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Abstract
Sample-efficiency guarantees for offline reinforcement learning (RL) often rely on strong assump-
tions on both the function classes (e.g., Bellman-completeness) and the data coverage (e.g., all-
policy concentrability). Despite the recent efforts on relaxing these assumptions, existing works
are only able to relax one of the two factors, leaving the strong assumption on the other factor
intact. As an important open problem, can we achieve sample-efficient offline RL with weak as-
sumptions on both factors?

In this paper we answer the question in the positive. We analyze a simple algorithm based on
the primal-dual formulation of MDPs, where the dual variables (discounted occupancy) are mod-
eled using a density-ratio function against offline data. With proper regularization, the algorithm
enjoys polynomial sample complexity, under only realizability and single-policy concentrability.
We also provide alternative analyses based on different assumptions to shed light on the nature of
primal-dual algorithms for offline RL.
Keywords: offline RL, primal-dual, reinforcement learning theory

1. Introduction

Offline (or batch) reinforcement learning (RL) learns decision-making strategies using solely his-
torical data, and is a promising framework for applying RL to many real-world applications. Un-
fortunately, offline RL training is known to be difficult and unstable (Fujimoto et al., 2019; Wang
et al., 2020, 2021a), primarily due to two fundamental challenges. The first challenge is distribution
shift, that the state distributions induced by the candidate policies may deviate from the offline data
distribution, creating difficulties in accurately assessing the performance of the candidate policies.
The second challenge is the sensitivity to function approximation, that errors can amplify exponen-
tially over the horizon even with good representations (Du et al., 2020; Weisz et al., 2020; Wang
et al., 2021b).

These challenges not only manifest themselves as degenerate behaviors of practical algorithms,
but are also reflected in the strong assumptions needed for providing sample-efficiency guarantees
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to classical algorithms. (In this paper, by sample-efficiency we mean a sample complexity that is
polynomial in the relevant parameters, including the horizon, the capacities of the function classes,
and the degree of data coverage.) As an example, the guarantees of the popular Fitted-Q Iteration
(Ernst et al., 2005; Munos and Szepesvári, 2008; Chen and Jiang, 2019; Fan et al., 2020) require the
following two assumptions:

• (Data) All-policy concentrability: The offline data distribution provides good coverage (in a
technical sense) over the state distributions induced by all candidate policies.

• (Function Approximation) Bellman-completeness: The value-function class is closed under
the Bellman optimality operator.1

Both assumptions are very strong and may fail in practice, and algorithms whose guarantees rely
on them naturally suffer from performance degradation and instability (Fujimoto et al., 2019; Wang
et al., 2020, 2021a). On one hand, all-policy concentrability not only requires a highly exploratory
dataset (despite that historical data in real applications often lacks exploration), but also implicitly
imposes structural assumptions on the MDP dynamics (Chen and Jiang, 2019, Theorem 4). On
the other hand, Bellman-completeness is much stronger than realizability (that the optimal value
function is simply contained in the function class), and is non-monotone in the function class, that
the assumption can be violated more severely when a richer function class is used.

To address these challenges, a significant amount of recent efforts in offline RL have been
devoted to relaxing these strong assumptions via novel algorithms and analyses. Unfortunately,
these efforts are only able to address either the data or the function-approximation assumption,
and no existing works address both simultaneously. For example, Liu et al. (2020); Rajaraman
et al. (2020); Jin et al. (2020); Rashidinejad et al. (2021); Xie et al. (2021); Uehara and Sun (2021)
show that pessimism is an effective mechanism for mitigating the negative consequences due to
lack of data coverage, and provide guarantees under single-policy concentrability, that the data
only covers a single good policy (e.g., the optimal policy). However, they require completeness-
type assumptions on the value-function classes or model realizability.2 Xie and Jiang (2021b) only
require realizability of the optimal value-function, but their data assumption is even stronger than
all-policy concentrability. To this end, we want to ask:

Is sample-efficiency possible with realizability and single-policy concentrability?

In this work, we answer the question in the positive by proposing the first model-free algorithm,
PRO-RL, that only requires relatively weak assumptions on both data coverage and function ap-
proximation. The algorithm is based on the primal-dual formulation of linear programming (LP)
for MDPs (Puterman, 2014; Wang, 2017), where we use marginalized importance weight (or den-
sity ratio) to model the dual variables which correspond to the discounted occupancy of the learned
policy, a practice commonly found in the literature of off-policy evaluation (OPE) (e.g., Liu et al.,
2018). Our main result (Corollary 5) provides polynomial sample-complexity guarantees when the
density ratio and (a regularized notion of) the value function of the regularized optimal policy are

1. Approximate policy iteration algorithms usually require a variant of this assumption, that is, the closure under the
policy-specific Bellman operator for every candidate policy (Munos., 2003; Antos et al., 2008a).

2. When a model class that contains the true MDP model is given, value-function classes that satisfy a version of
Bellman-completeness can be automatically induced from the model class (Chen and Jiang, 2019), so model realiz-
ability is even stronger than Bellman-completeness. Therefore, in this work we aim at only making a constant number
of realizability assumptions of real-valued functions.
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realizable, and the data distribution covers such an optimal policy. We also provide a number of
extensions and alternative analyses to complement the main result and provide deeper understand-
ing of the behavior of primal-dual algorithms in the offline learning setting (see also Table 1 for a
comparison with existing algorithms):

1. Section 4.2 handles the scenario where the optimal policy is not covered and we need to compete
with the best policy supported on data.

2. Appendix A extends the main result to account for approximation and optimization errors, and
Appendix B handles the case where the behavior policy is unknown (which the main algorithm
needs) and estimated by behavior cloning.

3. Our main result crucially relies on the use of regularization. In Appendix C we study the unreg-
ularized algorithm, and provide guarantees under alternative assumptions.

Table 1: Assumptions required by existing algorithms and our algorithms to learn an ϵ-optimal pol-
icy efficiently. See basic notation in Section 2. d∗α = dπ

∗
α where π∗

α is the α-regularized optimial
policy (defined in Section 3). dD is the offline data distribution. v∗α (v∗α′

ϵ,Bw
) is the α-regularized op-

timal value function (w.r.t. the covered policy class), defined in Section 3 (Section 4.2). w∗
α(w∗

α′
ϵ,Bw

)

is the optimal density ratio d∗α
dD

(w.r.t. the covered policy class), as stated in Section 3 (Section 4.2).
We compete with the unregularized optimal policy π∗

0 by default, with the exception of the first
result of PRO-RL where we compete with π∗

α.

Algorithm Data Function Class
AVI ‖ dπ

dD
‖∞ ≤ Bw,∀π

T f ∈ F ,∀f ∈ F (Munos and Szepesvári, 2008)

API T πf ∈ F ,∀f ∈ F , π ∈ Π (Antos et al., 2008b)

BVFT Stronger than above Q∗ ∈ F (Xie and Jiang, 2021a)

Pessimism ‖ d∗0
dD

‖∞ ≤ Bw
T πf ∈ F ,∀f ∈ F , π ∈ Π (Xie et al., 2021)

w∗
0 ∈ W, Qπ ∈ F ,∀π ∈ Π (Jiang and Huang, 2020)

PRO-RL ‖ d∗α
dD

‖∞ ≤ Bw w∗
α ∈ W, v∗α ∈ V (Theorem 3)

(against π∗
α)

PRO-RL ‖ d∗0
dD

‖∞ ≤ Bw w∗
α′
ϵ,Bw

∈ W, v∗α′
ϵ,Bw

∈ V (Corollary 12)

1.1. Related works

Section 1 has reviewed the analyses of approximate value/policy iteration, and we focus on other
related works in this section.

Lower bounds When we only assume the realizability of the optimal value-function, a number
of recent works have established information-theoretic hardness for offline learning under relatively
weak data coverage assumptions (Wang et al., 2020; Amortila et al., 2020; Zanette, 2021; Chen
et al., 2021). A very recent result by Foster et al. (2021) shows a stronger barrier, that even with
all-policy concentrability and the realizability of the value functions of all policies, it is still im-
possible to obtain polynomial sample complexity in the offline learning setting. These works do
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not contradict our results, as we also assume the realizability of the density-ratio function, which
circumvents the existing lower bound constructions. In particular, as Foster et al. (2021, Section
1.3) have commented, their lower bound no longer holds if the realizability of importance weight is
assumed, as a realizable weight class would have too large of a capacity in their construction and
would explain away the sample-complexity lower bound that scales with the size of the state space.

Marginalized importance sampling (MIS) As mentioned above, a key insight that enables us to
break the lower bounds against value-function realizability is the use of marginalized importance
weights (or density ratio). Modeling such functions is a common practice in MIS, a recently popular
approach in the OPE literature (Liu et al., 2018; Uehara et al., 2020; Kostrikov et al., 2019; Nachum
and Dai, 2020; Zhang et al., 2020), though most of the works focus exclusively on policy evaluation.

Among the few works that consider policy optimization, AlgaeDICE (Nachum et al., 2019b)
optimizes the policy using MIS as a subroutine for policy evaluation, and Jiang and Huang (2020)
analyze AlgaeDICE under the realizability of all candidate policies’ value functions (see row 5 in
Table 1). Similarly, MABO (Xie and Jiang, 2020) only needs realizability of the optimal value
function, but the weight class needs to realize the density ratio of all candidate policies. The key
difference in our work is the use of the LP formulation of MDPs (Puterman, 2014) to directly solve
for the optimal policy, without trying to evaluate other policies. This idea has been recently explored
by OptiDICE (Lee et al., 2021), which is closely related to and has inspired our work. However,
Lee et al. (2021) focuses on developing an empirical algorithm, and as we will further discuss in
Section 5.2, multiple design choices in our algorithms deviate from those of OptiDICE and are
crucial to obtaining the desired sample-complexity guarantees.

2. Preliminaries

Markov decision process (MDP). We consider an infinite-horizon discounted MDP M = (S,A,
P, r, γ, µ0) (Bertsekas, 2017), where S is the state space, A is the action space, γ ∈ [0, 1) is the
discount factor, P : S × A → ∆(S) is the transition function, µ0 ∈ ∆(S) is the initial state
distribution, and r : S × A → [0, 1] is the reward function. Here, we assume S and A to be
finite, but our results will not depend on their cardinalities and can be extended to the infinite case
naturally. We also assume µ0(s) > 0 for all s ∈ S; since our analysis and results will not depend
on mins∈S µ0(s), µ0(s) for any particular s can be arbitrarily small and therefore this is a trivial
assumption for certain technical conveniences.

A policy π : S → ∆(A) specifies the action selection probability in state s, and the associated
discounted state-action occupancy is defined as dπ(s, a) := (1 − γ)

∑∞
t=0 γ

tPrπ(st = s, at = a),
where the subscript of π in Pr(·) or E(·) refers to the distribution of trajectories generated as s0 ∼ µ0,
at ∼ π(·|st), st+1 ∼ P (·|st, at) for all t ≥ 0. For brevity, let dπ(s) denote the discounted state
occupancy

∑
a∈A dπ(s, a). A policy π is also associated with a value function V π : S → R

and an action-value (or Q) function Qπ : S × A → R as follows: ∀s ∈ S, a ∈ A, V π(s) :=

Eπ

[∑∞
t=0 γ

tr(st, at)
∣∣∣ s0 = s

]
, Qπ(s, a) := Eπ

[∑∞
t=0 γ

tr(st, at)
∣∣∣ s0 = s, a0 = a

]
.

The goal of RL is to find a policy that maximizes the expected discounted return:

max
π

J(π) = (1− γ)Eπ

[ ∞∑
t=0

γtr(st, at)

]
= E

(s,a)∼dπ
[r(s, a)]. (1)
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Alternatively, J(π) = (1 − γ)V π(µ0) := (1 − γ)Es∼µ0 [V
π(s)]. Let π∗ denote the optimal

policy of this unregularized problem (1).

Offline RL. In offline RL, the agent cannot interact with the environment directly and only has
access to a pre-collected dataset D = {(si, ai, ri, s′i)}ni=1. We further assume each (si, ai, ri, s

′
i)

is i.i.d. sampled from (si, ai) ∼ dD, ri = r(si, ai), s
′
i ∼ P (·|si, ai) as a standard simplification in

theory (Nachum et al., 2019a,b; Xie et al., 2021; Xie and Jiang, 2021a). Besides, we denote the
conditional probability dD(a|s) by πD(a|s) and call πD the behavior policy. However, we do not
assume dD = dπD in most of our results for generality (except for Section 4.2). We also use dD(s)
to represent the marginal distribution of state, i.e., dD(s) =

∑
a∈A dD(s, a). In addition, we assume

access to a batch of i.i.d. samples D0 = {s0,j}n0
j=1 from the initial distribution µ0.

