 of

ξ, we can define a stochastic gradient approximation by the Monte Carlo estimator Glk(xk) :=
1
lk

∑lk
n=1∇xϕ(xk, ξ

n
k ). The level lk describes the batch size in iteration k, which correspond to the

number of required evaluations of ϕ. In this sense, lk describes the computational cost required to
evaluate Glk . Under certain integrability assumptions, Glk is an unbiased estimator of ∇Φ(xk),
i.e.∇Φ(x) = Eξ[∇ϕ(x, ξ)], and it holds

E[‖∇Φ(x)−Gl(x)‖X ] ≤
√

E[‖∇Φ(x)−Gl(x)‖2X ] ≤
(
Eξ[‖∇ϕ(x, ξ)− Eξ[∇ϕ(x, ξ)]‖2X ]

l

)1/2

,

i.e. we have the second inequality in (10) (up to a constant, cp. Rmk. 9) with α = 1/2. Applying the
multilevel strategy (21) then yields a stochastic optimization method with increasing batchsize.

By Corollary 19, achieving error E[‖xK−x∗‖X ] ≤ ε requiresO(ε−1/2) evaluations of∇ϕ(x, ξ)
(since

∑K−1
j=0 lK,j(ε) coincides with the number of evaluations of ∇ϕ(x, ξ) in the current setting).

This is the same convergence rate that is obtained for batch size 1 and decreasing step size ηk ∼ 1
k .

However, we point out that the present multilevel version, which uses constant step size and increas-
ing batch size, allows for parallelization in the gradient evaluations.
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B.3. Accelerated Gradient Descent (AGD)

We write the accelerated gradient descent algorithm as the following update (see Nesterov (1983))

pk+1 = qk − α∇Φ(qk)

qk+1 = pk+1 + β(pk+1 − pk),

where α = 1/L and β =
√
L−√µ√
L+
√
µ
. Defining xk = [pk, qk] we can represent AGD as (7) using the

operator

Ψ =

[
0 (I − α∇Φ)
βI (I + β)(I − α∇Φ)

]
.

AGD using approximated gradients at level lk can then be represented as the following three
sequence update (see e.g. Nesterov (1983) for equivalence):

xk =
τ

1 + τ
zk +

1

1 + τ
yk (52a)

yk+1 = xk −
1

L
glk(xk) (52b)

zk+1 = zk + τ(xk − zk)−
τ

µ
glk(xk). (52c)

Proposition 20 Suppose that gl satisfies (47) with η = 1/
√
L and τ =

√
µ/L. Then (yk, zk)

generated by (52) satisfies (8) with ek = Φ(yk)−Φ(x∗)+ µ
2‖zk−x∗‖

2
X exponent 2α, and c = 1−τ ,

more precisely

Φ(yk+1)− Φ(x∗) +
µ

2
‖zk+1 − x∗‖2X ≤ (1− τ)

(
Φ(yk)− Φ(x∗) +

µ

2
‖zk − x∗‖2X

)
+ l−2α

k .

Proof We begin by using the L-smoothness of Φ:

Φ(yk+1)− Φ(xk) ≤ 〈∇Φ(xk), yk+1 − xk〉+
L

2
‖xk − yk+1‖2X

= − 1

L
〈∇Φ(xk), gl(xk)〉+

1

2L
‖gl(xk)‖2X

=
1

2L
‖gl(xk)−∇Φ(xk)‖2X −

1

2L
‖∇Φ(xk)‖2X ≤

l−2α
k

2Lη2
− 1

2L
‖∇Φ(xk)‖2X .

(53)

Denote z̃k+1 := zk+1 − τ
µ(∇Φ(xk) − ∇glk(xk)). The triangle inequality results in the following

upper bound
√
µ

2
‖zk+1 − x∗‖X ≤

1

2
√
L
‖∇Φ(xk)− gl(xk)‖X +

√
µ

2
‖z̃k+1 − x∗‖X ≤

l−αk
2
√
Lη

+

√
µ

2
‖z̃k+1 − x∗‖X .

and using Jensen’s inequality ((a/2 + b/2)2 ≤ a2/2 + b2/2) we obtain the subsequent identity,
√
µ

