
Proceedings of Machine Learning Research vol 178:1–55, 2022 35th Annual Conference on Learning Theory

Eigenspace Restructuring:
A Principle of Space and Frequency in Neural Networks

Lechao Xiao XLC@GOOGLE.COM

Google Research, Brain Team

Editors: Po-Ling Loh and Maxim Raginsky

Abstract
Understanding the fundamental principles behind the massive success of neural networks is one of
the most important open questions in deep learning. However, due to the highly complex nature
of the problem, progress has been relatively slow. In this note, through the lens of infinite-width
networks, a.k.a. neural kernels, we present one such principle resulting from hierarchical locali-
ties. It is well-known that the eigenstructure of infinite-width multilayer perceptrons (MLPs) de-
pends solely on the concept frequency, which measures the order of interactions. We show that
the topologies from deep convolutional networks (CNNs) restructure the associated eigenspaces
into finer subspaces. In addition to frequency, the new structure also depends on the concept
space, which measures the spatial distance between nonlinear interaction terms. The resulting
fine-grained eigenstructure dramatically improves the network’s learnability, empowering them to
simultaneously model a much richer class of interactions, including Long-Range-Low-Frequency
interactions, Short-Range-High-Frequency interactions, and various interpolations and extrapola-
tions in-between. Additionally, model scaling can improve the resolutions of interpolations and
extrapolations and, therefore, the network’s learnability. Finally, we prove a sharp characterization
of the generalization error for infinite-width CNNs (aka C-NTK and CNN-GP) of any depth in the
high dimensions. Two corollaries follow: (1) infinite-width deep CNNs can overcome the curse of
dimensionality, and (2) scaling improves performance in both the finite and infinite data regimes.
Keywords: NTK, generalization, overparameterized networks, convolutional neural networks

1. Introduction

Learning in high dimensions is commonly believed to suffer from the curse of dimensionality, in
which the number of samples required to solve the problem grows rapidly (often polynomially) with
the dimensionality of the input (Bishop, 2006). Nevertheless, modern neural networks often exhibit
an astonishing power to tackle a wide range of highly complex and high-dimensional real-world
problems, many of which were thought to be out-of-scope of known methods (Krizhevsky et al.,
2012; Vaswani et al., 2017; Devlin et al., 2018; Silver et al., 2016; Senior et al., 2020; Kaplan et al.,
2020). What are the mathematical principles that govern the astonishing power of neural networks?
This question perhaps is the most crucial research question in the theory of deep learning because
such principles are also the keys to resolving fundamental questions in the practice of machine
learning, such as (out-of-distribution) generalization (Zhang et al., 2021), calibration (Ovadia et al.,
2019), interpretability (Montavon et al., 2018), robustness (Goodfellow et al., 2014).

Inarguably, there can be more than one of such principles. They are related to one or more of the
three basic ingredients of machine learning methods: the data, the model, and the inference algo-
rithm. Among them, the models, a.k.a. architectures of neural networks, are the most crucial inno-
vation in deep learning that set it apart from classical machine learning methods. More importantly,

© 2022 L. Xiao.

XIAO

Space

Fr
eq

ue
nc

y

(a)

MLP
Space + Frequency = Budget
Order of Learning
Long-Range-Low-Frequency
Beyond Budget

Space

(b)

Shallow CNN
Short-Range-High-Frequency

Space

(c)

Deep CNN
Median-Range-Median-Frequency

Space

(d)

High Resolution CNN
Ultra-Short-Range-Ultra-High-Frequency
Finer Interpolation
Finer Interpolation
Ultra-Longer-Range-Ultra-Low-Frequency

Figure 1: Architectural Inductive Biases. A conceptual illustration of learnable functions vs archi-
tectures for four families of architectures. Each colored box indicates a learnable eigenspace within
a given compute/data budget (Dashed Line.) We use blue/red to indicate range/frequency. The
complexity of an eigenspace is the sum of the complexities in space (X-axis) and in frequency
(Y-axis). From left to right, under the same budget: (a) MLPs can model Long-Range-Low-
Frequency (LRLF) interactions; (b) S-CNNs can model Short-Range-High-Frequency (SRHF)
interactions; (c) D-CNNs can model not only LRLF and SRHF, but also various interactions in-
between, e.g., Median-Range-Median-Frequency interactions. (d) Finally, HS-CNNs can ad-
ditionally model interactions of Ultra-Short-Range-Ultra-High-Frequency, Ultra-Long-Range-
Ultra-Low-Frequency, and finer interpolations in-between. The Green Arrow indicates the di-
rection of expansion of learnable eigenspaces when increasing the compute/data budget. See Sec. 6
for more concrete explanations.

the current revolution in machine learning is initialized by the (re-)introduction of convolution-based
architectures (Krizhevsky et al., 2012; Lecun, 1989), and subsequent breakthroughs are often driven
by discoveries or applications of novel architectures (Vaswani et al. (2017); Devlin et al. (2018)). As
such, identifying and understanding the fundamental roles of architectures are of great importance,
which is the main focus of the current paper.

In this paper, we take a step forwards by leveraging recent developments in overparameterized
networks (Poole et al. (2016); Daniely et al. (2016); Schoenholz et al. (2017); Lee et al. (2018);
Matthews et al. (2018b); Xiao et al. (2018); Jacot et al. (2018); Du et al. (2018); Novak et al. (2019a);
Lee et al. (2019); Yang (2019), among many others.) These developments have discovered an
important connection between neural networks and kernel machines: the Neural Network Gaussian
Process (NNGP) kernels and the neural tangent kernels (NTKs). Under certain scaling limits, the
former describes the distribution of the outputs of a randomly initialized network (a.k.a. prior), and
the latter can describe the network’s gradient descent dynamics. Although recent work (Ghorbani
et al., 2019; Yang and Hu, 2020; Chizat et al., 2019) has identified several limitations of using
them in studying the feature learning dynamics of practical networks, we show that they do capture
several crucial and perhaps surprising properties of the architectural inductive biases.

Our main contribution is the eigenspace restructuring theorem. When the input dimension is
sufficiently large and the widths of the network approach infinity, it characterizes a mathematical
relation between the network’s architecture and its learnability through a trade-off between space
(spatial complexity) and frequency (frequency complexity), providing novel insights behind the
mystery power of deep CNNs (more generally, hierarchical localities (Deza et al., 2020; Vasilescu
et al., 2021).) We summarize our main contributions below; see Fig. 1 for a conceptual illustration.

2

EIGENSPACE RESTRUCTURING

1. We introduce a new complexity measure called learning index (LI) that precisely character-
izes the learnability, generalization and the order of learning of infinite-width networks in
high dimensions.

2. We establish the mathematical relation between the network’s topology and its learning index.

3. We show that deep CNNs can overcome the curse of dimensionality. Moreover, deeper CNNs
generalize better (a.k.a. generalization depth separation.)

4. Finally, we verify our theoretical claims empirically for both neural kernels and finite-width
networks (trained by SGD + Momentum) for datasets and networks of practical sizes (Sec.C.)

Overall, our results show that the benefits from architectural inductive biases can be huge even in the
infinite-width (kernel) setting. The rest of the paper is organized as follows. Sec. 2 provides a toy
example to help understand the motivations of the paper and to explain two core concepts: spatial
and frequency complexities, which jointly define a function-and-architecture dependent complexity
measure. Sec. 3 briefly recaps the role of eigenstructures in studying the learning dynamics of
linear models, and the connection between (in)finite-width networks and kernels (NNGP kernels
and NTKs). Sec. 4 introduces the main notations and expresses the neural network computations
via directed acyclic graphs (DAGs). The definition of the learning index and the main results are
presented in Sec. 5. We provide interpretations and experimental support for the main results in
Sec.6 and Sec.C, resp. Finally, additional related work and further discussions are in Sec. 7 and
Sec. 8.

2. Motivation and a Toy Example

Before diving into the technical details, it is helpful to have one toy example in mind. Consider
learning the following polynomials in Sd−1 ≡ {x ∈ Rd : ∥x∥2 = 1} using (in)finite-width neural
networks and for concreteness we have set d = 10:

f1(x) = x9, f2(x) = x0x1, f3(x) = x0x8, f4(x) = x6x7(x
2
6 − x27), f5(x) = x2x3x5 (1)

Which architectures (e.g. MLPs, CNNs) can efficiently learn fi or the sum of fi? More precisely,
(1) if we have sufficient training data, how much time (compute) is required to learn fi for a given
architecture? (2) Alternatively, if we have a sufficient amount of compute, how much data is needed
to learn fi? To address these questions, one crucial step is to provide a meaningful definition of the
“learning complexity" of a function fi for a given architecture M. Denote this complexity associ-
ated to compute and to data by CC(fi;M) and CD(fi;M), resp. With such complexity properly
defined, the questions are reduced to solving the min-max problem minMmaxi{CC/D(fi;M)}, if
the task is, e.g., to learn the sum of fi.

Let’s focus on the complexity. For infinite-width MLPs, a.k.a. inner product kernels, it is well-
known that they have the inductive biases (Bach, 2017; Yang and Salman, 2020; Ghorbani et al.,
2020; Mei et al., 2021a) (often known as the frequency biases) that the model prioritizes learning
low-frequency modes (i.e., low degree polynomials) over high-frequency modes. In addition, the
models require ∼ dr many data points to learn any degree r polynomials in Sd−1. The frequency
biases of MLPs are the consequence of the fact that the eigenspaces of inner product kernels are
structured based only on frequencies. Specific to our example, for MLPs, the order of learning is

3

XIAO

f1/f2, f3/f5/f4 and it requires about d/d2, d2/d4 (d = 10 in the example here) many data points
to learn the functions. Clearly, the model is very inefficient in learning f4 and, more generally, any
high-frequency modes.

To design new models that improve the learning efficiency, we must take the modality of the
functions into account, which MLPs have overlooked. We observe that: (1) although of high-
frequency, f4 depends only on two consecutive terms x6 and x7, which are spatially close; (2)
in contrast, f3(x) = x0x8 is of low-frequency but the spatial distance between the two interac-
tion terms x0 and x8 are conceptually “large”; (3) the function f5(x) = x2x3x5 is somewhere in-
between: the order of interaction is 3 (lower than that of f4) and the spatial distance (not yet defined)
among interaction terms is conceptually “smaller" than that of f3(x) = x0x8, but “greater" than the
terms in f4. Using the terminologies from the introduction Fig. 1, the functions f2/f3/f5/f4 model
interactions of types: Short-Range-Low-Frequency/Long-Range-Low-Frequency/Median-Range-
Median-Frequency/Short-Range-High-Frequency. By Range we mean the distance among the non-
linear interacting terms, and by Frequency we mean the order(=degree) of interactions. Clearly,
the MLPs are inefficient since they totally ignore the “spatial structure" of the functions. As such, a
good architecture must balance the "spatial structure" and the “frequency structure" of the functions.
For the same reason, a good complexity measure (1) must be able to capture both the frequency of
the functions and the spatial distance among interaction terms; (2) must be able to precisely char-
acterize the data and the computation efficiency of learning and their dependence on architectures.
The learning index mentioned in the introduction is defined to meet these two criteria. It is the sum
of the frequency index and the spatial index. The former measures the order (=degree=frequency)
of interactions, depending on how the network partitions the input into patches. The latter mea-
sures the spatial distance among the interaction terms, depending on how the network hierarchically
organizes these patches. Later we show that, in the high-dimensional setting, the learning index
provides a sharp characterization for the learnability (in terms of compute and learning efficiency)
of eigenfunctions, and certain CNNs can perfectly balance the learning of f3 and f4, i.e., informally

CC/D(f3;CNN) ≈ CC/D(f4;CNN) ≈ CC/D(f2/3;MLP) << CC/D(f4;MLP) (2)

A crucial step in the paper is to understand the exact meaning of spatial distance and define it prop-
erly. It turns out that this distance and thus the spatial index relies on the topology of the network
through the length of the minimum spanning tree(s) (MSTs) connecting the nonlinear interacting
terms of the eigenfunction of interest to the output of the network. We explain, conceptually, why
MSTs emerge in the definition of the spatial index below. Heuristically, we need to compute the
dependence of the output function (i.e., the function defined by the network) on an eigenfunction
of interest, e.g., f5, which is a polynomial in our setting. This amounts to computing certain mixed
derivatives w.r.t. to the interacting terms in f5, i.e. ∂x2∂x3∂x5 . After applying the chain rule and the
product rule, this dependence can be expressed as a sum of “paths" (possibly with duplicated edges)
from the output to the interacting terms. This sum is intractable in general. However, in certain
scaling limits, one can indeed compute the exponent of the leading terms w.r.t. to the input dimen-
sion d. Not surprisingly, this exponent is the infimum of the lengths of all such “paths", namely,
the length of the MST(s) connecting interacting terms to the output. To formally define the spatial
index, we need to express the neural network computations using DAGs (Sec.4) and properly define
the shapes of DAGs in high dimensions (Sec. 5).

4

EIGENSPACE RESTRUCTURING

3. Linear and linearized models

As a warm-up exercise, we briefly go through the training dynamics of a linear regression model.
The goal is to explain the relation between eigenstructures and training dynamics.

3.1. Linear Regression

Let {(xi, yi) ∈ Rd × R : i ∈ [m]} be the training set, where m ∈ N. For convenience, we also use
X ∈ Rm×d and Y ∈ Rm to denote the input matrix and label vector resp., where the i-th row of
X and Y are xT

i and yi resp. Let J : Rd → R1×n be a feature map and J(X) ∈ Rm×n denote the
features of the inputs. The task is to learn a linear function f(x, θ) ≡ J(x)θ to minimize the MSE
of the residual ℛ(X , θ) ≡ f(X , θ)− Y ,

1

2
∥ℛ(X , θ)∥22 ≡

1

2

∑
i∈[m]

(f(xi, θ)− yi)
2 .

Here θ ∈ Rn, a column vector, is the (trainable) parameter of the linear model. Then, by the chain
rule, the gradient flow dynamics can be written as

d

dt
ℛ(X , θ) = −J(X)JT (X)ℛ(X , θ) ≡ −K(X ,X)ℛ(X , θ) . (3)

Since the feature kernel K(X ,X) = J(X)JT (X) ∈ Rm × Rm is constant in time, the above
ODE can be solved in closed form. Let K̂(j)/uj be the j-th eigenvalue/eigenvector of K(X ,X)
in descending order. By initializing θ = 0 at time t = 0 and denoting the projection by ηj =
uT
j ℛ(X , 0), the dynamics of the residual and the loss can be reduced to

ℛ(X , θt) =
∑
j∈[m]

e−K̂(j)tηjuj , L(θt) =
1

2

∑
j∈[m]

e−2K̂(j)tη2j . (4)

Therefore, to make the residual loss in uj smaller than some ϵ > 0, namely, 1
2(e

−K̂(j)tηj)
2 < ϵ,

the amount of time needed is t > log 2ϵ
η2j
/(2K̂(j)). The larger K̂(j) is, the shorter amount of

time it takes to learn uj . In addition, if we know the distribution of {
∑

j>i η
2
j : i ∈ [m]}, then

we can plot the scaling law of the loss (Kaplan et al., 2020; Bahri et al., 2021), which is roughly
(K̂(i)−1,

∑
j>i η

2
j)i∈[m].

Although simple, linear models provide us with the most useful intuition behind the relation
between the eigenstructure of the kernel matrix and the learning dynamics of the associated network.

3.2. Linearized Neural Networks: NNGP Kernels and NT Kernels

Let f(x, θ) be a general function, e.g. f is a neural network parameterized by θ. Similarly,

d

dt
ℛ(X , θ) = −J(X , θ)JT (X , θ)ℛ(X , θ) ≡ −K(X ,X ; θ)ℛ(X , θ) . (5)

However, the kernel K(X ,X ; θ) depends on θ via the Jacobian J(X , θ) of f(X , θ), and evolves with
time. The above system is unsolvable in general. However, under certain parameterization methods
(namely, the NTK-parameterization, see Sohl-Dickstein et al. (2020)) and when the network is

5

XIAO

sufficiently wide, this kernel does not change much during training and converges to a deterministic
kernel called the NTK (Jacot et al., 2018),

K(X ,X ; θ) → Θ(X ,X) as width → ∞. (6)

The residual dynamics becomes a constant coefficient ODE again ℛ̇(X , θ) = −Θ(X ,X)ℛ(X , θ).
To solve this system, we need the initial value of ℛ(X , θ). Since the parameters θ are often ini-
tialized with iid standard Gaussian variables, as the width approaches infinity, the logits f(X , θ)
converge to a Gaussian process (GP), known as the neural network Gaussian process (NNGP).
Specifically, f(X , θ) ∼ N (0;𝒦(X ,X)), where 𝒦 is the NNGP kernel. Note that one can also treat
infinite-width networks as Bayesian models, a.k.a. Bayesian Neural Networks, and apply Bayesian
inference to compute the posteriors. This approach is equivalent to training only the network’s clas-
sification layer (Lee et al., 2019) and the gradient descent dynamics is described by the kernel 𝒦. As
such, there are two natural kernels, the NTK Θ and the NNGP kernel 𝒦, associated to infinite-width
networks, whose training dynamics are governed by constant coefficient ODEs. To make progress,
it is tempting to apply Mercer’s Theorem to eigendecompose Θ and 𝒦, e.g.,

𝒦(x, x̄) =
∑

𝒦̂(j)ϕj(x)ϕj(x̄) and Θ(x, x̄) =
∑

Θ̂(j)ψj(x)ψj(x̄) (7)

Unfortunately, this decomposition is too coarse to be useful since it does not provide fine-grained
information about the eigenstructures. E.g, it is not clear what are the corrections to Eq. (7) when
changing the architecture from a 2-layer CNN to a 4-layer CNN. For this reason, we choose to work
on “concrete" input spaces (product of hyperspheres) with richer mathematical structures on which
we can perform calculus (namely, harmonic analysis on spheres). Our primary goal is to characterize
the precise analytical dependence of the decomposition Eq. (7) on the network’s topology in the
high-dimensional limit.

4. Neural Computations on DAGs

This section aims to express the finite-width and the infinite-width neural network computations
through DAGs, which are needed for us to define the spatial and frequency indices.

For a positive integer p, let Sp−1 denote the unit sphere in Rp and Sp−1 =
√
pSp−1, the sphere

of radius
√
p in Rp. We introduce the normalized sum (integral)

x∈X

f(x) ≡ |X|−1
∑
x∈X

f(x)

(
x∈X

f(x) ≡ µ(X)−1

ˆ
x∈X

f(x)µ(dx)

)
(8)

where X is a finite set (a measurable set with a finite positive measure µ).
We find it more convenient to express the computations in neural networks, and in neural kernels

via DAGs (Daniely et al., 2016), as both computations are of recursive nature. The associated DAG
of a network can be thought of as the original network by setting all its widths (or the number of
channels for CNNs) to 1. As such, changing the widths of a network won’t alter the associated
DAG. Let G = (N , E) denote a DAG, where N and E are the nodes and edges, resp. We always
assume the graph to have a unique output node oG and is an ancestor of all other nodes. Denote
N0 ⊆ N the set of input nodes (leaves) of G, i.e., the collection of nodes with no child. Each node

6

EIGENSPACE RESTRUCTURING

u ∈ N is associated with a pointwise function ϕu : R → R, which is normalized in the sense
Ez∈N (0,1)ϕ

2
u(z) = 1 . It induces a function ϕ∗u : I ≡ [−1, 1] → I defined to be

ϕ∗u(t) = E(z1,z2)∈Nt
ϕu(z1)ϕu(z2) .

