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Abstract

Inverse problems occur in a variety of parameter identification tasks in engineering. Such problems
are challenging in practice, as they require repeated evaluation of computationally expensive for-
ward models. We introduce a unifying framework of multilevel optimization that can be applied to a
wide range of optimization-based solvers. Our framework provably reduces the computational cost
associated with evaluating the expensive forward maps stemming from various physical models.
To demonstrate the versatility of our analysis, we discuss its implications for various methodolo-
gies including multilevel (accelerated, stochastic) gradient descent, a multilevel ensemble Kalman
inversion and a multilevel Langevin sampler. We also provide numerical experiments to verify our
theoretical findings.

Keywords: multilevel methods, optimization, inverse problems

1. Introduction

Inverse problems are ubiquitous in applied mathematics and modern machine learning. The aim is
usually to quantify information about unknown parameters which are indirectly observed through
a noisy observation model. Solutions for inverse problems are often found using optimization and
sampling methods and crucially depend on an underlying physical model incorporated through a
forward map. The physical models are typically highly complex such that associated numerical
approximations come with extensive computational costs. The multilevel Monte Carlo method
(MLMC) Giles (2008); Heinrich (2001) is a well-established variance reduction method, which
addresses this issue by shifting a large part of the work to less accurate model evaluations. In the
context of Bayesian inference, MLMC methods have been applied to Markov chain Monte Carlo
(MCMC) methods Dodwell et al. (2015) as well as to deterministic quadrature rules such as sparse
grid Haji-Ali et al. (2016); Zech et al. (2019) and quasi-Monte Carlo methods Giles and Waterhouse
(2009); Dick et al. (2017).
In this work, we apply similar ideas to the following general optimization problem

min ®(z), )]
where X is a Hilbert space and ® : X — R an objective. The idea of multilevel optimization is
to replace the evaluation of ® (or its derivatives) by some approximation that becomes increasingly
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more accurate as the optimization process converges. Intuitively, when the current state may be far
from minimum, it suffices to roughly move in the direction of the minimizer; however, as the state
approaches the minimizer of ®, higher accuracy is required to reduce numerical bias. Multilevel
optimization strategies are targeting efficient algorithms with the aim of reducing overall computa-
tional costs.

Such ideas have recently been applied in different contexts. The works closest to ours are Martin
and Nobile (2021); Martin et al. (2021) which use multilevel optimization on an optimal control
problem, and Alsup et al. (2021), where a multilevel version of the Stein variational gradient descent
method is introduced. The aim of our manuscript is to formulate a unifying multilevel framework
which can be a applied to a wide range of optimization and sampling methods with particular focus
on inverse problems.

Contributions Our principal contributions are three-fold:

* We formulate a multilevel strategy for general iterative optimization methods where each up-
date step depends on an accuracy level. We derive an optimal choice of levels that minimizes
computational costs while ensuring to achieve a certain tolerance for the error. Compared to
the single-level framework, we prove that the computational cost can be reduced by a log-
factor, and we provide an example to show that our results are sharp.

* We use our framework to introduce a multilevel ensemble Kalman inversion method and its
extension to Tikhonov regularization. For linear forward models and with the incorporation
of variance inflation, we prove convergence rates that reduce the computational costs by the
expected log-factor when compared to single-level methods.

* We apply our framework to particle based sampling methods for Bayesian inference. We de-
velop a multilevel formulation of interacting Langevin samplers. Viewing Langevin dynamics
as gradient flow in the space of probability measures w.r.t. the Kullback-Leibler divergence,
under certain assumptions we show convergence for the mean-field limit and provide a cost
analysis that again reduces cost by a log-factor compared to the single-level method.

Outline §2 discusses optimization-based approaches for solving inverse problems while §3 presents
our unified multilevel optimization framework. In §4 and §5 we apply our framework to particle
based optimization and Bayesian inference respectively, and §6 presents numerical experiments for
these examples.

Notation f < g indicates the existence of C such that f(z) < Cg(z), with C' independent of x
in a certain range that will be clear from context. Moreover f ~ g iff f < gandg < f.

2. Inverse Problems

Let X' be a Hilbert space, n, € Nand F' : X — R" the so-called forward model. We consider
the task of recovering the unknown quantity z € X" from a (noisy) observation y € R™ of F(x).
Throughout we assume an additive Gaussian noise model, i.e. y is a realization of the random
variable

Y =F(z)+n, 2)

with ) ~ N (0,T") Gaussian for a symmetric positive definite (SPD) covariance matrix I' € R"v*"v,
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This problem is typically ill-posed in the sense of Hadamard (1902), for instance because the
dimension of the parameter space X may be much higher than the dimension n,, of the observation
space. We now recall two different methodologies to deal with these difficulties, both of which
recast the problem into one of optimization.

2.1. Regularized optimization

One classical approach to approximate x is to minimize the objective

O(z) =l y) + R(x),  l(z,y) = %I!T_l/Q(F(x) — )&, 3)

where ¢ denotes the least-squares data misfit loss functional and R : X — R, is a regularizer.
Common choices of regularization include Tikhonov regularization Engl et al. (1989) with R(z) =
%HCO:I:HfY and total variation regularization Chambolle et al. (2010); Rudin et al. (1992). Note that
prior information can be incorporated through Cy € £(X, X). In the following, for fixed y, we use
the shorthand ¢(z) := ¢(z,y).

We continue this discussion in Sec. 4 where we present a particle based multilevel optimization
method to minimize ® in (3). For motivation and further discussion of regularization methods to
solve (2), see, e.g., Engl et al. (1996); Benning and Burger (2018) and references therein.

2.2. Bayesian inference

In the Bayesian approach (e.g. Stuart (2010)) the parameter and observation are modeled as a joint
random variable (X,Y") on X x R"v. The goal is to determine the posterior, which refers to the con-
ditional distribution of X given the realization y of Y in (2). Assume X and 7 to be stochastically
independent, and let X ~ @ for a prior distribution ()y. Under certain technical assumptions (Stu-
art, 2010, Theorem 6.31), the posterior Q¥ is then well-defined, absolutely continuous with respect
to the prior, and QY(dz) = % exp(—{(z,y))Qo(dz), where Z = [, exp(—{(z,y))Qo(dz) € Ris
a normalizing constant and ¢ is given by (3).

Suppose for the moment that X = R"= is finite dimensional and the prior Qo = N (0, %C’o)
is Gaussian, Cp € R"=*"= SPD, A > 0. Then, the posterior QY has Lebesgue density p.(z) =
~ exp(—{(z,y) — R(x)), with R(z) = %HC’JUQQUH]%QM. In the Bayesian framework, solving the
inverse problem amounts to sampling from the posterior. One way to achieve this is by minimizing
the objective

®(1p) = KL(¥[|p), “4)

for ¢ in a given family of (tractable) probability distributions on X'. Here KL stands for the Kull-
back-Leibler divergence Kullback and Leibler (1951). Hence, we end up again with an optimization
problem, but this time over a subspace of the probability measures on X. This discussion will be
continued in Sec. 5 where we present a multilevel optimization algorithm to minimize (4).

While the approaches in (3) and (4) are entirely different, the minimization of either objective
requires multiple evaluations of the forward model F', which might be very costly in practice. To
explain this further, we now discuss a simple PDE driven inverse problem (i.e. evaluating F' requires
to solve a PDE) which will serve as our running example throughout. We emphasize, that our
analysis has implications far beyond this toy problem, since PDE constrained optimization has a
wide range of applications in various fields such as shape optimization, optimal control and—as
discussed in the present paper—parameter estimation, see, e.g., Hinze et al. (2008); Belov (2012).
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Example 1 Let X = L%(D) for a convex bounded polygonal domain D C R2. By classical PDE
theory, for every f € X, the equation
—Aug(s) +uys(s) = f(s) seD, 5)
us(s) =0 s € 0D,

has a unique weak solution ug € H*(D) N H} (D) C X. Let O : X — R™ be a bounded linear
map called the observation operator. The forward model F(f) := O(uy) € R™ then “observes”
the solution of (5) through the functional O.

Given noisy observations y = F(f) + n as in (2), any method minimizing the objectives in
(3) or (4) has to access ® (or its derivatives) and thus repeatedly evaluate the forward model F'.
Each such evaluation requires solving (5). Since (5) has no closed form solution, uy can only be
approximated using a numerical PDE solver such as the finite element method (FEM).

3. A unified multilevel optimization framework

In order to minimize an objective ® as in (1), we consider an abstract optimization method described
by the fixed point iteration
Ty = Y(zg), w0 € X, (6)

For certain applications, an exact evaluation of W is either not possible, or computationally infeasi-
ble. In such cases, typically numerical approximations ¥; to ¥ are available. Here the “level” [ is a
positive real number and can be understood as the computational cost of the approximation. Higher
accuracy comes at higher computational cost, which is accounted for by the assumption that one
evaluation of ¥; amounts to computational cost [, and ¥; — W as [ — oco. The precise meaning of
this statement will be quantified in the following.