2
‖zk+1 − x∗‖2X ≤

l−2α
k

2Lη2
+
µ

2
‖z̃k+1 − x∗‖2X .
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The rest of the Lyapunov analysis follows as normal (see e.g. Tu et al. (2017) and Wilson et al.
(2021)). We use the previous inequality and strong convexity to obtain the bound:

µ

2
‖zk+1 − x∗‖2X −

µ

2
‖zk − x∗‖2X ≤

µ

2
‖z̃k+1 − x∗‖2X −

µ

2
‖zk − x∗‖2X +

l−2α
k

2Lη2

= τ〈∇Φ(xk), x∗ − zk〉 − τµ〈xk − zk, x∗ − zk〉+
µ

2
‖z̃k+1 − zk‖2X +

l−2α
k

2Lη2

≤ τ〈∇Φ(xk), xk − zk〉 − τµ〈xk − zk, x∗ − zk〉+
µ

2
‖z̃k+1 − zk‖2X

− τ(Φ(xk)− Φ(x∗) +
µ

2
‖xk − x∗‖2X ) +

l−2α
k

2Lη2

= 〈∇Φ(xk), xk − yk〉 −
τµ

2
‖xk − zk‖2X +

µ

2
‖z̃k+1 − zk‖2X +

l−2α
k

2Lη2

− τ(Φ(xk)− Φ(x∗) +
µ

2
‖zk − x∗‖2X ).

The inequality uses the strong convexity of Φ. Using the strong convexity of Φ again and the descent
bound (53) we have:

ek+1 ≤ (1− τ)ek + Φ(xk)− Φ(yk) + 〈∇Φ(xk), xk − yk〉 −
1

2L
‖∇Φ(xk)‖2X +

l−2α
k

Lη2

− τ(Φ(xk)− Φ(yk))−
τµ

2
‖xk − zk‖2X +

µ

2
‖z̃k+1 − zk‖2X

≤ cek −
µ

2
‖xk − yk‖2X −

1

2L
‖∇Φ(xk)‖2X − τ〈∇Φ(xk), xk − yk〉+

τL

2
‖xk − yk‖2X

− τµ

2
‖xk − zk‖2X +

µ

2
‖z̃k+1 − zk‖2X +

l−2α
k

Lη2

= cek + (
τ2

µ
− 1

2L
)‖∇Φ(xk)‖2X + (

τL

2
− µ

2τ
)‖xk − yk‖2X + l−2α

k

= cek + l−2α
k .

The second line uses strong convexity and smoothness of Φ. The following line expands the term
‖z̃k+1 − zk‖2X = ‖yk − xk − τ

µ∇Φ(xk)‖2X and uses the smoothness of Φ and identity η = 1/
√
L.

Corollary 21 (MLAGD) Consider the setting of Proposition 20. Then with the levels lK,j(ε) as
in (21), (yK , zK) generated by (52) satisfies eK := Φ(yK) − Φ(x∗) + µ

2‖zK − x∗‖
2
X ≤ ε, and it

holds
∑K−1

j=0 lK,j(ε) = O(ε−1/(2α)) as ε→ 0.

Note that the cost
∑K−1

j=0 lK,j(ε) for AGD in Corollary 21 increases at half the rate compared
to GD in Corollary 17. However, the AGD result is formulated for a quadratic cost quantity, so that
the resulting convergence rate of the error in terms of the cost is asymptotically the same.
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B.4. Accelerated Stochastic Gradient Descent (ASGD)

We now consider again the stochastic setting, i.e. we assume we are given random variables Gl as
in (48). In the following let

xk =
τ

1 + τ
zk +

1

1 + τ
yk (54a)

yk+1 = xk −
1

L
Glk(xk) (54b)

zk+1 = zk + τ(xk − zk)−
τ

µ
Glk(xk). (54c)

Proposition 22 Suppose that Gl satisfies (48) with η = 1/
√
L where τ =

√
µ/L. Then (yk, zk)

generated by (54) satisfies (8) with ek = E[Φ(yk)] − Φ(x∗) + µ
2E[‖zk − x∗‖2X ], exponent 2α and

c = 1− τ , more precisely

E[Φ(yk+1)]−Φ(x∗)+
µ

2
E[‖zk+1−x∗‖2X ] ≤ (1−τ)

(
E[Φ(yk)]−Φ(x∗)+

µ

2
E[‖zk−x∗‖2X ]

)
+l−2α

k .