Here Nt denotes a pair of standard Gaussians with correlation t. We associate each u ∈ N a finite-
dimensional Hilbert space Hu, and each uv ∈ E (where the first node u is the parent) a bounded
linear operator Luv : Hv → Hu. Let

X ≡
∏
u∈N0

X u ≡
∏
u∈N0

Sdim(Hu)−1 ⊆
∏
u∈N0

Hu and I = I |N0|

be the input tensors and the input correlations to the graph G, resp. We associate two types of com-
putations to a DAG: finite-width neural network computation and infinite-width kernel computation,

𝒩G : X → HoG and 𝒦G : I → I , (9)

resp. They are defined recursively as follows

𝒩u(x) = ϕu

(∑
v:uv∈E

Luv(𝒩v(x))

)
if u /∈ N0 else 𝒩u(x) = xu (10)

𝒦u(t) = ϕ∗u

(
v:uv∈E

𝒦v(t)

)
if u /∈ N0 else 𝒦u(t) = tu (11)

where x ∈ X and t ∈ I . The outputs of the computations are 𝒩G(x) = 𝒩oG(x) and 𝒦G(t) =
𝒦oG (t). Note that 𝒦G is indeed the NNGP kernel (Neal, 1996; Daniely et al., 2016; Lee et al., 2018;
Matthews et al., 2018a). The NTK (Jacot et al., 2018) can also be written recursively as

Θu(t) = ϕ̇∗u

(
v:uv∈E

𝒦v(t)

)
v:uv∈E

(𝒦v(t) + Θv(t)) with ΘG = ΘoG . (12)

Here, Θu = 0 if u ∈ N0 and ϕ̇∗u is the derivative of ϕ∗u. See Table 1 in Novak et al. (2020) for
more details regarding the computations of NNGP kernels and NTKs. For formal proofs of the
convergence of the NNGP kernels and NTKs, see Daniely et al. (2016); Novak et al. (2019a); Yang
(2019); Arora et al. (2019).

4.1. Three Examples: MLPs, S-CNNs and D-CNNs.

To unpack the notation in Sec. 4, we consider three concrete examples: an L-hidden layer MLP,
a shallow convolutional network (S-CNN) that contains only one convolutional layer and a deep
convolutional network (D-CNN) that contains (1 + L) convolutional layers. The architectures are

MLP: [Input] → [Dense-Act]⊗L → [Dense] (13)

S-CNN: [Input] → [Conv(p)-Act] → [Flatten-Dense] (14)

D-CNN: [Input] → [Conv(p)-Act] → [Conv(k)-Act]⊗L → [Flatten-Dense-Act] → [Dense] (15)

where p/k is the filter size of the first/hidden layers and Dense/Conv/Act/Flatten means an dense
/ convolutional / activation / flattening layer. We choose the stride to be the same as the size of the
filter for all convolutional layers and choose flattening as the readout strategy rather than pooling.
The DAGs associated to a 4-layer MLP, a (1 + 1)-layer CNN (with p = k = d

1
2) and a (1+3)-layer

CNN (with p = k = d
1
4) are a linked list, a depth-2 tree, and a depth-4 tree, resp; see Fig. 2. For

more detailed descriptions, see Sec. B in the appendix.

7

XIAO

Input Node

× 2

Output Node
L(Y2) = 0 + 2 = 2

L(Y2) = 1
2 + 2

2 = 6
4 , deg(Y2)=2

Frequency: p = 1
2 Spatial: k = 1

2

Ultra-Short-Range-Low-Frequency: L(Y2) = 3
4 + 2

4 = 5
4

Frequency: p = 1
4 Spatial: k = 1

4

101 102 103 104 105
0.0

0.2

0.4

0.6

0.8
MSE Residual vs Training Set Size: Y2

CNN(p) 4

CNN(p2) 2

MLP 4

MLP 1

Figure 2: Architectures/DAGs. vs Eigenfunctions vs Learning Indices. Left to right: DAGs as-
sociated to (a) a four-layer MLP; (b) CNN(p2)⊗2, a“D"-CNN that has two convolutional layers (c)
CNN(p)⊗4, a “HR"-CNN that has four convolutional layers; and (d) MSE (Y-axis) vs training set
size (X-axis) for Y2 obtained by NTK-regression for 4 architectures. Here Y2 is a linear combina-
tion of eigenfunctions of Short-Range-Low-Frequency interactions (deg(Y2) = 2); see Sec. D for
the expression. The DAGs are generated with p = 4. In each DAG, the Dashed Lines represent the
edges with zero weights. The Solid Lines have weights 0, 1

2 and 1
4 in (a), (b) and (c), resp. The col-

ored path represents the minimum spanning tree used to compute the spatial indices of Y2. Under
architectures (a), (b) and (c), the spatial indices are 0, 1

2 and 3
4 , resp. Each input node represents an

input patch of dimension p4 = d1, p2 = d
1
2 and p = d

1
4 and the frequency indices are 2× 1, 2× 1

2
and 2× 1

4 in (a), (b) and (c), resp.

5. Main Results

The goal is to obtain a precise characterization of the relation between the eigenstructures of 𝒦 / Θ
and the DAG associated to the network’s architectures in the large input dimension setting. As such
we consider a sequence of graphs G =

(
G(d)

)
d∈N, where G(d) = (N (d), E(d)). We associate a finite

set of non-negative numbers ΛG to G, which is called the shape parameters of G,

0 ∈ ΛG ⊆ [0, 1] and |ΛG | <∞. (16)

For the rest of the paper, we will use the following notations. For A,B : N → R+,

B(d) ≳ A(d) ⇐⇒ A(d) ≲ B(d) ⇐⇒ ∃c, d0 > 0 s.t. B(d) ≥ cA(d) > 0 for all d > d0

and B(d) ∼ A(d) if and only if B(d) ≳ A(d) and A(d) ≳ B(d).

5.1. Assumptions

We need several technical assumptions on G regarding the asymptotic shapes of G(d), which are
summarized as Assumption-G below.

Assumption-G. Let G = (G(d))d. There are absolute constants c, C > 0 and d0 > 0 such that
the followings hold for d ≥ d0.

(a.) For each non-input node u ∈ N (d), there is αu ∈ ΛG such that

cdαu ≤ deg(u) ≤ Cdαu . (17)

For each edge uv ∈ E(d), its weight is defined to be πuv ≡ αu.

(b.) For each input node v, there are dv ∈ N and 0 < αv ∈ ΛG such that

cdαv ≤ dv ≤ Cdαv and
∑

v∈N (d)
0

dv = d. (18)

8

EIGENSPACE RESTRUCTURING

(c.) Let N (d)
1 ≡ {u : ∃v ∈ N (d)

0 s.t.uv ∈ E(d)} be the collection of nodes in the first hidden
layer. We assume that for every u ∈ N (d)

1 , αu = 0 and all children of u are input nodes.

(d.) Every node v ∈ N (d) has at most C many parents, i.e. |{u : uv ∈ E(d)}| ≤ C. Moreover,
the number of layers is uniformly bounded, namely, for any node u, any path from u to oG
contains at most C edges.

The first two assumptions also help create spectral gaps between eigenspaces. When d is not large,
the “finite-width" effect is no longer negligible, and we expect that the spectra decay more smoothly.
Assumption (c.) says there are no (skip) connections from the input layer to other layers except to
the first hidden layer, which is often the case in practice.

We say ϕ∗ is semi-admissible if, for all r ≥ 1, the r-th derivative of ϕ∗ at zero is non-vanishing,
i.e., ϕ∗(r)(0) > 0. If, in addition, ϕ∗(0) = 0 (i.e., the activation is centered), then we say ϕ is
admissible. An activation ϕ is (semi-)admissible if ϕ∗ is (semi-)admissible. Note that if ϕ∗ is (semi-
)admissible, then ϕ̇∗ is semi-admissible. Assumption-ϕ. We make the following assumptions on
the activations. (a.) If u ∈ N (d)

0 , ϕu is the identity function. (b.) If u /∈ N (d)
0 ∪ {oG}, ϕu is

admissible. (c.) If u = oG , ϕu semi-admissible.

5.2. Spatial, Frequency and Learning Indices

We introduce the key concept which defines the spatial distance among nodes. It is the length of
the minimum spanning tree (MST) of the nodes.

Definition 1 (Spatial Index of Nodes) Let 𝓃 ⊆ N (d). The spatial index of 𝓃 is defined to be

𝒮(𝓃) ≡ min
𝓃⊆T ≤G(d)

∑
uv∈E(T)

πuv = min
𝓃⊆T ≤G(d)

∑
uv∈E(T)

αu (19)

where 𝓃 ⊆ T ≤ G(d) means T is a sub-graph containing 𝓃. By default, 𝒮(𝓃) = 0 if 𝓃 contains
only one or zero node.

Next, we define the spatial/frequency/learning indices for a multi-index r ∈ I = I |N
(d)
0 |. Let

tr : I → I be a monomial, where r : N (d)
0 → N|N (d)

0 |. We use 𝓃(r) = {v ∈ N (d)
0 : rv ̸= 0} to

denote the support of r and 𝓃(r; oG) = 𝓃(r) ∪ {oG}.

Definition 2 (Spatial, Frequency and Learning Indices of r) We say r ∈ N|N (d)
0 | is G(d)-learnable,

or learnable for short, if there is a common ancestor node u of 𝓃(r) such that ϕu is semi-admissible.

We use 𝒜(G(d)) ≡ {r ∈ NN (d)
0 : r is learnable}. For r ∈ 𝒜(G(d)), the spatial index, frequency

index and the learning index are defined to be,

𝒮(r) ≡ 𝒮(𝓃(r; oG)), ℱ(r) ≡
∑

v∈N (d)
0

rvαv and ℒ(r) ≡ 𝒮(r) + ℱ(r) , (20)

resp. If r /∈ 𝒜(G(d)), we set 𝒮(r) = ℱ(r) = ℒ(r) = +∞. Let ℒ(G(d)) denote the sequence of
learning indices in non-descending order, i.e.

ℒ(G(d)) ≡
(
ℒ(r) : r ∈ 𝒜(G(d))

)
≡ (· · · ≤ rj ≤ rj+1 ≤ . . .) (21)

9

XIAO

Finally, we specify the eigenfunctions of the kernels and the indices associated them. For each
u ∈ N (d)

0 , let {Y r,l}l∈[N(du,r)],r∈N be the family of normalized spherical harmonics in Sdu−1,
where N(du, r) is the number of degree r spherical harmonics in Sdu−1; see Sec. E.2 for more
details about spherical harmonics. Define

Y r,l(ξ) =
∏

u∈N (d)
0

Y ru,lu(ξu), l = (lu)u∈N (d)
0

∈ [N(d, r)] ≡
∏

u∈N (d)
0

[N(du, ru)] (22)

for ξ = (ξu) ∈ X , where d = (du)u∈N (d)
0

and, for consistency, du = du. The spatial, frequency

and learning indices of Y r,l are 𝒮(Y r,l) ≡ 𝒮(r), ℱ(Y r,l) ≡ ℱ(r) and ℒ(Y r,l) ≡ ℒ(r), resp.

5.3. Eigenspace Restructuring

The following is our main result. It describes an analytical relation between the architecture of a
network and the eigenstructure of its inducing kernels in high dimensions.

Theorem 3 (Eigenspace Restructuring) Assume Assumption-G and Assumption-ϕ. We have
the following eigen-decomposition for K = 𝒦G(d) or ΘG(d) . For ξ,η ∈ X

K(ξ,η) =
∑

r∈N|N (d)
0 |

λK(r)
∑

l∈N(d,r)

Y r,l(ξ)Y r,l(η), and λK(r) ∼ d−ℒ(r) (23)

if r ̸= 0 and |r| ≲ 1.

The theorem says that the eigenfunctions of K are {Y r,l}, whose eigenvalues are of order {d−ℒ(r)},
which is determined by the learning index. When the DAGs are more regular, e.g. the network ar-
chitectures are the CNNs, MLPs in Sec. B, then one can also prove that the dimension of eigenspaces
with eigenvalues ∼ d−ℒ(r) is ∼ dℒ(r) (see Lemma 10.)

Coupling with the observation in Eq. (4), Theorem 3 implies that within t ∼ dr amount of time
for gradient flow, when d is sufficiently large, only the eigenfunctions Y r,l with ℒ(r) ≤ r can
be learned. More precisely, let σ be the uniform (product) probability measure on X and denote
Lp(X) ≡ Lp(X ,σ). For r /∈ ℒ(G(d)), define the projection operator to be

P<r(f) =
∑

r:ℒ(r)<r

∑
l∈N(d,r)

⟨f,Y r,l⟩L2(X)Y r,l ,

and similarly for P>r. Let F : L2(X) → L2(X) be the solution operator associated to the kernel
gradient descent ḣ = −K(h− f) with ht=0 = 0 i.e. ht ≡ F t(f) ≡ (Id − e−Kt)f , where

(Id − e−Kt)f(x) ≡
ˆ
x̄∈X

(1− e−K(x,x̄)t)f(x̄)dx̄ (24)

The following theorem says that when t ∼ dr, F t ≈ P<r.

Theorem 4 Assume Assumption-G and Assumption-ϕ and K = 𝒦G(d) or ΘG(d) . Let r /∈ ℒ(G(d))

and t ∼ dr. Then for 0 < ϵ < inf{|r − r̄| : r̄ ∈ ℒ(G(d))} and f ∈ L2(X) with Eσf = 0, we have

∥F t(P<rf)− P<rf∥22 ≲ e−dϵ∥P<rf∥22 and ∥F t(P>rf)− P>rf∥22 ≳ e−d−ϵ∥P>rf∥22 .
(25)

10

EIGENSPACE RESTRUCTURING

In words, in the infinite-training-data regime, within t ∼ dr amount of time only the eigenfunctions
Y r,l with ℒ(r) < r are learnable. The proof follows directly from the arguments in Sec. 3: an
eigenfucntion Yr,l is learnable if e−tλK(r) ∼ e−dr−ℒ(r)

is sufficiently small. Therefore, the learning
index is the correct complexity measure that describes the compute efficiency mentioned in Sec.2.

5.4. Generalization: CNNs without pooling

Our next theorem concerns the finite-training-data regime, in which we will leverage a deep ana-
lytical result from Mei et al. (2021a) (Sec. 3 Theorem 4). We restrict the architectures to CNNs
without pooling Eq. (15) which contain MLPs as special cases. For X ⊆ X , define the regressor,

RX(f)(x) = K(x,X)K(X,X)−1f(X) .

Theorem 5 Let G = {G(d)}d, where each G(d) is a DAG associated to a CNN Eq. (15). Let
r /∈ ℒ(G(d)) be fixed. Assume Assumption-ϕ and Assumption-G. Let f ∈ L2(X) with Eσf = 0.
Then for ϵ > 0, ∣∣∣∥RX(f)− f∥2L2(X) − ∥P>r(f)∥2L2(X)

∣∣∣ = cd,ϵ∥f∥2L2+ϵ(X), (26)

where cd,ϵ → 0 in probability as d→ ∞ over X ∼ σ[dr].

In words, with [dr] many training examples where r /∈ ℒ(G(d)), the NNGP kernel and the NTK
are able to learn all Y r,l with ℒ(r) < r but not any eigenfunctions with ℒ(r) > r. Therefore,
the learning index is the correct complexity measure that describes the data efficiency mentioned in
Sec.2.

5.5. Generalization and training efficiency of CNNs with pooling

In the appendix Sec. H, we prove similar results for CNNs with pooling. Comparing to no pooling,
global average pooling (Theorem 13) improves the data-efficiency by a factor of w, the window size
of pooling. However, the training efficiency in the infinite-data-regime is the same (Theorem 14)
for CNNs with and without pooling. We provide empirical support of these claims in Sec. C.3 by
conducting experiments on synthetic data using toy models and on natural data (ImageNet) using
ResNet50.

Finally, the requirement r /∈ ℒ(G(d)) (aka the non-critical scaling regime), makes the anal-
ysis simpler. When r ∈ ℒ(G(d)) (aka the critical scaling regime), the generalization error, as a
function of training set size |X|, can be non-monotonic and the whole sample-wise generalization
curves can exhibit multiple-descent behaviors; see follow-up work Xiao and Pennington (2022) and
Misiakiewicz (2022); Hu and Lu (2022).

6. Interpretation of the Main Results

We use Theorem 5 and Theorem 4 to explain why better architectures lead to better performance.
In particular, we show how locality, hierarchy, model scaling1 work together to progressively im-
prove learnability and generalization of the networks. In Sec. C, we verify our theoretical claims

1. By model scaling, we mean increasing the depth and decreasing the filter sizes simultaneously. This is similar to
increasing both the depth and the resolutions of the input images.

11

XIAO

empirically for both kernels and finite-width networks (trained by SGD + Momentum) for datasets
and networks of practical sizes.

We say r is the budget index if (1) (finite-data-regime) the training set size m ∼ dr, or (2)
(infinite-data-regime) the training set X = X and the total number of training steps/time t ∼ dr.
Assume X = (Sp−1)

n, where p = dαp , n = dαn , αp+αn = 1 and d is sufficiently large. Recall that
Y r,l is learnable if 𝒮(r) + ℱ(r) < r. Increasing the resolutions of {𝒮(r)}r∈Nn and {ℱ(r)}r∈Nn ,
i.e. finely partitioning the eigenspaces, is crucial for improving learnability and generalization. For
simiplicity, we consider order h ≥ 2 interaction between two mini-patches xi, xj ∈ Sp−1, where
x ∈ X and i ̸= j ∈ [n]. Namely, we assume Y r,l(x) = ϕ(xi,xj) for some degree h homogeneous
polynomial ϕ. We slightly abuse the notation to denote ϕ = Y r,l. For concreteness, we choose
r = 2.8, αp = αn = 0.5.

Baseline: MLPs. Regardless of the number of layers and the spatial locations of i and j, we have
ℒ(ϕ) = ℱ(ϕ) = h. I.e. we need at least dh (samples/time) to learn ϕ and only those ϕ with h < r
are learnable, i.e. h = 2. Therefore, MLPs can model low-frequency interactions but they are
highly inefficient in modeling any type of high-frequency interactions; see the top panel in Fig. 3.
Moreover, making the network deeper won’t help (Fig. 7).

+Locality: 1-layer CNNs. Assume the first layer of the network is a convolutional layer with
kernel size and strides p, the remaining layers are dense layers. Then the frequency index of ϕ is
hαp and the spatial index is 2αn (because there are two mini-patches i/j) and the learning index
is ℒ(ϕ) = 2αn + hαp = h − (h − 2)(1 − αp). There is a gain of (h − 2)(1 − αp) over MLPs
and we can model h = 3 degree of interactions (since 2αp + 3αn = 2.5 < 2.8 = r.) Note that
localities improve the resolutions of the frequency indices from {k : k ∈ N} (without localities) to
{αpk : k ∈ N} (with localities.)

+Locality + Hierarchy: deep CNNs. We replace the dense layers in the above 1-layer CNN with
L convolutional layers with filter sizes and strides k = n1/L (plus dense layers afterward.) The
frequency index of ϕ is the same hαp. However, spatial index can vary from (L + 1)αk to 2Lαk

(where αk = αn/L) arithmetically, depending on the spatial distance between i, j ∈ [k]L ∼= [n].
Therefore the learning index is ℒ(ϕ) = hαp + lαn/L, where l ∈ [L+ 1, 2L] ∩ N is the number of
edges in the DAG connecting i and j to the output nodes; See Sec.D. The gain over 1-layer CNNs
is (2L − l)αn/L. Choosing L = 2, we can model h = 4 interactions when l = L + 1 = 3 since
4αp + 3αn/2 = 2.75 < r, but not any h ≥ 5 or l = 2L (longer-range) with h ≥ 4 interactions.

+Locality + Hierarchy + Model Scaling: HR-CNNs. It is clear now, to capture as many types
of interactions as possible, we should choose αp (i.e. patch size p) and αk (i.e. filter sizes k) as
small as possible and simultaneously, L as large as possible. E.g., choosing αp = 0.1 = αk = 0.1
(i.e. αn = 0.9 and L = 9), the highest order (very short range) interactions that can be modeled
are h = 17 (solve hαp + (L + 1)αn/L < 2.8.) In contrast, to model this interaction (h = 17)
the above architectures require sample complexity to be at least d17

+
(MLPs), d9.5

+
(1-layer CNNs

with αp = αn = 0.5), and d9.25
+

(2-layer CNNs with αp = αn = 0.5.) For practical networks,
e.g., ResNet (He et al., 2016), the filters/patches are already quite small, and there isn’t much room
to reduce them. Equivalently, one increases the resolution of the input images instead (also need to
increase the compute), i.e., increasing d (Tan and Le, 2019).

In Sec. C, we provide empirical verification of the above claims by conducting experiments
using both kernel regression (NNGP/NTK) and SGD + Momentum on finite-width networks in the

12

EIGENSPACE RESTRUCTURING

strong finite-size correction regime, in which the input dimension is d = 256 and patch size is only
p = 4 (i.e., d = p4). In both sets of experiments, we see good agreement between theoretical
predictions and finite-size simulations. Fig. 3 demonstrates the learning separation between MLPs
(baseline, top panel), deep CNNs (+Locality + Hierarchy, middle panel) and HR-CNNs (+Locality
+ Hierarchy + Model Scaling, bottom channels.) in terms of both data-efficiency and training-
efficiency.