Remark 1 In practice V; might only be available for certain | € N. For simplicity we allow | € R,
I > 0, but mention that our analysis extends to the discrete case by rounding | to the next larger
admissible level.

Replacing ¥ in the update rule (6) with ¥, leads to
Trr1 = Yy (1), w0 € X. (N

Here, [, € N is the level in iteration %k of the optimization process. The goal is to choose levels
which minimize the overall computational cost while achieving fast convergence.

We denote the error of the kth iterate x; by e;. For example, if z, is the unique minimizer
of @, ey could stand for ||x; — x| x or for the distance of the objective to the minimum, i.e.
®(xr) — ®(x,). Our analysis is based on the following abstract assumption. It can be understood
as a form of linear convergence, up to an additive term stemming from the approximation of ¥ by
;. Other forms of convergence, such as polynomial convergence (as occurs, €.g., for non-strongly
convex objectives), are work in progress.

Assumption 2 There exists ¢ € (0,1) and o > 0 such that for any choice of levels I}, > 1 and with
xp as in (7),
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(i) error decay: forall k € N
ert1 < cep + 1,9, (8)

(ii) cost model: for all k € N, the cost of computing x;. in (7) equals

N
—_

cost(xg) = lj. 9)

<.
Il
=)

We motivate Assumption (2) by verifying conditions (8) and (9) on several examples.

Example 2 Suppose that the objective © is L-smooth and p-strongly convex, and that for each
I € N we have access to functions g; : X — X or random variables Gi(x) € X for all x € X, such
that for some 0 < 1 < 0o

— —

l l
IVO(x) — gi(x)||x < 7 or E|V®(z)—Gi(z)||lx < 7 Ve e X. 10)
Then gradient descent using the approximate gradients, i.e. iterates generated by

Thy1 = Tk — g1, (Tk) (11)

can be shown to satisfy error decay (8) with e, = ||z, — .|| x. Interpreting ly; as the computational
cost of evaluating gy, , the overall cost to compute xy, follows our cost model (9). A similar statement
holds for stochastic gradient descent after replacing g;, (x) in (11) with G, (z) and setting ej, =
E[||zk+1 — z«|| x]- Moreover, accelerated versions of both algorithms can be shown to satisfy (8).

Details for Example 2 and further discussion of the implications of our results for gradient descent,
accelerated gradient descent and their stochastic versions are given in Appendix B. While we do
not provide details for other variants of these basic gradient algorithms (e.g., SVRG Johnson and
Zhang (2013), FISTA Beck and Teboulle (2009) and the extragradient method Monteiro and Svaiter
(2013)), multilevel formulations of these algorithms are possible under our framework and will be
left to future work.

Remark 3 Assumption 2 states that the relation between computational cost and corresponding
error is of the type “error ~ cost~“” for some o« > 0. To clarify, consider the following examples
in the context of applying gradient descent to minimize ®:

» Fix v > 0. Suppose we have access to an algorithm, that for n € N requires computational
cost f(n) := n7 to compute VO up to accuracy n=%. With | := n7, this is equivalent
to saying that at level | the error is of order 1=/, which fits our setting. Without loss of

generality we can work with | rather than n.

* Suppose we have access to an algorithm that requires time t > 0 to approximate V® up
to accuracy t=<. Then the level I}, can be understood as the CPU time t invested in the
approximate computation of V®(xy,).

Next, we discuss gradient descent for our running Example 1. Further details are contained in
Appendix C.
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Example 3 (Continuation of Example 1) Ler F(f) = O(uy), where us solves (5) and O :
L?(D) — R™ is bounded linear; i.e. O(p) = [}, &p for some € € L*(D,R™) and all p € L*(D).
Let ®(f) = LIT7V2(E(f) — y)||3n, + %HfHQLQ(D) as in (3). Then

VO(f) =up + \f € L*(D), (12)

where uy, solves (5) with right-hand side h(-) = (O(us) —y)'T=¢(+) € L?(D). To approximate
V&(f), we use linear finite elements on a uniform mesh on D C NRZ to first obtain an approximation
ulf satisfying ||uy — ulfHLz(D) < 17, and subsequently with h = (O(ulf) — )T a FEM
approximation u% satisfying Huh—u% 22Dy S =Y. Here | corresponds to the dimension of the FEM
space, and can thus be interpreted as the complexity of computing u% Note, g;(f) = u% + Af €

L*(D) yields an approximation to V®(f) s.t. |[V®(f) — gi(f)z2(py S 17" Hence (for fixed f
and up to a constant) g;(f) satisfies the first inequality in (10) with o = 1.

Having established the basic setting, we next illustrate how accuracy levels /; can be chosen
optimally to minimize computational costs. Recursively expanding (8), we get the following upper
bound on the error

k—1
er < clcep_g +1%) + 1% <o < cFeg+ ch_l_Jlj_a =: e,((Lj);)- (13)
j=0
Incasel; =l forall j =1,..., K — 1, we will also use the notation €j(l).

We next determine levels achieving (almost) minimal cost under the constraint €5 < ¢.

3.1. Single-level

Fix the number of iteration steps K € N. For the single-level method, the level [; is fixed at
a (single) value I > 0 throughout the whole iteration j = 0,..., K — 1. By assumption (9),
cost(zy) = Klg. We wish to minimize the cost under the error constraint & < . To slightly
simplify the problem for the moment, we instead demand both terms in the definition of € in (13)
to be bounded by % (so that in particular éx < €). More precisely, x> 0 should be minimal such
that

€ N
Feo<g, (k)" <5 (14)
The first inequality implies K > %, and the second inequality implies
B 1— CK 1/a
lg>(2—— 15
<> (27=5) (4

We choose [f¢ so that (15) holds with equality. Given K + cost(z) = Kl is monotonically
increasing, in order to get error € at possibly small cost the following choices suffice:

Ix(c) == <2 .- >l/a, K(e) == Fogizgi;ow . (16)

We next introduce a notion of optimality, and then summarize our observations in Theorem 5.
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Definition 4 (Quasi-optimal single level choice) A family of reals Ik () > O and integers K (g) €
N satisfying € () (lx (€)) < € for all € > 0, is a quasi-optimal single level choice iff
K(e)ig(e) = O(inf{Kl : éx(I)<e}, KeEN, [>0) as ¢—0.

Theorem 5 (Single-level convergence) Equation (16) defines a quasi-optimal single level choice.
It holds B )
costgr, () := K(¢)lx(e) ~ log(e e a as € —0. (17)

Proof For the proof see Appendix A.1. |

Due to the quasi-optimality, the (single-level-) cost behaviour (17) cannot be improved as ¢ — 0.

3.2. Multilevel

Fix the number of iterations K € N. We now allow for varying levels throughout the optimization
process. That is, we wish to find I ;(¢) = [k ; > 0 such that cost(zx) = Z]K;Ol lf¢,j is minimized
under the constraint of both terms in (13) being bounded by £, i.e. such that

K-1

Z cK—l l S

The first condition gives again a lower bound on the number of iterations K as in Sec. 3.1.
Minimizing cost(xy) under the second condition gives:

Keg < (18)

w\m
l\D\(T)

Lemma 6 Forevery K € N, e > 0

1
1 K N\ o
K-1-j e\~ o [ 1—cl+e
lK)](E) = CK’E cC e ) CK’E - (5) <1> (19)
1 — cT¥a
minimizes Z; -0 lK] under the constraint Z] -0 LeK— 1‘”;{; <s.
Proof For the proof see Appendix A.2. |

. — ; _§K 1
Let us compute the cost. Since Z]K:OI SE-1=i = % for § = cT+e € (0,1),

14+«

K-1 K-1 K1 c 1 1— CHLD‘ o
Yii=Cre Y e w = () o) 20
=0 =0 1 —cita

As in the single-level case, this term increases in K (although it remains bounded as K — o0). To
keep the cost minimal, we choose K minimal under the first constraint in (18), which leads to

K(e) \ ife
log(e/(2e0)) EN—= K@ _14j [ 1 — ¢Tta a '
K()=| =" Iwi(e) = (= - L[ L—chre K(e),

=[] = () et (= vj < K()

21

K(e) K(e)
Observing that cT+a behaves like 51+a, and 1 — ¢T#a — lase — 0, we find lg j(e) ~
1
g o+a)c T+a , with lower and upper bounds independent of ¢, K and j.
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Definition 7 (Quasi-optimal multilevel choice) A family ((Ix j(€));<k (s))e>0 of sequences sat-
isfying € (o) ((li j(€))j<k(e)) < € forall e > 0 is a quasi-optimal multilevel choice, iff

K(e)—1 K-1
lKJ(s):O<inf{ lj : éf{((lj)j<f()§€’ K eN, lj>0Vj<K}> as € —0.
j=0 =0
Theorem 8 (Multilevel convergence) Equation (21) defines a quasi-optimal multilevel choice for
e € (0,ep). It holds

K(e)-1
costymr(g) == Z Ik j(e) ~ e as € — 0. (22)
=0

Proof For the proof see Appendix A.3. |

Due to the quasi-optimality, the asymptotic cost behaviour O(e_l/ @) required to achieve error
éx < e cannot be improved. Comparing with the single-level method in Theorem 8, we observe
that the multilevel method decreases the computational cost by a factor log(s~1). In practice and
for small £ > 0, this can amount to a significant speedup as we will see in our numerical examples.