Proof The proof proceeds in the exact same manner as accelerated gradient descent replacing glk
with Glk . In particular note that

Ek[Φ(yk+1)]− Φ(xk) ≤
1

2L
Ek[‖Gl(xk)−∇Φ(xk)‖2X − ‖∇Φ(xk)‖2X ]

≤
l−2α
k

2Lη2
− 1

2L
Ek‖∇Φ(xk)‖2X ,

and
√
µ

2
Ek‖zk+1 − x∗‖X ≤

1

2
√
L
Ek‖∇Φ(xk)−Gl(xk)‖X +

√
µ

2
Ek‖z̃k+1 − x∗‖X .

Therefore,
√
µ

2
Ek‖zk+1 − x∗‖2X ≤

l−2α
k

2Lη2
+
µ

2
Ek‖z̃k+1 − x∗‖2X .

Given the remainder of the proof relies on the strong convexity and smoothness of the function and
update (54a) we obtain the following recursion following the same line of argumentation:

ek+1 ≤ cek + l−2α
k .

Corollary 23 (MLASGD) Consider the setting of Proposition 22. Then with the levels lK,j(ε) as
in (21), (yK , zK) generated by (54) satisfies eK := E[Φ(yk)]−Φ(x∗) + µ

2E[‖zk − x∗‖2X ] ≤ ε, and
it holds

∑K−1
j=0 lK,j(ε) = O(ε−1/(2α)) as ε→ 0.

Remark 24 The Monte Carlo estimator discussed in the context of SGD, for example, can be used
for accelerated SGD where we require increasing batchsize to ensure assumption (10) holds with
α = 1/2.
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Appendix C. Details for the running example

For every f ∈ L2(D) on the bounded convex polygonal Lipschitz domain D ⊆ R2, denote by
uf ∈ H1

0 (D) ⊆ L2(D) the unique weak solution to (5) with right-hand side f , i.e.∫
D
∇u>f (s)∇v(x) + uf (s)v(s)ds =

∫
D
f(s)v(s)ds ∀v ∈ H1

0 (D). (55)

C.1. Well-definedness and regularity of uf
Existence and well-definedness of uf is classical. Moreover, using the test function v = uf in (55)
one has the apriori estimate ‖uf‖H1

0 (D) ≤ ‖f‖L2(D) and in particular ‖uf‖L2(D) ≤ ‖f‖L2(D). We
refer for example to (Ern and Guermond, 2021, §25) for more details.

Furthermore convexity of D in fact implies H2(D) regularity of uf and the existence of C >
0 such that ‖uf‖H2(D) ≤ C‖f‖L2(D), see (Ern and Guermond, 2021, Theorem 31.30) and the
references there.

C.2. Formula for∇Φ(f)

Consider the objective

Φ(f) =
1

2
‖Γ−1/2(F (f)− y)‖2Rny +

λ

2
‖f‖2L2(D) =: `(f, y) +R(f). (56)

in Example 3. Clearly the gradient ofR(f) equals λf ∈ L2(D). It remains to compute∇f `(f, y) ∈
L2(D).

Introduce the operators

S :=

{
Rny → R
w 7→ 1

2‖Γ
−1/2(w − y)‖2Rny ,

O :=

{
L2(D)→ Rny

f 7→ (
∫
D ξjf)

ny
j=1,

and

A :=

{
L2(D)→ L2(D)

h 7→ uh,

Observe that `(f, y) = S(O(A(f))). Using that A : L2(D) → H1
0 (D) is bounded linear, it is

easily seen that A : L2(D) → L2(D) is bounded linear and self-adjoint. Therefore (by the chain
rule)

∇f `(f, y) = ∇(S ◦ O ◦ A)(f) = A∗(∇(S ◦ O)(A(f))) = A(∇(S ◦ O)(uf )) ∈ L2(D), (57)

where uf = A(f) ∈ H1
0 (D) ⊆ L2(D). We next compute ∇(S ◦ O). Denoting by DS(w) the

Fréchet derivative, it holds

DS(w)(v) = (w − y)>Γ−1v ∈ R ∀v ∈ Rny

and with ξ = (ξj)
ny
j=1 ∈ L2(D,Rny) since O is bounded linear,

DO(f)(g) = O(g) =

∫
D
g(s)ξ(s)ds ∈ Rny ∀g ∈ L2(D).
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Hence for the composition

D(S ◦ O)(f)(g) = DS(O(f))(DO(f)(g)) =

∫
D

(O(f)− y)>Γ−1ξ(s)g(s)ds ∀g ∈ L2(D).