3. Algorithm: PRO-RL

Our algorithm builds on a regularized version of the well-celebrated LP formulation of MDPs (Put-
erman, 2014). In particular, consider the following problem:

Problem: Regularized LP

max
d≥0

E(s,a)∼d[r(s, a)]− αE(s,a)∼dD

[
f

(
d(s, a)

dD(s, a)

)]
(2)

s.t. d(s) = (1− γ)µ0(s) + γ
∑
s′,a′

P (s|s′, a′)d(s′, a′),∀s ∈ S (3)

where d ∈ R|S×A|, d(s) =
∑

a d(s, a), and f : R → R is a strongly convex and continuously
differentiable function serving as a regularizer.

Without the regularization term, this problem is exactly equivalent to the unregularized problem
(1), as (3) exactly characterizes the space of possible discounted occupancies dπ that can be induced
in this MDP and is often known as the Bellman flow equations. Any non-negative d that satisfies
such constraints corresponds to dπ for some stationary policy π. Therefore, once we have obtained
the optimum d∗α of the above problem, we can extract the regularized optimal policy π∗

α via

π∗
α(a|s) :=

{
d∗α(s,a)∑
a d∗α(s,a)

, for
∑

a d
∗
α(s, a) > 0,

1
|A| , else.

∀s ∈ S, a ∈ A. (4)

Turning to the regularizer, Df (d‖dD) := E(s,a)∼dD

[
f
(

d(s,a)
dD(s,a)

)]
is the f -divergence between

dπ and dD. This practice, often known as behavioral regularization, encourages the learned policy
π to induce an occupancy d = dπ that stays within the data distribution dD, and we will motivate it
further using a counterexample against the unregularized algorithm & analysis later.

To convert the regularized problem (2)(3) into a learning algorithm compatible with function
approximation, we first introduce the Lagrangian multiplier v ∈ R|S| to (2)(3), and obtain the
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following maximin problem:

max
d≥0

min
v

E(s,a)∼d[r(s, a)]− αE(s,a)∼dD

[
f

(
d(s, a)

dD(s, a)

)]

+
∑
s∈S

v(s)

(1− γ)µ0(s) + γ
∑
s′,a′

P (s|s′, a′)d(s′, a′)− d(s)

 . (5)

Then, by variable substitution w(s, a) = d(s,a)
dD(s,a)

and replacing summations with the corresponding
expectations, we obtain the following problem

max
w≥0

min
v

Lα(v, w) := (1−γ)Es∼µ0 [v(s)]−αE(s,a)∼dD [f(w(s, a))]+E(s,a)∼dD [w(s, a)ev(s, a)],

(6)
where ev(s, a) = r(s, a)+γ

∑
s′ P (s′|s, a)v(s′)−v(s). The optimum of (6), denoted by (v∗α, w

∗
α),

will be of vital importance later, as our main result relies on the realizability of these two functions
v∗α and w∗

α. In particular, v∗α may not be characterized by the familiar Bellman equations when
α > 0, and Eq.(6) is our only handle on this quantity. When α → 0, v∗0 is the familiar optimal
state-value function V π∗

, and d∗0 := w∗
0 ·dD is the discounted occupancy of an optimal policy. Note

that optimal policies in MDPs are generally not unique and thus w∗
0, d

∗
0 are not unique either. We

denote the optimal set of w∗
0 and d∗0 by W∗

0 and D∗
0, respectively.

Finally, our algorithm simply uses V ⊆ R|S| and W ⊆ R|S|×|A|
+ to approximate v and w,

respectively, and optimizes the empirical version of Lα(v, w) over W×V . Concretely, we solve for

PRO-RL: (ŵ, v̂) = arg max
w∈W

argmin
v∈V

L̂α(v, w), (7)

where L̂α(v, w) :=

(1− γ)
1

n0

n0∑
j=1

[v(s0,j)] +
1

n

n∑
i=1

[−αf(w(si, ai))] +
1

n

n∑
i=1

[w(si, ai)ev(si, ai, ri, s
′
i)], (8)

and ev(s, a, r, s
′) = r + γv(s′)− v(s). The final policy we obtain is

π̂(a|s) =

{
ŵ(s,a)πD(a|s)∑
a′ ŵ(s,a′)πD(a′|s) , for

∑
a′ ŵ(s, a

′)πD(a
′|s) > 0,

1
|A| , else,

(9)

We call this algorithm Primal-dual Regularized Offline Reinforcement Learning (PRO-RL). For
now we assume the behavior policy πD is known; Appendix B extends the main results to the
unknown πD setting, where πD is estimated by behavior cloning.

While behavioral regularization (the f term) is frequently used in MIS (especially in DICE
algorithms (Nachum et al., 2019b; Lee et al., 2021)), its theoretical role has been unclear and finite-
sample guarantees can often be obtained without it (Jiang and Huang, 2020). For us, however, the
use of regularization is crucial in proving our main result (Corollary 5). In Section 5.1 we construct a
counterexample against the unregularized algorithm under the natural “unregularized” assumptions.
Regularization is an effective method to combat with this counterexample, and we also introduce
alternative concentrability assumptions to make unregularized algorithm work in Appendix C.
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4. Main results

In this section we present the main sample-complexity guarantees of our algorithm under only real-
izability assumptions for V and W and single-policy concentrability of data. We will start with the
analyses that assume perfect optimization and that the behavior policy πD is known (Section 4.1),
allowing us to present the result in a clean manner. Section 4.2 then removes the concentrability
assumption altogether and allows us to compete with the best covered policy. Further, we han-
dle approximation and optimization errors in Appendix A, and use behavior cloning to handle an
unknown behavior policy in Appendix B.

4.1. Sample-efficiency with only realizability and weak concentrability

We introduce the needed assumptions before stating the sample-efficiency guarantees to our al-
gorithm. The first assumption is about data coverage, that it covers the occupancy induced by a
(possibly regularized) optimal policy.

Assumption 1 (π∗
α-concentrability)

d∗α(s, a)

dD(s, a)
≤ Bα

w,∀s ∈ S, a ∈ A.

Two remarks are in order:

1. Assumption 1 is parameterized by α, and we will bind it to specific values when we state the
guarantees.

2. This assumption is necessary if we want to compete with the optimal policy of the MDP, π∗,
and is already much weaker than all-policy concentrability (Munos and Szepesvári, 2008; Farah-
mand et al., 2010; Chen and Jiang, 2019). That said, ideally we should not even need such an
assumption, as long as we are willing to compete with the best policy covered by data instead of
the truly optimal policy (Liu et al., 2020; Xie et al., 2021). We will actually show how to achieve
this in Section 4.2.

We then introduce the realizability assumptions on our function approximators V and W , which
are very straightforward. For now we assume exact realizability, and Appendix A handles misspec-
ification errors.

Assumption 2 (Realizability of V and W) Suppose v∗α ∈ V ,w∗
α ∈ W .

The above 2 assumptions are the major assumptions we need. (The rest are standard technical
assumptions on boundedness.) Comparing them to existing results, we emphasize that all existing
analyses require “∀′′ quantifiers in the assumptions either about the data (e.g., all-policy concentra-
bility) or about the function classes (e.g., Bellman-completeness). See Table 1 for a comparison to
various approaches considered in the literature.

Having stated the major assumptions, we now turn to the routine ones on function boundedness.

Assumption 3 (Boundedness of W) Suppose 0 ≤ w(s, a) ≤ Bw,α for any s ∈ S, a ∈ A, w ∈ W .

Here we reuse Bw,α from Assumption 1. Since d∗α/d
D = w∗

α ∈ W by Assumption 2, in general the
magnitude of W should be larger than that of d∗α/d

D, and we use the same upper bound to eliminate
unnecessary notations and improve readability.
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The next assumption characterizes the regularizer f . These are not really assumptions as we can
make concrete choices of f that satisfy them (e.g., a simple quadratic function; see Remark 4), but
for now we leave them as assumptions to keep the analysis general.

Assumption 4 (Properties of f ) Suppose f satisfies the following properties:

• Strong Convexity: f is Mf -strongly-convex.

• Boundedness:

|f ′(x)| ≤ Bf ′,α,∀ 0 ≤ x ≤ Bw,α, (10)

|f(x)| ≤ Bf,α, ∀ 0 ≤ x ≤ Bw,α. (11)

• Non-negativity: f(x) ≥ 0 for any x ∈ R.

Remark 1 The non-negativity is trivial since f is strongly convex and we can always add a constant
term to ensure non-negativity holds. Besides, we can get rid of non-negativity with the results in
Section 4.2.

Assumption 4 allows us to bound ‖v∗α‖∞ ≤ αBf ′,α+1

1−γ (see Lemma 32 in Section E); in the same
spirit as Assumption 3, we assume:

Assumption 5 (Boundedness of V) Suppose ‖v‖∞ ≤ Bv,α :=
αBf ′,α+1

1−γ for any v ∈ V .

With the above assumptions, we have Theorem 3 to show that PRO-RL can learn the optimal
density ratio and policy for the regularized problem (2)(3) with polynomial samples. To simplify
writing, we introduce the following notation for the statistical error term that arises purely from
concentration inequalities:

Definition 2

En,n0,α(Bw, Bf , Bv, Be) = (1− γ)Bv ·

(
2 log 4|V|

δ

n0

) 1
2

+ (αBf +BwBe) ·

(
2 log 4|V||W|

δ

n

) 1
2

.

(12)

E characterizes the statistical error L̂α(v, w)−Lα(v, w) based on concentration inequalities, and the
two terms in its definition correspond to using D0 for (1 − γ)Es∼µ0 [v(s)] and D for −αE(s,a)∼dD

[f(w(s, a))] + E(s,a)∼dD [w(s, a)ev(s, a)], respectively. Using this shorthand, we state our first
guarantee, that the extracted policy π̂ will be close to π∗

α, the solution to the regularized problem
(2)(3).

Theorem 3 (Sample complexity of learning π∗
α) Fix α > 0. Suppose Assumptions 1,2,3,4,5 hold

for the said α. Then with at least probability 1− δ, the output of PRO-RL satisfies:

J(π∗
α)− J(π̂) ≤ 1

1− γ
Es∼d∗α [‖π

∗
α(·|s)− π̂(·|s)‖1] ≤

4

1− γ

√
En,n0,α(Bw,α, Bf,α, Bv,α, Be,α)

αMf
,

(13)

where Be,α := (1 + γ)Bv,α + 1.

8
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Proof [Proof sketch] The proof is inspired from the invariance of saddle points (Appendix E.1) and
mainly consists of three steps: (1) using concentration inequalities to bound |Lα(v, w)− L̂α(v, w)|,
(2) using the invariance of saddle points and concentration bounds to characterize the error ‖ŵ −
w∗
α‖2,dD and (3) analyzing the difference between π̂ and π∗

α. See Appendix E for details.

Remark 4 (Sample complexity for quadratic regularization) Theorem 3 shows that PRO-RL
can obtain a near-optimal policy for regularized problem (2)(3) with sample complexity O(n0 +

n1) = Õ
(
(αBf,α+Bw,αBe,α)2

(1−γ)4(αMf )2ϵ4

)
. However, there might be implicit dependence on 1− γ, αMf , Bw,α

in the constants Be,α. To reveal these terms, we consider a simple choice of f(x) = Mf

2 x2. Then

we have Be,α = O(
αMf (Bw,α)2+Bw,α

1−γ ), Bf,α = O(αMf (Bw,α)
2), leading to a sample complexity

Õ
(

(Bw,α)2

(1−γ)6(αMf )2ϵ4
+

(Bw,α)4

(1−γ)6ϵ4

)
.

Moreover, PRO-RL can even learn a near-optimal policy for the unregularized problem (1)
efficiently by controlling the magnitude of α in PRO-RL. Corollary 5 characterizes the sample
complexity of PRO-RL for the unregularized problem (1) without any approximation/optimization
error, whose proof is deferred to Appendix G.

Corollary 5 (Sample complexity of competing with π∗
0) Fix any ϵ > 0. Suppose there exists

d∗0 ∈ D∗
0 that satisfies Assumption 1 with α = 0. Besides, assume that Assumptions 1,2,3,4,5 hold

for α = αϵ :=
ϵ

2Bf,0
. Then if

n ≥
C1 (ϵBf,αϵ + 2Bw,αϵBe,αϵBf,0)

2

ϵ6M2
f (1− γ)4

· log 4|V||W|
δ

, n0 ≥
C1 (2Bv,αϵBf,0)

2

ϵ6M2
f (1− γ)2

· log 4|V|
δ

, (14)

the output of PRO-RL with α = αϵ satisfies J(π∗
0)−J(π̂) ≤ ϵ with probability at least 1−δ, where

C1 is some universal positive constants and π∗
0 is the optimal policy inducing d∗0.

Remark 6 (Quadratic regularization) Similarly as Remark 4, the sample complexity of compet-
ing with π∗

0 under quadratic f is Õ
(
(Bw,0)4(Bw,αϵ )

2

ϵ6(1−γ)6

)
.