In Appendix B we provide further details of the implications of Theorem 8 for gradient descent,
accelerated gradient descent and the stochastic versions of these algorithms. As an application we
discuss a stochastic gradient descent algorithm that uses increasing batch sizes in Example 5.

Remark 9 Suppose that ej, generated with levels l; satisfies instead of (8) the relaxed condition
ert1 < cep + Cl_“ for some constant C > 1. Then, €, generated with the levels I, := ct/e,

satisfies €41 < céx+C i,;o‘ = céy +1,;*. The cost quantity Z;:é l}- only increases by the constant
factor CY compared to Z?;& l;. Hence, the asymptotic cost behaviour stated in Theorem 5
(single-level) and Theorem 8 (multi-level) remains valid also for C' > 1.

We next continue our discussion of Example 3, for details see Appendix C.4.

Example 4 (Continuation of Example 3) It can be shown that the regularized objective ® in Ex-
ample 3 is \-strongly convex and L-smooth with L = ||& HQLQ( D) IT=Y| 4+ \. Consider the multilevel
gradient descent method fj11 = fj —ngi, (fj), where g is the approximation to V® from Example
3. The level choice (21) then yields || f« — fr(e)|lL2(p)y < & for the unique minimizer f. of ®.
The cost quantity, which corresponds to the aggregated computational cost of all required FEM
approximations to compute [ ., behaves like e lase = 0.

Finally we point out that our analysis and notion of quasi-optimality are based on the constraint
ér < ¢ (rather than e;, < €), where €y, is an upper bound of the actual error e;. In Appendix D we
give a concrete example of biased gradient descent to show that the cost asymptotics in (22) is in
general sharp for the actual error ey as well.

4. Particle based optimization: A multilevel ensemble Kalman inversion

As our first application, we present a multilevel ensemble Kalman inversion (EKI) to solve the
problem presented in Sec. 2.1. EKI is a derivative free particle based optimization method, e.g.,
Schillings and Stuart (2017); Blomker et al. (2019); Kovachki and Stuart (2019). We first recall the
method, and subsequently present a multilevel version.
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4.1. Ensemble Kalman inversion

EKI refers to a specific dynamical system describing the evolution of an ensemble of particles. By
the well-known subspace property Iglesias et al. (2013), these particles remain within the finite
dimensional affine subspace spanned by the ensemble at initialization. Therefore, there is no loss of
generality in assuming X = R"™* finite dimensional throughout this section.

We formulate the EKI as a method to minimize the objective

1
O(z) = S22 (H(2) = 2) & (23)

Here H : R™ — R"= is the forward model and 2 € R™=*"= is SPD. Letting

H=F, z=y€eR"™, Y¥=T, (24)
(23) corresponds to the objective in (3) with R = 0 (i.e. unregularized). Fixing an SPD matrix
CO c anxnz’
([ F [y (" 0
()=o) =l ge), e
yields the regularized objective ®(x) in (3) with regularizer R(z) = 3||C Y QxH%MI. We refer to

EKI applied to the unregularized and regularized objective as standard EKI and Tikhonov regular-
ized EKI (TEKI), respectively. See Chada et al. (2020); Weissmann et al. (2022) for more details on
TEKI.

We consider the continuous-time formulation of EKI Blomker et al. (2018); Blomker et al.
(2021): For a fixed ensemble size M € N, let vﬁm) € R™, m = 1,..., M, satisfy the coupled
system of stochastic differential equations (SDEs)

dvo™ = C*H ()2 (z = H(v™)) dt + CPH () 212 aw ™),

. (26)
oM Qy m=1,..., M.
Here Wt(m) are independent R™=-valued Brownian motions, Qg is a fixed initial distribution with
finite second moment on R™=, and CV"# € R">*": denotes a mixed sample covariance, see Ap-
pendix E for the precise formula. Under certain assumptions, it can be shown that (26) is well-posed,
i.e. existence of unique and strong solutions can be guaranteed, and their average converges to the
minimizer of ® (Blomker et al. (2019)).
To motivate this behaviour, suppress for the moment the diffusion term in (26), and consider a
linear forward map H € R"=*™=_ Then

dvtm)
dt

= —Cw)HT S (Hu(™ = 2) = —C(v)) V.2 (™),

for ®(x) = %”2_1/2(Hx — 2)||4.... Hence, in the linear and deterministic setting the EKI is a
preconditioned gradient flow w.r.t. the data misfit £ (or w.r.t. the Tikhonov regularized data misfit).
We refer to Chada and Tong (2022); Weissmann (2022) for more details on the nonlinear setting.
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4.2. Multilevel ensemble Kalman inversion

To formulate the multilevel EKI, assume given approximations H;, [ > 0, to H in (26). Fixing

(™)1 the solution of the coupled system of SDEs in integral

7 >0, with ¢ := j - 7 we denote by v; |

form

t}+1 U7Hl' l] —1/2 (m)

C(v) % dwy ™,
27)

initialized via vgn)’lj = 771, We then introduce a discrete-time process (z;); as the ensemble

mean of the particles at time ¢;:

tivr T

’U(m)JJ —’U(_ ),lJ1+/ CU,Hlj (UEJ)E—I(Z _ Hlj (Ut ),lj)) dt +
t

j tj

vf_”)’l

M

1 m),l;
zj ;:MZU; M, (28)

m=1

We discuss a discretization scheme for the SDE (27) and summarize the multilevel EKI as an
algorithm in Appendix F. The goal in the following is to show that x; approximately minimizes the
objective (23) for large j.

4.3. Error analysis for linear forward operators

Assume F to be linear, specifically F' € R™*" with n, < n, and rank(FF") = n,. We
make the following assumptions on the forward operator arising through numerical approximation
which is typically satisfied for ODE- or PDE-based forward models. We verify this assumption for
Example 1 in Appendix C, but emphasize that this is typically satisfied and known for numerical
approximations (e.g., using finite elements or boundary elements) to forward maps described by
PDE solutions, see for example Ern and Guermond (2021); Sauter and Schwab (2011).

Assumption 10 (Approximation of the forward operator) There exist b > 0 and o > 0 such
that for each | > 0 there exists F; € R"*"* satisfying || F — Fl”%nymm < bl

In the following we use the notation H; to denote H as in (24) or (25) but with F' replaced by
Fy,ie. H € R™=*"=_ We consider EKI and TEKI with covariance inflation, which is a standard
data assimilation tool to stabilize the scheme, e.g., Anderson (2007, 2009); Tong et al. (2016).
Specifically, for some fixed SPD matrix B € R™=*"=_(27) is replaced by the stabilized dynamics

tit1 iy
v = /t o + B)H, S (z — Hyo{"™") dt + t " Clof ) HI S~ V2aw™. (29)
J J

Assume that an evaluation of F; has cost O(). Then, approximating (29) using for example an
Euler-Maruyama scheme with a fixed number of time steps 7', requires O (M - T') evaluations of Fj.
With M and T interpreted as constants, this amounts to cost O([). In this sense the cost quantity
Zf;ol l; introduced in (9), can be interpreted as the computational cost of computing z in (28).
We give convergence result for EKI and TEKI in the case of noise-free and noisy data respectively.

Let ; in (28) be the mean of the particle system driven by (29), with H (and H;) as in (24).

10
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Proposition 11 (Multilevel EKI) Let Assumption 10 be satisfied, y = Fxt € R™ for some truth
zi € R™ and let Qg have finite second moment on R™*. For T > 0 sufficiently small, there exists
c € (0,1) depending on F' and B such that for levels I j(¢), 7 = 0, ..., K(g) — 1, given by (21),

er(e) = E[@(z()] — @(ah) = E[|TV2(Fag) — y)llEn] < e,

Sfor all small enough € > 0. Furthermore, costyy,(€) = Zf:%)fl Ik j(e) ~ e

Proof For the proof see Appendix G.1. |
Now let z; in (28) be the mean of the particle system driven by (29), with H (and H)) as in (25).