This shows
∇(S ◦ O)(f) = (O(f)− y)>Γ−1ξ(·) ∈ L2(D)

and finally by (57),∇f `(f, y) = A(h) = uh with h(·) = (O(uf )− y)>Γ−1ξ(·).

C.3. Finite element approximation of∇Φ(f)

Next we argue that uh can be approximated with the rate claimed in Example 3. According to,
e.g., (Ern and Guermond, 2021, §26.3.3., §32.3.2), given f ∈ L2(D), the FEM approximation
ulf to u(f) = A(f) on a uniform simplicial mesh on D ⊆ R2 with O(l) elements will satisfy
‖uf − ulf‖L2(D) . l−1. Now set h̃(·) := (O(ulf ) − y)>Γ−1ξ(·) ∈ L2(D). Then, since O :

L2(D) → Rny is bounded linear and ξ ∈ L2(D,Rny), we have ‖h − h̃‖L2(D) . l−1. Using that
A : L2(D) → L2(D) is bounded linear, ‖uh − uh̃‖L2(D) = ‖A(h − h̃)‖L2(D) . l−1. Finally,
‖uh̃ − u

l
h̃
‖L2(D) . l−1, and thus by the triangle inequality ‖uh − ulh̃‖ . l−1 as claimed.

Then
gl(f) := ul

h̃
+ λf (58)

is an approximation to∇Φ(f) satisfying ‖gl(f)−∇Φ(f)‖L2(D) . l−1.

C.4. Multilevel convergence of gradient descent

We first show L-smoothness and µ-strong convexity for the objective in (56).
With the notation from Sec. C.2 the norm of the operator O : L2(D) → Rny satisfies ‖O‖ =

‖ξ‖L2(D). Hence for all f , g ∈ L2(D), using that A : L2(D)→ L2(D) is bounded with norm 1 by
Sec. C.1, and using the formula for∇Φ computed in Sec. C.2,

‖∇Φ(f)−∇Φ(g)‖L2(D) = ‖A(O(uf − ug)>Γ−1ξ(·)) + λ(f − g)‖L2(D)

≤ ‖O(uf − ug)>Γ−1ξ(·)‖L2(D) + ‖λ(f − g)‖L2(D)

≤ (‖ξ‖2L2(D)‖Γ
−1‖Rny×ny + λ)‖f − g‖L2(D).

This shows that Φ is L-smooth with L = C‖ξ‖2L2(D)‖Γ
−1‖Rny×ny + λ.

Moreover, since F : L2(D) → Rny is bounded linear, the term f 7→ 1
2‖Γ

−1/2(F (f)− y)‖2Rny
is convex. Hence, the added regularizer ensures Φ in (56) to be µ-strongly convex with µ = λ.

In all this shows that Example 3 is in the setting of Example 2 with α = 1 (i.e. Φ is L-smooth,
µ-strongly convex, and gl in (58) satisfies the first inequality in (10) with α = 1). Thus, for small
enough η > 0, the iteration fj+1 = fj − η∇glj(ε)(fk) with the approximate gradient from subsec-
tion C.3, converges to the unique minimizer f∗ ∈ L2(D) of Φ as k →∞. With the multilevel choice
lK,j(ε), j = 1, . . . ,K(ε) as in (21), it holds ‖fK(ε) − f∗‖L2(D) . ε and the cost

∑K(ε)−1
j=0 lK,j(ε),

which (up to a constant) can be interpreted as the computational cost of all required FEM approxi-
mations, behaves like O(ε−1) as ε→ 0 according to Theorem 8.
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Appendix D. Optimality of the multilevel rate for gradient descent

We give a simple example in the setting of Example 2 to show that our results in Sec. 3 are sharp in
general. For some fixed α > 0, consider the objective function and its approximation

Φ(x) =
1

2
x2, Φl(x) =

1

2
(x− l−α)2, x ∈ R.

