Multi-Agent Learning for Iterative Dominance Elimination:
Formal Barriers and New Algorithms

Jibang Wu
University of Virginia
JW7JB@VIRGINIA.EDU

Haifeng Xu
University of Chicago*
HX4AD@VIRGINIA.EDU

Fan Yao
University of Virginia
FY4BC@VIRGINIA.EDU

Editors: Po-Ling Loh and Maxim Raginsky

Abstract

Dominated actions are natural (and perhaps the simplest possible) multi-agent generalizations of sub-optimal actions as in standard single-agent decision making. Thus similar to standard bandit learning, a basic learning question in multi-agent systems is whether agents can learn to efficiently eliminate all iteratively dominated actions in an unknown game if they can only observe noisy bandit feedback about the payoff of their played actions. Surprisingly, despite a seemingly simple task, we show a quite negative result; that is, standard no regret algorithms — including the entire family of Dual Averaging algorithms — provably take exponentially many rounds to eliminate all iteratively dominated actions. Moreover, algorithms with the stronger no swap regret also suffer similar exponential inefficiency. To overcome these barriers, we develop a new algorithm that adjusts Exp3 with Diminishing Historical rewards (termed Exp3-DH); Exp3-DH gradually “forgets” history at carefully tailored rates. We prove that when all agents run Exp3-DH (a.k.a., self-play in multi-agent learning), all iteratively dominated actions can be eliminated within polynomially many rounds. Our experimental results further demonstrate the efficiency of Exp3-DH, and that state-of-the-art bandit algorithms, even those developed specifically for learning in games, fail to eliminate all iteratively dominated actions efficiently.

Keywords: Iterative Dominance Elimination, Dual Averaging, Diminishing Historical Rewards

Acknowledgments

Haifeng Xu is supported by an NSF grant CCF-2132506.

* This work was done while the author was at University of Virginia.
1. Extended abstract. Full version appears at [2111.05486, v2]