Proposition 12 (Multilevel TEKI) Letr Assumption 10 be satisfied, x. € R™* be the unique min-
imizer of ® in (23) with H given by (25), and let Qo have finite second moment on R™. For
T > 0 sufficiently small there exists ¢ € (0,1) depending on F' and B such that for levels i ;(¢),
j=0,...,K(e) — 1, given by (21),

1, A —1)2
ex(e) = E |5IT72F (e — o) + 5100 @k — o) e | <.

for all small enough € > 0. Furthermore, costyy,(e) = ZJK:(S)_I Ik j(e) ~ e a.

Proof For the proof see Appendix G.2. |

In both cases there holds an analogous statement for the single-level choice in (16) with (the
worse) asymptotic cost behaviour =%/ log(e~') as ¢ — 0.

5. Optimization over probability measures: Multilevel Bayesian inference

As our second application, we consider an interacting particle system, to solve the problem pre-
sented in Sec. 2.2. To derive the method, we apply the multilevel optimization of Sec. 3 to a gradient
flow in the space of probability measures. Appendix H gives details on the algorithm.

Throughout this section we adopt the assumptions of Sec. 2.2, i.e. X = R"=, the forward model
F : R™ — R™ may be nonlinear and the prior Qy ~ N(0, $Cp) is Gaussian. We denote it’s
density by qg. The posterior density then equals

1 L A —1/2
pola) = pexp(~la@)),  Lalx) = SITE) ~ e + 21 2 GO
with Z = [, exp(—lgr(z))dz. To explain the idea of approximating p. by an ensemble of
particles, we first recall the Langevin dynamics. Let vy € R™= initialized as vy ~ qg solve

dv, = —V;JR(Ut) dt + \deWh Vo ~ qo- €2y

The evolution of its distribution p; is described by the Fokker-Planck equation, see e.g. Pavliotis
(2014),

Ope =V - (ptVIER) + Apt,  po = qo- (32)
Under certain assumptions on ¢ the Markov process v; is ergodic and p, is its unique invariant
distribution. Furthermore, it is possible to describe the rate of convergence in terms of the gradient
flow structure given by (32), see for example (Pavliotis, 2014, Theorem 4.9).

11
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5.1. Interacting Langevin sampler
We consider an interacting Langevin particle system introduced in Garbuno-Inigo et al. (2020). Let
( (m))M

vy )1 SOlve

dvf™ = ~C () Ver(v™) dt + /2C(ur) W™, (33)
(m)

with vy~ ~ qp i.i.d., where (V[/t(m))ﬂ]\f:1 denote independent Brownian motions on R"* and with
C(v) the empirical covariance, see Appendix E. Observe that the mean field limit satisfies the
following preconditioned version of (31)-(32) (e.g. Ding and Li (2021b)):

dvy = —C(p)VEegr(v) dt + /2C(p) AW,

where
m(p) = /Rn vp(v)dv,  C(p) = /R (v =m(p)) ® (v—m(p))) plv)dv  (34)

and
Oipr =V - (piC(pr)VIER) + Te(C(pe)V2pi),  po = qo- (35)
5.2. Mean-field and discrete multilevel interacting Langevin sampler

Fix 7 > 0 and set t; := j - 7. In the following let élR be given by (30) with the forward model F' :
R"= — R™ replaced by an approximation Fj. We consider the discrete time process (p;)j=1,.. K

iteratively defined by p;11 = pg ,,» Where pél = qp and pij solves (35) on a time interval of length
7 initialized with the previous distribution, i.e.

l; L l; l; l; l; L li—
Oy =V - (p Clp )V +Te(Clp )V2p/),  p = pi (36)

While the subsequently discussed analysis will be based on the mean field limit (36), we present
a discretized version by introducing a particle based approximation based on (33). To this end let
(p4); iteratively be defined by

M
. 1 5
Pi+1 = 77 Z (m),lj 5
Mm:1 Yt

(m),ly _ (m)lj—1

where J,, denotes the dirac-measure at v and vgj)l’lj initialized by v;_ = vy, solves
_ , ti+1 , , ti+1 :
o i / Co ) V(™) dt + / V20 W™, m=1,.. M,
t; tj
(37

5.3. Mean-field error analysis for the Kullback-Leibler divergence

Under convexity assumptions on BZR and assuming that C'(p!) does not degenerate, one can prove ex-
ponential convergence to equilibrium for the mean-field limit of the interacting Langevin dynamics
for any fixed level [ (Garbuno-Inigo et al., 2020, Proposition 2). These assumptions can for example
be verified for linear forward models and Gaussian priors (Garbuno-Inigo et al., 2020, Corollary 5).
We make the following additional assumption:

12
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Assumption 13 (Approximation of the forward operator) There exist b > 0 and o > 0 such
that for each j € N there exists Fy, : R"* — R" satisfying

L 1P @) = B @)l ) do < b1

For linear forward models and Gaussian priors, the pdf p; remains Gaussian and Assumption 13 can
be inferred from Assumption 10. Extending the convergence result of Garbuno-Inigo et al. (2020)
to error decay (8) allows us to apply our results from Sec. 3. This leads to the following Proposition:

Proposition 14 (Multilevel interacting Langevin sampler) Suppose KL(qo||px) < oo and let
Assumption 13 be satisfied. Suppose there exist o1, o2 > 0 such that V%% > o1ld and C(p;) >
o9ld (cp. (34)) for all 5 > 0. For 7 > 0 sufficiently small there exists ¢ € (0,1) depending on
01,09, such that I ;(€), j =0,...,K(g) — 1 given by (21) yields

ex(e) = KL(pr(e)llps) < e,

K(e)—-1 I

for all small enough € > 0 where p; solves (36). Moreover, costmr(€) =~ > .=y UK j(€) =~ e,

Proof For the proof see Appendix I.1. |

An analogous results holds for the single-level choice in (16) with cost behavior 10g(5_1)57§

6. Numerical experiments

We consider an adaptation of our running example in a one-dimensional setting with D = (0, 1).
Instead of working on L?(D) directly, we parametrize L?(D) via

F@) = () = me sin(ir-) € L*(D),

1€EN

for z € R". We used the observation operator O : H%(D) — R™ : uy > (ug(s;));2, with the
equispaced points s; = #ﬁ’ i=1,...,ny = 15. The forward model is F'(z) = O(uy,)) € R™
for x € R"», where uy denotes the solution of (5). We used piecewise linear FEM on a uniform
mesh to approximate F' by F;. This setup corresponds to o = 1 in Sec. 3. As a prior on the
parameter space R we chose Qo = N (0, Cp) with Cyp = diag(i 2,i =1,...,nz).

We ran multilevel TEKI (Algorithm 1) and the multilevel interacting Langevin sampler (Algo-
rithm 2) on this problem and plotted the error convergence in Fig. 1. For TEKI, the plotted error
quantity is B[L T2 Fe (25 (€) — ) | 2oy + 21|Cy (2 (€) — 22 )||2ns ] With Fref = Fyua. For
the interacting Langevin sampler we consider the convergence of the posterior mean, and the error
quantity is E[%[|f(-, 2 K@) — F )72 ( D)]. The observed convergence rates roughly coincide
with the ones proven in Sec. 4 and Sec. 5. In particular, the multilevel algorithms are superior to
their single-level counterparts. Even though the reduction in cost is only by the factor log(¢ 1), as
the plot shows this can amount to significant gains in practice. More details on all chosen parameters
and the setup can be found in Appendix J.

13
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error convergence error convergence
T T T

........ SL-TEKI weeeene SLAILS
........ 0(514\ log(1/€)) ........O(E’lr”‘lgg(l/t))
—-—-ML-TEKI —-—-ML-ILS
J— ) J—T)

cost

102

error error

Figure 1: Computational costs vs. estimated error for TEKI (left) and the interacting Langevin sam-
pler (ILS) (right). We ran all Algorithms 100 times to estimate the expected error.

7. Conclusion

We have presented an abstract multilevel optimization framework, and provided quasioptimal level
choices. We showed improved convergence compared to single-level methods, and demonstrated
the wide applicability by introducing a novel multilevel ensemble Kalman inversion, as well as a
new multilevel Langevin sampler. While our main focus was on inverse problems, we additionally
discussed different versions of multilevel gradient descent, which in principle are applicable to any
kind of optimization problem where the evaluation of the (derivatives of the) objective function is
expensive or impossible, and demands approximation by numerical methods. Further directions
or research could include developing optimization procedures for sampling with respect to other
metrics (than KL), such as the Wasserstein distance. The proof could proceed along similar lines as
Proposition 14. Moreover, developing a framework for adaptive step sizes and levels would be an
interesting extension.
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Appendix A. Proofs of the main theorems

A.1. Proof of Theorem 5

Proof Lete € (0, ep). With éx in (13), denote
K-1

ex((l);) = CKe() + Z CKfl*jlj_a =:ex1 +ex2((l5);)- 38)
=0

By definition, K (¢) € Nin (16) is minimal such that €x .
0 in (16) is minimal such that éx > ((Ix(€));) < €.
Now let K € Nand [ > 0 be any numbers such that ék((i)j) < e. Then

1 < 5. Moreover, by definition i (¢) >

)

€1 S iy teg o)) = éx((D);) <e,
and by the optimality property of K (¢) we obtain & > K (2¢). Similarly, since
(D)) < (39)
the optimality property of I (¢) implies [ > I (2¢). Taking the infimum over all such [ and K

K(2e)lg(2¢) < inf{KI : éx(l) < e} < K(e)lg(e), (40)

where the second inequality holds due to €. (Ik(e)) <e.
By definition of K (¢) and [k (¢) in (16)

K-1 = o1
costgr, () = K (e)lk (e) = log(c) ! log <220> (Z ¢ Ha ) (5) “.