Denote the unique minimizer of Φ by x∗ := 0. We consider gradient descent with a fixed step size
η ∈ (0, 1), which amounts to (cp. (6))

Ψ(x) = x− ηx, Ψl(x) = x− η(x− l−α).

Hence for some initial value x0 ∈ R, (7) becomes

xk+1 = Ψlk(xk) = (1− η)xk + ηl−αk (59)

and thus assumption (8) holds with c := 1− η ∈ (0, 1).

Proposition 25 Let x0 ≥ 0, and let xk be as in (59). Then for every ε > 0, for every K ∈ N and
for every (lj)

K−1
j=0 ∈ (0,∞)K such that |xK − x∗| ≤ ε,

K−1∑
j=0

lj ≥ η
1
α ε−

1
α .

Proof We have

xK = cxK−1 + (1− c)l−αK−1 = cKx0 +
K−1∑
j=0

(1− c)cK−1−jl−αj ≥ (1− c)
K−1∑
j=0

cK−1−jl−αj .

The minimizer of
∑K−1

j=0 lj under the constraint (1− c)
∑K−1

j=0 cK−1−jl−αj ≤ ε satisfies according
to Lemma 6 and (20),

K−1∑
j=0

lj =

(
ε

1− c

)− 1
α

(
1− c

K
1+α

1− c
1

1+α

) 1+α
α

≥
(

ε

1− c

)− 1
α

= η
1
α ε−

1
α .
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Appendix E. Notation: particle methods

For a particle system (x(m))m=1,...,M , x(m) ∈ Rnx and forward operator H : Rnx → Rnz , we
denote the empirical mean and covariance operators by

x̄ =
1

M

M∑
m=1

x(m), H̄ =
1

M

M∑
m=1

H(x(m)),

Cx,H(x) =
1

M

M∑
m=1

(x(m) − x̄)⊗ (H(x(m))− H̄),

CH,H(x) =
1

M

M∑
m=1

(H(x(m))− H̄)⊗ (H(x(m))− H̄),

C(x) = Cx,x(x) =
1

M

M∑
m=1

(x(m) − x̄)⊗ (x(m) − x̄).

Appendix F. Algorithm: Multilevel ensemble Kalman inversion

The original EKI method in Iglesias et al. (2013) has been derived through an artificial discrete-time
data assimilation problem and was formulated as iterative scheme. For a fixed ensemble size M the
time-dynamical particle system {v(m)

j }Mm=1 can be written as

v
(m)
j+1 = v

(m)
j + Cv,H(vj)(C

H,H(vj) + h−1Σ)−1(z
(m)
j+1 −H(v

(m)
j )), j = 1, . . . , J, (60)

where z(m)
j+1 ∼ N (y, h−1Σ) are perturbed observations. Viewing h > 0 as step size the authors in

Schillings and Stuart (2017) motivated to take the limit h → 0 resulting in the system of coupled
SDEs (26), which has been analysed rigorously in Blömker et al. (2018); Blömker et al. (2021). To
be more precise, under weak assumptions on the general nonlinear forward model H , convergence
in probability can be verified, whereas strong convergence can be verified for linear models.

We reformulate the update formula (60) as

v
(m),l
j+1 = v

(m),l
j +

1

M

M∑
r=1

α
(r),(m),l
j v

(r)
j (61)

verifying the well-known subspace property of the EKI, which will not be violated for our proposed
multilevel formulation. This comes from the fact, that the updating force formulated in the coor-
dinate system spanned by the initial ensemble depends on the discretization level only through the
scalar valued coordinates

α
(r),(m),l
j = 〈Hl(v

(r)
j )− H̄l, (C

Hl,Hl(vlj) + h−1Σ)−1(z
(m)
j+1 −Hl(v

(m),l
t ))〉.