7. Additional Related work

Bietti (2021) studies the approximation and learning properties of 2-3 layer CNN kernels via the
lens of RKHS and demonstrates that a 3-layer CNN kernel can reach 88.3% validation accuracy
on CIFAR-10, matching the performance of a 10-layer Myrtle kernel Shankar et al. (2020). The
perspective of Bietti (2021) is different from our: Bietti (2021) aims for precise characterizations of
the induced regularities (aka RKHS norms) by pooling, and interactions between patches, while we
focus on the relation between architectures and the induced eigenstructures. Malach and Shalev-
Shwartz (2020) and Li et al. (2020) study the algorithmic benefits of shallow CNNs and show that
they outperform MLPs in certain tasks. Xiao and Pennington (2021) and Favero et al. (2021) study
the benefits of locality in S-CNNs and argue that localities are the key ingredient to defeat the curse
of dimensionality. However, the models they studied are essentially a linear combination of one-
layer MLPs, each defined on a batch. The models have very limited expressivity and can not capture
any nonlinear interactions between different patches. Mei et al. (2021b) and several papers men-
tioned above also study the benefits of pooling in (S-)CNNs in terms of data efficiency. Mei et al.
(2021b) is the first to rigorously prove the benefits and limitations of pooling when the patch size is
equal to the spatial dimensions. Their conclusion is similar to that of Theorem 13: pooling improves
data efficiency by a factor of the pooling size. In addition, we show that (Theorem 14) pooling does
not improve training efficiency for D-CNNs, extending a result from Xiao and Pennington (2021)
which concerns S-CNNs. Finally, Scetbon and Harchaoui (2020) also studies the eigenstructures
of certain CNN kernels without pooling. Their kernels can be considered as a particular case of
the NNGP kernels, where the associated networks have only one convolutional layer and multiple
dense layers with polynomial activations. As such, the role of hierarchical localities is not studied
there. Moreover, the asymptotic limit of interest is different: Scetbon and Harchaoui (2020) treats
the dimension number d as a constant while our analysis focuses on the regime d→ ∞. In sum, the
key contribution that sets the current work apart from existing work is that our work offers a precise
mathematical characterization of the fundamental role of architectures in (infinite-width) networks
through a space-frequency analysis. In particular, we rigorously prove that D-CNNs (more pre-
cisely, hierarchical localities) are able to break the curse of dimensionality, and scaling improves
performance in both finite and infinite data regimes.

8. Discussion and Conlcusion

We establish a precise relation between the architectures of networks, the eigenstructures of the
inducing kernels, and generalization of the corresponding kernel machines in the high-dimensional
setting. We show that deep convolutional networks restructure the eigenspaces of the inducing ker-
nels, which empowers them to learn a dramatically broader class of functions, covering a wide range
of space-frequency combinations without extra data. We prove that infinite-width convolutional net-

13

XIAO

works is able to overcome the curse of dimensionality. On the practical side, our results suggest that
using images with higher resolutions, networks with more layers and smaller filter sizes, and in-
creasing the training set size2 can improve the performance of the models, which have already been
observed by practitioners (Tan and Le, 2019; Kaplan et al., 2020).

We believe our framework can be extended to study architectural inductive biases for other
families of topologies, such as RNNs, GNNs, and even self-attention. It is expected that the exact
mathematical formulation of the learning index will depend on the structure of the model of interest.
We have not covered the learning dynamics of SGD in the feature learning regime, which is a
very challenging topic. In addition, it is of great interest and importance to study the combined
effect of SGD and the architectural inductive biases in the future. Our results suggest that better
architectures (such as D-CNNs, HR-CNNs) provide a better search space for SGD, in the sense that
the initial descent direction, namely, the NTK, biases the model towards learning functions with
lower complexity (defined by the learning index). Another limitation of the current paper lies in the
strong assumption on the input space, which requires the data to be drawn uniformly from a product
of hyperspheres. There are two orthogonal directions to relax this assumption. One is to restrict
the support of each patch in some low dimensional compact manifold, and we expect tools from
studying eigenfunctions on Riemannian manifolds can be helpful here (Zelditch, 2017). The other
one is to impose dependence between patches, e.g., spatially close patches have strong correlations.

Finally, our results also suggest the need for rethinking approximation properties of finite-width
neural networks through the lens of space-frequency analysis, at least for convolution-based archi-
tectures. While the frequency structures, namely, smoothness of the target functions in terms of the
Sobolev norm, have been broadly studied during the last decades (Cucker and Smale, 2001; von
Luxburg and Bousquet, 2004; Bach, 2017), spatial structures are mostly overlooked. Consequently,
the required widths of the networks to approximate certain functions often grow rapidly (often poly-
nomially) in the input dimensions (Eldan and Shamir, 2016; Daniely, 2017), i.e., the growth rates of
the widths and the total number of parameters are cursed by the dimensionality. Nevertheless, the
widths used in SotA models are much smaller than the input dimensions, e.g., the largest width in
ResNets (He et al., 2016) is 2048 ≈ d0.64, where d = 2242 × 3 is the (default) input dimension of
ImageNet used by the models. We conjecture that hierarchical localities are also the key ingredient
to break the curse of dimensionality for approximation in finite-width neural networks, bringing
down the growth rate of the widths to a more realistic range.

Acknowledgments and Disclosure of Funding

We thank Atish Agarwala, Ben Adlam, Jaehoon Lee, Jascha Sohl-dickstein, Jeffrey Pennington,
Roman Novak and Sam Schoenholz for discussions and feedbacks on the project. We are also
grateful to Yasaman Bahri and the anonymous reviewers for feedback and suggestions on an earlier
draft of this work. We acknowledge the Python community (Van Rossum and Drake Jr, 1995)
for developing the core set of tools that enabled this work, including NumPy (van der Walt et al.,
2011), SciPy (Virtanen et al., 2020), Matplotlib (Hunter, 2007), Pandas (Wes McKinney, 2010),
Jupyter (Kluyver et al., 2016), JAX (Bradbury et al., 2018b), Neural Tangents (Novak et al., 2020),
FLAX (Heek et al., 2020), Tensorflow datasets (TFD) and Google Colaboratory (Research). This
work was performed at and funded by Google. No third party funding was used.

2. This may seem obvious, but our results suggest that networks with modeling scaling could smoothly utilize the
increment of training data since the set of learning indices has higher resolutions.

14

EIGENSPACE RESTRUCTURING

References

TensorFlow Datasets, a collection of ready-to-use datasets. https://www.tensorflow.org/
datasets.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong Wang. On
exact computation with an infinitely wide neural net. arXiv preprint arXiv:1904.11955, 2019.

Francis Bach. Breaking the curse of dimensionality with convex neural networks. The Journal of
Machine Learning Research, 18(1):629–681, 2017.

Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining neural
scaling laws. arXiv preprint arXiv:2102.06701, 2021.

William Beckner. Inequalities in fourier analysis. Annals of Mathematics, 102(1):159–182, 1975.

William Beckner. Sobolev inequalities, the poisson semigroup, and analysis on the sphere sn. Pro-
ceedings of the National Academy of Sciences, 89(11):4816–4819, 1992.

Alberto Bietti. Approximation and learning with deep convolutional models: a kernel perspective,
2021.

Alberto Bietti and Francis Bach. Deep equals shallow for relu networks in kernel regimes. arXiv
preprint arXiv:2009.14397, 2020.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 1st ed. 2006. corr.
2nd printing edition, October 2006. ISBN 978-0-387-31073-2.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, and Skye Wanderman-Milne. JAX: composable transformations of Python+NumPy
programs, 2018a. URL http://github.com/google/jax.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, and Skye Wanderman-Milne. JAX: composable transformations of Python+NumPy
programs, 2018b. URL http://github.com/google/jax.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
In Advances in Neural Information Processing Systems, pages 2937–2947, 2019.

Felipe Cucker and Stephen Smale. On the mathematical foundations of learning. Bulletin of the
American Mathematical Society, 39:1–49, 2001.

Amit Daniely. Depth separation for neural networks. In Conference on Learning Theory, pages
690–696. PMLR, 2017.

Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural networks:
The power of initialization and a dual view on expressivity. In Advances In Neural Information
Processing Systems, 2016.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pages 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

15

https://www.tensorflow.org/datasets
https://www.tensorflow.org/datasets
http://github.com/google/jax
http://github.com/google/jax

XIAO

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Arturo Deza, Qianli Liao, Andrzej Banburski, and Tomaso Poggio. Hierarchically compositional
tasks and deep convolutional networks. arXiv preprint arXiv:2006.13915, 2020.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural networks, 2016.

Alessandro Favero, Francesco Cagnetta, and Matthieu Wyart. Locality defeats the curse of dimen-
sionality in convolutional teacher-student scenarios, 2021.

Christopher Frye and Costas J. Efthimiou. Spherical harmonics in p dimensions. 2012.

Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Limitations of lazy
training of two-layers neural network. In Advances in Neural Information Processing Systems,
pages 9108–9118, 2019.

Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Linearized two-layers
neural networks in high dimension, 2020.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Conference on Computer Vision and Pattern Recognition, pages 770–778, 2016.

Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas
Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for JAX, 2020. URL
http://github.com/google/flax.

Hong Hu and Yue M Lu. Sharp asymptotics of kernel ridge regression beyond the linear regime.
arXiv preprint arXiv:2205.06798, 2022.

J. D. Hunter. Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, 9(3):
90–95, 2007.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. arXiv preprint arXiv:1806.07572, 2018.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger, Matthias Bussonnier,
Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason Grout, Sylvain Corlay, Paul Ivanov,
Damián Avila, Safia Abdalla, and Carol Willing. Jupyter Notebooks – a publishing format for
reproducible computational workflows. In F. Loizides and B. Schmidt, editors, Positioning and
Power in Academic Publishing: Players, Agents and Agendas, pages 87 – 90. IOS Press, 2016.

16

http://github.com/google/flax

EIGENSPACE RESTRUCTURING

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems, pages 1097–1105,
2012.

Yann Lecun. Generalization and network design strategies. In Connectionism in perspective. Else-
vier, 1989.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Sam Schoenholz, Jeffrey Pennington, and Jascha
Sohl-dickstein. Deep neural networks as gaussian processes. In International Conference on
Learning Representations, 2018.

Jaehoon Lee, Lechao Xiao, Samuel S. Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. In Advances in Neural Information Processing Systems, 2019.

Zhiyuan Li, Yi Zhang, and Sanjeev Arora. Why are convolutional nets more sample-efficient than
fully-connected nets? CoRR, abs/2010.08515, 2020. URL https://arxiv.org/abs/
2010.08515.

Eran Malach and Shai Shalev-Shwartz. Computational separation between convolutional and
fully-connected networks. CoRR, abs/2010.01369, 2020. URL https://arxiv.org/abs/
2010.01369.

Alexander G de G Matthews, Mark Rowland, Jiri Hron, Richard E Turner, and Zoubin Ghahramani.
Gaussian process behaviour in wide deep neural networks. arXiv preprint arXiv:1804.11271,
2018a.

Alexander G. de G. Matthews, Jiri Hron, Mark Rowland, Richard E. Turner, and Zoubin Ghahra-
mani. Gaussian process behaviour in wide deep neural networks. In International Conference on
Learning Representations, 2018b.

Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Generalization error of random fea-
tures and kernel methods: hypercontractivity and kernel matrix concentration. arXiv preprint
arXiv:2101.10588, 2021a.

Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Learning with invariances in random
features and kernel models. arXiv preprint arXiv:2102.13219, 2021b.

Theodor Misiakiewicz. Spectrum of inner-product kernel matrices in the polynomial regime and
multiple descent phenomenon in kernel ridge regression. arXiv preprint arXiv:2204.10425, 2022.

Ashley Montanaro. Some applications of hypercontractive inequalities in quantum information
theory. Journal of Mathematical Physics, 53(12):122206, 2012.

Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. Methods for interpreting and
understanding deep neural networks. Digital Signal Processing, 73:1–15, 2018.

Radford M Neal. Priors for infinite networks. In Bayesian Learning for Neural Networks, pages
29–53. Springer, 1996.

17

https://arxiv.org/abs/2010.08515
https://arxiv.org/abs/2010.08515
https://arxiv.org/abs/2010.01369
https://arxiv.org/abs/2010.01369

XIAO

Roman Novak, Lechao Xiao, Yasaman Bahri, Jaehoon Lee, Greg Yang, Daniel A. Abolafia, Jeffrey
Pennington, and Jascha Sohl-dickstein. Bayesian deep convolutional networks with many chan-
nels are gaussian processes. In International Conference on Learning Representations, 2019a.
URL https://openreview.net/forum?id=B1g30j0qF7.

Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A Alemi, Jascha Sohl-Dickstein,
and Samuel S Schoenholz. Neural tangents: Fast and easy infinite neural networks in python.
arXiv preprint arXiv:1912.02803, 2019b.

Roman Novak, Lechao Xiao, Jaehoon Lee, Yasaman Bahri, Greg Yang, Jiri Hron, Daniel A. Abo-
lafia, Jeffrey Pennington, and Jascha Sohl-Dickstein. Bayesian deep convolutional networks with
many channels are gaussian processes. In International Conference on Learning Representations,
2019c.

Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A. Alemi, Jascha Sohl-Dickstein,
and Samuel S. Schoenholz. Neural tangents: Fast and easy infinite neural networks in python. In
International Conference on Learning Representations, 2020. URL https://github.com/
google/neural-tangents.

Yaniv Ovadia, Emily Fertig, J. Ren, Zachary Nado, D. Sculley, Sebastian Nowozin, Joshua V. Dil-
lon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty? eval-
uating predictive uncertainty under dataset shift. In NeurIPS, 2019.

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Expo-
nential expressivity in deep neural networks through transient chaos. In Advances In Neural
Information Processing Systems, 2016.

Google Research. Google colab. URL https://colab.research.google.com/.

Meyer Scetbon and Zaid Harchaoui. Harmonic decompositions of convolutional networks. In
International Conference on Machine Learning, pages 8522–8532. PMLR, 2020.

Samuel S Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep information
propagation. International Conference on Learning Representations, 2017.

Andrew W Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre, Tim Green,
Chongli Qin, Augustin Žídek, Alexander WR Nelson, Alex Bridgland, et al. Improved protein
structure prediction using potentials from deep learning. Nature, 577(7792):706–710, 2020.

Vaishaal Shankar, Alex Chengyu Fang, Wenshuo Guo, Sara Fridovich-Keil, Ludwig Schmidt,
Jonathan Ragan-Kelley, and Benjamin Recht. Neural kernels without tangents. In International
Conference on Machine Learning, 2020.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

Jascha Sohl-Dickstein, Roman Novak, Samuel S. Schoenholz, and Jaehoon Lee. On the infinite
width limit of neural networks with a standard parameterization, 2020.

18

https://openreview.net/forum?id=B1g30j0qF7
https://github.com/google/neural-tangents
https://github.com/google/neural-tangents
https://colab.research.google.com/

EIGENSPACE RESTRUCTURING

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works. In International Conference on Machine Learning, pages 6105–6114. PMLR, 2019.

S. van der Walt, S. C. Colbert, and G. Varoquaux. The NumPy Array: A Structure for Efficient
Numerical Computation. Computing in Science Engineering, 13(2):22–30, 2011.

Guido Van Rossum and Fred L Drake Jr. Python reference manual. Centrum voor Wiskunde en
Informatica Amsterdam, 1995.

M. Alex O. Vasilescu, Eric Kim, and Xiao S. Zeng. Causalx: Causal explanations and block multi-
linear factor analysis, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762,
2017.

Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv preprint
arXiv:1011.3027, 2010.

Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al. Scipy 1.0:
fundamental algorithms for scientific computing in python. Nature methods, 17(3):261–272,
2020.

Ulrike von Luxburg and Olivier Bousquet. Distance-based classification with lipschitz functions. J.
Mach. Learn. Res., 5:669–695, 2004.

Wes McKinney. Data Structures for Statistical Computing in Python. In Stéfan van der Walt and
Jarrod Millman, editors, Proceedings of the 9th Python in Science Conference, pages 56 – 61,
2010. doi: 10.25080/Majora-92bf1922-00a.

Lechao Xiao and Jeffrey Pennington. What breaks the curse of dimensionality in deep learning?,
2021. URL https://openreview.net/forum?id=KAV7BDCcN6.

Lechao Xiao and Jeffrey Pennington. Precise learning curves and higher-order scaling limits for dot
product kernel regression. arXiv preprint arXiv:2205.14846, 2022.

Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel Schoenholz, and Jeffrey Pennington.
Dynamical isometry and a mean field theory of cnns: How to train 10,000-layer vanilla convo-
lutional neural networks. In International Conference on Machine Learning, pages 5393–5402,
2018.

Greg Yang. Scaling limits of wide neural networks with weight sharing: Gaussian process behavior,
gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760,
2019.

Greg Yang and Edward J Hu. Feature learning in infinite-width neural networks. arXiv preprint
arXiv:2011.14522, 2020.

Greg Yang and Hadi Salman. A fine-grained spectral perspective on neural networks, 2020.

19

https://openreview.net/forum?id=KAV7BDCcN6

XIAO

Steve Zelditch. Eigenfunctions of the Laplacian on a Riemannian manifold, volume 125. American
Mathematical Soc., 2017.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–
115, 2021.

20

EIGENSPACE RESTRUCTURING

Appendix A. Organization of the Appendix.

The appendix is organized as follows.

• Sec. B: three concrete examples to unpack the notations in Sec. 4.

• Sec. C: the main experimental results of the paper. Additional experiments can be found in
Sec. J.

• Sec. D: details about the DAGs and the eigenfunctions used in the experimental section, and
detailed examples about how to compute the spatial, frequency and learning indices.

• Sec. E: the proof of the eigenspace restructuring theorem.

• Sec. F and Sec. H: the proof of the generalization bound for CNNs without and with pooling,
resp. We briefly recap the main analytic tools used in the proof in Sec. I.

• Sec. K: the code for the architectures used in the synthetic dataset experiments.

Appendix B. Three Examples: MLPs, S-CNNs and D-CNNs.

To unpack the notation in Sec. 4, we consider three concrete examples: an L-hidden layer MLP,
a shallow convolutional network (S-CNN) that contains only one convolutional layer and a deep
convolutional network (D-CNN) that contains (1 + L) convolutional layers. The architectures are

MLP: [Input] → [Dense-Act]⊗L → [Dense] (27)

S-CNN: [Input] → [Conv(p)-Act] → [Flatten-Dense] (28)

D-CNN: [Input] → [Conv(p)-Act] → [Conv(k)-Act]⊗L → [Flatten-Dense-Act] → [Dense] (29)

where p/k is the filter size of the first/hidden layers and Dense/Conv/Act/Flatten means an dense
/ convolutional / activation / flattening layer. We choose the stride to be the same as the size of the
filter for all convolutional layers and choose flattening as the readout strategy rather than pooling.
See Fig. 6 for the DAGs associated to a 4-layer MLP, a (1 + 1)-layer CNN (with p = k = d

1
2) and a

(1+3)-layer CNN (with p = k = d
1
4).

MLPs. Let G = (N , E) be a linked list with (L + 2) nodes, including the input/output nodes.
Let Luv ∈ Rnu×nv , where nu/v = dim(Hu/v) and the activations of the input/output nodes be the
identity function. Then 𝒩G represents a L-hidden-layer MLP. In addition, let u and v be the nodes
in the l- and (l − 1)-th layers and let Luv be initialized iid as

Luv =
1

√
nv

(
ωuv,ii′

)
i∈[nu],i′∈[nv]

≡ 1
√
nv

(
ω
(l)
ii′

)
i∈[nu],i′∈[nv]

, ωuv,ii′ ≡ ω
(l)
ii′ ∼ N (0, 1) . (30)

Then the MLP can be written recursively as

𝒩u(x) = ϕu(Luv(𝒩v(x))) = ϕu

(
1

√
nv
ω(l)𝒩v(x)

)
(31)

21

XIAO

Let θ = (ωuv,ii′ : i ∈ [nu], i
′ ∈ [nv], uv ∈ E) denote the collection of all trainable parameters.