K—-1—1

Since with § = cTHa € (0,1) holds 1 < Zfiglc +a < (1 — ¢)~! we have costgy,(¢) ~
e~a log(e™1) as e — 0. Together with (40) we find

costgr,(e) = e log(e™') ~ inf{KI : ék(f) <e} as ¢—0.

This shows (17) and quasi-optimality in the sense of Def. 4. |

A.2. Proof of Lemma 6

Proof Define a; := cK=1=Jforall j = 0,..., K — 1. We wish to minimize 2;;51 lj forl; >0

and under the constraint Z]K: _01 a; j—‘” — €. To this end we use a Lagrange multiplier and consider

K-1 K-1
mln/\ le+)\<zaj ja5>,
7=0 7=0

Iyl
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Taking the derivatives w.r.t. [; and A leads to the following first order optimality conditions

1 — Xaaj;l; (”“):0, Zajj_a—gzo

1

The first condition gives [; = CK,EQF for some constant C'x .. Plugging [; into the second
condition we find
K-1 N
—a TTta _
Ok aja; =ec.
§=0

Hence Ok =¢ @ (Zf 01 a]““‘ )é Finally,

K-1

K-1 K

Tha _ J 1 — ct+a
a; E cTha = ——
=0 =0 14 cite

This shows (19). |

Remark 15 The constant Ck . in (19) increases for decreasing tolerance € > 0. Moreover, C .
is bounded from below and above uniformly for all K € N as for ¢ € (0, 1) holds

K-1 ) 1 K5
K—1— ]_ — 1+« 1
ZC o — (Cl 6(1, 1).

=0 1 — ¢ite

A.3. Proof of Theorem 8
Proof With [ j(¢) and K (¢) as in (21), the calculation in (20) and Rmk. 15 show

K(s)-1 1 K(e)/(1+a)\ @
@ 1 —C _1
COStML Z lK] (*) (]W) ~E «a as € — 0, (41)

as claimed.
The proof of quasi-optimality in the sense of Def. 7 follows the same argument as in the proof
of Theorem 5: Let € € (0, eo). Split €x((l;)j) in (13), in the terms € 1 and €x 2((l;);) as in (38).

Now let K € N and (l ) ! > 0 be arbitrary such that e((l )j) < €. Moreover, define

N K-1 | a
- R—1-j 1 K—1-i
lK,] = Cf(,s . c lta , CK,E = £ «a < E c lto )

=0

which by Lemma 6 minimizes Zf(:_ol Ircj under the constraint éf(',Q((Zva)j) < e. Since also
eKQ((l )i) < eK((lK]) ) < g, this implies

IA(—IA f(—l~ (1 _Cf(/(pra) He
> RS -3l
Z lj = 2 KT E 1 — /(i+a) (42)
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where the equality holds by the calculation in (20).
Next observe that by definition, K (2¢) € N in (21) is minimal such that € (.); < €. Since also

€pq < ék((fj)j) < ¢, this gives K (2¢) < K. Therefore

1 — cK/(+a) N 1 — K(@2)/(140) T OK(2)
(o) 2ot (o) Ll
Jj=0

where the last inequality holds by the calculation in (20). In all, (42) and (43) yield

K(2¢)—1 K
> Iky(20) <
j=0 j=0

Since K and l}- were arbitrary such that é((fj)j) <e,

K(2¢)-1 K-1 K(e)—-1
Z ZK,]‘(QE) < inf{ Z lj : ék((lj)j) < g, K e N, lj > OV]} < Z lKJ(E), (44)
=0 =0 =0

where the second inequality holds due to €x(.)((Ix,j(¢))) < e. By (41) all terms in (44) behave
like e~/ as & — 0, and this shows quasi-optimality in the sense of Def. 7. |

Appendix B. Gradient descent and accelerated gradient descent

In this appendix we discuss the implications of our results for gradient descent, accelerated gradient
descent and the stochastic versions of those algorithms. Throughout this section we assume that X’
is a Hilbert space and ® : X — R is Fréchet differentiable, u-strongly convex, i.e.

B(y) 2 (@) + (VO(@)y— o) + Glly — 2l Veyen, (45)
and satisfies L-smoothness so that

B(y) < B(r) + (VO()y — o)+ 5 Iy~ o} Vayex 6)
Moreover, we denote by x, € X the unique minimizer of ®.

For the deterministic algorithms we assume the existence of approximate gradients g; : X — X
such that

—Q

l
IVe@) —g@)llx < == Ve e, 47

where 17 > 0 will denote the step-size in the following. For the stochastic variants we will work
under the assumption that for every € X there exists a random variable G;(z) € X such that

l—a
EVe(z) — Gi(2)[lx < y Vo e X. (48)
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B.1. Gradient Descent (GD)

The gradient descent update with step-size  and approximate gradient at level [, reads
Tht1 = T — NG, (T)- (49)

Proposition 16 Let 0 < n < 1/L and let g; satisfy (47). Then xj, generated by (49) satisfies the
bound (8) with ey, = ||xg+1 — x«||x and c = /T — np.

Proof Observe that

|Tr41 — Tollx = |2 — 26 — Ve @(21) + 0V @(21) — ngy,, (z1) || 2
<z — 2o — 9V @(2p) |1 + 0| Ve ®(21) — g1, (T1) || 2

Using p-strong convexity (45) and L-smoothness (46) we obtain the following upper bound,
lz — 2z = V@ (@) 5 = lox — 2% — 2n{zr — 24, Vo (ax)) + 77| Va®(ar) 1%
<l = wullf = npllor — 2% = 20(@(2r) = D(2)) + 77| Va®(2) %

< (1 —=np)llzr — x|} = n(L/L = 0)|[Va®(ar)|3
< (1= np)llzr — 2.3

Combining these inequalities with assumption (47) leads to desired recursion (8)

ehr1 = |[Tr1 — Tollx < V1 —nullze — zul|x + 1% = cer + 1%

It now follows from Thm. 8 that:

Corollary 17 (MLGD) Consider the setting of Proposition 16. Then with the levels I (<) as
in (21), xx generated by (49) satisfies ey = ||vtx — z«||x < €, and it holds Zﬁ(;ol Ik j(e) =
O(e V) ase — 0.

B.2. Stochastic Gradient Descent (SGD)

We now consider the stochastic setting, i.e. we assume given random variables G;(z) as in (48).
The stochastic gradient descent update with step-size 1 and approximate stochastic gradient at level
l;. then reads

Tpr1 = o — NGy, (2). (50)

Proposition 18 Ler 0 < n < 1/L and let Gy satisfy (48). Then xj, generated by (50) satisfies the
bound (8) with e, = E[||zk11 — z+||x] and ¢ = /T — nu.

22



MULTILEVEL OPTIMIZATION FOR INVERSE PROBLEMS

Proof The proof proceeds in the exact same manner as for gradient descent (taking expectations
and replacing g;, (z1) with Gy, (x1)). To be more precise, taking the expectation w.r.t. the filtration
up to iteration k, i.e. Ex[] := E[- | 0(Gy,(z5),7 = 1,...,k — 1)], we have

Eelllzrgr — wellx] < /1 —=npuller — ol x + nEe[[| Ve ®(21) — Gy (1)) 2],

where we again applied the inequality ||z — 2. — NV, ®(z%)||% < (1 — )|z — 24||% under
p-strong convexity and L-smoothness. Taking the expectation (this time without conditioning), we
obtain

ert1 = Elllzprs —zalla] < /1 = npB{l|lzg —za || 2]+ 0E[[[ V2 ®(2r) — Giy (2x)) || 2] < cer+ 1%

Corollary 19 (MLSGD) Consider the setting of Proposition 18. Then with the levels lk j(¢) as
in (21), zx generated by (50) satisfies exc := E[||lxx — x.||x] < &, and it holds Z]K:_Ol Ik j(e) =
O(e=Y*) ase — 0.

We next discuss a standard example of stochastic gradient descent, namely with (G; being a
Monte Carlo estimator. However, we emphasize that other approximation schemes are applicable
as well in this setting.