This observation is useful for an efficient implementation of the multilevel formulation of EKI and
TEKI respectively based on the discretization scheme (60) which we summarize as algorithm below.
Note that for standard EKI one needs to run the algorithm with the choice Hl ≡ Fl, z = y ∈ Rny
and Σ = Γ and for TEKI, with the corresponding choice

Hl(·) =

(
Fl(·)
Id

)
, z =

(
y

0Rnx

)
, Σ =

(
Γ 0
0 1

λC0

)
.
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Algorithm 1 Multilevel ensemble Kalman inversion (ML-EKI)

Require: initial ensemble v(m),0
0 , ensemble sizeM , forward model (Hl)l≥0, bias parameter α > 0,

rate parameter c ∈ (0, 1), step size h > 0, time-interval length τ such that N = τ/h ∈ N,
tolerance ε > 0.

1: set the number of iteration K ∝ log(ε−1)

2: set x0 = 1
M

M∑
m=1

v
(m),0
0

3: For j = 0, . . . ,K − 1

4: compute level lj ∝ ε−
1
α c

K−1−j
1+α

5: If j=0
6: v

(m),l0
0 = v

(m),0
0 , m = 1, . . . ,M

7: Else
8: v

(m),lj
0 = v

(m),lj−1
τ , m = 1, . . . ,M

9: EndIf
10: For n = 0, 1, . . . N − 1

11: y
(m),lj
n+1 ∼ N (y, h−1Γ), m = 1, . . . ,M

12: α
(r),(m),lj
n = 〈Flj (v

(r)
n )− F̄lj , (C

Flj ,Flj (v
lj
n ) + h−1Γ)−1(y

(m),lj
n+1 − Flj (v

(m),lj
n ))〉

13: v
(m),lj
n+1 = v

(m),lj
n + 1

M

∑M
r=1 α

(r),(m),lj
n v

(r),lj
n

14: EndFor

15: set xj+1 = 1
M

M∑
m=1

v
(m),lj
N

16: EndFor
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Appendix G. Proofs of Section 4

G.1. Proof of Proposition 11

Proof We first fix an iteration j with level lj and suppress the dependence of Flj on lj . The evolution
equation of the particle system for standard EKI can be written as

dv
(m)
t = −(C(vt) +B)F>Γ−1(Fv

(m)
t − y) dt+ C(vt)F

>Γ−1/2 dW
(m)
t .

We define r̄t := Γ−1/2F (v̄t − v†) ∈ Rny and r
(m)
t := Γ−1/2F (v

(m)
t − v†) ∈ Rny such that

1
2‖r̄t‖

2
Rny = `(v̄t) and

dr̄t = −(C(rt) + B̃)r̄t dt+ C(rt) dW̄t

with B̃ := Γ−1/2FBF>Γ−1/2. Following Theorem 5.2 in Blömker et al. (2019) we can bound

E[‖r̄s+τ‖2Rny ] ≤ E[‖r̄s‖2Rny ]− σ
∫ s+τ

s
E[‖r̄u‖2Rny ] du,

where σ > 0 denotes the smallest eigenvalue of B̃. Hence with v̄ljtj := 1
M

∑M
m=1 v

(m),lj
tj

it follows

E[
1

2
‖Flj v̄

lj
tj+1
− y‖2Γ] ≤ (1− σ · τ)E[

1

2
‖Flj v̄

lj−1

tj
− y‖2Γ],

where we have defined ‖ · ‖2Γ = ‖Γ−1/2 · ‖2Rny . With Assumption 10 and the reverse triangle
inequality |‖Fx‖ − ‖Fy‖| ≤ ‖Fx− Fy‖ we have that

ej+1 = E[
1

2
‖F v̄ljtj+1

− y‖2Γ] = E[
1

2
‖Flj v̄

lj
tj+1
− y‖2Γ] + E

[
1

2
‖F v̄ljtj+1

− y‖2Γ −
1

2
‖Flj v̄

lj
tj+1
− y‖2Γ

]
≤ (1− σ · τ)E[

1

2
‖Flj v̄

lj−1

tj
− y‖2Γ] + b1l

−α
j

≤ (1− σ · τ)E[
1

2
‖F v̄lj−1

tj
− y‖2Γ] + (1− σ · τ)b1l

−α
j + b1l

−α
j

≤ (1− σ · τ)ej + bl−αj ,

for some constant b1 > 0 and b = (2 − σ · τ)b1. We note that we have used that E[‖v̄ljtj+1
‖2Rnx ]

remains uniformly bounded, see e.g. Lemma 5 in Ding and Li (2021a). Moreover, since we assumed
finite second moments of the initial distribution Q0, we have that E[‖v̄0‖2Rnx ] < ∞ and by local
Lipschitz continuity of x 7→ 1

2‖Fx − y‖2Γ we have that e0 = E[‖F v̄0 − y‖2Γ] < ∞. With the
above computations we have verified that the error quantity e satisfies the decay assumption (8)
(respectively the generalization in Rmk. 9) and therefore, the assertion follows by application of
Theorem 5 and Theorem 8.