Let tx,x′ = xTx′/nu for u ∈ N0 and nv → ∞ for all hidden nodes, then the outputs of 𝒩G(X)
converge weakly to the GP GP(0,𝒦G(tx,x′)x,x′∈X) and ΘG(tx,x′)x,x′∈X is the NTK in the sense

E𝒩G(x)𝒩G(x
′)

in prob.−−−−→ 𝒦G(tx,x′) and ⟨∇θ𝒩G(x),∇θ𝒩G(x
′)⟩ in prob.−−−−→ ΘG(tx,x′). (32)

Indeed, note that deg(u) = 1 for all u /∈ N0. Eq. (11) and Eq. (12) become

𝒦u(tx,x′) = ϕ∗u(𝒦v(tx,x′)) and Θu(tx,x′) = ϕ̇∗u(𝒦v(tx,x′))(𝒦v(tx,x′) + Θv(tx,x′)) (33)

which are exactly the recursive formulas for the NNGP kernel and NTK for MLPs; see e.g. Sec.E
in Lee et al. (2019).

S-CNN. The input X = (Sp−1)
w ⊆ Rd, where p is the patch size, w is the number of patches,

d = pw is the dimension of the inputs. Here, the inputs have been pre-processed by a patch extractor
and then by a normalization operator. In words, the S-CNN has one convolutional layer with filter
size p, followed by an activation function ϕ (e.g., Relu), and finally by a flatten-dense readout layer.
Mathematically, by letting n ∈ N be the number of channels in the hidden layer, the output (i.e.,
logit) is given by

Convolution + Activation: zij(x) = ϕ

p− 1
2

∑
i′∈[p]

ω
(1)
j,i′xi,i′

 for i ∈ [w], j ∈ [n] (34)

Flatten + Dense: f(x) = (wn)−
1
2

∑
i∈[w],j∈[n]

ω
(2)
ij zij(x) , (35)

where ω(1)
j,i′ and ω(2)

ij are the parameters of the first and readout layers, resp.
We can associate a DAG G = (N , E) to the above S-CNN. Let the input, hidden and output

nodes be N0 = {0}× [w], N1 = {1}× [w] and N2 = {oG} = {(2)}, resp. and N = N0∪N1∪N2.
Moreover, uv ∈ E if u = oG and v ∈ N1 or u = (1, i) ∈ N1 and v = (0, i) ∈ N0. Let Hv = Rp for
v ∈ N0, Hu = Rn if u ∈ N1 and HoG = R. The associated linear operators are given by

Luv = p−
1
2

(
ω
(1)
j,i′

)
j∈[n],i′∈[p]

∈ Rn×p for (u, v) ∈ N1 ×N0, uv ∈ E . (36)

LoGv = (wn)−
1
2

(
ω
(2)
ij

)
j∈[n]

∈ Rn if v = (1, i) ∈ N1 (37)

Note that the weights are shared in the first layer but not in the readout layer (i.e., the network has
no pooling layer). To compute the NNGP kernel and NTK, we initalize all parameters ω(1)

j,i′ and ω(2)
ij

with iid Gaussian N (0, 1). Letting n→ ∞ and denoting tv = xT
v x

′
v/p and t = (tv)v∈N0 , we have

𝒦G(t) =

v∈N0

ϕ∗(tv) and ΘG(t) =

v∈N0

ϕ∗(tv) + ϕ̇∗(tv) (38)

D-CNN. The input space is X = (Sp−1)
w×kL ⊆ Rw×kL×p, where p is the patch size of the

input convolutional layer, k is the filter size in hidden convolutional layers, L is the number of
hidden convolutional layers and w is the spatial dimension of the layer before flattening. The total

22

EIGENSPACE RESTRUCTURING

dimension of the input is d = p · kL · w, and the number of input nodes is |N0| = kL · w. Since
the stride is equal to the filter size for all convolutional layers, the spatial dimension is reduced by
a factor of p in the first layer, a factor of k by each hidden convolutional layer, and is reduced to 1
by the Flatten-Dense-Act layer. Similar to S-CNNs, one can associate a DAG to a D-CNN. Briefly,
the input layer has kL × w nodes and is reduced by a factor of k by each convolutional layer. The
layer before flattening, the second last layer and the output layer have w, 1, and 1 nodes, resp. More
precisely, we can identify the nodes using tuples.

• For j = 0, i.e., the input layer, N0 = {0} × [w]× [k]L.

• For 1 ≤ j ≤ L+ 1, Nj = {j} × [w]× [k]L−j+1.

• The second last and output layers are NL+2 = {(L+ 2)} and NL+3 = {(L+ 3)} ≡ {oG}.

Note that the first index of a tuple specifies the layer index of the node, i.e. if u = (j, . . .) then
u ∈ Nj . The remaining indices specify its spatial location in that layer. To define the edges E , we
only need to specify the parents of the nodes.

• For j = 0, the parent of v = (0, k0, k1, . . . , kL) ∈ N0 is u = (1, k0, k1, . . . , kL) ∈ N1.

• For 1 ≤ j ≤ L, the parent of v = (j, k0, k1, . . . , kL−j+1) ∈ Nj is u = (j+1, k0, k1, . . . , kL−j) ∈
Nj+1.

• For j = L + 1, the parent of v = (L + 1, k0) ∈ NL+1 is u = (L + 2), whose parent is
oG = (L+ 3).

We write E = ∪1≤j≤L+3Ej , where Ej is the collection of edges between the (j − 1)-th and j-th
layer. Next, we define the neural network associated to this D-CNN. For u ∈ Nj , Hu = Rnj ,
where n0 = p is the size of the patch, nj is the number of channels in the j-th hidden layer for
1 ≤ j ≤ L + 1, and nL+2 is the number of features in the second last layer and nL+3 = 1. Thus
nu = nj if u ∈ Nj . For x ∈ X , if u = (0, k0, k1, . . . , kL) ∈ N0, let

𝒩u(x) ≡ xu ≡ xk0,k1,...,kL ∈ Sp−1 (39)

and otherwise, u ∈ Ej for some j ≥ 1 and let

𝒩u(x)i = ϕu

(deg(u)nv)
− 1

2

∑
v:uv∈Ej

∑
i′∈[nv]

ωuv,ii′𝒩v(x)i′

 for i ∈ [nu]. (40)

Here, for u ∈ Nj , the degree deg(u) = p, k, w and 1 if j = 1, 2 ≤ j ≤ L + 1, j = L + 2 and
j = L+ 3 resp., and the parameters are usually initialized with iid ωuv,ii′ ∼ N (0, 1) and the shape
of ωuv is (deg(u), nv, nu). It is more appropriate to call the current network a locally-connected
network, or a “convolutional network" without weight-sharing, as the parameters ωuv depend on
the node u and are not shared within the same layer. To make it a true convolutional network, we
enforce weight-sharing by setting ωuv,ii′ = ωu′v,ii′ ≡ ω

(j)
v,ii′ if u, u′ ∈ Nj for some j.

Denoting tu = xT
ux

′
u/p for u ∈ N0 and t = (tu)u∈N0 . As min{nj}1≤j≤L+2 → ∞, we have

Eq. (32) and the NNGP kernel and the NTK associated to this network are given by Eq. (11) and
Eq. (12). For formal proofs, see Daniely et al. (2016); Novak et al. (2019c); Yang (2019). This is true

23

XIAO

for both convolutional networks and locally-connected networks, as long as the architecture contains
no pooling (Novak et al., 2019c). For a convolutional network with a global average pooling layer
(GAP), the kernel computations need to be modified to capture the translation invariance from GAP.
See Sec. H for more details.

Appendix C. Experiments

There are many practical consequences due to the above theorems. For Theorem 3 and Theorem 5,
we focus on two of them which are about the impact of architectures to learning / generalization:

1. Order of Learning (Fig. 1 Green Arrow.) The order of learning is restructured from
frequency-based (MLPs) to space-and-frequency-based (CNNs).

2. Learnability (Fig. 1 Cells under the budget line.) With the same budget index, MLP-
Learnable ⊊ D-CNN-Learnable ⊊ HR-CNN-Learnable. Moreover, the set differences be-
tween these learnable sets are captured as in Sec.6.

Here D-CNN stands for deep convolutional neural networks and HR-CNN stands for high-resolutions
convolutional neural networks, which are deeper CNNs with small patch size and filter sizes.

For Theorem 13 and Theorem 14, we focus on the training and data efficiency of CNN+GAP
(GAP for short) and CNN+Flatten (Flatten for short):

1. When the dataset size is sufficiently large, GAP and Flatten are equally efficient.

2. When the dataset size is relatively small compared to the learning index, GAP is more data-
efficient.

Overall, we see excellent agreements between predictions from our theorems and experimental
results from both practical-size networks and kernel methods using NNGP/NT kernels, even when
d = 256 is moderate-size. We detail the setup, results, corrections, etc., for the experiments below.

C.1. Experimental Setup

Set d = p4 and the input X = (Sp−1)
p3 ⊆ Rp4 , where p ∈ N. Note that αp = 1/4. The task is

learning a function Y ∈ L2(X) by minimizing the MSE, where

Y = Y1 +Y2 +Y3 +Y4 +Y5 +Y∗
5 +Y6 +Y7 (41)

and each eigenfunction Yi is a normalized so that ∥Yi∥22 = ∥Y ∥22/8 = 1. See Sec. D for the
expressions of these functions.

We optimize finite-width networks by SGD+Momentum and infinite-width networks (NNGP
and NTK) by kernel regression. We investigate three types of architectures: (1) MLP⊗4, a four hid-
den layer MLP; (2) Conv(p2)⊗2, a “deep" CNN with filter size/stride k = p2, and (3) Conv(p)⊗4,
a “HR"-CNN with filter size/stride k = p. See Fig.1 for a visualization of the associated DAGs.
There is an activation ϕ in each hidden layer, which is chosen so that ϕ∗ is the Gaussian kernel. For
the CNNs, the readout layer(s) is Flatten-Dense-Act-Dense. We provide the code for these archi-
tectures in Sec. K. We carefully chose the eigenfunctions {Yi} so that they cover a wide range of
space-frequency combinations (𝒮(Yi),ℱ(Yi)) w.r.t. Conv(p)⊗4. Under Conv(p)⊗4, the correspond-
ing learning indices are ℒ(Yi) = 𝒮(Yi)+ℱ(Yi) = 3αp + iαp = (3+ i)/4. For the learning indices

24

EIGENSPACE RESTRUCTURING

of Yi under Conv(p2)⊗2 or MLP⊗4, see the legends in Fig.3. The purpose of doing so is to create a
“separation of learning" under Conv(p)⊗4, since in the large p limit, learning Yi requires d(3+i)/4+ϵ

examples/SGD steps.
In the experiments, the width/number of channels is set to 2048/512 for MLPs/CNNs. We

sample mt = 32 × 10240 (mv = 10240) data points randomly from X as training (test) set with
p = 4 and d = 256. The SGD training configurations (batch size (=10240), learning rate (=1.),
momentum (=0.9) etc.) are identical across architectures. To compute the kernels, we rely crucially
on NeuralTangents (Novak et al., 2020) which is based on JAX (Bradbury et al., 2018a).

0.5 1 1.5 20.75 1.25 1.75 2.25

log(TrainingSetSize) / log(d)

0.0

0.2

0.4

0.6

0.8

M
SE

MLP 4: NNGP Regression

0.5 1 1.5 20.75 1.25 1.75 2.25

log(TrainingSetSize) / log(d)

MLP 4: NTK Regression

0.5 1 1.5 20.75 1.25 1.75 2.25

log(SGD Steps) / log(d)

MLP 4: SGD Test

0.5 1 1.5 20.75 1.25 1.75 2.25

log(SGD Steps) / log(d)

MLP 4: SGD Train
L(Y1) = 4/4
L(Y2) = 8/4
L(Y3) = 8/4
L(Y4) = 12/4
L(Y *

5) = 20/4
L(Y5) = 8/4
L(Y6) = 16/4
L(Y7) = 16/4
MSE/8

0.5 1 1.5 20.75 1.25 1.75 2.25

log(TrainingSetSize) / log(d)

0.0

0.2

0.4

0.6

0.8

M
SE

CNN(p2) 2: NNGP Regression

0.5 1 1.5 20.75 1.25 1.75 2.25

log(TrainingSetSize) / log(d)

CNN(p2) 2: NTK Regression

0.5 1 1.5 20.75 1.25 1.75 2.25

log(SGD Steps) / log(d)

CNN(p2) 2: SGD Test

0.5 1 1.5 20.75 1.25 1.75 2.25

log(SGD Steps) / log(d)

CNN(p2) 2: SGD Train
L(Y1) = 4/4
L(Y2) = 6/4
L(Y3) = 6/4
L(Y4) = 8/4
L(Y *

5) = 12/4
L(Y5) = 8/4
L(Y6) = 10/4
L(Y7) = 12/4
MSE/8

0.5 1 1.5 20.75 1.25 1.75 2.25

log(TrainingSetSize) / log(d)

0.0

0.2

0.4

0.6

0.8

M
SE

CNN(p) 4: NNGP Regression

0.5 1 1.5 20.75 1.25 1.75 2.25

log(TrainingSetSize) / log(d)

CNN(p) 4: NTK Regression

0.5 1 1.5 20.75 1.25 1.75 2.25

log(SGD Steps) / log(d)

CNN(p) 4: SGD Test

0.5 1 1.5 20.75 1.25 1.75 2.25

log(SGD Steps) / log(d)

CNN(p) 4: SGD Train
L(Y1) = 4/4
L(Y2) = 5/4
L(Y3) = 6/4
L(Y4) = 7/4
L(Y *

5) = 8/4
L(Y5) = 8/4
L(Y6) = 9/4
L(Y7) = 10/4
MSE/8

Figure 3: Learning Dynamics vs Architectures vs Learning Indices. We plot the learning/training
dynamics of each eigenfunction Yi. From top to bottom: a 4-layer MLP MLP⊗4, a 2-layer CNN
Conv(p2)⊗2 and a 4-layer CNN Conv(p)⊗4. From left to right: residual MSE (per eigenfunction) of
NNGP/NTK regression, test/training MSE of SGD. The learning indices of Yi in each architecture
are shown in the legends.

C.2. Experimental Results I: Architectures vs Learnability.

In Fig.3, for each eigenfunction Yi, we plot 1
2E|Ŷi(x, t) − Yi(x)|22 against t, where Ŷi(x, t) is the

projection of the prediction onto Yi and t is either the training steps (SGD) or training set size
(kernels). The expectation is taken over the test set. The budget index r = log(mt)/ log(d) ≈ 2.28.
As d = 256 (p = 4) is far from the asymptotic limit, we expect r = 2.28 being a soft cut-off
between learnable and non-learnable indices. Although the theorems assume d, p → ∞, they do

25

XIAO

provide good predictions even when d and p are far from ∞. We summarize several key observations
below.

1. MLP⊗4 (1st Row.) This architecture can capture all low-frequency interactions (deg = 1, 2,
Y1, Y2, Y3, Y5) but fail to learn deg ≥ 3 interactions, as expected. For MLPs, making the
network deeper won’t improve its learnability much; see Fig. 7 in the appendix.

2. Conv(p2)⊗2 (2nd Row.) Learning curves of Y2/Y3 are separated from Y5 because the
spatial indices of them are different. Higher-frequency (deg = 3, 4) shorter-range interactions
(Y4, Y6) become (partially) learnable. Note that L(Y4) = 8

4 < r ≈ 2.28 is completely
learned by NTK and SGD and L(Y6) = 2.5 > r ≈ 2.28 is partially learned by NTK and
almost completely learned by SGD.

3. Conv(p)⊗4 (3rd Row). We see L(Yi) capture the order of learning very/reasonably well in the
kernel/SGD setting. To test the ability of Conv(p)⊗4 in modeling ultra-short-range-ultra-high-
frequency interactions, we trace the learning progress of Y∗

5 (deg(Y∗
5) = 5,L(Y∗

5) = 8
4 .)

As expected, while other architectures completely fail to make progress, the NTK/NNGP of
Conv(p)⊗4 makes good progress and the SGD even completes the learning process. Inter-
estingly, Y5

3 is learned faster than Y∗
5 in the kernel setting but slower in the SGD setting

(even slower than L(Y6) =
9
4), which is unexpected. We suspect it might be due to certain

“implicit" effects of SGD. Further investigation is needed to understand it.

C.3. Experimental Results II: GAP vs Flatten.

We compare the SGD learning dynamics of two convolutional architectures: Conv(p)⊗3-Flatten
and Conv(p)⊗3-GAP. The experimental setup is almost the same as that of Sec. C.1 except the
eigenfunctions {Yi} are chosen to be in the RKHS of the NNGP kernel/NTK of Conv(p)⊗3-GAP
and thus of Conv(p)⊗3-Flatten, i.e., they are shifting-invariant (the invariant group is of order p).
Moreover, we still have ℒ(Yi) = (i+3)/4. For each Yi, we plot the validation MSE of the residual
vs SGD steps in Fig. 4. Overall, the predictions from Theorem 13 and Theorem 14 give excellent
agreement with the empirical result. With training set sizemt = 32×10240 Fig. 4 (a), the residuals
of Yi for GAP and Flatten are almost indistinguishable from each other for i ≤ 6 (recall that
ℒ(Y6) = 9/4 = 2.25 < r ≈ 2.28). However, when i = 7 the dataset size (r ≈ 2.28) is relatively
small compared to the learning index (ℒ(Y7) = 2.5), GAP outperforms Flatten in learning Y7. In
Fig. 4 (b), we increase the training set size by a factor of 4 to mt = 4 × 32 × 10240 ≈ d2.53. We
see that the dynamics of Y7 between GAP and Flatten become indistinguishable.

To test the robustness of the prediction from Theorem 14 on more practical datasets and models,
we perform an additional experiment on ImageNet (Deng et al., 2009) using ResNet (He et al.,
2016). We compare the performance of the original ResNet50, denoted by ResNet50-GAP, and
a modified version ResNet50-Flatten, in which the GAP readout layer is replaced by Flatten. We
use the ImageNet codebase from FLAX4(Heek et al., 2020). In order to see how the performance
difference between ResNet50-GAP and ResNet50-Flatten evolves as the training set size increases,
we make a scaling plot, namely, we vary the training set sizes5 mi = [m× 2−i/2] for i = 0, . . . , 11,
where m = 1281167 is the total number of images in the training set of ImageNet. The networks

3. Ultra-Long-Range-Low-Frequency under Conv(p)⊗4, with deg(Y5) = 2 and L(Y5) = 8/4 = L(Y∗
5)

4. https://github.com/google/flax/blob/main/examples/imagenet/README.md
5. Standard data-augmentation is applied for each mi; see input_pipeline.py.

26

EIGENSPACE RESTRUCTURING

are trained for 150 epochs with batch size 128. We plot the validation accuracy and loss (averaged
over 3 runs) as a function of training set size mi in Fig. 5. Overall, we see that the performance gap
between ResNet50-GAP and ResNet50-Flatten shrink substantially as the training set size increases.
E.g, using 1/8 of the training set (i.e. i = 6), the top 1 accuracy between the two is 19.3% (57.7%
GAP vs 38.4% Flatten). However, with the whole training set (i.e., m0), this gap is reduced to
2% (76.5% GAP vs 74.5% Flatten). To demonstrate the robustness of this trend, we additionally
generate the same plots for ResNet34 and ResNet101; see Fig. 8 in the Appendix.

Appendix D. DAGs, Eigenfunctions, Spatial Index, and Frequency Index.

In this section, we provide more details regarding the DAGs and the eigenfunctions used in the
experiments, and how the spatial, frequency and learning indices are computed.

Let (Sp−1)
p3 ⊆ Rp4 be the input space, where d = p4 is the input dimension. We use x ≡

(xk)k∈[p]4 ∈ (Sp−1)
p3 to denote one input (an image), where k = [k1,k2,k3,k4] ∈ [p]4. In

addition, we treat [p]4 as a group (i.e. with circular boundaries) and let e1 = [1, 0, 0, 0], e2 =
[0, 1, 0, 0] , e3 = [0, 0, 1, 0] and e4 = [0, 0, 0, 1] be a set of generator/basis of the group. Note that
each input xk is partitioned into p3 many patches: {xk1,k2,k3,: : k1,k2,k3 ∈ [p]}.