PRO-RL is originally designed for the regularized problem. Therefore, when applying it to the
unregularized problem the sample complexity degrades from Õ

(
1
ϵ4

)
to Õ

(
1
ϵ6

)
. However, the sam-

ple complexity remains polynomial in all relevant quantities. Compared to Theorem 3, Corollary 5
requires concentrability for policy π∗

0 in addition to π∗
αϵ

, so technically we require “two-policy”
instead of single-policy concentrability for now. While this is still much weaker than all-policy
concentrability (Chen and Jiang, 2019), we show in Section 4.2 how to compete with π∗

0 with only
single-policy concentrability.

Remark 7 When ϵ shrinks, the realizability assumptions for Corollary 5 also need to hold for
regularized solutions with smaller α. That said, in the following discussion (Proposition 8), we will
show that when ϵ is subsequently small, the realizability assumptions will turn to be with respect to
the unregularized solutions.

9
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Comparison with existing algorithms. Theorem 3 and Corollary 5 display an exciting result that
PRO-RL obtains a near optimal policy for regularized problem (2)(3) and unregularized problem
(1) using polynomial samples with only realizability and weak data-coverage assumptions. The
literature has demonstrated hardness of learning offline RL problems and existing algorithms either
rely on the completeness assumptions (Xie and Jiang, 2020; Xie et al., 2021; Du et al., 2021) or
extremely strong data assumption (Xie and Jiang, 2021a). Our results show for the first time that of-
fline RL problems can be solved using a polynomial number of samples without these assumptions.

High accuracy regime (ϵ → 0). Corollary 5 requires realizability with respect to the optimizers
of the regularized problem (2)(3). A natural idea is to consider whether the concentration and
realizability instead can be with respect to the optimizer of the unregularized problem (v∗0, w

∗
0).

Inspired by the stability of linear programming (Mangasarian and Meyer, 1979), we identify the high
accuracy regime (ϵ → 0) where concentrability and realizability with respect to w∗

0 can guarantee
PRO-RL to output an ϵ-optimal policy as shown in the following proposition:

Proposition 8 There exists α > 0 and w∗ ∈ W∗
0 such that when α ∈ [0, α] we have

w∗
α = w∗, ‖v∗α − v∗0‖2,dD ≤ Cα, (15)

where C =
Bf ′,0+

2
α

1−γ .

The proof is deferred to Appendix H. Here α is a value only depends on the underlying MDP and
not on ϵ. Proposition 8 essentially indicates that when ϵ → 0, w∗

αϵ
is exactly the unregularized

optimum w∗, and v∗αϵ
is O(ϵ) away form v∗0 . Combining with Corollary 5, we know that ϵ-optimal

policy can be learned by PRO-RL if concentrability holds for π∗
0 and W contains w∗.

4.2. Handling an arbitrary data distribution

In the previous section, our goal is to compete with policy π∗
α and we require the data to provide

sufficient coverage over such a policy. Despite being weaker than all-policy concentrability, this
assumption can be still violated in practice, since we have no control over the distribution of the
offline data. In fact, recent works such as Xie et al. (2021) are able to compete with the best policy
covered by data (under strong function-approximation assumptions such as Bellman-completeness),
thus provide guarantees to arbitrary data distributions: when the data does not cover any good
policies, the guarantee is vacuous; however, as long as a good policy is covered, the guarantee will
be competitive to such a policy.

In this section we show that we can achieve similar guarantees for PRO-RL with a twisted
analysis. First let us define the notion of covered policies.

Definition 9 Let ΠBw denote the Bw-covered policy class of dD for Bw > 1, defined as:

ΠBw := {π :
dπ(s, a)

dD(s, a)
≤ Bw,∀s ∈ S, a ∈ A}. (16)

Here, Bw is a hyperparameter chosen by the practitioner, and our goal in this section is to compete
with policies in ΠBw . The key idea is to extend the regularized LP (2) by introducing an additional
upper-bound constraint on d, that d(s, a) ≤ Bw dD(s, a), so that we only search for a good policy
within ΠBw .

10
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Problem: Constrained & regularized LP

max
0≤d≤BwdD

E(s,a)∼d[r(s, a)]− αE(s,a)∼dD

[
f

(
d(s, a)

dD(s, a)

)]
(17)

s.t. d(s) = (1− γ)µ0(s) + γ
∑
s′,a′

P (s|s′, a′)d(s′, a′) (18)

The policy we will compete with, π∗
α,Bw

, and the corresponding value and density-ratio func-
tions, v∗α,Bw

, w∗
α,Bw

, will all be defined based on this constrained LP. In the rest of this section, we
show that if we make similar realizability assumptions as in Section 4.1 but w.r.t. v∗α,Bw

and w∗
α,Bw

(instead of v∗α and w∗
α), then we can compete with π∗

α,Bw
without needing to make any coverage

assumption on the data distribution dD. Following a similar argument as the derivation of PRO-RL,
we can show that Problem (17) is equivalent to the maximin problem:

max
0≤w≤Bw

min
v

Lα(v, w) := (1−γ)Es∼µ0 [v(s)]−αE(s,a)∼dD [f(w(s, a))]+E(s,a)∼dD [w(s, a)ev(s, a)],

(19)
Denote the optimum of (19) by (v∗α,Bw

, w∗
α,Bw

), then the optimal policy and its associated dis-
counted state occupancy can be recovered as follows: ∀s ∈ S, a ∈ A,

π∗
α,Bw

(s|a) :=


w∗

α,Bw
(s,a)πD(a|s)∑

a w∗
α,Bw

(s,a)πD(a|s) ,
∑

aw
∗
α,Bw

(s, a)πD(a|s) > 0,

1
|A| , otherwise.

, (20)

d∗α,Bw
(s, a) = w∗

α,Bw
(s, a)dD(s, a). (21)

We now state the realizability and boundedness assumptions, which are similar to Section 4.1.

Assumption 6 (Realizability of V and W II) Suppose v∗α,Bw
∈ V, w∗

α,Bw
∈ W .

Assumption 7 (Boundedness of W II) Suppose 0 ≤ w(s, a) ≤ Bw for any s ∈ S, a ∈ A, w ∈
W .

Assumption 8 (Boundedness of f II) Suppose that

|f ′(x)| ≤ Bf ′ ,∀ 0 ≤ x ≤ Bw, (22)

|f(x)| ≤ Bf , ∀ 0 ≤ x ≤ Bw. (23)

Next we consider the boundedness of V . Similar to Assumption 5, we will decide the appropriate
bound on functions in V based on that of v∗α,Bw

, which needs to be captured by V . It turns out that
the additional constraint w ≤ Bw makes it difficult to derive an upper bound on v∗α,Bw

. However,
we are able to do so under a common and mild assumption, that the data distribution dD is a valid
occupancy (Liu et al., 2018; Tang et al., 2019; Levine et al., 2020):

Assumption 9 Suppose dD = dπD , i.e., the discounted occupancy of behavior policy πD.

With Assumption 9, we have ‖v∗α,Bw
‖∞ ≤ Bv from Lemma 11 and therefore the following

assumption is reasonable:

11
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Assumption 10 (Boundedness of V II) Suppose ‖v‖∞ ≤ Bv :=
αBf ′+1

1−γ for any v ∈ V .

With the above assumptions, we have the following theorem to show that PRO-RL is able to
learn π∗

α,Bw
:

Theorem 10 Assume α > 0. Suppose 6,7,8,9,10 and strong convexity in 4 hold. Then with at least
probability 1− δ, the output of PRO-RL satisfies:

J(π∗
α,Bw

)− J(π̂) ≤ 1

1− γ
Es∼d∗α,Bw

[‖π∗
α,Bw

(·|s)− π̂(·|s)‖1] ≤
4

1− γ

√
En,n0,α(Bw, Bf , Bv, Be)

αMf
,

(24)

where Be := (1 + γ)Bv + 1.

Proof [Proof sketch] The proof largely follows Theorem 3 except for the derivation of the bound on
v∗α,Bw

, which is characterized in the following lemma:

Lemma 11 Suppose Assumption 8 holds, then we have: ‖v∗α,Bw
‖∞ ≤ Bv.

The proof of Lemma 11 is deferred to Appendix I.1. The rest of the proof of Theorem 10 is the
same as in Appendix E and thus omitted here.

As before, we obtain the following corollary for competing with the best policy π∗
0,Bw

in ΠBw

whose proof is deferred to Appendix J:

Corollary 12 For any ϵ > 0, assume that Assumption 6,7,8,9,10 and strong convexity in 4 hold for
α = α′

ϵ :=
ϵ

4Bf
. Then if

n ≥
C1 (ϵBf + 4BwBeBf )

2

ϵ6M2
f (1− γ)4

· log 4|V||W|
δ

, n0 ≥
C1 (4BvBf )

2

ϵ6M2
f (1− γ)2

· log 4|V|
δ

, (25)

the output of PRO-RL with input α = α′
ϵ satisfies J(π∗

0,Bw
) − J(π̂) ≤ ϵ with probability at least

1− δ, where C1 is the same constant in Corollary 5.

Remark 13 Corollary 12 does not need the assumption of non-negativity of f . The reason is that
we are already considering a bounded space (0 ≤ w ≤ Bw) and thus f must be lower bounded in
this space.

Resolving two-policy concentrability of Corollary 5 As we have commented below Corollary 5,
to compete with π∗

0 we need “two-policy” concentrability, i.e., Assumption 1 for both α = 0 and
α = αϵ. Here we resolve this issue in Corollary 14 below, by invoking Corollary 12 with Bw

set to Bw,0. This way, we obtain the coverage over the regularized optimal policy π∗
α,Bw

(i.e., the
counterpart of π∗

α in Corollary 5) for free, thus only need the concentrability w.r.t. π∗
0 .

Corollary 14 Suppose there exists d∗0 ∈ D∗
0 that satisfies Assumption 1 with α = 0. For any

ϵ > 0, assume that Assumption 6,7,8,9,10 and strong convexity in 4 hold for Bw = Bw,0 and
α = α′

ϵ :=
ϵ

4Bf,0
. Then if

n ≥
C1 (ϵBf,0 + 4Bw,0Be,0Bf,0)

2

ϵ6M2
f (1− γ)4

· log 4|V||W|
δ

, n0 ≥
C1 (4Bv,0Bf,0)

2

ϵ6M2
f (1− γ)2

· log 4|V|
δ

, (26)
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+0 +1
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Figure 1: Construction against the unregularized algorithm under w∗
0 ∈ W and v∗0 ∈ V . The

construction is given as a 2-stage finite-horizon MDP, and adaptation to the discounted setting is
trivial. State A is the initial state with no intermediate rewards. The offline data does not cover state
C. The nature can choose between 2 MDPs that differ in the rewards for state C, and only one of the
two actions has a +1 reward.

the output of PRO-RL with input α = α′
ϵ satisfies J(π∗

0)−J(π̂) ≤ ϵ with probability at least 1− δ,
where C1 is the same constant in Corollary 5.

Corollary 14 shows that our algorithm is able to compete with π∗
0 under concentrability with respect

to π∗
0 alone. In addition, a version of Proposition 8 applies to Corollary 12, which indicates that

w∗
α′
ϵ,Bw

= w∗
0 for sufficiently small ϵ.

Remark 15 Corollary 14 still holds when we set Bw ≥ Bw,0 in case Bw,0 is unknown. However
the realizability assumptions will depend on the choice of Bw and change accordingly.

5. Discussion

5.1. The necessity of behavioral regularization

Figure 1 shows a counterexample where the unregularized algorithm fails even with infinite data
and the natural assumptions, that (1) there exists a w∗

0 ∈ W∗
0 such that w∗

0 ∈ W , (2) v∗0 ∈ V ,
and (3) data covers the optimal policy induced by w∗

0. In state A, both actions are equally optimal.
However, since data does not cover the actions of state C, the learner should not take R in state A
as it can end up choosing a highly suboptimal action in state C with constant probability if nature
randomizes over the 2 possible MDP instances.

We now show that the unregularized algorithm ((7) with α = 0) can choose R in state A, even
with infinite data and “nice” dD, V , W . In particular, the two possible MDPs share the same optimal
value function v∗0(A) = v∗0(B) = v∗0(C) = 1, which is the only function in V so we always have
v∗0 ∈ V . dD covers state-action pairs (A, L), (A, R), B. W also contains 2 functions: w1 is such that
w1 · dD is uniform over (A, L), B, which is the occupancy of the optimal policy π∗(A) = L. w2

is such that w2 · dD is uniform over (A, R), B, which induces a policy that chooses R in state A.
However, the unregularized algorithm cannot distinguish between w1 and w2 even with infinite data
(i.e., with objective L0(v, w)). This is because w1 and w2 only differs in the action choice in state
A, but v∗0(B) = v∗0(C) = 1 so the unregularized objective is the same for w1 and w2.