G.2. Proof of Proposition 12

Proof We again fix an iteration j with level lj and suppress the dependence of Flj on lj . The
evolution equation of the particle system for TEKI can be written as

dv
(m)
t = −(C(vt) +B)(F>Γ−1(Fv

(m)
t − y) + λC−1

0 v
(m)
t ) dt

+ C(vt)F
>Γ−1/2 dW

(m)
t +

√
λC(vt)C

−1/2
0 dW

(m)
t .
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Next, we define r̄t := Σ−1/2H(v̄t − x∗) ∈ Rnz and r
(m)
t := Σ−1/2H(v̄t − x∗) ∈ Rnz , where

x∗ ∈ X is the unique minimizer of `R and H , Σ are defined in (25), such that

1

2
‖r̄t‖2Rnz =

1

2
‖Γ−1/2F (v̄t − x∗)‖2Rny +

λ

2
‖C−1/2

0 (v̄t − x∗)‖2Rnx .

Since x∗ ∈ X is the unique minimizer of `R it holds true that

0 = ∇x`R(x∗) = F>Γ−1(Fx∗ − y) + λC−1
0 x∗ = H>Σ−1(Hx∗ − z),

and with B̃ := Σ−1/2HBH>Σ−1/2 we can write

dr̄t = −(C(rt) + B̃)r̄t dt+ C(rt) dW̄t.

The assertion follows similarly to the proof of Proposition 11.

Appendix H. Algorithm: Multilevel interacting Langevin MCMC

The multilevel interacting Langevin sampler is based on its particle approximation (37). Due to the
finite number of ensemble size M , the resulting algorithm contains an additional empirical error
according to the mean-field limit represented by the Fokker–Planck equation (32). We refer to Ding
and Li (2021b) for a detailed analysis of large ensemble size limit. We are going to solve these
systems of coupled SDEs by a forward Euler-Maruyama method and emphasize that other numer-
ical approximation schemes for SDEs can be applied as well. The resulting multilevel sampling
algorithm is summarized in below.

Appendix I. Proofs of Sec. 5

I.1. Proof of Proposition 14

Proof We define Φl : P → R by Φl(ρ) = KL(ρ‖ρl∗) and Φ : P → R by Φ(ρ) = KL(ρ‖ρ∗)
and assuming that for σ1, σ2 > 0 we have ∇2`lR > σ1Id and C(ρj) > σ2Id. From (Garbuno-Inigo
et al., 2020, Proposition 2) it follows that there exists a constant c ∈ (0, 1) such that KL(ρj+1‖ρ

lj
∗ ) ≤

KL(ρj‖ρ
lj
∗ ). Furthermore, under Assumption 13 it holds true that

|Φ(ρj)− Φl(ρj)| ≤ bl−α

since by definition of the KL divergence we have that

|Φl(ρ)− Φ(ρ)| = |KL(ρ‖ρl∗)− KL(ρ‖ρ∗)|

= |
∫
Rnx

ρ(x) log(ρ(x)) dx−
∫
Rnx

ρ(x) log(ρl∗(x)) dx

−
∫
Rnx

ρ(x) log(ρ(x)) dx+

∫
Rnx

ρ(x) log(ρ∗(x)) dx|

≤
∫
Rnx

ρ(x)|`lR(x)− `R(x)| dx.
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Algorithm 2 Multilevel interacting Langevin sampler (ML-ILS)
Require: initial distribution q0, ensemble size M , gradient of log-likelihood (∇Φl

R)l≥0, bias pa-
rameter α > 0, rate parameter c ∈ (0, 1), step size h > 0, time-interval length τ such that
N = τ/h ∈ N, tolerance ε > 0.