The eigenfunctions used in the experiments and the associated space/frequency indices (will be
explained momentarily) are given as follows

0.5 1 1.5 20.75 1.25 1.75 2.25

log(SGD Steps) / log(d)

0.0

0.2

0.4

M
SE

Valid Loss: GAP vs Flatten
Y1:GAP
Y1:Flatten
Y7:GAP
Y7:Flatten

(a)

0.5 1 1.5 20.75 1.25 1.75 2.25

log(SGD Steps) / log(d)

0.0

0.2

0.4

M
SE

Valid Loss: GAP vs Flatten
Y1:GAP
Y1:Flatten
Y7:GAP
Y7:Flatten

(b)

Figure 4: Learning Dynamics: GAP vs Flatten. Training Set Size: (a) m = 32 × 10240 (b)
m = 128×10240. We plot the validation MSE of the residual of each Yi (left → right: i = 1 → 7)
for GAP (Solid lines) and Flatten (Dashed lines). The mean/std in each curve is obtained by 5
random initializations. Left: when training set size is 32 × 10240, the residual dynamics of GAP
and Flatten are almost indistinguishable for Yi with i ≤ 6. But GAP outperforms Flatten when
learning Y7. Right: the training set size is increased by a factor of 4 and the learning dynamics of
Y7 become identical for GAP and Fatten.

27

XIAO

105 106

Training Set Size

0.2

0.4

0.6
To

p
1

Ac
c I

m
ag

eN
et

Accuracy: GAP vs Flatten
ResNet50-GAP
ResNet50-Flatten

105 106

Training Set Size

2

4

6

Va
lid

at
ion

 C
ro

ss
-E

nt
ro

py

Loss: GAP vs Flatten
ResNet50-GAP
ResNet50-Flatten

Figure 5: ResNet50-GAP vs ResNet50-Flatten. As the training set size increases the performance
(accuracy and loss) gap between the two shrinks.

Eigenfunction degree Space/Freq Index

MLP CNN(p2)⊗2 CNN(p)⊗4

Y1(x) =
∑

k∈[p−1]4

c
(1)
k xk 1 0/1

1

2
/
1

2

3

4
/
1

4

Y2(x) =
∑

k∈[p−1]4

c
(2)
k xkxk+e4 2 0/2

1

2
/
2

2

3

4
/
2

4

Y3(x) =
∑

k∈[p−1]4

c
(3)
k xk+e3xk+e4 2 0/2

1

2
/
2

2

4

4
/
2

4

Y4(x) =
∑

k∈[p−1]4

c
(4)
k xk+e3+e4xk+e4xk 3 0/3

1

2
/
3

2

4

4
/
3

4

Y∗
5(x) =

∑
k∈[p−1]4

c
(5∗)
k xkxk+e4xk+2e4(x

2
k − x2

k+e4
) 5 0/5

1

2
/
5

2

3

4
/
5

4

Y5(x) =
∑

k∈[p−1]4

c
(5)
k xkxk+e1 2 0/2

2

2
/
2

2

6

4
/
2

4

Y6(x) =
∑

k∈[p−1]4

c
(6)
k xkxk+e3(3x

2
k−e3

− x2
k) 4 0/4

1

2
/
4

2

5

4
/
4

4

Y7(x) =
∑

k∈[p−1]4

c
(7)
k xk−e3+e4xk+e2(3x

2
k − x2

k−e3+e4
) 4 0/4

1

2
/
4

2

6

4
/
4

4

Each (eigen)function Yi is a linear combination of basis eigenfunctions of the same type, in
the sense they have the same eigenvalue and the same spatial/frequency/learning indices. The co-
efficients c(i)k are first sampled from standard Gaussians iid and then multiplied by an i-dependent
constant so that Yi has unit norm6. In the experiments, p is chosen to be 4 and the target is defined
to be sum of them

Y =
∑

Yi (42)

6. In our experiments, they are normalized over the test set.

28

EIGENSPACE RESTRUCTURING

Since they are orthogonal to each other, ∥Y ∥22/8 = ∥Yi∥22 = 1, where the L2-norm is taken over the
uniform distribution on (Sp−1)

p3 . In the experiment when we compare Flatten and GAP (Fig. 4),
we set all c(i)k = c(i) for some c(i), so that the functions are learnable by convolutional networks
with a GAP readout layer. Note that we also remove Y5 from the target function Y since Y5 is not
in the function space defined by Conv(p)⊗3-Flatten or Conv(p)⊗3-GAP.

We compare three architectures. Fig. 6 Column (a) MLP⊗4, a (four-layer) MLP, the most coarse
architecture used in the paper. Fig. 6 Column (b), CNN(p2)⊗2, a“D"-CNN that contains two con-
volutional layers with filter size/stride equal to p2. Fig. 6 Column (c), CNN(p)⊗4, a “HR"-CNN,
the finest architecture used in the experiments, that contains four convolutional layers with filter
size/stride equal to p. In all experiments except the one in Fig. 4, we use Flatten as the readout layer
for the convolutional networks and add a Act-Dense layer after Flatten to improve the expressivity
of the function class. However, in the Flatten vs GAP experiments, Fig. 4, we have only one dense
layer after GAP/Flatten and, in particular, no non-linear activation.

We show how to compute the frequency index, the spatial index and the learning index through
three examples: Y2 / Y3 / Y∗

5, which have degree 2 / 2 / 5, resp. The indices of other (basis)
eigenfunctions can be computed using the same approach. We use Dashed Lines to represent either
an edge connecting an input node to a node in the first-hidden layer or an edge associated to a dense
layer. In either case, the corresponding output node of the edge has degree O(1), and thus, the
weights (of the DAGs) of such edges are always 0. Only Solid Lines are relevant in computing
the spatial index. Since each Yi is a linear combination of basis eigenfunctions of the same type,
we only need to compute the indices of one component. For convenience, we compute the k = 0
component, of which the associated MST is highlighted with colored lines in each DAG. Recall that
p = 4, d = p4 = 256 and mt = 32 × 10240 ∼ d2.28 (training set size), i.e. the budget index is
roughly r = 2.28.

(a.) MLP Column (a) Fig. 6. The NTK and NNGP kernels are inner product kernels and the
associated DAGs are linked lists. The corresponding DAG has only one input node whose
dimension is equal to d = p4. The spatial index is always 0 since the degree of each hidden
node is 1 (since 1 = d0) and the frequency index is equal to the degree of the eigenfunctions.
Thus ℒ(Y2) = ℒ(Y3) = 2 and ℒ(Y∗

5) = 5. Changing the number of layers won’t change
the learning indices. In sum, learning Y2 / Y3 / Y∗

5 using infinite-width MLP requires
d2

+
/d2

+
/d5

+
many samples /SGD steps. Clearly, Y∗

5 is completely unlearnable as r =
2.28 << 5. In the MSE plot Y∗

5 (5-th row in Fig. 6), the Red Lines does not make any
progress.

(b.) CNN(p2)⊗2 Column (b) Fig. 6. The input image is partitioned into p2 patches and each patch
has dimension p2. The second layer of the DAG has p2 many nodes, each node represents
one pixel (with many channels) in the first hidden layer of a finite-width ConvNet. After one
more convolutional layer with filter size/stride p2, the number of node (pixel) is reduced to
one. The remaining part of the DAG is essentially a linked list (Dashed Line) with length
equal to 1, which corresponds to the Act-Dense layer. The frequency index ℱ(Y2) = 21

2 = 1.
This is because the degree of Y2 is 2 and the input dimension of a node is p2 = d1/2. The
spatial index is equal to 1/2, since the minimum tree containing xkxk+e4 has only one non-
zero edge (Solid Lines) whose weight is equal to 1/2 (since the degree of the output node
is p2 = d1/2); see the colored paths in Fig. 6 Column (b). Therefore the learning index of

29

XIAO

ℒ(Y2) = 1 + 1/2 = 3/2. Similarly ℒ(Y3) = 1 + 1/2 = 3/2, as the term xk+e3xk+e4 are
lying in the same patch of size p2 for all k, and ℒ(Y∗

5) = 5/2 + 1/2 = 3. In sum, learning
Y2 / Y3 / Y∗

5 using infinite-width CNN(p2)⊗2 requires d1.5
+
/d1.5

+
/d3

+
many samples /

SGD steps. While neither infinite-width CNN(p2)⊗2 nor MLP⊗4 distinguishes Y2 from Y3,
CNN(p2)⊗2 does improve the learning efficiency for both of them: d2

+ → d1.5
+

. Note that
Y∗

5 is still unlearnable as r = 2.28 < 3 = ℒ(Y∗
5). In the MSE plot Y∗

5 (5-th row in Fig. 6),
the Orange Line does not make any progress. This is also the case for finite-width network
trained by SGD; see second row in Fig. 3.

(c.) CNN(p)⊗4 Column (c) Fig. 6. The input image is partitioned into p3 patches and each patch
has dimension p. The second/third/fourth/output layer of the DAG has p3/p2/p/1 many
nodes. The frequency indices are: ℱ(Y2) = ℱ(Y3) = 21

4 = 1/2 and ℱ(Y∗
5) = 51

4 = 5/4.
This is because the size of input nodes is reduced to p = d1/4. Unlike the above cases,
the spatial indices become different. The two interacting terms in xkxk+e4 and the three
interacting terms in xk+e4xk+2e4(x

2
k − x2

k+e4
) are in the same input node while the two

interacting terms in xk+e3xk+e4 and are in two different input nodes. As a consequence, the
minimum spanning tree (MST) that contains xk and xk+e4 and the one contains xk, xk+e4

and xk+2e4 are the same. They have 3 solid lines. However, the MST containing xk+e3 and
xk+e4 has 4 solid lines. Therefore 𝒮(Y2) = 𝒮(Y∗

5) = 3 × 1
4 and 𝒮(Y3) = 4 × 1

4 . As
such, ℒ(Y2) = 5

4 , ℒ(Y3) = 6
4 and ℒ(Y∗

5) = 8
4 . In sum, learning Y2 / Y3 / Y∗

5 using
infinite-width CNN(p)⊗4 requires d1.25

+
/ d1.5

+
/ d2

+
many samples / SGD steps, resp.

Now ℒ(Y∗
5) = 2. < 2.28 and in the MSE plot Y∗

5 (5-th row in Fig. 6), the Blue Line does
make significant progress (the MSE is reduced from ∼ 0.5 to ∼ 0.2.) Finite-width network
trained by SGD does even better: the test MSE is almost zero; see third row in Fig. 3.

30

EIGENSPACE RESTRUCTURING

Input Node

× 1

Output Node
L(Y1) = 0 + 1 = 1

L(Y1) = 1
2 + 1

2 = 4
4 , deg(Y1)=1 Ultra-Low-Frequency: L(Y1) = 3

4 + 1
4 = 4

4

101 102 103 104 105
0.0

0.2

0.4

0.6

0.8
MSE Residual vs Training Set Size: Y1

CNN(p) 4

CNN(p2) 2

MLP 4

MLP 1

Input Node

× 2

Output Node
L(Y2) = 0 + 2 = 2

L(Y2) = 1
2 + 2

2 = 6
4 , deg(Y2)=2

Frequency: p = 1
2 Spatial: k = 1

2

Ultra-Short-Range-Low-Frequency: L(Y2) = 3
4 + 2

4 = 5
4

Frequency: p = 1
4 Spatial: k = 1

4

101 102 103 104 105
0.0

0.2

0.4

0.6

0.8
MSE Residual vs Training Set Size: Y2

CNN(p) 4

CNN(p2) 2

MLP 4

MLP 1

Input Node

× 2

Output Node
L(Y3) = 0 + 2 = 2

L(Y3) = 1
2 + 2

2 = 6
4 , deg(Y3)=2 Short-Range-Low-Frequency: L(Y3) = 4

4 + 2
4 = 6

4

101 102 103 104 105
0.0

0.2

0.4

0.6

0.8
MSE Residual vs Training Set Size: Y3

CNN(p) 4

CNN(p2) 2

MLP 4

MLP 1

Input Node

× 3

Output Node
L(Y4) = 0 + 3 = 3

L(Y4) = 1
2 + 3

2 = 8
4 , deg(Y4)=3 Short-Range-Median-Frequency: L(Y4) = 4

4 + 3
4 = 7

4

101 102 103 104 105
0.0

0.2

0.4

0.6

0.8
MSE Residual vs Training Set Size: Y4

CNN(p) 4

CNN(p2) 2

MLP 4

MLP 1

Input Node

× 5

Output Node
L(Y *

5) = 0 + 5 = 5 L(Y *
5) = 1

2 + 5
2 = 12

4 , deg(Y5)=5 Ultra-Short-Range-Ultra-High-Frequency: L(Y *
5) = 3

4 + 5
4 = 8

4

101 102 103 104 105
0.0

0.2

0.4

0.6

0.8
MSE Residual vs Training Set Size: Y5

CNN(p) 4

CNN(p2) 2

MLP 4

MLP 1

Input Node

× 1

Output Node
L(Y5) = 0 + 2 = 2

L(Y5) = 2
2 + 2

2 = 8
4 , deg(Y5)=2 Utlra-Long-Range-Low-Frequency: L(Y5) = 6

4 + 2
4 = 8

4

101 102 103 104 105
0.0

0.2

0.4

0.6

0.8
MSE Residual vs Training Set Size: Y8

CNN(p) 4

CNN(p2) 2

MLP 4

MLP 1

Input Node

× 4

Output Node
L(Y6) = 0 + 4 = 4

L(Y6) = 1
2 + 4

2 = 10
4 , deg(Y6)=3 Long-Range-High-Frequency: L(Y6) = 5

4 + 4
4 = 9

4

101 102 103 104 105
0.0

0.2

0.4

0.6

0.8
MSE Residual vs Training Set Size: Y6

CNN(p) 4

CNN(p2) 2

MLP 4

MLP 1

Input Node

× 4

Output Node
L(Y7) = 0 + 4 = 4

L(Y7) = 2
2 + 4

2 = 12
4 , deg(Y7)=4 Utlra-Long-Range-High-Frequency: L(Y7) = 6

4 + 4
4 = 10

4

101 102 103 104 105
0.0

0.2

0.4

0.6

0.8
MSE Residual vs Training Set Size: Y7

CNN(p) 4

CNN(p2) 2

MLP 4

MLP 1

Figure 6: Eigenfunction vs Learning Index vs Architecture/DAG. Rows: eigenfunctions Yi with
various space-frequency combinations. Columns: DAGs associated to (a) CNN(p)⊗4, a “HR"-
CNN. (b) CNN(p2)⊗2, a“D"-CNN. (c) a four-layer MLP. Column (d) is the MSE of the residual
of the corresponding eigenfunction obtained by NTK-regression. The dashed lines in each DAG
correspond to the mapping from the input layer to the first hidden layer and the associated weights
to the DAG is ZERO. Each colored path in each DAG corresponds to the minimum spanning tree
that contains all interaction terms of the corresponding eigenfunctions.

Appendix E. Proof of the Eigenspace Restructuring Theorem.

The goal of this section is to prove the eigenspace restructuring theorem. In Sec. E.1, we present a
key lemma that relates the mixed derivatives of 𝒦 and Θ (as a function of t) to the architectures of
the networks. We briefly recap some tools from spherical harmonics and then prove the theorem in

31

XIAO

Sec.E.2. For the rest of the paper, we will use the following notations. For A,B : N → R+,

B(d) ≳ A(d) ⇐⇒ A(d) ≲ B(d) ⇐⇒ ∃c, d0 > 0 s.t. B(d) ≥ cA(d) > 0 for all d > d0
(43)

and

B(d) ∼ A(d) ⇐⇒ B(d) ≳ A(d) and A(d) ≳ B(d) (44)

E.1. A Crucial Lemma

Lemma 6 Same assumptions as Theorem 3. Let r ∈ N|N (d)
0 |. Then for r ̸= 0, for d large enough,

𝒦(r)
G (0), Θ

(r)
G (0) ∼ d−𝒮(r) and ∥𝒦(r)

G ∥∞, ∥Θ(r)
G ∥∞ ≲ d−𝒮(r) (45)

Proof Recall that the recursion formulas for 𝒦 and Θ are

𝒦u(t) = ϕ∗u

(
v:uv∈E

𝒦v(t)

)
(46)

Θu(t) = ϕ̇∗u

(
v:uv∈E

𝒦v(t)

)
v:uv∈E

(𝒦v(t) + Θv(t)) (47)

For convenience, define 𝒦, Θ, 𝒦̇ as follows

𝒦u(t) =

v:uv∈E

𝒦v(t) (48)

Θu(t) =

v:uv∈E

Θv(t) (49)

𝒦̇u(t) = ϕ̇∗u ◦𝒦u(t) . (50)

Note that
𝒦u(t) = ϕ∗u ◦𝒦u(t) and Θ(t) = 𝒦̇u(t)(𝒦u(t) + Θu(t)) .

and 𝒦u(0) = Θu(0) = 0 if u ̸= oG , which follow directly from recursions and the fact ϕ∗u(0) = 0
for u ∈ N (d) if u ̸= oG .

We induct on the tuple (h, |r|), where h ≥ 0 is the number of hidden layers in G(d) and |r| is
the total degree of r. We begin with the proof of the NNGP kernel 𝒦.

Base Case I: |r| = 1 and h ≥ 0 is any integer. Let u ∈ N0 be such that r = eu, where
{eu}u∈N (d)

0

is the standard basis. Then

∂tu𝒦G(t) =
∑

path∈P(u→oG)

∏
v∈path

deg(v)−1ϕ̇∗v ◦𝒦v(t) ∼
∑

path∈P(u→oG)

∏
v∈path

d−αv ϕ̇∗v ◦𝒦v(t) (51)

Here P(u→ u′) represents the set of paths from u to u′. By Assumption-G and Assumption-
ϕ, |P(u → oG)| (the cardinality) is uniformly bounded and ϕ̇∗v(0) > 0 for all hidden nodes v.
Therefore

32

EIGENSPACE RESTRUCTURING

∂tu𝒦G(0) ∼
∑

path∈P(u→oG)

d−
∑

v∈path αv ϕ̇∗v ◦𝒦v(0)

=
∑

path∈P(u→oG)

d−
∑

v∈path αv ϕ̇∗v(0)

∼ max
path∈P(u→oG)

d−
∑

v∈path αv

= d−𝒮(eu) = d−𝒮(r)

In the above, we have used 𝒦v(0) = 0 (which is due to ϕ∗(0) = 0) and ϕ̇∗v ◦𝒦v(0) ̸= 0 . The
second estimate ∥∂tu𝒦G∥∞ ≲ d−𝒮(r) follows from |ϕ̇∗v ◦𝒦v(t)| ≲ 1.

Base Case II: h = 0 and |r| ≥ 1 is any number. Note that G(d) has no hidden layer and all input
nodes are linked to the output node oG . The case when the activation ϕoG is the identity function is
obvious. We assume ϕoG is semi-admissible.

∂rt𝒦G(t) = deg(oG)
−|r|ϕ∗oG

(|r|)
(

u∈N (d)
0

tu

)
.