13
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5.2. Comparison with OptiDICE (Lee et al., 2021)

Our algorithm is inspired by OptiDICE (Lee et al., 2021), but with several crucial modifications
necessary to obtain the desired sample-complexity guarantees. OptiDICE starts with the problem of
minv maxw≥0 Lα(v, w), and then uses the closed-form maximizer w∗

α(v) := argmaxw≥0 Lα(v, w)
for arbitrary v (Lee et al., 2021, Proposition 1):

w∗
α(v) = max

(
0, (f ′)−1

(
ev(s, a)

α

))
, (27)

and then solves minv Lα(v, w
∗
α(v)). Unfortunately, the ev(s, a) term in the expression requires

knowledge of the transition function P , causing the infamous double-sampling difficulty (Baird,
1995; Farahmand and Szepesvári, 2011), a major obstacle in offline RL with only realizability
assumptions (Chen and Jiang, 2019). OptiDICE deals with this by optimizing an upper bound of
maxw≥0 Lα(v, w) which does not lend itself to theoretical analysis. Alternatively, one can fit ev
using a separate function class. However, since v is arbitrary in the optimization, the function
class needs to approximate ev for all v, requiring a completeness-type assumption in theory (Xie
and Jiang, 2020). In contrast, PRO-RL optimizes over V × W and thus argmaxw∈W Lα(v, w)
is naturally contained in W , and our analyses show that this circumvents the completeness-type
assumptions and only requires realizability.

Another important difference is the policy extraction step. OptiDICE uses a heuristic behavior
cloning algorithm without any guarantees. We develop a new behavior cloning algorithm that only
requires realizability of the policy and does not increase the sample complexity.

6. Conclusion

We present the first result for offline RL under relatively weak realizability and concentrability as-
sumptions. The algorithm, PRO-RL, is based on the regularized primal-dual formulation of LP for
MDPs, and uses density-ratio functions to model the discounted occupancy on offline data. A novel
high-level insight in our analysis is to define the functions we need to realize via the optimization
problem on population statistics and unrestricted function classes (6), which overcomes the con-
ceptual difficulty that the “regularized value functions” v∗α can no longer be characterized by the
familiar Bellman equations—which are central to most RL theory works—due to behavior regular-
ization. In the appendices we extend the main results to handle approximation/optimization errors
and unknown behavior policies, and provide alternative assumptions for the algorithm without reg-
ularization.
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Appendix A. Robustness to approximation and optimization errors

In this section we consider the setting where V × W may not contain (v∗α, w
∗
α) and measure the

approximation errors as follows:

ϵα,r,v = min
v∈V

‖v − v∗α‖1,µ0 + ‖v − v∗α‖1,dD + ‖v − v∗α‖1,dD′ , (28)

ϵα,r,w = min
w∈W

‖w − w∗
α‖1,dD , (29)

where dD
′
(s) =

∑
s′,a′ d

D(s′, a′)P (s|s′, a′),∀s ∈ S . Notice that our definitions of approximation
errors are all in ℓ1 norm and weaker than ℓ∞ norm error.

Besides, to make our algorithm work in practice, we also assume (v̂, ŵ) is an approximate
solution of L̂α(v, w):

L̂α(v̂, ŵ)−min
v∈V

L̂α(v, ŵ) ≤ ϵo,v, (30)

max
w∈W

min
v∈V

L̂α(v, w)−min
v∈V

L̂α(v, ŵ) ≤ ϵo,w. (31)

Equation (30) says that L̂α(v̂, ŵ) ≈ minv L̂α(v, ŵ). Equation (31) says that minv L̂α(v, ŵ) ≈
maxw∈W minv∈V L̂α(v, w). Combining these gives L̂α(v̂, ŵ) ≈ maxw∈W minv∈V L̂α(v, w), so
(v̂, ŵ) is approximately a max-min point.

In this case we call the algorithm Inexact-PRO-RL. Theorem 16 shows that Inexact-PRO-RL
is also capable of learning a near-optimal policy with polynomial sample size:

Theorem 16 (Error-robust version of Theorem 3) Assume α > 0. Suppose Assumption 1,3,4,5
hold. Then with at least probability 1− δ, the output of Inexact-PRO-RL satisfies:

J(π∗
α)− J(π̂) ≤ 1

1− γ
Es∼d∗α [‖π

∗
α(·|s)− π̂(·|s)‖1] ≤

2

1− γ
‖ŵ − w∗

α‖2,dD

≤ 4

1− γ

√
En,n0,α(Bw,α, Bf,α, Bv,α, Be,α)

αMf
+

2

1− γ

√
2(ϵopt + ϵα,app)

αMf
, (32)

where Be,α is defined as Theorem 3, ϵopt = ϵo,v + ϵo,w and ϵα,app = (Bw,α + 1) ϵα,r,v + (Be,α +
αBf ′,α)ϵα,r,w.

Proof [Proof sketch] The proof follows similar steps in the proof of Theorem 3. See Appendix K
for details.

Remark 17 (Optimization) When W and V are convex sets,3 a line of algorithms (Nemirovski,
2004; Nesterov, 2007; Lin et al., 2020) are shown to attain ϵ̃-saddle point with the gradient com-
plexity of Õ(1ϵ̃ ). Notice that an approximate saddle point will satisfy our requirements (30)(31)
automatically, therefore we can choose these algorithms to solve (v̂, ŵ). In more general cases, W
and V might be parameterized by θ and ϕ. As long as the corresponding maximin problem (7) is
still concave-convex (e.g., W and V are linear function classes), these algorithms can still work
efficiently.

3. In this case they are infinite classes, and we can simply replace the concentration bound in Lemma 34 with a standard
covering argument
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Similar to Corollary 5, we can extend Theorem 16 to compete with π∗
0 . Suppose we select

α = αun > 0 in Inexact-PRO-RL and let ϵun = αunBf,0 +
2

1−γ

√
2(ϵopt+ϵαun,app)

αunMf
. Then we

have the following corollary:

Corollary 18 (Error-robust version of Corollary 5) Fix αun > 0. Suppose there exists d∗0 ∈ D∗
0

such that Assumption 1 holds. Besides, assume that Assumptions 1,3,4,5 hold for α = αun. Then
the output of Inexact-PRO-RL with input α = αun satisfies

J(π∗
0)− J(π̂) ≤ 4

1− γ

√
En,n0,αun(Bw,αun , Bf,αun , Bv,αun , Be,αun)

αunMf
+ ϵun, (33)

with at least probability 1− δ.

Proof [Proof sketch] The proof largely follows that of Corollary 5 and thus is omitted here.

The selection of αun The best αun we can expect (i.e., with the lowest error floor) is

αun := argmin
α>0

(
αBf,0 +

2

1− γ

√
2(ϵopt + ϵα,app)

αMf

)
. (34)

However, this requires knowledge of ϵα,app, which is often unknown in practice. One alternative
method is to suppose ϵα,app upper bounded by ϵapp for some α ∈ Iα, then αun can be chosen as

αun := arg min
α∈Iα

(
αBf,0 +

2

1− γ

√
2(ϵopt + ϵapp)

αMf

)
. (35)

Notice that Bf,0 is known and ϵopt can be controlled by adjusting the parameters of the optimization
algorithm, therefore the above αun can be calculated easily.

Higher error floor In the ideal case of no approximation/optimization errors, Corollary 5 (which
competes with π∗

0) has a worse sample complexity than Theorem 3 (which only competes with π∗
α).

However, with the presence of approximation and optimization errors, the sample complexities
become the same in Theorem 16 and Corollary 18, but the latter has a higher error floor. To see
this, we can suppose ϵα,app are uniformly upper bounded by ϵapp, then αun = O((ϵopt+ ϵapp)

1
3 ) by

the AM-GM inequality and ϵun = O((ϵopt + ϵapp)
1
3 ), which is larger than O((ϵopt + ϵapp)

1
2 ) as in

Theorem 16.

Appendix B. Policy extraction via behavior cloning

In this section we consider an unknown behavior policy πD. Notice that the only place we require
πD in our algorithm is the policy extraction step, where we compute π̂ from ŵ using knowledge
of πD. Inspired by the imitation learning literature (Pomerleau, 1989; Ross and Bagnell, 2014;
Agarwal et al., 2020), we will use behavior cloning to compute a policy π to approximate π̂, where
π̂ is not directly available and only implicitly defined via ŵ and the data.

As is standard in the literature (Ross and Bagnell, 2014; Agarwal et al., 2020), we utilize a
policy class Π to approximate the target policy. We suppose Π is realizable:
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Assumption 11 (Realizability of Π) Assume π∗
α ∈ Π.

One may be tempted to assume π̂ ∈ Π, since π̂ is the target of imitation, but π̂ is a function of the
data and hence random. A standard way of “determinizing” such an assumption is to assume the
realizability of Π for all possible π̂ that can be induced by any w ∈ W , which leads to a prohibitive
“completeness”-type assumption. Fortunately, as we have seen in previous sections, π̂ will be close
to π∗

α when learning succeeds, so the realizability of π∗
α—a policy whose definition does not depend

on data randomness—suffices for our purposes.
In the rest of this section, we design a novel behavior cloning algorithm which is more robust

compared to the classic maximum likelihood estimation process (Pomerleau, 1989; Ross and Bag-
nell, 2014; Agarwal et al., 2020). In MLE behavior cloning, the KL divergence between the target
policy and the policy class need to be bounded while in our algorithm we only require the weighted
ℓ1 distance to be bounded. This property is important in our setting, as PRO-RL can only guarantee
a small weighted ℓ2 distance between π∗

α and π̂; ℓ2 distance is stronger than ℓ1 while weaker than
KL divergence.

Our behavior cloning algorithm is inspired by the algorithms in Sun et al. (2019); Agarwal et al.
(2019), which require access to dπ for all π ∈ Π and are not satisfied in our setting. However, the
idea of estimating total variation by the variational form turns out to be useful. More concretely, for
any two policies π and π′, define:

hsπ,π′ := arg max
h:∥h∥∞≤1

[Ea∼π(·|s)h(a)− Ea∼π′(·|s)h(a)]. (36)

Let hπ,π′(s, a) = hsπ,π′(a),∀s, a. Note that the function hπ,π′ is purely a function of π and π′ and
does not depend on the data or the MDP, and hence can be computed exactly even before we see the
data. Such a function witnesses the ℓ1 distance between π and π′, as shown in the following lemma;
see proof in Appendix L.1:

Lemma 19 For any distribution d on S and policies π, π′ , we have:

Es∼d[‖π(·|s)− π′(·|s)‖1] = Es∼d

[
Ea∼π(·|s)[hπ,π′(s, a)]− Ea∼π′(·|s)[hπ,π′(s, a)]

]
. (37)

Inspired by Lemma 19, we can estimate the total variation distance between π and π′ by evaluat-
ing Ea∼π(·|s)[hπ,π′(s, a)]−Ea∼π′(·|s)[hπ,π′(s, a)] empirically. Let H := {hπ,π′ : π, π′ ∈ Π} and we
have |H| ≤ |Π|2. We divide D into D1 and D2 where D1 is utilized for evaluating ŵ and D2 for ob-
taining π. Let n1 and n2 denote the number of samples in D1 and D2. Then our behavior cloning al-
gorithm is based on the following objective function, whose expectation is E

s∼d̂,a∼π̂
[hπ(s)−h(s, a)]

and by Lemma 19 is exactly the TV between π̂ and π:

π = argmin
π∈Π

max
h∈H

[

n2∑
i=1

ŵ(si, ai) (h
π(si)− h(si, ai))], (38)

where (si, ai) ∈ D2,∀1 ≤ i ≤ n2, hπ(s) = Ea∼π(·|s)[h(s, a)] and π is the ultimate output policy.
It can be observed that (38) is the importance-sampling version of

E
s∼d̂

[Ea∼π(·|s)[h(s, a)]− Ea∼π̂(·|s)[h(s, a)]]. (39)

Since d̂ is close to d∗α, by minimizing (38) we can find a policy that approximately minimizes
Es∼d∗α [‖π(·|s)− π̂(·|s)‖1]. We call PRO-RL with this behavior cloning algorithm by PRO-RL-BC.

Theorem 20 shows that PRO-RL-BC can attain almost the same sample complexity as PRO-RL
in Theorem 3 where πD is known.
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Theorem 20 (Sample complexity of learning π∗
α with unknown behavior policy) Assume α >

0. Suppose Assumption 1,2,3,4,5 and 11 hold. Then with at least probability 1 − δ, the output of
PRO-RL-BC satisfies:

J(π∗
α)− J(π) ≤ 1

1− γ
Es∼d∗α [‖π

∗
α(·|s)− π(·|s)‖1]

≤ 4Bw,α

1− γ

√
6 log 4|Π|

δ

n2
+

50

1− γ

√
En1,n0,α(Bw,α, Bf,α, Bv,α, Be,α)

αMf
, (40)

where Be,α is defined as in Theorem 3.

Proof See Appendix L.2 for details.