Example 5 (SGD with dynamic sampling) We consider a stochastic optimization problem in the
form of (1) by
min ®(z), ®(z) = Eelo(z, )], D
zeX
where £ is a random variable on a underlying probability space (2, F,P) with state space (E,E)
and ¢ : X x E — R is the stochastic objective function. The expected value E¢[p(x,&)] and

its gradient are often not available analytically. Assuming access to i.i.d. samples {E,Z}fle of
&, we can define a stochastic gradient approximation by the Monte Carlo estimator Gy, (zy) =
i lri“:l Vap(xr, &L). The level Iy, describes the batch size in iteration k, which correspond to the
number of required evaluations of . In this sense, [}, describes the computational cost required to
evaluate Gy,. Under certain integrability assumptions, G, is an unbiased estimator of V®(xy,),

ie. VO(x) = E¢[Vo(x, )|, and it holds

Bell V(@) - Es[w<x,g>]||%(1>l/2

ElIV0(0) - Gia)ll] < B V0() — Gl < ( l

i.e. we have the second inequality in (10) (up to a constant, cp. Rmk. 9) with o = 1/2. Applying the
multilevel strategy (21) then yields a stochastic optimization method with increasing batchsize.

By Corollary 19, achieving error E[||x g —x.|| x] < € requires O(e~/?) evaluations of V(x, )
(since Z]K:_Ol Ik j(€) coincides with the number of evaluations of V(x,§) in the current setting).
This is the same convergence rate that is obtained for batch size 1 and decreasing step size ny ~ %
However, we point out that the present multilevel version, which uses constant step size and increas-
ing batch size, allows for parallelization in the gradient evaluations.
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B.3. Accelerated Gradient Descent (AGD)

We write the accelerated gradient descent algorithm as the following update (see Nesterov (1983))

Pr1 = @ — VP (qi)
Qkt1 = Pet1 + B(Prs1 — i),

where « = 1/L and 8 = gfﬁ Defining x = [px, qx] we can represent AGD as (7) using the
operator
\I] 0 (I —aVva)

| BT (T+P8I—-ave) |

AGD using approximated gradients at level [, can then be represented as the following three
sequence update (see e.g. Nesterov (1983) for equivalence):

-
= 52
S e el (522)
1
Yk+1 = Tk = 79, (z) (52b)
T
Zpp1 = 26 + T(2) — 21) — 9k (z). (52¢)
Proposition 20 Suppose that g; satisfies (47) with ) = 1/v/L and 7 = \/u/L. Then (yi, 2

generated by (52) satisfies (8) with e, = ®(yi) — ® () + & || 2 — 24 |3 exponent 2a, and ¢ = 1—7,
more precisely

P p %
Dlyi) = (@) + Sllze — 2% < (1= 1) (@) — () + Sl — 2 lF) + 177

Proof We begin by using the L-smoothness of ®:

L
D(ypr1) — P(ag) < (VO(2k), Yp+1 — Tk) + §”$k —yr |3

1 1
— (VD S 2

L) az) + 57 ol
= gi(we) = VO@O|% — oIV % < L L IV@(a4)3
T TRl = IV TR = e T o Y TRl

(33)

Denote Zx 11 := 211 — ﬁ(Vfb(J;k) — Vg, (zr)). The triangle inequality results in the following
upper bound
—«

m 1 [T ! [T
g”zlﬁl —Zullx < ﬁ”v‘ﬁ(l’k) — gi(ze)||x + g”zlﬁl —Zullx < 2\%77 + %szﬂ — Tl x-

and using Jensen’s inequality ((a/2 + b/2)? < a?/2 + b?/2) we obtain the subsequent identity,

—2«
lk

7]
%Hzlﬁ-l

-
+ Bl — ol
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The rest of the Lyapunov analysis follows as normal (see e.g. Tu et al. (2017) and Wilson et al
(2021)). We use the previous inequality and strong convexity to obtain the bound:

—2
B s — 2l — Bl — 2% < S — 2l — 2 - :
2 2 2 2L
—2a
= T(V®(zp), B — 2k) — TH(TK — 2k, T4 — 2) + *szﬂ — 2% + 2L PYaw]

T(V®(xg), xk — 21) — Tp(T — 2, T — 25) + §H§k+1 -zl
l72a

1% 2 k
— (@) = @) + Gl — i) +

—2a

T .
(VO(r), = yr) — o[l — 2% + 5 k1 = 2llx + 2L
1
= 7(2(wr) — Bzs) + Sllan — z%)-

The inequality uses the strong convexity of ®. Using the strong convexity of ¢ again and the descent

bound (53) we have:
2

cut < (1= T)es+ Do) = B(un) + (T0(an), 1 — ) — 5 [V0(a)f +

Th [ -
—7(P(xr) — P(yr)) — 7“$k — Zch%( + §sz+1 - ZchX

1 7L
VO ()13 — T(VO(2k), 2k — Yr) + 5 Ml = k%

L
< cep — 5”9% - yk”%( Y
—2«

_ T a2 Pas 2
k= 2kll% + 512041 — zall + L
72

TL _

= cex + (; - *)I!Vfb(:vk)llx +(5 - *)Hwk —ulld + 1

= cey, + l,;%‘.

The second line uses strong convexity and smoothness of ®. The following line expands the term
i i = L.

Zk11 — 2613 = llyx — o — TV ®(25)||3 and uses the smoothness of ® and identity n = 1/v/L

Corollary 21 MLAGD) Consider the setting of Proposition 20. Then with the levels [ KJ( )
in (21), (yK,zK) generated by (52) satisfies erc := ®(yr) — ©(z.) + §llzx — 2|3 < & and it

holds Z lK]( £) =0(e /) as e — 0.

Note that the cost Z]K:Bl lk,j(e) for AGD in Corollary 21 increases at half the rate compared
to GD in Corollary 17. However, the AGD result is formulated for a quadratic cost quantity, so that
the resulting convergence rate of the error in terms of the cost is asymptotically the same.
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B.4. Accelerated Stochastic Gradient Descent (ASGD)

We now consider again the stochastic setting, i.e. we assume we are given random variables (G as
in (48). In the following let

T

= 54
R g L g s L (542)
1
Ykt1 = T — fGl’“ (7) (54b)
T
Zk+1 = Zk + T(l’k — Zk) — ;le(l'k) (54¢)

Proposition 22 Suppose that G satisfies (48) with ) = 1/\/L where T = /u/L. Then (yy, z1)
generated by (54) satisfies (8) with e, = E[®(yx)] — ®(z+) + 5E[|| 21 — z.]|%], exponent 2ac and
c =1 — 7, more precisely

Bl (1))~ () + S Elleni — 23] < (1=7) (BlR()] ~ @)+ SB[l = 3]) +172

Proof The proof proceeds in the exact same manner as accelerated gradient descent replacing g,
with G, . In particular note that

1
Ex[®(yri1)] — P(2g) < ﬁEk[HGl(a?k) — V(i) |3 — IV (k) |3]
< g e
= o~ op IV EER A
and
VI 1 VI
~—E.|z — Ty < ———EL||VP(xr) — Gi(x + Y—E.||z — Tl 2.
5 kll 2641 [l x Wi kI VO(zr) — Gi(wg) || x 5 kllZrg1 | x
Therefore,
7201
1
Bl = oy < s + SBuln - ol

Given the remainder of the proof relies on the strong convexity and smoothness of the function and
update (54a) we obtain the following recursion following the same line of argumentation:

epr1 < cex + l,;%‘.

Corollary 23 (MLASGD) Consider the setting of Proposition 22. Then with the levels I ;(¢) as
in (21), (yk, zi) generated by (54) satisfies ex := E[®(yx)] — ®(z4) + 5E[|| 2 — 24[|3] < &, and
it holds ) ;" K o k() = 0(e™ VM) as e — 0.

Remark 24 The Monte Carlo estimator discussed in the context of SGD, for example, can be used

for accelerated SGD where we require increasing batchsize to ensure assumption (10) holds with
a=1/2
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Appendix C. Details for the running example

For every f € L?(D) on the bounded convex polygonal Lipschitz domain D C R2, denote by
uy € Hj(D) C L*(D) the unique weak solution to (5) with right-hand side f, i.e.

/V@@WW@+W@Mﬁh:/f@MWB o € HY(D). (55)
D D

C.1. Well-definedness and regularity of u s

Existence and well-definedness of u is classical. Moreover, using the test function v = uy in (55)
one has the apriori estimate ”UfHHg(D) < Iflz2(py and in particular [|us|r2(py < || fl[z2(p)- We
refer for example to (Ern and Guermond, 2021, §25) for more details.

Furthermore convexity of D in fact implies H?(D) regularity of u; and the existence of C' >
0 such that [us|g2(py < C|fll2(p), see (Ern and Guermond, 2021, Theorem 31.30) and the
references there.