This implies Eq. (45) since 𝒮(r) = 0, deg(oG) ≲ 1 by Assumption-G and ϕ∗oG
(|r|)(0) > 0 by

Assumption-ϕ.
Induction: |r| ≥ 2, h ≥ 1 and r ∈ 𝒜(G(d)). We only prove the first estimate in Eq. (45) since

the other one can be proved similarly. WLOG, we assume ϕoG is not the identity function and hence
is semi-admissible. Let u ∈ N (d)

0 be such that ru ≥ 1 and denote r̄ = r − eu. Then

∂rt𝒦G(t)
∣∣∣
t=0

= ∂r̄t (∂
eu
t 𝒦G(t))

∣∣∣
t=0

=
∑

oGv∈E
∂eu
t 𝒦v ̸=0

deg(oG)
−1∂r̄t

(
𝒦̇oG (t)∂

eu
t 𝒦v(t)

) ∣∣∣
t=0

(52)

=
∑

oGv∈E
∂eu
t 𝒦v ̸=0

∑
r̄1+r̄2=r̄

deg(oG)
−1
(
∂r̄1t 𝒦̇oG (t) ∂

r̄2+eu
t 𝒦v(t)

) ∣∣∣
t=0

(53)

∼
∑

oGv∈E
∂eu
t 𝒦v ̸=0

∑
r̄1+r̄2=r̄

deg(oG)
−1d−𝒮(r̄1)d−𝒮(𝓃(r̄2+eu;v)) (54)

∼
∑

oGv∈E
∂eu
t 𝒦v ̸=0

∑
r̄1+r̄2=r̄

d−𝒮(r̄1)d−(αoG+𝒮(𝓃(r̄2+eu;v))) (55)

∼ sup
oGv∈E

∂eu
t 𝒦v ̸=0

sup
r̄1+r̄2=r̄

d−(𝒮(r̄1)+αoG+𝒮(𝓃(r̄2+eu;v))) (56)

We have applied induction twice in Eq. (54): one to obtain the estimate ∂r̄1t 𝒦̇∗
oG (0) ∼ d−𝒮(r̄1) (with

|r̄1| < |r| and ϕ̇∗oG semi-admissible) and one to ∂r̄2+eu
t 𝒦v(t) ∼ d−𝒮(𝓃(r̄2+eu;v)), in which the sub-

graph with v as the output node has depth at most (h− 1). The last line follows from that both the
cardinality of the tuple (r̄1, r̄2) with r̄1, r̄2 ≥ 0 and r̄1 + r̄2 = r̄ and the cardinality of v ∈ N (d)

0

33

XIAO

with oGv ∈ E and ∂eut 𝒦v ̸= 0 are finite and independent of d. From the definition of MST, it is
clear that for all (r̄1, r̄2)

𝒮(r̄1) + αoG + 𝒮(𝓃(r̄2 + eu; v)) ≥ 𝒮(r̄1) + 𝒮(r̄2 + eu) ≥ 𝒮(r) (57)

It remains to show that there exists at least one pair (r̄1, r̄2) such that the above can be an equality.
Let T ⊆ G(d) be a MST containing all nodes in 𝓃(r). If oG has only one child v in T , then we
choose r̄1 = 0 and notice that

𝒮(r̄1) + αoG + 𝒮(𝓃(r̄2 + eu; v)) = 0 + 𝒮(r̄2 + eu) = 𝒮(r) (58)

since 𝒮(r̄1) = 0 and r̄2+eu = r. Else, oG contains at least two children in T and therefore at least
two disjoint branches. Let Tu ⊆ T be the branch that contains u and choose r̄2 ≤ r̄ be such that all
the nodes of (r̄2 + eu) are contained in Tu and all the nodes of r̄1 ≡ r − (r̄2 + eu) are contained
in T \Tu. Clearly

𝒮(r) = 𝒮(r̄1) + 𝒮(r̄2 + eu) = 𝒮(r̄1) + 𝒮(𝓃(r̄2 + eu; v)) + αoG , (59)

where v is the unique child of oG in Tu.
This completes the proof of the NNGP kernel 𝒦. As the proof of the NTK part is quite similar,

we will be brief and focus only on the induction step.
Induction Step of Θ: |r| ≥ 2, h ≥ 1 and r ∈ 𝒜(G(d)). Recall that the formula of Θ is

Θu(t) = ϕ̇∗u

(
v:uv∈E

𝒦v(t)

)
v:uv∈E

(𝒦v(t) + Θv(t)) (60)

For r ∈ N|N (d)
0 |,

∂rtΘoG (t) =
∑

r̄1+r̄2=r

∂r̄1t ϕ̇
∗
oG

(
v:oGv∈E

𝒦v(t)

)
∂r̄2t

v:oGv∈E

(𝒦v(t) + Θv(t)) (61)

Note that ϕ̇∗oG is semi-admissible. We apply the result of 𝒦 to conclude that

∂r̄1t ϕ̇
∗
oG

(
v:oGv∈E

𝒦v(t)

)∣∣∣∣∣
t=0

∼ d−𝒮(r1) (62)∥∥∥∥∥∂r̄1t ϕ̇∗oG
(

v:oGv∈E
𝒦v(t)

)∥∥∥∥∥
∞

≲ d−𝒮(r̄1) (63)

and the inductive step to conclude that

∂r̄2t

v:oGv∈E

(𝒦v(t) + Θv(t))

∣∣∣∣∣
t=0

∼
∑

v:oGv∈E
∂
r̄2
t (𝒦v+Θv)̸≡0

d−𝒮(r̄2) if r̄2 ̸= 0 else 0 (64)

∂r̄2t

v:oGv∈E

(𝒦v(t) + Θv(t)) ≲
∑

v:oGv∈E
∂
r̄2
t (𝒦v+Θv) ̸≡0

d−𝒮(r̄2) . (65)

34

EIGENSPACE RESTRUCTURING

Note that
|{v : oGv ∈ E(d) and ∂r̄2t (𝒦v +Θv) ̸≡ 0}| ≲ 1 .

Thus ∥∥∂rtΘoG (t)
∥∥
∞ ≲

∑
r̄1+r̄2=r

d−𝒮(r̄1)−𝒮(r̄2) ≲ d−𝒮(r). (66)

To control the lower bound, let T be a MST containing 𝓃(r). If deg(oG ; T) = 1, then we can choose
r̄1 = 0 and r̄2 = r ̸= 0. Notice that there is at least one child node v of oG with ∂r̄2t (𝒦v+Θv) ̸≡ 0.
Therefore ∑

v:∂
r̄2
t (𝒦v+Θv)̸≡0

d−𝒮(r̄2) ≳ d−𝒮(r̄2) = d−𝒮(r) (67)

Combining with

ϕ̇∗oG

(
v:oGv∈E

𝒦v(0)

)
= ϕ̇∗oG (0) > 0 (68)

we have

∂rtΘoG (0) ≳ d−𝒮(r)

It remains to handle the deg(oG ; T) > 1 case. We choose (r̄1, r̄2) such that one branch of T is the
MST that contains 𝓃(r̄2) and oG , and the remaining branch(es) is a MST that contains 𝓃(r̄1) and
oG . Then

∂rtΘoG (0) ≳∂
r̄1
t ϕ̇

∗
oG

(
v:oGv∈E

𝒦v(t)

)
∂r̄2t

v:oGv∈E

(𝒦v(t) + Θv(t))

∣∣∣∣∣
t=0

≳d−𝒮(r1)−𝒮(r2) = d−𝒮(r)

E.2. Legendre Polynomials, Spherical Harmonics and their Tensor Products.

Our notation follows closely from (Frye and Efthimiou, 2012).

Legendre Polynomials. Let din ∈ N∗ and ωdin be the measure defined on the interval I = [−1, 1]

ωdin(t) = (1− t2)(din−3)/2 (69)

The Legendre polynomials7 {Pr(t) : r ∈ N} is an orthogonal basis for the Hilbert spaceL2(I, ωdin),
i.e. ˆ

I
Pr(t)Pr′(t)ωdin(t)dt = 0 if r ̸= r′ else N(din, r)

−1

(
|Sdin−1|
|Sdin−2|

)
(70)

Here Pr(t) is a degree r polynomials with Pr(1) = 1 that satisfies the formula below, N(din, r) is
the cardinality of degree r spherical harmonics in Rdin and |Sdin−1| is the surface area of Sdin−1.

7. More accurate, this should be called Gegenbauer Polynomials. However, we stick to the terminology in (Frye and
Efthimiou, 2012)

35

https://en.wikipedia.org/wiki/Gegenbauer_polynomials

XIAO

Lemma 7 (Rodrigues Formula. Proposition 4.19 (Frye and Efthimiou, 2012))

Pr(t) = crω
−1
din

(t)

(
d

dt

)r

(1− t2)r+(din−3)/2 , (71)

where

cr =
(−1)r

2r(r + (din − 3)/2)r
(72)

In the above lemma, (x)l denotes the falling factorial

(x)l ≡ x(x− 1) · · · (x− l + 1) (73)

(x)0 ≡ 1 (74)

Spherical Harmonics. Let dSdin−1 define the (un-normalized) uniform measure on the unit sphere
Sdin−1. Then

|Sdin−1| ≡
ˆ
Sdin−1

dSdin−1 =
2πdin/2

Γ(din
2)

. (75)

The normalized measure on this sphere is defined to be

dσdin =
1

|Sdin−1|
dSdin−1 and

ˆ
Sdin−1

dσdin = 1 . (76)

The spherical harmonics {Yr,l}r,l in Rdin are homogeneous harmonic polynomials that form an
orthonormal basis in L2(Sdin−1, σdin)ˆ

ξ∈Sdin−1

Yr,l(ξ)Yr′,l′(ξ)dσdin = δ(r,l)=(r′,l′) . (77)

Here Yr,l denotes the l-th spherical harmonic whose degree is r, where r ∈ N, l ∈ [N(din, r)] and

N(din, r) =
2r + din − 2

r

(
din + r − 3

r − 1

)
∼ (din)

r/r! as din → ∞ . (78)

The Legendre polynomials and spherical harmonics are related through the addition theorem.

Lemma 8 (Addition Theorem. Theorem 4.11 (Frye and Efthimiou, 2012))

Pr(ξ
T η) =

1

N(din, r)

∑
l∈[N(din,r)]

Yr,l(ξ)Yr,l(η), ξ, η ∈ Sdin−1 . (79)

Tensor Products. Let d = (du)u∈N (d)
0

∈ N|N (d)
0 |, r ∈ N|N (d)

0 |, I = I |N
(d)
0 | = [−1, 1]|N

(d)
0 | and

ω =
⊗

u∈N (d)
0

ωdu be a product measure on I . Then the (product of) Legendre polynomials

Pr(t) =
∏

u∈N (d)
0

Pru(tu) , t = (tu)u∈N (d)
0

∈ I , (80)

36

EIGENSPACE RESTRUCTURING

which form an orthogonal basis for the Hilbert space L2(I,ω) =
⊗

u∈N (d)
0

L2(I, ωdu). Similarly,
the tensor product of spherical harmonics

Yr,l =
∏

u∈N (d)
0

Yru,lu , l = (lu)u∈N (d)
0

∈ [N(d, r)] ≡
∏

u∈N (d)
0

[N(du, ru)] (81)

form an orthonormal basis for the product space

L2(X ,σ) ≡
⊗

u∈N (d)
0

L2(Sdu−1, σdu) (82)

Elements in the set {Yr,l}l∈[N(d,r)] are called degree (order) r spherical harmonics in L2(X ,σ)
and also degree r spherical harmonics if |r| = r ∈ N.

Theorem 9 Same assumptions as Theorem 3. We have the following, for K = 𝒦G(d) or K = ΘG(d)

K(t) =
∑

r∈N|N (d)
0 |

K̂(r)Pr(t) with K̂(r) ∼ d−𝒮(r) if r ̸= 0 and |r| ≲ 1. (83)

Note that Theorem 3 follows from this theorem and the addition theorem.
Proof [Proof of Theorem 3] Assume r ̸= 0. Indeed, setting

ξ = (ξu)u∈N (d)
0

∈ X , η = (ηu)u∈N (d)
0

∈ X and t = (tu)u∈N (d)
0

= (ξTu ηu/du)u∈N (d)
0

,

we have

Pr(t) =
∏

u∈N (d)
0

Pru(tu) =
∏

u∈N (d)
0

N(du, ru)
−1

∑
lu∈N(du,ru)

Yru,lu(ξu/
√
du)Yru,lu(ηu/

√
du)

(84)

= N(d, r)−1
∑

l∈[N(d,r)]

Y r,l(ξ)Y r,l(η) . (85)

Then Theorem 3 follows by noticing

K̂(r)N(d, r)−1 ∼ d−𝒮(r)
∏

u∈N (d)
0

d−ru
u ∼ d−𝒮(r)d

−
∑

u∈N (d)
0

αuru
= d−𝒮(r)−ℒ(r) = d−ℒ(r) .

Proof [Proof of Theorem 9] From the orthogonality,

K̂(r) = ⟨K,Pr⟩/∥Pr∥2L2(I,ω) (86)

We begin with the denominator. Note that

∥Pr∥L2(I,σ)
2 =

∏
u∈N (d)

0

∥Pru∥2L2(I,ωdu)
= N(d; r)−1

∏
u∈N (d)

0

(|Sdu−1|/|Sdu−2|) (87)

37

XIAO

By applying Lemma 7, integration by parts and continuity of K(r) on the boundary ∂I

⟨K,Pr⟩L2(I,ω) = cr

ˆ
I
K(t)

(
d

dt

)r (
1− t2

)r+(d−3)/2
dt (88)

= (−1)rcr

ˆ
I
K(r)(t)

(
1− t2

)r+(d−3)/2
dt (89)

= (−1)rcr (M(K,d) + ϵ(K,d)) (90)

where K(r) is the r derivative of K, the coefficient cr is given by Lemma 7

cr =
∏

u∈N (d)
0

cru =
∏

u∈N (d)
0

(−1)ru

2ru(ru + (du − 3)/2)ru
∼

∏
u∈N (d)

0

(−1)rud−ru
u = (−1)rd−r (91)

(note that only ≲ 1 many ru ̸= 0) and the major and error terms are given by

M(K,d) ≡ K(r)(0)

ˆ
I

(
1− t2

)r+(d−3)/2
dt = K(r)(0)

∏
u∈N (d)

0

|S2ru+du−1|
|S2ru+du−2|

(92)

ϵ(K,d) ≡
ˆ
I
(K(r)(t)−K(r)(0))

(
1− t2

)r+(d−3)/2
dt (93)

We first show that the error term is small. The mean value theorem gives

|K(r)(t)−K(r)(0)| ≤
∑

u∈N (d)
0

∥K(r+eu)∥L∞(I)|tu| (94)

and the error term |ϵ(K,d)| is bounded above by

ˆ
I

(
1− t2

)r+(d−3)/2
dt

∑
u∈N (d)

0

∥K(r+eu)∥L∞(I)

(´
I |tu|

(
1− t2u

)ru+(du−3)/2
dtu´

I (1− t2u)
ru+(ru−3)/2 dtu

)
(95)

≲

 ∏
u∈N (d)

0

|S2ru+du−1|
|S2ru+du−2|


 ∑

u∈N (d)
0

∥K(r+eu)∥L∞(I)d
−1
u

(
|S2ru+du−1|
|S2ru+du−2|

)−1

 . (96)

Since for any α ∈ N, as du → ∞,

|Sα+du−1|
|Sα+du−2|

= π
1
2Γ((α+ du − 1)/2)/Γ((α+ du)/2) ∼ π

1
2 (du/2)

− 1
2 ∼ (du)

− 1
2 , (97)

we have

|ϵ(K,d)| ≲
∑

u∈N (d)
0

∥K(r+eu)∥L∞(I)d
− 1

2
u

∏
u∈N (d)

0

|S2ru+du−1|
|S2ru+du−2|

. (98)

We claim that (which will be proved later)∑
u∈N (d)

0

∥K(r+eu)∥L∞(I) ≲ d−𝒮(r) (99)

38

EIGENSPACE RESTRUCTURING

which implies

⟨K,Pr⟩L2(I,ωp
din

) = cr

(
K(r)(0) +O

(
d−𝒮(r)(min

u∈N (d)
0

du)
− 1

2

)) ∏
u∈N (d)

0

|S2ru+du−1|
|S2ru+du−2|

(100)

Plugging back to Eq. (86), we have

K̂(r) = (−1)rcrN(d, r)

(
K(r)(0) +O

(
d−𝒮(r)(min

u∈N (d)
0

du)
− 1

2

)) ∏
u∈N (d)

0

|S2ru+du−1|
|S2ru+du−2|

(
|Sdu−1|
|Sdu−2|

)−1


(101)

Since, for r fixed and as du → ∞ for all u ∈ N (d)
0

cr
(−1)rd−r

→ 1 and
N(d, r)

dr/r!
→ 1 and

 ∏
u∈N (d)

0

|S2ru+du−1|
|S2ru+du−2|

(
|Sdu−1|
|Sdu−2|

)−1

→ 1

(102)

The last limit have used the fact that |r| is bounded (i.e. ≲ 1) and ru ̸= 0 for at most |r| many u.
Therefore

K̂(r) ∼ r!−1

K(r)(0) +O

d−𝒮(r)

(
min

u∈N (d)
0

du

)− 1
2

 (103)

It remains to verify Eq. (99). By Lemma 6, we only need to show that∑
u∈N (d)

0

d−𝒮(r+eu) ≲ d−𝒮(r) (104)

We prove this by induction on the number of hidden layers of G(d). The base case is obvious. Now
suppose the depth of G(d) is h. Let C(r) be the set of children of oG that are ancestors of at least one
node of 𝓃(r). We split N (d)

0 into two disjoint sets

Q(r) ≡ {u ∈ N (d)
0 : ∃v ∈ C(r) s.t. P(u→ v) ̸= ∅} and N (d)

0 \Q(r) .

For u /∈ Q(r), we have 𝒮(r + eu) = 𝒮(r) + 𝒮(eu) and hence∑
u/∈Q(r)

d−𝒮(r+eu) =
∑

u/∈Q(r)

d−𝒮(r)−𝒮(eu) = d−𝒮(r)
∑

u/∈Q(r)

d−𝒮(eu) ≲ d−𝒮(r) . (105)

In the last inequality above, we have used∑
u/∈Q(r)

d−𝒮(eu) ≤
∑

u∈N (d)
0

d−𝒮(eu) ∼ 1 . (106)

39

XIAO

To estimate the remaining, we use induction. Note that |C(r)| is finite (i.e. ≲ 1) and independent of
d. Then ∑

u∈Q(r)

d−𝒮(r+eu) ≤
∑

v∈C(r)

∑
u∈Q(r)

d−αoG−𝒮(𝓃(r+eu;v)) (107)

= d−αoG
∑

v∈C(r)

∑
u∈Q(r)

d−𝒮(𝓃(r+eu;v)) (108)

≲ |C(r)|d−αoG max
v∈C(r)

d−𝒮(𝓃(r;v)) ∼ d−𝒮(r) (109)

We have used induction on the sub-graph with v as the output node.

Appendix F. Proof of Theorem 5

Let G(d) be a DAG associated to the convolutional networks whose filter sizes in the l-th layer is
kl = [dαl], for 0 ≤ l ≤ L+1, in which we treat the flatten-dense readout layer as a convolution with
filter size [dαL+1]. Note that we have set αp = α0 and αw = αL+1. We also assume an activation
layer after the flatten-dense layer, which does not essentially alter the topology of the DAG.

We need the following dimension counting lemma.

Lemma 10 Let r ∈ ℒ(G(d)). Then

dim
(
span

{
Y r,l : ℒ(r) = r, l ∈ N(d, r)

})
∼ dr (110)

To prove Theorem 5, we only need to verify the assumptions of Theorem 4 in Mei et al. (2021a).
For convenience, we briefly recap the assumptions and results from Mei et al. (2021a) in Sec.I.

It is convenient to group the eigenspaces together according to the learning indices ℒ(G(d)).
Recall that ℒ(G(d)) = (r1 ≤ r2 ≤ r3 . . .). Let

Ei = span{Y r,l : ℒ(r) = ri} (111)

Then by Theorem 3 and Lemma 10,

dim(Ei) ∼ dri and λ(g) ∼ d−ri ∀g ∈ Ei, g ̸= 0 , (112)

where λ(g) denotes the eigenvalue of g. We proceed to verify Assumptions 4 and 5 in Sec. I.
They follow directly from Theorem 3, Lemma 10 and the hypercontractivity of spherical harmonics
Beckner (1992).

F.1. Verifying Assumption 4

We need the following.

Proposition 11 For 0 < s ∈ R, let Ds = span{Y r,l : |ℒ(r)| < s}. Then for f ∈ Ds,

∥f∥2q ≤ (q − 1)s/α0∥f∥22 (113)

40

EIGENSPACE RESTRUCTURING

Proof [Proof of Proposition 11.] The lemma follows from the tensorization of hypercontractivity.
Let f =

∑
k≥0 Yk ∈ L2(Sn) where Yk is a degree k spherical harmonics in Sn. Define the Poisson

semi-group operator

Pϵf(x) =
∑
k≥0

ϵkYk(x) (114)

Then we have the hypercontractivity inequality (Beckner, 1992), for 1 ≤ p ≤ q and ϵ ≤
√

p−1
q−1

∥Pϵf∥Lq(Sn) ≤ ∥f∥Lp(Sn) (115)

One can then tensorize (Beckner, 1975) it to obtain the same bound in the tensor space.