Remark 21 Notice that the error scales with O( 1√
n2
) and O( 1

n
1
4
1

), which means that the extra sam-

ples required by behavior cloning only affects the higher-order terms. Therefore the total sample
complexity n = n1 + n2 is dominated by n1, which coincides with the sample complexity of Theo-
rem 3.

Remark 22 PRO-RL-BC might not be computationally efficient in its current form since the struc-
tures of the policy class Π (such as convexity) may not be retained in H. Designing a well-structured
H can help mitigate this problem but may incur additional errors. Here our main purpose though
is to investigate the statistical properties of PRO-RL-BC and thus will not go deep about this.

Similarly, behavior cloning can be extended to the unregularized setting where we compete with
π∗
0 , and the sample complexity will remain almost the same as Corollary 5:

Corollary 23 Fix any ϵ > 0. Suppose there exists d∗0 ∈ D∗
0 such that Assumption 1 holds. Besides,

assume that Assumption 1,2,3,4,5 and 11 hold for α = αϵ. Then if

n0 ≥ C2 ·
(2Bv,αϵBf,0)

2

ϵ6M2
f (1− γ)2

· log 4|V|
δ

, (41)

n1 ≥ C3 ·
(ϵBf,αϵ + 2Bw,αϵBe,αϵBf,0)

2

ϵ6M2
f (1− γ)4

· log |V||W|
δ

, (42)

n2 ≥ C4 ·
(Bw,αϵ)

2

(1− γ)2ϵ2
log

|Π|
δ

, (43)

where C2, C3, C4 are some universal positive constants, the output of PRO-RL-BC with input α =
αϵ satisfies

J(π∗
0)− J(π) ≤ ϵ, (44)

with at least probability 1− δ.

Proof The proof is the same as in Appendix G. The only difference is that we replace the result in
Theorem 3 with Theorem 20.

Remark 24 The sample complexity to obtain ϵ-optimal policy is still Õ
(
(Bw,0)4(Bw,αϵ )

2

ϵ6(1−γ)6

)
since n2

is negligible compared to n1.

Remark 25 Similar to Corollary 5, the concentrability assumptions in Corollary 23 can be reduced
to single-policy concentrability with the help of Corollary 12.
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Appendix C. PRO-RL with α = 0

From the previous discussions, we notice that when α > 0, extending from regularized problems to
unregularized problems will cause worse sample complexity in PRO-RL (Section 4, Appendix A).
Also, the realizability assumptions are typically with respect to the regularized optimizers rather
than the more natural (v∗0, w

∗
0). In this section we show that by using stronger concentrability

assumptions, PRO-RL can still have guarantees with α = 0 under the realizability w.r.t. (v∗0, w
∗
0)

and attain a faster rate. More specifically, we need the following strong concentration assumption:

Assumption 12 (Strong concentrability) Suppose the dataset distribution dD and some d∗0 ∈ D∗
0

satisfy

dπ(s)

dD(s)
≤ Bw,u,∀π, s ∈ S, (45)

d∗0(s)

dD(s)
≥ Bw,l > 0,∀s ∈ S. (46)

Remark 26 Eq. (45) is the standard all-policy concentrability assumption in offline RL (Chen and
Jiang, 2019; Nachum et al., 2019b; Xie and Jiang, 2020). In addition, Assumption 12 requires the
density ratio of the optimal policy is lower bounded, which is related to an ergodicity assumption
used in some previous works in the simulator setting (Wang, 2017, 2020).

Remark 27 It can be observed that Bw,l = 0 in the counterexample in Section 5.1 and thus the
counterexample does not satisfy Assumption 12.

In the following discussion w∗
0 and π∗

0 are specified as the optimal density ratio and policy with
respect to the d∗0 in Assumption 12. We need to impose some constraints on the function class W
and V so that dπ̂ can be upper bounded by ŵ · dD.

Assumption 13 Suppose

W ⊆ W :={
w(s, a) ≥ 0,

∑
a

πD(a|s)w(s, a) ≥ Bw,l,∀s ∈ S, a ∈ A

}
, (47)

Given a function class W , this assumption is trivially satisfied by removing the w ∈ W that are not
in W when πD is known.

Assumption 14 Suppose

0 ≤ v(s) ≤ 1

1− γ
, ∀s ∈ S, v ∈ V. (48)

By Assumption 12, w∗
0 ∈ W and 0 ≤ v∗0 ≤ 1

1−γ . Therefore Assumption 13 and Assumption 14 are
reasonable.

With strong concentrability, we can show that PRO-RL with α = 0 can learn an ϵ-optimal
policy with sample complexity n = Õ

(
1
ϵ2

)
:
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Corollary 28 Suppose Assumption 1,2,3, 13, 14 and 12 hold for α = 0. Then with at least proba-
bility 1− δ, the output of PRO-RL with input α = 0 satisfies:

J(π∗
0)− J(π̂) ≤ 2Bw,0Bw,u

(1− γ)Bw,l

√
2 log 4|V||W|

δ

n
+

Bw,u

Bw,l

√
2 log 4|V|

δ

n0
, (49)

Proof The key idea is to utilize Lemma 35 to bound L0(v
∗
0, w

∗
0)−L0(v

∗
0, ŵ) and then quantify the

performance difference J(π∗
0)− J(π̂). See Appendix M for details.

Comparison with α > 0 and α = 0. When solving the unregularized problem, PRO-RL with
α = 0 has better sample complexity than Corollary 5. Also the realizability assumptions in Corol-
lary 28 are with respect to the optimizers of the unregularized problem itself, which is not the case
in Corollary 5 when ϵ is large. However, PRO-RL with α = 0 only works under a very strong
concentrability assumption (Assumption 12) and thus is less general than PRO-RL with α > 0.

Appendix D. Additional Discussion

D.1. Discussion about Assumption 12

The following ergodicity assumption has been introduced in some online reinforcement learning
works (Wang, 2017, 2020):

Assumption 15 Assume

Berg,1µ0(s) ≤ dπ(s) ≤ Berg,2µ0(s), ∀s, π. (50)

Remark 29 The original definition of ergodicity in Wang (2017, 2020) is targeted at the stationary
distribution induced by policy π rather than the discounted visitation distribution. However, this is
not an essential difference and it can be shown that Corollary 28 still holds under the definition in
Wang (2017, 2020). Here we define ergodicity with respect to the discounted visitation distribution
for the purpose of comparing Assumption 12 and 15.

In fact, our Assumption 12 is weaker than Assumption 15 as shown in the following lemma:

Lemma 30 Suppose dπ(s) ≤ Berg,2µ0(s),∀s, π and Assumption 9 holds, then we have:

dπ(s)

dD(s)
≤ Berg,2

1− γ
,∀π, s (51)

d∗0(s)

dD(s)
≥ 1− γ

Berg,2
,∀s. (52)

The proof is deferred to Appendix M.1. Lemma 30 shows that the upper bound in Assumption 15
implies Assumption 12. Therefore, our strong concentration assumption is a weaker version of the
ergodicity assumption.
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D.2. Combination of different practical factors

In previous sections, we generalized PRO-RL to several more realistic settings (poor coverage,
approximation and optimization error, unknown behavior policy). In fact, PRO-RL with α > 0
can be even generalized to include all of the three settings by combining Theorem 3,10,16,20 and
Corollaries 5,12,18,23. For brevity, we do not list all the combinations separately and only illustrate
how to handle each individually.

For PRO-RL with α = 0, it is easy to extend Corollary 28 to approximation and optimization
error but relaxation of the concentration assumption and unknown behavior policy is difficult. This
is because the analysis of Corollary 28 relies on the fact that v∗0 is the optimal value function of
the unregularized problem (1). Consequently, the same analysis is not applicable to (w∗

0,Bw
, v∗0,Bw

).
Furthermore, Assumption 13 requires knowing πD and thus hard to enforce with unknown behavior
policy.

Appendix E. Analysis for regularized offline RL (Theorem 3)

In this section we present the analysis for our main result in Theorem 3.

E.1. Intuition: invariance of saddle points

First we would like to provide an intuitive explanation why optimizing V × W instead of R|S| ×
R|S||A|
+ can still bring us close to (v∗α, w

∗
α). More specifically, we have the following lemma:

Lemma 31 (Invariance of saddle points) Suppose (x∗, y∗) is a saddle point of f(x, y) over X ×
Y , then for any X ′ ⊆ X and Y ′ ⊆ Y , if (x∗, y∗) ∈ X ′ × Y ′, we have:

(x∗, y∗) ∈ arg min
x∈X ′

argmax
y∈Y ′

f(x, y), (53)

(x∗, y∗) ∈ argmax
y∈Y ′

arg min
x∈X ′

f(x, y). (54)

Proof See Appendix F.1.

Lemma 31 shows that as long as a subset includes the saddle point of the original set, the saddle
point will still be a minimax and maximin point with respect to the subset. We apply this to (6):
the saddle point (v∗α, w

∗
α) of (6), also the solution to the regularized MDP without any restriction on

function classes, is also a solution of maxw∈W minv∈V Lα(v, w).
We now give a brief sketch. Since L̂ is unbiased for Lα, using uniform convergence, L̂α(v, w) ≈

Lα(v, w) with high probability. Next, use strong concavity of Lα(v, w) with respect to w, to show
that ŵ ≈ w∗

α. This implies that π̂ ≈ π∗
α, which is exactly Theorem 3.

E.2. Preparation: boundedness of v∗α
Before proving Theorem 3, an important ingredient is to bound v∗α since V is assumed to be a
bounded set (Assumption 5). The key idea is to utilize KKT conditions and the fact that for each
s ∈ S there exists a ∈ A such that w∗

α(s, a) > 0. The consequent bound is given in Lemma 32.

Lemma 32 (Boundedness of v∗α) Suppose Assumption 1 and 4 holds, then we have:

‖v∗α‖∞ ≤ Bv,α :=
αBf ′,α + 1

1− γ
. (55)
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Proof See Appendix F.2.

E.3. Proof sketch of Theorem 3

As stated in Section E.1, our proof consists of (1) using concentration inequalities to bound |Lα(v, w)−
L̂α(v, w)|, (2) using the invariance of saddle points and concentration bounds to characterize the er-
ror ‖ŵ−w∗

α‖2,dD and (3) analyzing the difference between π̂ and π∗
α. We will elaborate on each of

these steps in this section.

Concentration of L̂α(v, w). First, it can be observed that L̂α(v, w) is an unbiased estimator of
Lα(v, w), as shown in the following lemma

Lemma 33
ED[L̂α(v, w)] = Lα(v, w), ∀v ∈ V, w ∈ W, (56)

where ED[·] is the expectation with respect to the samples in D, i.e., (si, ai) ∼ dD, s′i ∼ P (·|si, ai).
Proof See Appendix F.3.

On the other hand, note that from the boundedness of V,W and f (Assumption 5, 3, 4),
L̂α(v, w) is also bounded. Combining with Lemma 33, we have the following lemma:

Lemma 34 Suppose Assumption 3,4,5 hold. Then with at least probability 1− δ, for all v ∈ V and
w ∈ W we have:

|L̂α(v, w)− Lα(v, w)| ≤ En,n0,α(Bw,α, Bf,α, Bv,α, Be,α) := ϵstat, (57)

Proof See Appendix F.4.

Bounding ‖ŵ − w∗
α‖2,dD . To bound ‖ŵ − w∗

α‖2,dD , we first need to characterize Lα(v
∗
α, w

∗
α) −

Lα(v
∗
α, ŵ). Inspired by Lemma 31, we decompose Lα(v

∗
α, w

∗
α) − Lα(v

∗
α, ŵ) carefully and utilize

the concentration results Lemma 34, which leads us to the following lemma:

Lemma 35 Suppose Assumption 1,2,3,4 and 5 hold. Then with at least probability 1− δ,

Lα(v
∗
α, w

∗
α)− Lα(v

∗
α, ŵ) ≤ 2ϵstat. (58)

Proof See Appendix F.5.

Then due to the strong convexity of f which leads to Lα being strongly concave in w, ‖ŵ −
w∗
α‖2,dD can be naturally bounded by Lemma 35,

Lemma 36 Suppose Assumption 1,2,3,4,5 hold. Then with at least probability 1− δ,

‖ŵ − w∗
α‖2,dD ≤

√
4ϵstat
αMf

, (59)

which implies that

‖d̂− d∗α‖1 ≤

√
4ϵstat
αMf

, (60)

where d̂(s, a) = ŵ(s, a)dD(s, a), ∀s, a.