1: set the number of iteration K ∝ log(ε−1)

2: Initialize particle system as i.i.d. sample v(m),0
0 ∼ q0

3: set ρ0 = 1
M

M∑
m=1

δ
v
(m),0
0

4: For j = 0, . . . ,K − 1

5: compute level lj ∝ ε−
1
α c

K−1−j
1+α

6: If j=0
7: v

(m),l0
0 = v

(m),0
0 , m = 1, . . . ,M

8: Else
9: v

(m),lj
0 = v

(m),lj−1
τ , m = 1, . . . ,M

10: EndIf
11: For n = 0, 1, . . . N − 1

12: ξ
(m),lj
n+1 ∼ N (0, I)

13: ∆W
(m),lj
n+1 =

√
hξ

(m),lj
k+1 ,

14: g
(m),lj
n = −hC(v

lj
n )∇`ljR(v

(m),lj
n ) +

√
2C(v

lj
t )∆W

(m),lj
n+1

15: v
(m),lj
n+1 = v

(m),lj
n + g

(m),lj
n

16: EndFor

17: set ρj+1 = 1
M

M∑
m=1

δ
v
(m),lj
N

18: EndFor
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With Assumption 13 it follows that

|Φlj (ρj)− Φ(ρj)| ≤
∫
Rnx

ρj(x)|`ljR(x)− `R(x)|dx

≤ b
∫
Rnx

ρj(x)‖F (x)− Fl(x)‖2Rny dx ≤ bl−α.

Finally, we obtain

KL(ρj+1‖ρ∗) = KL(ρj+1‖ρ
lj
∗ ) +

(
KL(ρj+1‖ρ∗)− KL(ρj+1‖ρ

lj
∗ )
)

≤ cKL(ρj‖ρ
lj
∗ ) + l−αj

≤ cKL(ρj‖ρ∗) + (1 + c)l−αj .

With the above computations we have verified that the error quantity e satisfies the decay assumption
(8) (respectively the generalization in Rmk. 9) and therefore, the assertion follows by application of
Theorem 5 and Theorem 8.

Appendix J. Details for Sec. 6

The numerical approximations Fl to F are computed as follows: Given x ∈ Rnx , we let Fl :
Rnx → Rny be the map defined by Fl(f) = O(ulf ), where ulf denotes the finite element solution
to (5) using continuous piecewise linear finite elements on a uniform mesh with meshwidth 2−τ(l)

where τ(l) = dlog(l)/ log(2)e such that l = 2τ(l). Since O : H1
0 (D) → Rny is continuous, it can

be shown that ‖F (x) − Fl(x)‖Rny . l−1‖x‖Rnx for all l and all x ∈ Rnx , i.e. the convergence
rate α in Section 3 equals 1. As a prior on the parameter space Rnx we chose Q0 = N (0, C0) with
C0 = diag(i−2β, i = 1, . . . , nx) for some fixed β > 0.

The truth x† was generated as a draw from the prior. Figure 1 shows the error convergence of
multilevel and single-level TEKI in Algorithm 1 in Appendix F with the parameters β = 1 and
nx = 100. The ensemble size was size M = 50 and the step size of the discretization scheme (60)
was chosen a h = 0.1. The plotted error quantity is

eK(ε) = E
[
Γ−1/2 1

2
‖Fref(xK(ε)− x∗)‖2Rny +

λ

2
‖C−1/2

0 (xK(ε)− x∗)‖2Rnx
]
,

with the reference solution x∗ computed via

x∗ = (F>refΓ
−1Fref + λC−1

0 )−1Fref
>Γ−1y.

The cost quantity was computed as in (9).
The second plot in Figure 1 shows the convergence of the posterior mean for the multilevel

interacting Langevin sampler (ILS) in Algorithm 2 in Appendix H. In this case we choseM = 2000
particles, τ = 0.1 and the step size h = 0.001 of the Euler-Maruyama scheme. The plotted error
quantity shows

E
[

1

2
‖f(·, xK(ε))− f(·, x∗)‖2L2(D)

]
,
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where
x∗ = (Fref

>Γ−1Fref + C−1
0 )−1Fref

>Γ−1y,

which is the posterior mean on reference accuracy level 214, and coincides with the Tikhonov regu-
larized solution. We see a similar complexity gains as for multilevel TEKI.
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