Lemma 12 (Corollary 11 Montanaro (2012)) Let f : (Sn)k → R. If 1 ≤ p ≤ q and ϵ ≤
√

p−1
q−1 ,

then

∥P⊗k
ϵ f∥Lq((Sn)k) ≤ ∥f∥Lp((Sn)k) . (116)

Let f =
∑

r,l ar,lY r,l ∈ Ds. Choosing ϵ =
√

1
q−1 and p = 2 in the above lemma, we have

∥f∥2q = ∥
∑
r,l

ar,lY r,l∥2q (117)

= ∥P⊗|N (d)
0 |

ϵ

∑
r,l

ar,lϵ
−rY r,l∥2q (118)

≤ ∥
∑
r,l

ar,lϵ
−rY r,l∥22 (119)

=
∑
r,l

a2r,lϵ
−2r∥Y r,l∥22 (120)

≤ ϵ−2max |r|
∑
r,l

a2r,l∥Y r,l∥22 (121)

= (q − 1)max |r|∥f∥22 ≤ (q − 1)s/α0∥f∥22 (122)

Since r /∈ ℒ(G(d)), there is a j such that rj < r < rj+1. Let n(d) = dr and

m(d) = dim
(
span{Y r,l : ℒ(r) ≤ rj}

)
= dim(span

⋃
i≤j

Ei) (123)

Clearly, m(d) ∼ drj . We list all eigenvalues of K in non-ascending order as {λd,i}. In particular,
we have

λd,m(d) ∼ d−rj > d−r > d−rj+1 ∼ λd,m(d)+1 . (124)

Assumption 4 (a). We choose u(d) to be

u(d) = dim

span
⋃

i:ri≤2r+100

Ei

 . (125)

Assumption 4 (a) follows from Proposition 11.

41

XIAO

Assumption 4 (b). Let s = inf{r̄ ∈ ℒ(G(d)) : r̄ > 2r + 100}. For l > 1, we have∑
j=u(d)+1

λld,j ∼
∑

ri:ri≥s

(d−ri)l dim(Ei) ∼ d−s(l−1) (126)

which also holds for l = 1 since ∑
j=u(d)+1

λd,j ∼ 1 (127)

Thus

(
∑

j=u(d)+1 λ
l
d,j)

2∑
j=u(d)+1 λ

2l
d,j

∼ d−2s(l−1)

d−s(2l−1)
= ds > d2r+100 > n(d)2+δ ∼ d(2+δ)r. (128)

as long as δ < 100/r.
Assumption 4 (c). Denote

Kd,>m(d)(ξ,η) =
∑

r,l:ℒ(r)>r

λK(r)Y r,l(ξ)Y r,l(η) (129)

We have

EηKd,>m(d)(ξ,η)
2 =Eη

∑
r,l:ℒ(r)>r

λK(r)
2|Y r,l(ξ)Y r,l(η)|2 (130)

=
∑

r,l:ℒ(r)>r

λK(r)
2|Y r,l(ξ)|2 (131)

=
∑

r:ℒ(r)>r

λK(r)
2
∑
l

|Y r,l(ξ)|2 (132)

=
∑

r:ℒ(r)>r

λK(r)
2N(d, r)Pr(1) =

∑
r:ℒ(r)>r

λK(r)
2N(d, r) . (133)

Similarly,

Eξ,η

∑
r,l:ℒ(r)>r

λK(r)
2|Y r,l(ξ)Y r,l(η)|2 =

∑
r:ℒ(r)>r

λK(r)
2N(d, r) . (134)

Thus

Eη

∑
r,l:ℒ(r)>r

λK(r)
2|Y r,l(ξ)Y r,l(η)|2 − Eξ,η

∑
r,l:ℒ(r)>r

λK(r)
2|Y r,l(ξ)Y r,l(η)|2 = 0 . (135)

For the diagonal terms,

Kd,>m(d)(ξ, ξ) =
∑

r,l:ℒ(r)>r

λK(r)|Y r,l(ξ)|2 =
∑

r:ℒ(r)>r

λK(r)N(d, r) = EξKd,>m(d)(ξ, ξ)

(136)

which is deterministic.

42

EIGENSPACE RESTRUCTURING

F.2. Verifying Assumption 5.

Recall that n(d) ∼ dr and rj < r < rj+1 . Assumption 5(a) follows from Eq. (112). Indeed, for
l > 1

λ−l
d,m(d)+1

∑
k=m(d)+1

λld,k ∼(d−rj+1)−l
∑

i:ri≥rj+1

dim(Ei)d
−lri (137)

∼dlrj+1
∑

i:ri≥rj+1

drid−lri (138)

=drj+1 > n(d)1+δ (139)

for some δ > 0 since r < rj+1. Similarly, for l = 1, since∑
k=m(d)+1

λd,k ∼ 1 (140)

we have

(d−rj+1)−1
∑

k=m(d)+1

λd,k ∼ drj+1 > n(d)1+δ . (141)

Assumption 5(b) follows from r > rj .
Assumption 5(c). Note that

λ−1
d,m(d)

∑
k=m(d)+1

λd,k ∼ λ−1
d,m(d) ∼ drj < n(d)(1−δ) ∼ dr(1−δ) (142)

for some δ > 0 since rj < r.

Appendix G. Proof of Lemma 10

Proof The lemma can be proved by induction. Base case: L = 0. The network is a S-CNN.
WLOG, assume α0 ̸= 0 and α1 ̸= 0. For r ∈ ℒ(G(d)), we know that r can be written as a
combination of α0 and α1, i.e. r = k0α0 + k1α1 for some k0, k1 ≥ 0. We say a tuple (k0, k1) is
r-feasible if in addition, there exists r with 𝒮(r) = k1α1 and ℱ(r) = k0α0. Consider the set of all
r-feasible tuple

F (r) ≡ {(k0, k1) : r-feasible} . (143)

Clearly, F (r) is finite. It suffices to prove that for each r-feasible tuple (k0, k1),

dim
(
span

{
Y r,l : ℱ(r) = k0α0 𝒮(r) = k1α1, l ∈ N(d, r)

})
∼ dr (144)

Note that there are ∼ (dα1)k1 many ways to choose k1 nodes in the penultimate layer. Then the
dimension of the above set is about

(dα1)k1
∑

(k0,1,...,k0,k1)
k0,1+···+k0,k1=k0

k1∏
j=1

N(dα0 , k0,j) ∼ (dα1)k1
∑

(k0,1,...,k0,k1)
k0,1+···+k0,k1=k0

k1∏
j=1

(dα0)k0,j (145)

∼ dk0α0+k1α1 = dr , (146)

43

XIAO

since the cardinality of the set

{(k0,1, . . . , k0,k1) : k0,1 + · · ·+ k0,k1 = k0, k0,j ≥ 1 k0,j ∈ N}

is finite.
Induction step: L ≥ 1. For r with ℒ(r) = r, let k be the number of children of a MST

of 𝓃(r; oG). Clearly, k ∈ [1, [r/αL+1]]. Then we can classify Y r,l into at most [r/αL+1] bins:
{Ωk}k=1,...,[r/αL+1] depending on the number of children of oG in a MST. Let Ωk be non-empty. We
only need to prove the number of Y r,l in Ωk is dr. Note that there are ∼ (dαL+1)k many ways to
choose k children from oG . Let {uj}j=1,...,k be one fixed choice and {Gj} be the subgraphs with
{uj} as the output nodes. Next, we partition (r − kαL+1) into k components,

r − kαL+1 = r1 + · · ·+ rk

so that each rj is a combination of {αj}0≤j≤L. The cardinality of such partition is also finite. We fix
one of such partition (r1, . . . , rk) so that each rj is a learning index of Gj . We can apply induction to
each (Gj , rj) to conclude that the cardinality of Y rj ,lj with ℒGj (rj) = rj is ∼ drj , where ℒGj (rj)
is the learning index of rj of Gj . Therefore, we have

dim
(
span

{
Y r,l : ℒ(r) = r, l ∈ N(d, r)

})
∼ (dαL+1)k

∏
j∈[k]

drj = dr . (147)

Appendix H. CNN-GAP: CNNs with Global Average Pooling

Consider convolutional networks whose readout layer is a global average pooling (GAP) and a
flattening layer (namely, without pooling), resp.

CNN + GAP: [Conv(p)-Act] → [Conv(k)-Act]⊗L → [GAP] → [Dense] (148)

CNN: [Conv(p)-Act] → [Conv(k)-Act]⊗L → [Flatten] → [Dense] (149)

Concretely, the input space is X = (Sp−1)
kL×w ⊆ Rp×1×kL×w, where p is the patch size of the

input convolutional layer, k is the filter size in hidden layers, L is the number of hidden convolution
layers and w is the spatial dimension of the penultimate layer. The total dimension of the input
is d = p · kL · w, and the number of input nodes is |N0| = kL · w. Since the stride is equal to
the filter size for all convolutional layers, the spatial dimension is reduced by a factor of p in the
first layer, a factor of k by each hidden layer. The penultimate layer (before pooling/flattening)
has spatial dimension w and is reduced to 1 by the GAP-dense layer or the Flatten-dense layer.
The DAGs associated to these two architectures are identical which is denoted by G. However,
the kernel/neural network computations are slightly different. If the penultimate layer has n many
channels and fpen : X → Rn×w is the mapping from the input layer to the penultimate layer, then
the outputs of the CNN-GAP and CNN-Flatten are

fCNN-GAP(x) = n−
1
2

∑
j∈[n]

ωj

i∈[w]

fpen(x)j,i (150)

fCNN-Flatten(x) = (nw)−
1
2

∑
j∈[n],i∈[w]

ωjifpen(x)j,i , (151)

44

EIGENSPACE RESTRUCTURING

resp., where wj and wji are parameters of the last layer and are usually initialized with standard iid
Guassian wj , wji ∼ N (0, 1). Let N−1 ⊆ N be the nodes in the penultimate layer, then |N−1| = w.
Let ξ = (ξv)v∈N−1 ∈ X , where ξv ∈ (Sp−1)

kL . Thus, each ξv contains kL many input nodes
{ξu,i}i∈[kL]. Define

tuv = (⟨ξu,i,ηv,i⟩/p)i∈[kL] ∈ [−1, 1]k
L
. (152)

Recall that in the case without pooling

𝒦u(t) = ϕ∗(

uv∈E

𝒦v(t)), 𝒦G =

oGv∈E

𝒦v(t) =

v∈N−1

𝒦v(t) (153)

where t ∈ [−1, 1]k
L×w, which is obtained by t = (⟨ξu,i,ηu,i⟩/p)u∈N−1,i∈[kL]. Indeed, for each

v ∈ N−1, 𝒦v depends only on the diagonal terms tvv = (⟨ξv,i,ηv,i⟩/p)i∈[kL] ∈ [−1, 1]k
L

. We can
find a function

𝒦pen : [−1, 1]k
L → [−1, 1] s.t. 𝒦v(t) = 𝒦pen(tvv) ∀v ∈ N−1 (154)

Therefore, without pooling the NNGP kernel is

𝒦CNN-Flatten(t) =

v∈N−1

𝒦pen(tvv) =
1

w

∑
v∈N−1

𝒦pen(tvv) (155)

Note that the kernel does not depend on any off-diagonal terms tuv with u ̸= v because there isn’t
weight-sharing in the last layer. Let dpen = (p, p, . . . , p) ∈ NkL . Then ∥dpen∥1 = pkL is the
effective dimension of the input to any node u ∈ N−1. Assume k = dαk , p = dαp and w = dαw

and αk, αp, αw > 0. Applying Theorem 3 to 𝒦pen, we have

𝒦CNN-Flatten(t) =
∑

r∈NkL

1

w
λ𝒦pen(r)

∑
v∈N−1

∑
l∈N(dpen,r)

Y r,l(ξv),Y r,l(ηv) (156)

Clearly, the eigenfunctions are {Y r,l(ξv)}r,l,v and the corresponding eigenvalues are { 1
wλ𝒦pen(r)}r,l,v .

Note that

1

w
λ𝒦pen(r) = λ𝒦G (r) ∼ d−ℒ(r) (157)

Here and in what follows, we also treat r ∈ NkL as an element in NwkL .
When the readout layer is a GAP, the weights of the penultimate layer are shared across different
spatial locations, namely, all nodes in N−1 use the same weight. As such, the kernel correspond-
ing to the CNN-GAP depends on both the diagonal and off-diagonal terms t = (tuv)u,v∈N−1 ∈
[−1, 1]k

L×kL , which can be written as (Novak et al., 2019c)

𝒦CNN-GAP(t) =

u,v∈N−1

𝒦pen(tuv) =
1

w2

∑
u,v∈N−1

𝒦pen(tuv) (158)

45

XIAO

Applying Theorem 3 to 𝒦pen, we have

𝒦CNN-GAP(t) =
1

w2

∑
r∈NkL

λ𝒦pen(r)
∑

u,v∈N−1

∑
l∈N(dpen,r)

Y r,l(ξu),Y r,l(ηv) (159)

=
∑

r∈NkL

1

w
λ𝒦pen(r)

∑
l∈N(dpen,r)

(
w− 1

2

ˆ
u∈N−1

Y r,l(ξu)

)(
w− 1

2

ˆ
u∈N−1

Y r,l(ηu)

)
(160)

=
∑

r∈NkL

1

w
λ𝒦pen(r)

∑
l∈N(dpen,r)

Y
Sym
r,l (ξ)Y

Sym
r,l (η) (161)

where

Y
Sym
r,l (ξ) ≡ w− 1

2

ˆ
u∈N−1

Y r,l(ξu) , for r ∈ NkLand l ∈ N(dpen, r) (162)

That is the eigenfunctions and eigenvalues of 𝒦CNN-GAP are {Y Sym
r,l (ξ)}r,l and { 1

wλ𝒦pen(r)}r,l
resp.

In sum, the eigenvalues of 𝒦CNN-Flatten and 𝒦CNN-GAP are the same (up to the multiplicity factor
w). Each eigenspace of 𝒦CNN-GAP is given by symmetric polynomials of the form Eq. (162). We
can see that the GAP reduces the dimension of each eigenspace by a factor of w. Same arguments
can also be applied to the NTKs (Novak et al., 2019b; Yang, 2019)

ΘCNN-Flatten(t) =

v∈N−1

(𝒦pen(tvv) + Θpen(tvv)) (163)

=
∑

r∈NkL

(
1

w
λ𝒦pen(r) +

1

w
λΘpen(r)

) ∑
v∈N−1

∑
l∈N(dpen,r)

Y r,l(ξv),Y r,l(ηv)

(164)

ΘCNN-GAP(t) =

u,v∈N−1

(𝒦pen(tuv) + Θpen(tuv)) (165)

=
∑

r∈NkL

(
1

w
λ𝒦pen(r) +

1

w
λΘpen(r)

) ∑
v∈N−1

Y
Sym
r,l (ξ),Y

Sym
r,l (η) (166)

where Θpen is the NTK of the penultimate layer which is the same for all nodes in N−1. Since
1
wλΘpen ∼ d−ℒ(r), we have

1

w
λ𝒦pen(r) +

1

w
λΘpen(r) ∼ d−ℒ(r) (167)

H.1. Generalization bound of CNN-GAP

We show that GAP improves the data efficiency of D-CNNs by a factor ofw ∼ dαw under a stronger
assumptions on activations ϕ. However, in the infinite-data-regime, there is no improvement from
GAP.
Assumption Poly-ϕ: There is a sufficiently large J ∈ N such that for all hiddens nodes u

ϕ∗u
(j)(0) ̸= 0 for 1 ≤ j ≤ J and ϕ∗u

(j)(0) = 0 otherwise (168)

46

EIGENSPACE RESTRUCTURING

This assumption implies that there are 0 < J1 < J2 ∈ R such that for all 0 ̸= r with |r| < J1

dr

dt
𝒦pen(0) ̸= 0 and

dr

dt
Θpen(0) ̸= 0 (169)

and for all r with |r| > J2

dr

dt
𝒦pen ≡ 0 and

dr

dt
Θpen ≡ 0 (170)

Moreover, J1 → ∞ as J → ∞.
Let Lp

Sym(X) ≤ Lp(X) be the close subspace spanned by symmetric eigenfunctions Eq. (162).
Let KSym = 𝒦CNN-GAP or ΘCNN-GAP.

For X ⊆ X and r /∈ L(G(d)), define the regressor and the projection operator to be

R
Sym
X (f)(x) = KSym(x,X)KSym(X,X)−1f(X)

P
Sym
>r (f) =

∑
r:L(r)>r

∑
l∈N(dpen,r)

⟨f,Y Sym
r,l ⟩L2(X)Y

Sym
r,l

FSym
t (f) = (Id − e−tKSym)f

Theorem 13 Let G = {G(d)}d, where each G(d) is a DAG associated to the D-CNN in Eq. (148)
with αk, αp, αw > 0. Let r /∈ L(G(d)) be fixed and the activations satisfy Assumption Poly-ϕ for
J = J(r) sufficiently large. Let f ∈ L2

Sym(X) with Eσf = 0. Then for ϵ > 0,∣∣∣∣∥∥∥RSym
X (f)− f

∥∥∥2
L2

Sym(X)
−
∥∥∥P Sym

>r (f)
∥∥∥2
L2

Sym(X)

∣∣∣∣ = cd,ϵ∥f∥2L2+ϵ
Sym (X)

, (171)

where cd,ϵ → 0 in probability as d→ ∞ over X ∼ σ[dr−αw].

Theorem 14 Assume Assumption-G and Assumption-ϕ. Let r /∈ ℒ(G(d)) and t ∼ dr. Then for
0 < ϵ < inf{|r − r̄| : r̄ ∈ ℒ(G(d))} and f ∈ L2

Sym(X) with Eσf = 0, we have

∥FSym
t (P Sym

<r f)− P Sym
<r f∥22 ≲ e−dϵ∥P Sym

<r f∥22 and ∥FSym
t (P Sym

>r f)− P Sym
>r f∥22 ≳ e−d−ϵ∥P Sym

>r f∥22 .
(172)

Theorem 14 follows directly from the eigendecomposition of the kernels KSym. We only need to
prove of Theorem 13.
Proof [Proof of Theorem 13] We need the following dimension counting lemma, which follows
directly from Lemma 10.

Lemma 15 Let r ∈ ℒ(G(d)). Then

dim
(
span

{
Y

Sym
r,l : L(r) = r, l ∈ N(d, r)

})
∼ dr−αw (173)

Recall that ℒ(G(d)) = {rj} in non-descending order. Similarly, let

E
Sym
i = span{Y Sym

r,l : ℒ(r) = ri} (174)

47

XIAO

From the above lemma, we have

dim(E
Sym
i) ∼ dri−αw (175)

Since r /∈ ℒ(G(d)), there is a j such that rj < r < rj+1. Let n(d) = dr−αw and

m(d) = dim
(
span{Y Sym

r,l : ℒ(r) ≤ rj}
)
= dim(span

⋃
i≤j

E
Sym
i) (176)

Clearly, m(d) ∼ drj−αw . We list all eigenvalues of KSym in non-ascending order as {λd,i}. In
particular, we have

λd,m(d) ∼ d−rj > d−r > d−rj+1 ∼ λd,m(d)+1 . (177)

We proceed to verify Assumptions 4 and 5 in Sec. I.

Assumptions 4 (a) We choose u(d) to be

u(d) = dim

span
⋃

i:ri≤2r+100

E
Sym
i

 . (178)

Let s = inf{r̄ ∈ ℒ(G(d)) : r̄ > 2r + 100}. Assumption 4 (a) follows from Proposition 11.

Assumptions 4 (b) For l > 1, we have∑
j=u(d)+1

λld,j ∼
∑

ri:ri≥s

(d−ri)l dim(E
Sym
i) ∼ d−s(l−1)−αw (179)

which also holds for l = 1 since

dαw
∑

j=u(d)+1

λd,j ∼ 1 (180)

Thus

(
∑

j=u(d)+1 λ
l
d,j)

2∑
j=u(d)+1 λ

2l
d,j

∼ d−2s(l−1)−2αw

d−s(2l−1)−αw
= ds−αw > d2r+100−αw > n(d)2+δ ∼ d(2+δ)(r−αw).

(181)

Assumption 4 (c) This requires some work and is verified in Sec. H.2.
Assumption 5 (a) Since m(d) = dim(span

⋃
i≤j Ei) and rj+1 > r > rj , we have

1

λd,m(d)+1

∑
j≥m(d)+1

λld,j ∼
1

(d−rj+1)l

∑
i>j

(d−ri)l dim(E
Sym
i) (182)

∼ dim(E
Sym
j+1) = drj+1−αw (183)

> n(d)1+δ = d(r−αw)(1+δ) (184)

as long as δ < (rj+1 − αw)/(r − αw)− 1.