Proof See Appendix F.6.
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Bounding Es∼d∗α [‖π
∗
α(s, ·) − π̂(s, ·)‖1]. To obtain the second part of (13), we notice that π∗

α (or
π̂) can be derived explicitly from w∗

α (or ŵ) by (4) (or (9)). However, the mapping w∗
α 7→ π∗

α (or
ŵ 7→ π̂) is not linear and discontinuous when d∗α(s) = 0 (or d̂(s) = 0), which makes the mapping
complicated. To tackle with this problem, we first decompose the error ‖ŵ − w∗

α‖2,dD and assign
to each state s ∈ S, then consider the case where d̂(s) > 0 and d̂(s) = 0 separately. Consequently,
we can obtain the following lemma:

Lemma 37
Es∼d∗α [‖π

∗
α(s, ·)− π̂(s, ·)‖1] ≤ 2‖ŵ − w∗

α‖2,dD . (61)

Proof See Appendix F.7.

Combining Equation (59), (61), and the definition of ϵstat from Lemma 34, gives us the second
part of Theorem 3.

Bounding J(π∗
α)− J(π̂). To complete the proof of Theorem 3, we only need to bound J(π∗

α)−
J(π̂) via the bounds on Es∼d∗α [‖π

∗
α(s, ·)− π̂(s, ·)‖1], which is shown in the following lemma:

Lemma 38
J(π∗

α)− J(π̂) ≤ 1

1− γ
Es∼d∗α [‖π

∗
α(s, ·)− π̂(s, ·)‖1]. (62)

Proof See Appendix F.8.

This concludes the proof of Theorem 3.

Appendix F. Proofs of Lemmas for Theorem 3

F.1. Proof of Lemma 31

We first prove that (x∗, y∗) ∈ argminx∈X ′ argmaxy∈Y ′ f(x, y). Since (x∗, y∗) is a saddle point
(Sion, 1958), we have

x∗ = argmin
x∈X

f(x, y∗), y∗ = argmax
y∈Y

f(x∗, y). (63)

Since Y ′ ⊆ Y and y∗ ∈ Y ′, we have:

f(x∗, y∗) = max
y∈Y ′

f(x∗, y). (64)

On the other hand, because X ′ ⊆ X and y∗ ∈ Y ′,

f(x∗, y∗) ≤ f(x, y∗) ≤ max
y∈Y ′

f(x, y),∀x ∈ X ′. (65)

Notice that x∗ ∈ X ′, so we have:

max
y∈Y ′

f(x∗, y) = min
x∈X

max
y∈Y ′

f(x, y), (66)

or equivalently,
(x∗, y∗) ∈ arg min

x∈X ′
argmax

y∈Y ′
f(x, y). (67)
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On the other hand, by a similar proof we have

f(x∗, y∗) ≥ f(x∗, y) ≥ min
x∈X ′

f(x, y), ∀y ∈ Y ′, (68)

which implies that
(x∗, y∗) ∈ argmax

y∈Y ′
arg min

x∈X ′
f(x, y). (69)

F.2. Proof of Lemma 32

From the strong duality of the regularized problem (2)(3), when dD(s, a) 6= 0, we have w∗
α =

argmaxw≥0 Lα(v
∗
α, w), or

w∗
α(s, a) = max

(
0, (f ′)−1

(
ev∗α(s, a)

α

))
. (70)

Note that d∗α(s, a) = w∗
α(s, a)d

D(s, a) satisfies Bellman flow constraint (3), therefore

d∗α(s) ≥ (1− γ)µ0(s) > 0, ∀s ∈ S, (71)

which implies that for any s ∈ S , ∃as ∈ A such that

d∗α(s, as) > 0, (72)

or equivalently
w∗
α(s, as) > 0, dD(s, as) > 0. (73)

Thus from (70) we know that
ev∗α(s, as) = αf ′(w∗

α(s, as)). (74)

From Assumption 1, w∗
α(s, as) ≤ Bw,α and thus due to Assumption 4,

|ev∗α(s, as)| ≤ αBf ′,α,∀s ∈ S. (75)

On the other hand, suppose |v∗α(sm)| = ‖v∗α‖∞, then from the definition of ev we have:

ev∗α(sm, asm) = r(sm, asm) + γEs′∼P (·|sm,asm )v
∗
α(s

′)− v∗α(sm), (76)

which implies that:

|ev∗α(sm, asm)− r(sm, asm)| = |v∗α(sm)− γEs′∼P (·|sm,asm )v
∗
α(s

′)| (77)

≥ |v∗α(sm)| − γ|Es′∼P (·|sm,asm )v
∗
α(s

′)| (78)

≥ |v∗α(sm)| − γEs′∼P (·|sm,asm )|v∗α(s′)| (79)

≥ (1− γ)|v∗α(sm)|. (80)

Combining (75) and (80), we have

‖v∗α‖∞ ≤
αBf ′,α + 1

1− γ
. (81)
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F.3. Proof of Lemma 33

First by the tower rule, we have:

ED

[
L̂α(v, w)

]
= E(si,ai)∼dD,s0,j∼µ0

[
Es′i∼P (·|si,ai)

[
L̂α(v, w)|si, ai

]]
. (82)

Note that

Es′i∼P (·|si,ai)

[
L̂α(v, w)|si, ai

]
(83)

=(1− γ)
1

n0

n0∑
j=1

[v(s0,j)] +
1

n

n∑
i=1

[−αf(w(si, ai))] (84)

+
1

n

n∑
i=1

[w(si, ai)Es′i∼P (·|si,ai)
[
ev(si, ai, ri, s

′
i)|si, ai

]
] (85)

=(1− γ)
1

n0

n0∑
j=1

[v(s0,j)] +
1

n

n∑
i=1

[−αf(w(si, ai))] +
1

n

n∑
i=1

[w(si, ai)ev(si, ai)]. (86)

Therefore,

ED

[
L̂α(v, w)

]
(87)

=(1− γ)Es∼µ0 [v(s)]− αE(s,a)∼dD [f(w(s, a))] + E(s,a)∼dD [w(s, a)ev(s, a)] (88)

=Lα(v, w). (89)

F.4. Proof of Lemma 34

Let lv,wi = −αf(w(si, ai)) + w(si, ai)ev(si, ai, ri, s
′
i). From Assumption 5, we know

|ev(s, a, r, s′)| = |r(s, a) + γv(s′)− v(s)| ≤ (1 + γ)Bv,α + 1 = Be,α. (90)

Therefore, by Assumption 3 and 4, we have:

|lv,wi | ≤ αBf,α +Bw,αBe,α. (91)

Notice that lv,wi is independent from each other, thus we can apply Hoeffding’s inequality and
for any t > 0,

Pr[| 1
n

n∑
i=1

lv,wi − E[lv,wi ]| ≤ t] ≥ 1− 2 exp

(
−nt2

2(αBf,α +Bw,αBe,α)2

)
. (92)

Let t = (αBf,α +Bw,αBe,α)

√
2 log

4|V||W|
δ

n , we have with at least probability 1− δ
2|V||W| ,

| 1
n

n∑
i=1

lv,wi − E[lv,wi ]| ≤ (αBf,α +Bw,αBe,α)

√
2 log 4|V||W|

δ

n
. (93)
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Therefore by union bound, with at least probability 1− δ
2 , we have for all v ∈ V and w ∈ W ,

| 1
n

n∑
i=1

lv,wi − E[lv,wi ]| ≤ (αBf,α +Bw,αBe,α)

√
2 log 4|V||W|

δ

n
. (94)

Similarly, we have with at least probability 1− δ
2 , for all v ∈ V ,

| 1
n0

n0∑
j=1

v(s0,j)− Es∼µ0 [v(s)]| ≤ Bv,α

√
2 log 4|V|

δ

n0
. (95)

Therefore, with at least probability 1− δ we have

|L̂α(v, w)− Lα(v, w)| ≤ (αBf,α +Bw,αBe,α)

√
2 log 4|V||W|

δ

n
+ (1− γ)Bv,α

√
2 log 4|V|

δ

n0
. (96)

F.5. Proof of Lemma 35

First we decompose Lα(v
∗
α, ŵ)− Lα(v

∗
α, w

∗
α) into the following terms:

Lα(v
∗
α, ŵ)− Lα(v

∗
α, w

∗
α) = (Lα(v

∗
α, ŵ)− L̂α(v

∗
α, ŵ)︸ ︷︷ ︸

(1)

) + (L̂α(v
∗
α, ŵ)− L̂α(v̂, ŵ)︸ ︷︷ ︸

(2)

)

+ (L̂α(v̂, ŵ)− L̂α(v̂(w
∗
α), w

∗
α)︸ ︷︷ ︸

(3)

) + (L̂α(v̂(w
∗
α), w

∗
α)− Lα(v̂(w

∗
α), w

∗
α)︸ ︷︷ ︸

(4)

) (97)

+ (Lα(v̂(w
∗
α), w

∗
α)− Lα(v

∗
α, w

∗
α)︸ ︷︷ ︸

(5)

), (98)

where v̂(w) = argminv∈V L̂α(v, w).
For term (1) and (4), we can apply Lemma 34 and thus

(1) ≥ −ϵstat, (4) ≥ −ϵstat. (99)

For term (2), since v̂ = argminv∈V L̂α(v, ŵ) and v∗α ∈ V , we have

(2) ≥ 0. (100)

For term (3), since ŵ = argmaxw∈W L̂α(v̂(w), w) and w∗
α ∈ W ,

(3) ≥ 0. (101)

For term (5), note that due to the strong duality of the regularized problem (2)(3), (v∗α, w
∗
α) is a

saddle point of Lα(v, w) over R|S| × R|S||A|
+ . Therefore,

v∗α = arg min
v∈R|S|

Lα(v, w
∗
α). (102)

Since v̂(w∗
α) ∈ R|S|, we have:

(5) ≥ 0. (103)

Combining the above inequalities, it is obvious that

Lα(v
∗
α, ŵ)− Lα(v

∗
α, w

∗
α) ≥ −2ϵstat. (104)
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F.6. Proof of Lemma 36

First we need to show Lα(v
∗
α, w) is αMf -strongly-concave with respect to w and ‖·‖2,dD . Consider

L̃α(w) = Lα(v
∗
α, w) +

αMf

2 ‖w‖2
2,dD

, then we know that

L̃α(w) = (1−γ)Es∼µ0 [v(s)]−αE(s,a)∼dD [f(w(s, a))−
Mf

2
w(s, a)2]+E(s,a)∼dD [w(s, a)ev(s, a)].

(105)
Since f is Mf -strongly-convex, we know L̃α(w) is concave, which implies that Lα(v

∗
α, w) is αMf -

strongly-concave with respect to w and ‖ · ‖2,dD .

On the other hand, since (v∗α, w
∗
α) is a saddle point of Lα(v, w) over R|S| × R|S||A|

+ , we have
w∗
α = argmaxw≥0 Lα(v

∗
α, w). Then we have:

‖ŵ − w∗
α‖2,dD ≤

√
2(Lα(v∗α, w

∗
α)− Lα(v∗α, ŵ))

αMf
. (106)

Substituting Lemma 35 into the above equation we can obtain (59). For (60), it can be observed that

‖d̂− d∗α‖1 = ‖ŵ − w∗
α‖1,dD ≤ ‖ŵ − w∗

α‖2,dD ≤

√
4ϵstat
αMf

. (107)

F.7. Proof of Lemma 37

First note that ‖ŵ − w∗
α‖1,dD ≤ ‖ŵ − w∗

α‖2,dD , which implies that∑
s

ϵŵ,s ≤ ‖ŵ − w∗
α‖2,dD (108)

where
ϵŵ,s =

∑
a

|ŵ(s, a)dD(s, a)− w∗
αd

D(s, a)| (109)

If d̂(s) > 0, then we have:

d∗α(s)
∑
a

|π̂(s, a)− π∗
α(s, a)| (110)

=
∑
a

|d
∗
α(s)

d̂(s)
ŵ(s, a)dD(s, a)− w∗

αd
D(s, a)| (111)

≤
∑
a

(|d
∗
α(s)

d̂(s)
− 1|ŵ(s, a)dD(s, a)) +

∑
a

|ŵ(s, a)dD(s, a)− w∗
αd

D(s, a)| (112)

≤ϵŵ,s +
∑
a

(|d
∗
α(s)

d̂(s)
− 1|ŵ(s, a)dD(s, a)). (113)

Notice that |d̂(s)− d∗α(s)| ≤ ϵŵ,s, which implies |d
∗
α(s)

d̂(s)
− 1| ≤ ϵŵ,s

d̂(s)
, therefore:

d∗α(s)
∑
a

|π̂(s, a)− π∗
α(s, a)| ≤ ϵŵ,s(1 +

∑
a

ŵ(s, a)dD(s, a)

d̂(s)
) = 2ϵŵ,s. (114)
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If d̂(s) = 0, then we know that
∑

a |w∗
α(s, a)d

D(s, a)| ≤ ϵŵ,s. Therefore

d∗α(s)
∑
a

|π̂(s, a)− π∗
α(s, a)| ≤ 2d∗α(s) = 2ϵŵ,s. (115)

Thus we have d∗α(s)
∑

a |π̂(s, a)− π∗
α(s, a)| ≤ 2ϵŵ,s, from which we can easily obtain:

Es∼d∗α [‖π
∗
α(s, ·)− π̂(s, ·)‖1] ≤ 2

∑
s

ϵŵ,s ≤ 2‖ŵ − w∗
α‖2,dD . (116)

F.8. Proof of Lemma 38

To bound J(π∗
α) − J(π̂), we introduce the performance difference lemma which was previously

derived in Kakade and Langford (2002); Kakade (2003):

Lemma 39 (Performance Difference) For arbitrary policies π, π′ and initial distribution µ0, we
have

V π′
(µ0)− V π(µ0) =

1

1− γ
Es∼dπ′ [〈Qπ(s, )̇, π′(·|s)− π(·|s)〉]. (117)

The proof of Lemma 39 is referred to Appendix F.9. With Lemma 39, we have

J(π∗
α)− J(π̂) (118)

=(1− γ)(V π∗
α(µ0)− V π̂(µ0)) (119)

=Es∼d∗α [〈Q
π̂(s, )̇, π∗

α(·|s)− π̂(·|s)〉] (120)

≤ 1

1− γ
Es∼d∗α [‖π

∗
α(s, ·)− π̂(s, ·)‖1]. (121)

F.9. Proof of Lemma 39

For any two policies π′ and π, it follows from the definition of V π′
(µ0) that

V π′
(µ0)− V π(µ0) (122)

=Eπ′

[ ∞∑
t=0

γtr(st, at)
∣∣∣ s0 ∼ µ0

]
− V π(µ0)

=Eπ′

[ ∞∑
t=0

γt
[
r(st, at) + V π

τ (st)− V π(st)
] ∣∣∣ s0 ∼ µ0

]
− V π(µ0)

=Eπ′

[ ∞∑
t=0

γt
[
r(st, at) + γV π(st+1)− V π(st)

] ∣∣∣ s0 ∼ µ0

]

=Eπ′

[ ∞∑
t=0

γt
[
r(st, at) + γEst+1∼P (·|st,at)[V

π
τ (st+1)|st, at]− V π

τ (st)
] ∣∣∣ s0 ∼ µ0

]

=Eπ′

[ ∞∑
t=0

γt
[
Qπ(st, at)− V π(st)

] ∣∣∣ s0 ∼ µ0

]

=
1

1− γ
E(s,a)∼dπ′ [Qπ(s, a)− V π(s)〉]

=
1

1− γ
Es∼dπ′

[
〈Qπ(s, ·), π′(·|s)− π(·|s)〉

]
, (123)
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where the second to last step comes from the definition of dπ
′
and the last step from the fact V π(s) =

Ea∼π(·|s)[Q
π(s, a)].

Appendix G. Proof of Corollary 5

The proof consists of two steps. We first show that J(π∗
0) − J(π∗

αϵ
) ≤ ϵ

2 and then we bound
J(π∗

αϵ
)− J(π̂) by utilizing Theorem 3.

Step 1: Bounding J(π∗
0) − J(π∗

αϵ
). Notice that π∗

αϵ
is the solution to the regularized problem

(2)(3), therefore we have:

E(s,a)∼d∗αϵ
[r(s, a)]− αE(s,a)∼dD [f(w

∗
αϵ
(s, a))] ≥ E(s,a)∼d∗0

[r(s, a)]− αE(s,a)∼dD [f(w
∗
0(s, a))],

(124)
which implies that

J(π∗
0)− J(π∗

αϵ
) = E(s,a)∼d∗0

[r(s, a)]− E(s,a)∼d∗αϵ
[r(s, a)] (125)

≤ αE(s,a)∼dD [f(w
∗
0(s, a))]− αE(s,a)∼dD [f(w

∗
αϵ
(s, a))] (126)

≤ αE(s,a)∼dD [f(w
∗
0(s, a))] (127)

≤ αB0
f , (128)

where (127) comes from the non-negativity of f and (128) from the boundedness of f when α = 0
(Assumption 4). Thus we have

J(π∗
0)− J(π∗

αϵ
) ≤ ϵ

2
. (129)

Step 2: Bounding J(π∗
αϵ
)− J(π̂). Using Theorem 3, we know that if

n ≥
131072 (ϵBf,αϵ + 2Bw,αϵBe,αϵBf,0)

2

ϵ6M2
f (1− γ)4

· log 4|V||W|
δ

, (130)

n0 ≥
131072 (2Bv,αϵBf,0)

2

ϵ6M2
f (1− γ)2

· log 4|V|
δ

, (131)

then with at least probability 1− δ,

J(π∗
αϵ
)− J(π̂) ≤ ϵ

2
. (132)

Using (129) and (132), we concludes that

J(π∗
0)− J(π̂) ≤ ϵ (133)

hold with at least probability 1− δ. This finishes our proof.

Appendix H. Proof of Proposition 8

This proof largely follows Mangasarian and Meyer (1979). First note that the regularized prob-
lem (2)(3) has another more commonly used form of Lagrangian function:

Lα(λ, η, w) = (1− γ)Es∼µ0 [λ(s)]− αE(s,a)∼dD [f(w(s, a))] + E(s,a)∼dD [w(s, a)eλ(s)]− η⊤w,
(134)
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where λ ∈ R|S|, η ∈ R|S||A| ≥ 0, w ∈ R|S||A|. Let (λ∗
α, η

∗
α) = argminη≥0,λ∈R|S| maxw∈R|S||A| Lα(λ, η, w),

then we have the following lemma:

Lemma 40
λ∗
α = v∗α. (135)

Proof The proof is referred to Appendix H.1.

Due to Lemma 40, we can only consider the primal optimum w∗
α and the dual optimum (λ∗

α, η
∗
α) of

the Lagrangian function (134).
Let w∗ be the solution to the following optimization problem:

max
w∈W∗

0

−αE(s,a)∼dD [f(w(s, a))] (136)

Then since w∗ ∈ W∗
0 , we know that (w∗, λ∗

0, η
∗
0) is the primal and dual optimum of the following

constrained optimization problem, which is equivalent to the unregularized problem (1):

max
w

∑
s,a

[r(s, a)dD(s, a)w(s, a)] (137)

s.t.
∑
a

dD(s, a)w(s, a) = (1− γ)µ0(s) + γ
∑
s′,a′

P (s|s′, a′)dD(s′, a′)w(s′, a′) (138)

w(s, a) ≥ 0, ∀s, a. (139)

Let p(s, a) denote r(s, a)dD(s, a) and Aw = b denote the equality constraint (138), then we can
obtain the following LP:

min
w

−p⊤w (140)

s.t. Aw = b (141)

w(s, a) ≥ 0, ∀s, a. (142)

By the KKT conditions of the above problem, we can obtain:

A⊤λ∗
0 − p− η∗0 = 0, (143)

Aw∗ = b, w∗ ≥ 0, (144)

η∗0 ≥ 0, (145)

η∗0(s, a)w
∗(s, a) = 0,∀s, a. (146)

(147)

Let c = −p⊤w∗. Next we construct an auxiliary constrained optimization problem:

min
w

E(s,a)∼dD [f(w(s, a))] (148)

s.t. Aw = b, (149)

w(s, a) ≥ 0,∀s, a, (150)

− p⊤w ≤ c. (151)
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Then the corresponding Lagrangian function is

E(s,a)∼dD [f(w(s, a))] + λ⊤
aux(Aw − b)− η⊤auxw + ξaux(−p⊤w − c). (152)

Denote the primal and dual optimum of the auxiliary problem by (w∗
aux, λ

∗
aux, η

∗
aux, ξ

∗
aux). Then

obviously the constraints (149)(150)(151) are equivalent to w ∈ W∗
0 and therefore w∗

aux = w∗,
implying that (w∗, λ∗

aux, η
∗
aux, ξ

∗
aux) satisfies the following KKT conditions:

dD ◦ ∇f(w∗) +A⊤λ∗
aux − η∗aux − ξ∗auxp = 0, (153)

Aw∗ = b, w∗ ≥ 0,−p⊤w∗ = c, (154)

η∗aux ≥ 0, ξ∗aux ≥ 0, (155)

η∗aux(s, a)w
∗(s, a) = 0,∀s, a, (156)

where dD ◦ ∇f(w∗) denotes product by element.
Now we look at KKT conditions of (134):

A⊤λ∗
α − p− η∗α + αdD ◦ ∇f(w∗

α) = 0, (157)

Aw∗
α = b, w∗

α ≥ 0, (158)

η∗α ≥ 0, (159)

η∗α(s, a)w
∗
α(s, a) = 0, ∀s, a. (160)

(161)

• When ξ∗aux = 0. It can be easily checked that (w∗
α = w∗, λ∗

α = λ∗
0 + αλ∗

aux, η
∗
α = η∗0 +

αη∗aux) satisfies the KKT conditions of (134) for all α ≥ 0.

• When ξ∗aux > 0. It can be easily checked that (w∗
α = w∗, λ∗

α = (1−αξ∗aux)λ
∗
0+αλ∗

aux, η
∗
α =

(1−αξ∗aux)η
∗
0+αη∗aux) satisfies the KKT conditions of (134) for α ∈ [0, α] where α = 1

ξ∗aux
.

Therefore, when α ∈ [0, α], (w∗
α = w∗, λ∗

α = (1−αξ∗aux)λ
∗
0+αλ∗

aux, η
∗
α = (1−αξ∗aux)η

∗
0+αη∗aux)

is the primal and dual optimum of (134). Then by Lemma 40, we know for α ∈ [0, α],

w∗
α = w∗ ∈ W ∗

0 , v
∗
α = (1− αξ∗aux)λ

∗
0 + αλ∗

aux. (162)

Let α = α = 1
ξ∗aux

, then since ‖w∗
α‖∞ = ‖w∗‖∞ ≤ B0

w, by Lemma 32 we have:

‖αλ∗
aux‖∞ = ‖v∗α‖∞ ≤

αBf ′,0 + 1

1− γ
, (163)

which implies that

‖λ∗
aux‖∞ ≤

Bf ′,0 + ξ∗aux
1− γ

. (164)

Therefore, combining with ‖v∗0‖∞ ≤ 1
1−γ , we have

‖v∗α − v∗0‖∞ ≤ α ·
Bf ′,0 + 2ξ∗aux

1− γ
, ∀α ∈ [0, α] (165)

which concludes our proof.
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H.1. Proof of Lemma 40

From KKT conditions of Lα(λ, η, w), we have

w∗
α(s, a) = (f ′)−1(

eλ∗
α
(s, a) + η∗α(s, a)

α
),∀s, a, (166)

w∗
α ≥ 0, (167)∑
a

w∗
α(s, a)d

D(s, a) = (1− γ)µ0(s) + γ
∑
s′,a′

P (s|s′, a′)w∗
α(s

′, a′)dD(s′, a′), ∀s, (168)

η∗α ≥ 0, (169)

η∗α(s, a)w
∗
α(s, a) = 0, ∀s, a. (170)

Therefore, we can see that λ∗
α is the solution of the following equations:

eλ∗
α
(s, a) = αf ′(w∗

α(s, a)), for s, a such that w∗
α(s, a) 6= 0, (171)

eλ∗
α
(s, a) ≤ αf ′(0), for s, a such that w∗

α(s, a) = 0. (172)

Besides, from KKT conditions of Lα(v, w), we have

w∗
α(s, a) = max{0, (f ′)−1(

eλ∗
α
(s, a)

α
)},∀s, a, (173)

w∗
α ≥ 0, (174)∑
a

w∗
α(s, a)d

D(s, a) = (1− γ)µ0(s) + γ
∑
s′,a′

P (s|s′, a′)w∗
α(s

′, a′)dD(s′, a′), ∀s. (175)

Therefore, v∗α is the solution of the following equations:

ev∗α(s, a) = αf ′(w∗
α(s, a)), for s, a such that w∗

α(s, a) 6= 0, (176)

ev∗α(s, a) ≤ αf ′(0), for s, a such that w∗
α(s, a) = 0. (177)

It is observed that (171)(172) is the same as (176)(177), which implies that λ∗
α = v∗α.

Appendix I. Proof of Lemmas in Theorem 10

I.1. Proof of Lemma 11

From KKT conditions of the maximin problem (19), we have

w∗
α,Bw

(s, a) = min

(
max

(
0, (f ′)−1

(
ev∗α,Bw

(s, a)

α

))
, Bw

)
. (178)

Suppose |v∗α,Bw
(sm)| = ‖v∗α,Bw

‖∞. Then we can consider the following two cases separately.

• If there exists asm ∈ A such that 0 < w∗
α,Bw

(sm, asm) < Bw.
In this case, we know that

|ev∗α,Bw
(sm, asm)| = α|f ′(w∗

α,Bw
(sm, asm))| ≤ αBf ′ . (179)

Then we can follow the arguments in Appendix F.2 to obtain:

‖v∗α,Bw
‖∞ ≤

αBf ′ + 1

1− γ
. (180)
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• If for all a ∈ A, w∗
α,Bw

(sm, a) ∈ {0, Bw}. In this case, we first introduce the following
lemma:

Lemma 41 If for all a ∈ A, w∗
α,Bw

(sm, a) ∈ {0, Bw}, then there exist a1, a2 ∈ A such that
w∗
α,Bw

(sm, a1) = 0, w∗
α,Bw

(sm, a2) = Bw.