C.2. Formula for V&(f)

Consider the objective

1 A
B(f) = T2 ES) = )l + S5 1720y = €F0) + RO (56)

in Example 3. Clearly the gradient of R(f) equals Af € L?(D). It remains to compute V ¢/(f,y) €
L3(D).
Introduce the operators

R™ — R L?(D) — R™
S = 1 p—1/2 2 0= ny
w = [T (w = y) [lgny , fe(p&ihits

and
Ao L?(D) — L*(D)
o h — up,

Observe that £(f,y) = S(O(A(f))). Using that A : L?(D) — H}(D) is bounded linear, it is
easily seen that A : L?(D) — L?(D) is bounded linear and self-adjoint. Therefore (by the chain
rule)

Vit(f.y) = V(S0 0o A)(f) = A (V(S 0 O)(A(f))) = A(V(S 0 O)(uy)) € L*(D), (57)

where uy = A(f) € HY(D) C L*(D). We next compute V(S o ©). Denoting by DS(w) the
Fréchet derivative, it holds

DS(w)(v) = (w—y) Tl eR Vv € R™

and with £ = (gj)?il € L?(D,R™) since O is bounded linear,
DO()(9) =Olg) = [ g(e)é(s)ds eR™ Vg € (D).
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Hence for the composition

D(8§ 0 0)(f)(g) = DS(O(f))(DO(f)(9)) = / (O(f) =) ' T~ '¢(s)g(s)ds Vg € L*(D).

D

This shows
V(So0)(f) =(O(f) —y)'T7'¢(-) € L*(D)

and finally by (57), V££(f,y) = A(h) = uy with h(-) = (O(us) — y) 'T7().

C.3. Finite element approximation of Vo ( f)

Next we argue that u; can be approximated with the rate claimed in Example 3. According to,
e.g., (Ern and Guermond, 2021, §26.3.3., §32.3.2), given f € LQ(D), the FEM approximation
uéc to u(f) = A(f) on a uniform sNimplicial mesh on D C R? with O(I) elements will satisfy
lup — ull2py S 171 Now set h(-) == (O(u}) —y)TT71E(:) E~L2(D). Then, since O :
L?*(D) — R™ is bounded linear and ¢ € L?(D,R™), we have ||h — hllz2py S =L, Using that
A : L*(D) — L*(D) is bounded linear, |lus, — ujllz2(py = [A(h — h)|l12(py S I7'. Finally,
luz, = ubllL2(py S 17", and thus by the triangle inequality [[uj, — ul || < 17" as claimed.
Then
ai(f) ==l + Af (58)

is an approximation to V®(f) satisfying ||g;(f) — VO (f)l|2py S 17

C.4. Multilevel convergence of gradient descent

We first show L-smoothness and p-strong convexity for the objective in (56).

With the notation from Sec. C.2 the norm of the operator O : L?(D) — R™ satisfies ||O|| =
1€l z2(p)- Hence for all f, g € L?(D), using that A : L?(D) — L?(D) is bounded with norm 1 by
Sec. C.1, and using the formula for V® computed in Sec. C.2,

IVE(f) = V(9)ll12(p) = IOy — ug) 'TTTE(C)) + Af — 9)ll22(py
< [|O(ug — ug) " T I r2py + 1IN — 9)ll22(p)
< (I€llZ2(py I lgnamy + M = gll2(D)-

This shows that ® is L-smooth with L = 0\1511%2([)) T~ || gy xny + A

Moreover, since F : L2(D) — R™ is bounded linear, the term f +— 1| T=Y2(F(f) — y)|/3n,
is convex. Hence, the added regularizer ensures ® in (56) to be u-strongly convex with p = A.

In all this shows that Example 3 is in the setting of Example 2 with o = 1 (i.e. ® is L-smooth,
p-strongly convex, and g; in (58) satisfies the first inequality in (10) with o = 1). Thus, for small
enough 7 > 0, the iteration fj 1 = f; — Vg, (e) (f1) with the approximate gradient from subsec-
tion C.3, converges to the unique minimizer f, € L?(D) of ® as k — oco. With the multilevel choice
lkj(€),j=1,...,K(e)asin (21), it holds || fx () — f«l|r2(p) < € and the cost ZJI-(:(S)A Ik ,j(e),
which (up to a constant) can be interpreted as the computational cost of all required FEM approxi-
mations, behaves like O(¢ 1) as ¢ — 0 according to Theorem 8.
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Appendix D. Optimality of the multilevel rate for gradient descent

We give a simple example in the setting of Example 2 to show that our results in Sec. 3 are sharp in
general. For some fixed o > 0, consider the objective function and its approximation

1 1
d(x) = §x2, O)(x) = 5(30 —17)?% zeR.

Denote the unique minimizer of ® by z, := 0. We consider gradient descent with a fixed step size
€ (0,1), which amounts to (cp. (6))

U(z) =z —nx, Uy(z)=x—nlx—1).
Hence for some initial value ¢ € R, (7) becomes
Tht+1 = \Illk ($k) (1 — )l’k + T]ll;a (59)

and thus assumption (8) holds with ¢ := 1 —n € (0,1).

Proposition 25 Let xg > 0, and let x be as in (59). Then for every ¢ > 0, for every K € N and
for every (1; )j ol € (0,00)E such that |z — x| <,

K-1
lj >
J=0

Q\»—'
D\»—-

Proof We have
1

K- K-1
T = CTr_ 1+(1—c)lKl—c o + Kl]lo‘> 1—c¢) ZCK_l_jlj_a.
Jj= 0 Jj=0

The minimizer of Z 1l under the constraint (1 — ¢) Zf 01 K—1- Jl * < ¢ satisfies according
to Lemma 6 and (20)

K—1 1 RN 1
. < > a [1—cTta >< € > a _nlg,l
b=l Loes) 2l |
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Appendix E. Notation: particle methods

For a particle system (x(m))mzl,,,,yM, (™) € R™ and forward operator H : R™ — R™, we
denote the empirical mean and covariance operators by

1 I
:Z":MZ:E(’”), H:MZH(“’(W)%
m=1 m=1
1 X _
CcoH(z) = i Z ('™ —2) @ (H(x™) — H),
m=1
1 X )
c () = Vi Z(H(ﬂﬂ(m)) — H)® (H(x™) - H),
m=1 1 ;
Cla) = C™(z) = > (@™ —z) @ (@™ - 1).
m=1

Appendix F. Algorithm: Multilevel ensemble Kalman inversion

The original EKI method in Iglesias et al. (2013) has been derived through an artificial discrete-time
data assimilation problem and was formulated as iterative scheme. For a fixed ensemble size M the

m)}M

time-dynamical particle system {v]( _; can be written as

o = o™ O (o) (CHH (vg) + hTID) T — H W™, =100 (60)

J J+1
where z](i? ~ N (y, h~1X) are perturbed observations. Viewing h > 0 as step size the authors in
Schillings and Stuart (2017) motivated to take the limit A — 0 resulting in the system of coupled
SDEs (26), which has been analysed rigorously in Blomker et al. (2018); Blomker et al. (2021). To
be more precise, under weak assumptions on the general nonlinear forward model H, convergence
in probability can be verified, whereas strong convergence can be verified for linear models.

We reformulate the update formula (60) as

M
)l _ m 1 (r).(m).L, (r)
Vit = +MZ% v, (61)
r=1
verifying the well-known subspace property of the EKI, which will not be violated for our proposed
multilevel formulation. This comes from the fact, that the updating force formulated in the coor-
dinate system spanned by the initial ensemble depends on the discretization level only through the
scalar valued coordinates
) 7l [ - - 7l
o M = () = i, (O ) + )TN T — H(of™),

This observation is useful for an efficient implementation of the multilevel formulation of EKI and
TEKI respectively based on the discretization scheme (60) which we summarize as algorithm below.
Note that for standard EKI one needs to run the algorithm with the choice H; = Fj, z = y € R™
and X = I" and for TEKI, with the corresponding choice

mo=(70). == (2 )0 == (5 %)
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Algorithm 1 Multilevel ensemble Kalman inversion (ML-EKI)

Require: initial ensemble U(()m)’o, ensemble size M, forward model (H;);>0, bias parameter o > 0,

rate parameter ¢ € (0, 1), step size h > 0, time-interval length 7 such that N = 7/h € N,
tolerance € > 0.