48

EIGENSPACE RESTRUCTURING

Assumption 5 (b) This is obvious since m(d) ∼ drj−αw , n(d) ∼ dr−αw and r > rj .
Assumption 5 (c) This follows from rj < r. Indeed,

1

λd,m(d)

∑
j≥m(d)+1

λd,j ∼
1

(d−rj)

∑
i>j

(d−ri) dim(E
Sym
i) ∼ drj−αw (185)

≤ n(d)1−δ = d(r−αw)(1−δ) (186)

as long as 0 < δ < 1− (rj − αw)/(r − αw).

H.2. Verification of Assumptions 4(c).

We begin with proving Eq. (230). Let Xi define the random variable

Xi ≡ Eξ∼σd
KSym,>m(d)(ξi, ξ)

2 and ∆i ≡ Xi − EXi (187)

where

KSym,>m(d)(ξ,η) =
∑

r,l:ℒ(r)>r

λKSym(r)Y
Sym
r,l (ξ)Y

Sym
r,l (η) (188)

and λKSym is the eigenvalue of Y Sym
r,l . We need to show that

supi∈[n(d)] |∆i|
EXi

in prob.−−−−→
d→∞

0. (189)

By Markov’s inequality, it suffices to show that

(EXi)
−1E sup

i∈[n(d)]
|∆i| −−−→

d→∞
0 (190)

By orthogonality and treating r ∈ NkL as an element of NwkL , we have

EXi = Eξ,ξ̄∼σd
KSym,>m(d)(ξ, ξ̄)

2 (191)

= Eξ,ξ̄∼σd

∣∣∣∣∣∣
∑

r:ℒ(r)>r

λKSym

∑
l∈N(dpen,r)

Y
Sym
r,l (ξ)Y

Sym
r,l (ξ̄)

∣∣∣∣∣∣
2

(192)

= Eξ,ξ̄∼σd

∑
r:ℒ(r)>r

λ2KSym
(r)

∑
l∈N(dpen,r)

∣∣∣Y Sym
r,l (ξ)Y

Sym
r,l (ξ̄)

∣∣∣2 (193)

=
∑

r:ℒ(r)>r

λ2KSym
(r)

∑
l∈N(dpen,r)

Eξ,ξ̄∼σd

∣∣∣Y Sym
r,l (ξ)Y

Sym
r,l (ξ̄)

∣∣∣2 (194)

=
∑

r:ℒ(r)>r

λ2KSym
(r)

∑
l∈N(dpen,r)

1 (195)

=
∑

r:ℒ(r)>r

λ2KSym
(r)N(dpen, r) (196)

49

XIAO

and

Xi = Eξ∼σd
KSym,>m(d)(ξi, ξ)

2 (197)

= Eξ∼σd

∣∣∣∣∣∣
∑

r:ℒ(r)>r

λKSym

∑
l∈N(dpen,r)

Y
Sym
r,l (ξi)Y

Sym
r,l (ξ)

∣∣∣∣∣∣
2

(198)

= Eξ∼σd

∑
r:ℒ(r)>r

λ2KSym
(r)

∑
l∈N(dpen,r)

∣∣∣Y Sym
r,l (ξi)Y

Sym
r,l (ξ)

∣∣∣2 (199)

=
∑

r:ℒ(r)>r

λ2KSym
(r)

∑
l∈N(dpen,r)

Eξ∼σd

∣∣∣Y Sym
r,l (ξi)Y

Sym
r,l (ξ)

∣∣∣2 (200)

=
∑

r:ℒ(r)>r

λ2KSym
(r)

∑
l∈N(dpen,r)

|Y Sym
r,l (ξi)|2 (201)

=
∑

r:ℒ(r)>r

λ2KSym
(r)

∑
l∈N(dpen,r)

 1

w

∑
u

Y r,l(ξi,u)
2 +

1

w

∑
u̸=v

Y r,l(ξi,u)Y r,l(ξi,v)

 (202)

= Eξ,ξ̄∼σd
KSym,>m(d)(ξ, ξ̄)

2 +
∑

r:ℒ(r)>r

λ2KSym
(r)

∑
l∈N(dpen,r)

 1

w

∑
u̸=v

Y r,l(ξi,u)Y r,l(ξi,v)


(203)

Let

Xr,i =
∑

l∈N(dpen,r)

 1

w

∑
u̸=v

Y r,l(ξi,u)Y r,l(ξi,v)

 (204)

then

∆i =
∑

r:ℒ(r)>r

λ2KSym
(r)Xr,i (205)

We replace the maximal function by the lq-norm for q ≥ 1,

E sup
i∈[n(d)]

|∆i| ≤ E(
∑

i∈[n(d)]

|∆i|q)
1
q ≤ (E

∑
i∈[n(d)]

|∆i|q)
1
q = n(d)

1
q (E|∆i|q)

1
q (206)

where the first three expectations are taken over ξ1, . . . , ξn(d) ∼ σd and the last one is taken over
ξi ∼ σd. Then we replace the Lq-norm by the L2-norm via Hypercontractivity, in which we used
Assumption Poly-ϕ which implies that ∆i is a polynomial of bounded degree

E sup
i∈[n(d)]

|∆i| ≤ n(d)
1
q (E|∆i|q)

1
q ≤ Cqn(d)

1
q (E|∆i|2)

1
2 = Cqn(d)

1
q (E∆2

i)
1
2 (207)

We expand the L2-norm and use orthogonality to “erase" the off-diagonal terms twice: first for
r ̸= r̄

Eξi∼σd
Xr,iXr̄,i = 0 (208)

50

EIGENSPACE RESTRUCTURING

and second for l ̸= l′ or u ̸= v

Eξi∼σd
X2

r,i =
1

w2
Eξi∼σd

∑
l∈N(dpen,r)

∑
u̸=v

Y r,l(ξi,u)Y r,l(ξi,v)

∑
l′

∑
u′ ̸=v′

Y r,l′(ξi,u′)Y r,l′(ξi,v′)


(209)

=
2

w2
Eξi∼σd

∑
l∈N(dpen,r)

∑
u̸=v

Y r,l(ξi,u)
2Y r,l(ξi,v)

2

 =
2

w2

∑
l∈N(dpen,r)

w(w − 1)

(210)

=
2(w − 1)

w

∑
l

1 =
2(w − 1)

w
N(dpen, r) ≤ 2N(dpen, r) (211)

Combining this estimate with Eq. (196), Eq. (205) and Eq. (207) yields

(EXi)
−1(E sup

i∈[n(d)]
|∆i|) ≤ Cqn(d)

1
q

(2
∑

r:ℒ(r)>r λ
4
KSym

(r)N(dpen, r))
1/2∑

r:ℒ(r)>r λ
2
KSym

(r)N(dpen, r)
(212)

≤
√
2Cqn(d)

1
q

∑
r:ℒ(r)>r λ

2
KSym

(r)N(dpen, r)
1/2∑

r:ℒ(r)>r λ
2
KSym

(r)N(dpen, r)
(213)

≤
√
2Cqn(d)

1
q sup
r:ℒ(r)>r

λ2KSym
(r)N(dpen, r)

1/2

λ2KSym
(r)N(dpen, r)

(214)

∼ 2Cqd
r
q sup
r:ℒ(r)>r

N(dpen, r)
− 1

2 (215)

∼ d
r
q sup
r:ℒ(r)>r

d−|r|αp/2 −−−→
d→∞

0 (216)

by choosing q (independent of d) sufficiently large.
The proof of Eq. (231) is similar. Let Xi denote the random variable

Xi ≡ KSym,>m(d)(ξi, ξi) and ∆i ≡ Xi − EXi (217)

and it suffices to prove

E supi∈[n(d)] |∆i|
EXi

−−−→
d→∞

0 (218)

We have

EXi = Eξi∼σd
KSym,>m(d)(ξi, ξi) (219)

= Eξi∼σd

∑
r:ℒ(r)>r

λKSym(r)
∑

l∈N(dpen,r)

Y
Sym
r,l (ξi)Y

Sym
r,l (ξi) (220)

=
∑

r:ℒ(r)>r

λKSym(r)N(dpen, r) (221)

51

XIAO

and

∆i = Xi − EXi = w−1
∑

r:ℒ(r)>r

λKSym(r)
∑

l∈N(dpen,r)

∑
u̸=v

Y r,l(ξi,u)Y r,l(ξi,v), . (222)

The remaining steps (replacing the maximal function by the lq-norm, and then the Lq-norm by the
L2-norm using hypercontractivity, etc.) are similar to that of the proof of Eq. (230), which are
omitted here.

Appendix I. Kernel Concentration, Hypercontractivity and Generalization from
Mei-Misiakiewicz-Montanari

For convenience, we briefly recap the analytical results regarding generalization bounds of kernel
machines from Mei et al. (2021a) Sec 3.

Let (Xd,σd) be a probability space and ℋd be a compact self-adjoint positive definite operator
from L2(Xd,σd) → L2(Xd,σd). We assume ℋd ∈ L2(Xd ×Xd). Let {ψd,j} and {λd,j} be the
eigenfunctions and eigenvalues associated to ℋd, i.e.

ℋdψd,j(x) ≡
ˆ
y∈Xd

ℋd(x, y)ψd,j(y)σd(y) = λd,jψd,j(x). (223)

We assume the eigenvalues are in non-ascending order, i.e. λd,j+1 ≥ λd,j ≥ 0. Note that∑
j

λ2d,j = ∥ℋd∥2L2(Xd×Xd)
<∞. (224)

The associated reproducing kernel Hilbert space (RKHS) is defined to be functions f ∈ L2(Xd,σd)

with ∥ℋ− 1
2

d f∥L2(Xd,σd) < ∞. Given a finite training set X ⊆ Xd and observed labels f(X) ∈
R|X|, the regressor is an extension operator defined to be

ℛXf(x) = ℋd(x,X)ℋd(X,X)−1f(X) . (225)

Intuitively, when “X → Xd" in some sense, we expect the following

ℛXf(x) = ℋd(x,X)ℋd(X,X)−1f(X) → ℛXd
f(x) = ℋd(ℋ

−1
d f)(x) = f(x), (226)

namely, “ℛX → IXd
" in some sense.

Leveraging tools from the non-asymptotic analysis of random matrices (Vershynin, 2010), the
work Mei et al. (2021a) provides a very nice answer to the above question in terms of the de-
cay property of the eigenvalues {λd,j} and the hypercontractivity property of the eigenfunctions
{ψd,j}. They show that ℛX is essentially a projection operator onto the low eigenspace under cer-
tain regularity assumptions on the operator ℋd. These assumptions are stated via the relationship
between the number of (training) samples n = n(d), the tail behavior of the eigenvalues with index
≥ m = m(d) and the tail behavior of the operator ℋd

ℋd,>m(d)(x, x̄) ≡
∑

j>m(d)+1

λjψj(x)ψj(x̄) (227)

52

EIGENSPACE RESTRUCTURING

as the "input dimension" d becomes sufficiently large.
Assumption 4. We say that the the sequence of operator {ℋd}d≥1 satiesfies the Kernel Con-

centration Property (KCP) with respect to the sequence {n(d),m(d)}d≥1 if there exsts a sequence
of integers {u(d)}d≥1 with u(d) ≥ m(d) such that the following holds

(a) (Hypercontractivity.) Let Du(d) = span{ψj : 1 ≤ j ≤ u(d)}. Then for any fixed q ≥ 1,
and C = C(q) such that for f ∈ Du(d)

∥f∥Lq(Xd,σd) ≤ C∥f∥L2(Xd,σd) (228)

(b) (Eigen-decay.) There exists δ > 0, such that, for all d large enough, for l = 1 and 2,

n(d)2+δ ≤
(
∑

j≥u(d)+1 λ
l
d,j)

2∑
j≥u(d)+1 λ

2l
d,j

(229)

(c) (Concentration of Diagonals.) For {xi}i∈[n(d)] ∼ σ
n(d)
d , we have:

supi∈[n(d)]
∣∣Ex∼σd

ℋd,>m(d)(xi, x)
2 − Ex,x̄∼σd

ℋd,>m(d)(x, x̄)
2
∣∣

Ex,x̄∼σd
ℋd,>m(d)(x, x̄)2

in Prob.−−−−→
d→∞

0 (230)

supi∈[n(d)]
∣∣ℋd,>m(d)(xi, xi)− Ex∼σd

ℋd,>m(d)(x, x)
∣∣

Ex∼σd
ℋd,>m(d)(x, x)

in Prob.−−−−→
d→∞

0 (231)

where cd → 0 in probability as d→ ∞.

Assumption 5. Let ℋd and {m(d), n(d)}d≥1 be the same as above.

(a) For l = 1 and 2, there exists δ > 0 such that

n(d)1+δ ≤ 1

λld,m(d)+1

∑
k=λm(d)+1

λld,k (232)

(b) There exists δ > 0 such that

m(d) ≤ n(d)1−δ (233)

(c) (Spectral Gap.) There exists δ > 0 such that

n(d)1−δ ≥ 1

λd,m(d)

∑
k≥m(d)+1

λd,k (234)

Let 𝒫>k (similarly for 𝒫k, 𝒫≤k, etc.) denote the projection operator

𝒫>kf =
∑
j>k

⟨f, ψj⟩ψj (235)

53

XIAO

Theorem 16 (Mei et al. (2021a)) Assume ℋd satisfy Assumptions 4 and 5. Let {fd}d≥1 be a se-
quence of functions and let X ∼ σ

n(d)
d . Then for every ϵ > 0,

∥ℛX(fd)− fd∥2L2(Xd,σd)
= ∥𝒫>m(d)fd∥2L2(Xd,σd)

+ cd,ϵ∥fd∥2L2+ϵ(Xd,σd)
(236)

where cd,ϵ → 0 in probability as d→ ∞.

The theorem says, ℛX is essentially the projection operator 𝒫≤m(d) in the sense that when restricted
to L2+ϵ(Xd,σd),

ℛX = 𝒫≤m(d) + Errord,ϵ . (237)

Appendix J. Figure Zoo

J.1. MLPs: Depth is not equal to Hierarchy

We compare a one hidden layer MLP and a four hidden layer MLP in Fig. 7. Unlike CNNs, increas-
ing the number of layers does not improve the performance of MLPs much for both NTK regression
and SGD. This is consistent with a theoretical result from Bietti and Bach (2020), which says the
NTKs of Relu MLPs are essentially the same for any depth.

J.2. ImageNet Plots

Appendix K. ARCHITECTURE SPECIFICATIONS

In this section, we provide more details of the architectures used in the experiments.

54

EIGENSPACE RESTRUCTURING

0.5 1 1.5 2
log(TrainingSetSize) / log(d)

0.0

0.2

0.4

0.6

0.8
M

SE
MLP: 1 vs 4 Layers (NTK)

1 - Layer
4 - Layer

0.5 1 1.5 2
log(TrainingSetSize) / log(d)

0.0

0.2

0.4

0.6

0.8
CNN: 1 vs 4 Layers (NTK)

1 - Layer
4 - Layer

0.5 1 1.5 2
log(SGD Steps) / log(d)

0.0

0.2

0.4

0.6

0.8

M
SE

MLP: 1 vs 4 Layers (SGD)

1 - Layer
4 - Layer
MSE/8

0.5 1 1.5 2
log(SGD Steps) / log(d)

0.0

0.2

0.4

0.6

0.8
CNN: 1 vs 4 Layers (SGD)

1 - Layer
4 - Layer
MSE/8

Figure 7: MLPs do not benefit from having more layers. We plot the learning dynamics vs
training set size / SGD steps for each eigenfunction Yi. Top: NTK regression and bottom: SGD +
Momentum. Left: MLP; right: CNN. Dashed lines / Solid lines correspond to one-hidden / four-
hidden layer networks. For both finite-width SGD training and infinite-width kernel regression,
having more layers does not essentially improve performance of a MLP. This is in stark contrast to
CNNs (right). By having more layers, the eigenstuctures of the kernels are refined.

55

XIAO

105 106

Training Set Size

0.2

0.4

0.6

To
p

1
Ac

c I
m

ag
eN

et

Accuracy: GAP vs Flatten
ResNet34-GAP
ResNet34-Flatten

105 106

Training Set Size

2

4

6

Va
lid

at
ion

 C
ro

ss
-E

nt
ro

py

Loss: GAP vs Flatten
ResNet34-GAP
ResNet34-Flatten

105 106

Training Set Size

0.2

0.4

0.6

0.8

To
p

1
Ac

c I
m

ag
eN

et

Accuracy: GAP vs Flatten
ResNet101-GAP
ResNet101-Flatten

105 106

Training Set Size

2

4

6

Va
lid

at
ion

 C
ro

ss
-E

nt
ro

py

Loss: GAP vs Flatten
ResNet101-GAP
ResNet101-Flatten

Figure 8: ResNet-GAP vs ResNet-Flatten. As the training set size increases, the performance
(accuracy and loss) gap between the two shrinks substantially. Top/bottom ResNet34/ResNet101

56

EIGENSPACE RESTRUCTURING

from neural_tangents import stax

def MLP(width=2048, depth=1, W_std=0.5, activation=stax.Rbf()):

layers = []

for _ in range(depth):

layers += [stax.Dense(width, W_std=W_std), activation]

layers += [stax.Dense(1)]

return stax.serial(*layers)

def CNN(width=512, ksize=4, depth=1, W_std=0.5, activation=stax.Rbf(),

readout=stax.Flatten(), act_after_readout=True):

layers = []

conv_op = stax.Conv(width, (ksize, 1), strides=(ksize, 1), W_std=W_std,

padding='VALID')

for _ in range(depth):

layers += [conv_op, activation]

layers += [readout]

if act_after_readout:

layers += [stax.Dense(width * 4, W_std=W_std), activation]

layers += [stax.Dense(1)]

return stax.serial(*layers)

p = 4 # input shape: (-1, p**4, 1, 1)

S_MLP = MLP(depth=1) # Shallow MLP

D_MLP = MLP(depth=4) # Deep MLP

S_CNN = CNN(ksize=p, depth=1, act_after_readout=False) # Shallow CNN

One layer CNN with an additional activation-dense layer

S_CNN_plus_Act = CNN(ksize=p, depth=1, act_after_readout=True)

D_CNN = CNN(ksize=p**2, depth=2) # Deep CNN

HR_CNN = CNN(ksize=p, depth=3) # High-resolution CNN

High-resolution CNN with global average pooling readout

HR_CNN_GAP = CNN(ksize=p, depth=3, readout=stax.GlobalAvgPool(),

act_after_readout=False)

High-resolution CNN with flattening as readout

HR_CNN_Flatten = CNN(ksize=p, depth=3, act_after_readout=False)

Listing 1: Definitions of MLPs, S-CNN, D-CNN and HR-CNN used in the experiments.
The architectures used in the experiments of Fig. 3 are defined as follows. MLP⊗4 = D_MLP,
Conv(p2)⊗2 = D_CNN, Conv(p)⊗4 = HR_CNN. The one layer MLP and one layer CNN used in
Fig. 7 are S_MLP and S_CNN_plus_Act, resp. The Conv(p)⊗3-Flatten = HR_CNN_Flatten and
Conv(p)⊗3-GAP = HR_CNN_GAP.

57

	Introduction
	Motivation and a Toy Example
	Linear and linearized models
	Linear Regression
	Linearized Neural Networks: NNGP Kernels and NT Kernels

	Neural Computations on DAGs
	Three Examples: MLPs, S-CNNs and D-CNNs.

	Main Results
	Assumptions
	Spatial, Frequency and Learning Indices
	Eigenspace Restructuring
	Generalization: CNNs without pooling
	Generalization and training efficiency of CNNs with pooling

	Interpretation of the Main Results
	Additional Related work
	Discussion and Conlcusion
	Organization of the Appendix.
	Three Examples: MLPs, S-CNNs and D-CNNs.
	Experiments
	Experimental Setup
	Experimental Results I: Architectures vs Learnability.
	Experimental Results II: GAP vs Flatten.

	DAGs, Eigenfunctions, Spatial Index, and Frequency Index.
	Proof of the Eigenspace Restructuring Theorem.
	A Crucial Lemma
	Legendre Polynomials, Spherical Harmonics and their Tensor Products.

	Proof of Theorem 5
	Verifying Assumption 4
	Verifying Assumption 5.

	Proof of Lemma 10
	CNN-GAP: CNNs with Global Average Pooling
	Generalization bound of CNN-GAP
	Verification of Assumptions 4(c).

	Kernel Concentration, Hypercontractivity and Generalization from Mei-Misiakiewicz-Montanari
	Figure Zoo
	MLPs: Depth is not equal to Hierarchy
	ImageNet Plots

	ARCHITECTURE SPECIFICATIONS