1: set the number of iteration K o< log(e~!)
5 (m),0
2 setmg =17 >, vy )
m=1
- Forj=0,... . K—1

) 1 K-1-j
4: compute level [; oc 7 a ¢ 1Ha
5 If j=
6 /U[()m)JO - 'U(m)707 m 17 7M
7 Else
8 ’U[()m)’lj - 7('m)7lj717 m = 17 7M
9:  EndIf
10 Forn=0,1,...N—1
11: yf{i)lvlj ~ Ny, h='T), m=1,...,M
12: Olg)7(m)’lj = (Fy, (Ug)) - Fl]-, (C’Fli 1 (Ufi) + h_lr)—l(y?(lﬂl)l,lj ~F, (Ugmhlj)))
13 (s iy g LM 0m)d (0
14:  EndFor
M m
15: set Tjy1 = ﬁ 2 Uy "
=1
16: EndFor "
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Appendix G. Proofs of Section 4
G.1. Proof of Proposition 11

Proof We first fix an iteration j with level /; and suppress the dependence of £, on /;. The evolution
equation of the particle system for standard EKI can be written as

dvy™ = ~(C(v) + B)F T Y (Fo{™ —y)dt + Cu) F T2 aw,™.

We define t; := I'"'/2F(5; — v') € R™ and tﬁm) = F_l/zF(vt(m) —vf) € R™ such that
Sl = £(70) and N _
dft = —(C(tt) + B)Et dt + C(tt) th

with B :=T~12FBFT1-1/2, Following Theorem 5.2 in Blomker et al. (2019) we can bound

S+T
Ell[EasrllEn] < EllealZn] - o / E[[[EulZn] du,

where o > 0 denotes the smallest eigenvalue of B. Hence with vt =4 Zm 1 vt(m)’ 7 it follows

1 P
E[i\lﬂjvéu ylf] <1 —o-7)E [ 1F,0, 7" = ylIE,

where we have defined || - |2 = [T~%/2 - ||Z.,. With Assumption 10 and the reverse triangle
inequality ||| F'z|| — || Fy||| < ||Fx — Fy|| we have that

1, 1 1 L 1. 1 _1;
e = ELLIFWY, — gl =L |1Fyol, — ol +E | LIFad,, —ul? - D10, — vl

1 e _
< (1 —o-7T)E[|I£; P yllR] A+ bl

IN

1 i —x —Q
(17007)E[§HF%§_ ! fy||12~]+(170'7')b1lj + b1l
(1—o0-7)ej +bl;",

IN

for some constant by > 0 and b = (2 — o - 7)b;. We note that we have used that I[-E[Hz_ig+1 (B
remains uniformly bounded, see e.g. Lemma 5 in Ding and Li (2021a). Moreover, since we assumed
finite second moments of the initial distribution Qo, we have that E[|tp||Z..] < oo and by local
Lipschitz continuity of # — 1||Fz — y||3 we have that eg = E[||F'5y — y[|?] < oo. With the
above computations we have verified that the error quantity e satisfies the decay assumption (8)
(respectively the generalization in Rmk. 9) and therefore, the assertion follows by application of
Theorem 5 and Theorem 8. |

G.2. Proof of Proposition 12

Proof We again fix an iteration j with level /; and suppress the dependence of Fj; on ;. The
evolution equation of the particle system for TEKI can be written as

do{™ = —(C(vy) + B)(FTTH(Fu™ — ) + A0y ™) dt
+ Co)FTT2aw™ 4+ VxC(v)Cy 2 aw ™.
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Next, we define t; := L~ Y2H(o; — z,) € R™ and tgm) = Y V2H(5; — x.) € R", where
z, € X is the unique minimizer of /r and H, ¥ are defined in (25), such that

1, 1, _ A —1/2
SIElEne = SITY2P @ — 22)[Res + 51652 (@ — 22|
2 2 2
Since z, € X is the unique minimizer of ¢ it holds true that
0= Vulr(z,) = F T Fa, —y) + \Cy 'z, = H'S 7Y (Ha, — 2),
and with B := X~'/2HBH "¥~1/2 we can write
dt; = —(C(x) + B)trdt + C(r;) dWs.

The assertion follows similarly to the proof of Proposition 11. |

Appendix H. Algorithm: Multilevel interacting Langevin MCMC

The multilevel interacting Langevin sampler is based on its particle approximation (37). Due to the
finite number of ensemble size M, the resulting algorithm contains an additional empirical error
according to the mean-field limit represented by the Fokker—Planck equation (32). We refer to Ding
and Li (2021b) for a detailed analysis of large ensemble size limit. We are going to solve these
systems of coupled SDEs by a forward Euler-Maruyama method and emphasize that other numer-
ical approximation schemes for SDEs can be applied as well. The resulting multilevel sampling
algorithm is summarized in below.

Appendix I. Proofs of Sec. 5

L.1. Proof of Proposition 14

Proof We define ®; : P — R by ®;(p) = KL(p||pL) and ® : P — R by ®(p) = KL(p||ps)
and assuming that for oy, 09 > 0 we have VQKZR > o11d and C(p;) > o2ld. From (Garbuno-Inigo

etal., 2020, Proposition 2) it follows that there exists a constant ¢ € (0, 1) such that KL(p;1|| pii ) <

KL (pj|| pij ). Furthermore, under Assumption 13 it holds true that
[@(pj) — Pi(ps)| < bI7°
since by definition of the KL divergence we have that

1@:1(p) — ®(p)| = [KL(pl|pL) — KL(p| o]

.y / 2)log(p()) dz — /R  pla)log(pL () da
/ p() log(p()) dz + / p(z) log(p.()) dz|
Rnrae

Rna

< [ pwltla) ~ o) .
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Algorithm 2 Multilevel interacting Langevin sampler (ML-ILS)

Require: initial distribution gy, ensemble size M, gradient of log-likelihood (V®%),>0, bias pa-
rameter o > 0, rate parameter ¢ € (0,1), step size h > 0, time-interval length 7 such that
N = 71/h € N, tolerance ¢ > 0.
1: set the number of iteration K oc log(e 1)

2: Initialize particle system as i.i.d. sample U((]m),(] ~ qo

M
1
3t setpo = 37 Z 5v(m),0
m=1 0

4 Forj=0,....K—1
1 K—1-j
5. compute level [ oc e ac THe
6: If =0
7: Uém)’lo = v(()m)’07 m=1,....M
8:  Else
9: vém)’l] = vgm)’lj_l, m=1,....M
10:  EndIf

11: Forn=0,1,... N -1

2 G N, D)

13: AW = \/Efz(ﬁ)flj,

1w g™ = _hel) VM) 20l aw )b

n+1

,l' 7l' 1l'
15: Uf;i)l i Ugm) J +g£m) J
16:  EndFor

1 M
17: set pj+1 = 37 Z d (m),1;
m=1 YN

18: EndFor
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With Assumption 13 it follows that

B,(0) = %)l < | pi@Ili(o) — tala) da

tx

<0 A pi(@) | F(x) = Fi(w)|[fny dz < b7

Finally, we obtain

l; 1.
KL(pjt1ll0-) = KL(pj41lp¥) + (KL(psi1llpn) = KLlpjillp?))
< cKL(pjp?) + 15
< cKL(pjllps) + (1 + )15

With the above computations we have verified that the error quantity e satisfies the decay assumption
(8) (respectively the generalization in Rmk. 9) and therefore, the assertion follows by application of
Theorem 5 and Theorem 8. n

Appendix J. Details for Sec. 6

The numerical approximations Fj to F' are computed as follows: Given x € R"=, we let F} :
R™ — R™ be the map defined by Fi(f) = O(ulf), where ulf denotes the finite element solution
to (5) using continuous piecewise linear finite elements on a uniform mesh with meshwidth 2-7(%)
where 7(1) = [log(l)/log(2)] such that I = 27", Since O : H}(D) — R™ is continuous, it can
be shown that |[F(z) — Fy(z)||gry < 171|@||gne for all [ and all z € R", i.e. the convergence
rate « in Section 3 equals 1. As a prior on the parameter space R"* we chose Qo = N (0, Cy) with
Co = diag(i=2#,i = 1,...,n,) for some fixed 8 > 0.

The truth 7 was generated as a draw from the prior. Figure 1 shows the error convergence of
multilevel and single-level TEKI in Algorithm 1 in Appendix F with the parameters 8 = 1 and
n, = 100. The ensemble size was size M = 50 and the step size of the discretization scheme (60)
was chosen a h = 0.1. The plotted error quantity is

101 A =172
ek =E (T 1/2§||Fref(f'3K(€)—fU*)H]%any +§||Co Pag(e) — 22)|2n |

with the reference solution x, computed via
Ty = (FoT Frep + MOy 1) T R TT 1y

The cost quantity was computed as in (9).

The second plot in Figure 1 shows the convergence of the posterior mean for the multilevel
interacting Langevin sampler (ILS) in Algorithm 2 in Appendix H. In this case we chose M = 2000
particles, 7 = 0.1 and the step size h = 0.001 of the Euler-Maruyama scheme. The plotted error
quantity shows

1
E (517G ore) = £ edliam)|
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where
Ty = (FrefTrilFref + C()_l)ilFrefTFilgh

which is the posterior mean on reference accuracy level 2'4, and coincides with the Tikhonov regu-
larized solution. We see a similar complexity gains as for multilevel TEKI.
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