See Appendix I.2 for proof. With Lemma 41, we can bound |v∗α,Bw
(sm)| as follows.

If v∗α,Bw
(sm) ≥ 0, then since w∗

α,Bw
(sm, a2) = Bw, we know ev∗α,Bw

(sm, a2) ≥ αf ′(Bw).
Therefore we have:

αf ′(Bw) ≤ ev∗α,Bw
(sm, a2) ≤ r(sm, a2)− (1− γ)v∗α,Bw

(sm), (181)

which implies:

v∗α,Bw
(sm) ≤ 1

1− γ
|r(sm, a2) + αf ′(Bw)| ≤

αBf ′ + 1

1− γ
. (182)

If v∗α,Bw
(sm) < 0, then since w∗

α,Bw
(sm, a1) = 0, we know ev∗α,Bw

(sm, a1) ≤ αf ′(0).
Therefore we have:

αf ′(0) ≥ ev∗α,Bw
(sm, a1) ≥ r(sm, a2)− (1− γ)v∗α,Bw

(sm), (183)

which implies:

v∗α,Bw
(sm) ≥ − 1

1− γ
(|r(sm, a1)|+ |αf ′(0)|) ≥ −

αBf ′ + 1

1− γ
. (184)

Combining (182) and (184), we have ‖v∗α,Bw
‖∞ = |v∗α,Bw

(sm)| ≤ αBf ′+1

1−γ .

In conclusion, we have:

‖v∗α,Bw
‖∞ ≤

αBf ′ + 1

1− γ
. (185)

I.2. Proof of Lemma 41

First note that it is impossible to have w∗
α,Bw

(sm, a) = 0,∀a. This is because d∗α,Bw
(sm, a) =

w∗
α,Bw

(sm, a)dD(sm, a) satisfies Bellman flow constraint (3). Therefore

d∗α,Bw
(sm) =

∑
a

w∗
α,Bw

(sm, a)dD(sm, a) ≥ (1− γ)µ0(sm) > 0. (186)

On the other hand, if w∗
α,Bw

(sm, a) = Bw,∀a, then from Bellman flow constraints we have:

Bwd
D(sm) = d∗α,Bw

(sm) = (1− γ)µ0(sm) +
∑
s′,a′

P (sm|s′, a′)w∗
α,Bw

(s′, a′)dD(s′, a′). (187)

Notice that from Assumption 9 dD is the discounted visitation distribution of πD and thus also
satisfies Bellman flow constraints:

dD(sm) = (1− γ)µ0(sm) +
∑
s′,a′

P (sm|s′, a′)dD(s′, a′), (188)
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which implies

Bwd
D(sm) = (1− γ)Bwµ0(sm) +

∑
s′,a′

BwP (sm|s′, a′)dD(s′, a′). (189)

Combining (187) and (189), we have

(1− γ)(Bw − 1)µ0(sm) =
∑
s′,a′

(w∗
α,Bw

−Bw)P (sm|s′, a′)dD(s′, a′). (190)

However, since Bw > 1, µ0(sm) > 0, w∗
α,Bw

−Bw ≤ 0, we have:

(1− γ)(Bw − 1)µ0(sm) > 0,
∑
s′,a′

(w∗
α,Bw

−Bw)P (sm|s′, a′)dD(s′, a′) ≤ 0, (191)

which is a contradiction.
Therefore, there must exist a1, a2 ∈ A such that w∗

α,Bw
(sm, a1) = 0, w∗

α,Bw
(sm, a2) = Bw.

Appendix J. Proof of Corollary 12

First notice that

E(s,a)∼d∗
α′
ϵ,Bw

[r(s, a)]−α′
ϵE(s,a)∼dD [f(w

∗
α′
ϵ,Bw

(s, a))] ≥ E(s,a)∼d∗0,Bw
[r(s, a)]−α′

ϵE(s,a)∼dD [f(w
∗
0,Bw

(s, a))],

(192)
which implies that

J(π∗
0,Bw

)− J(π∗
α′
ϵ,Bw

) ≤ α′
ϵ

(
E(s,a)∼dD [f(w

∗
0,Bw

(s, a))]− E(s,a)∼dD [f(w
∗
α′
ϵ,Bw

(s, a))]
)

(193)

≤ 2α′
ϵBf =

ϵ

2
. (194)

On the other hand, by Theorem 10 we have with probability at least 1− δ,

Es∼d∗
α′
ϵ,Bw

[‖π∗
α′
ϵ,Bw

(·|s)− π̂(·|s)‖1] ≤
(1− γ)ϵ

2
. (195)

Using the performance difference lemma as in Appendix G, this implies

J(π∗
α′
ϵ,Bw

)− J(π̂) ≤ ϵ

2
. (196)

Therefore, we have J(π∗
0,Bw

)− J(π̂) ≤ ϵ with at least probability 1− δ.

Appendix K. Proof of Theorem 16

Our proof follows a similar procedure of Theorem 3 and also consists of (1) bounding |Lα(v, w)−
L̂α(v, w)|, (2) characterizing the error ‖ŵ−w∗

α‖2,dD and (3) analyzing π̂ and π∗
α. The first and third

step are exactly the same as Theorem 3 but the second step will be more complicated, on which we

38



OFFLINE REINFORCEMENT LEARNING WITH REALIZABILITY AND SINGLE-POLICY CONCENTRABILITY

will elaborate on in this section. We will use the following notations for brevity throughout the
discussion:

v∗α,V = argmin
v∈V

‖v − v∗α‖1,µ0 + ‖v − v∗α‖1,dD + ‖v − v∗α‖1,dD′ , (197)

w∗
α,W = arg min

w∈W
‖w − w∗

α‖1,dD , (198)

v̂(w) = argmin
v∈V

L̂α(v, w), ∀w. (199)

We first need to characterize Lα(v
∗
α, w

∗
α)−Lα(v

∗
α, ŵ). Similarly, we decompose Lα(v

∗
α, w

∗
α)−

Lα(v
∗
α, ŵ) into the following terms:

Lα(v
∗
α, ŵ)− Lα(v

∗
α, w

∗
α) = (Lα(v

∗
α, ŵ)− Lα(v

∗
α,V , ŵ)︸ ︷︷ ︸

(1)

) + (Lα(v
∗
α,V , ŵ)− L̂α(v

∗
α,V , ŵ)︸ ︷︷ ︸

(2)

) (200)

+ (L̂α(v
∗
α,V , ŵ)− L̂α(v̂, ŵ)︸ ︷︷ ︸

(3)

) + (L̂α(v̂, ŵ)− L̂α(v̂(w
∗
α,W), w∗

α,W)︸ ︷︷ ︸
(4)

) (201)

+ (L̂α(v̂(w
∗
α,W), w∗

α,W)− Lα(v̂(w
∗
α,W), w∗

α,W)︸ ︷︷ ︸
(5)

) + (Lα(v̂(w
∗
α,W), w∗

α,W)− Lα(v̂(w
∗
α,W), w∗

α)︸ ︷︷ ︸
(6)

),

(202)

+ (Lα(v̂(w
∗
α,W), w∗

α)− Lα(v
∗
α, w

∗
α)︸ ︷︷ ︸

(7)

). (203)

For term (2) and (5), we can apply Lemma 34 and thus

(2) ≥ −ϵstat, (5) ≥ −ϵstat. (204)

For term (3), since L̂α(v̂, ŵ)−minv∈V L̂α(v, ŵ) ≤ ϵo,v and v∗α,V ∈ V , we have

(3) ≥ −ϵo,v. (205)

For term (4), since maxw∈W minv∈V L̂α(v, w)−minv∈V L̂α(v, ŵ) ≤ ϵo,w and w∗
α,W ∈ W ,

L̂α(v̂, ŵ) ≥ min
v∈V

L̂α(v, ŵ) ≥ max
w∈W

min
v∈V

L̂α(v, w)− ϵo,w ≥ L̂α(v̂(w
∗
α,W), w∗

α,W)− ϵo,w, (206)

or
(4) ≥ −ϵo,w. (207)

For term (7), since v∗α = argminv∈R|S| Lα(v, w
∗
α), we have:

(7) ≥ 0. (208)

There are only term (1) and (6) left to be bounded, for which we introduce the following lemma
on the continuity of Lα(v, w),

Lemma 42 Suppose Assumption 3,4,5 hold. Then for any v, v1, v2 ∈ V and w,w1, w2 ∈ W , we
have:

|Lα(v1, w)− Lα(v2, w)| ≤ (Bw,α + 1)
(
‖v1 − v2‖1,µ0 + ‖v1 − v2‖1,dD + ‖v1 − v2‖1,dD′

)
,

(209)

|Lα(v, w1)− Lα(v, w2)| ≤ (Be,α + αBf ′,α)‖w1 − w2‖1,dD . (210)
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The proof is in Section K.1. Using Lemma 42, we can bound term (1) and (6) easily:

(1) ≥ − (Bw,α + 1) ϵα,r,v, (6)− ≥ (Be,α + αBf ′,α)ϵα,r,w. (211)

Combining the above inequalities, it is obvious that

Lα(v
∗
α, ŵ)−Lα(v

∗
α, w

∗
α) ≥ −2ϵstat−(ϵo,v+ϵo,w)−

(
(Bw,α + 1) ϵα,r,v + (Be,α + αBf ′,α)ϵα,r,w

)
.

(212)
Let ϵα,app denote (Bw,α + 1) ϵα,r,v + (Be,α + αBf ′,α)ϵα,r,w and ϵopt denote ϵo,v + ϵo,w, then

Lα(v
∗
α, ŵ)− Lα(v

∗
α, w

∗
α) ≥ −2ϵstat − ϵopt − ϵα,app. (213)

Further we utilize the strong convexity of f and Lemma 37, then we have:

Es∼d∗α [‖π
∗
α(·|s)− π̂(·|s)‖1] ≤ 2‖ŵ − w∗

α‖2,dD ≤ 4

√
ϵstat
αMf

+ 2

√
2(ϵopt + ϵα,app)

αMf
, (214)

which completes the proof.

K.1. Proof of Lemma 42

First, by the definition of Lα(v, w) (6) we have

|Lα(v1, w)− Lα(v2, w)| (215)

=|(1− γ)Es∼µ0 [v1(s)− v2(s)] + E(s,a)∼dD [w(s, a)(ev1(s, a)− ev2(s, a))]| (216)

≤(1− γ)Es∼µ0 [|v1(s)− v2(s)|] + E(s,a)∼dD [w(s, a)|ev1(s, a)− ev2(s, a)|] (217)

=(1− γ)‖v1 − v2‖1,µ0 + E(s,a)∼dD [w(s, a)|ev1(s, a)− ev2(s, a)|]. (218)

For E(s,a)∼dD [w(s, a)|ev1(s, a)− ev2(s, a)|], notice that from Assumption 3,

E(s,a)∼dD [w(s, a)|ev1(s, a)− ev2(s, a)|] (219)

≤Bw,αE(s,a)∼dD
[
|γEs′∼P (s′|s,a)[v1(s

′)− v2(s
′)] + (v2(s)− v1(s)) |

]
(220)

≤Bw,αE(s,a)∼dD
[
|γEs′∼P (s′|s,a)[v1(s

′)− v2(s
′)]|
]
+Bw,αEs∼dD [|v2(s)− v1(s)|] (221)

≤γBw,αE(s,a)∼dD,s′∼P (s′|s,a)[|v1(s′)− v2(s
′)|] +Bw,α‖v2 − v1‖1,dD (222)

≤Bw,α

(
‖v1 − v2‖1,dD + ‖v1 − v2‖1,dD′

)
. (223)

Thus we have

|Lα(v1, w)− Lα(v2, w)| ≤ (Bw,α + 1)
(
‖v1 − v2‖1,µ0 + ‖v1 − v2‖1,dD + ‖v1 − v2‖1,dD′

)
.

(224)
Next we bound |Lα(v, w1)− Lα(v, w2)|:

|Lα(v, w1)− Lα(v, w2)| (225)

=|αE(s,a)∼dD [f(w2(s, a))− f(w1(s, a))] + E(s,a)∼dD [(w1(s, a)− w2(s, a))ev(s, a)]| (226)

≤αE(s,a)∼dD [|f(w1(s, a))− f(w2(s, a))|] + E(s,a)∼dD [|w1(s, a)− w2(s, a)|ev(s, a)]. (227)

40



OFFLINE REINFORCEMENT LEARNING WITH REALIZABILITY AND SINGLE-POLICY CONCENTRABILITY

For αE(s,a)∼dD [|f(w1(s, a))− f(w2(s, a))|], from Assumption 4 we know

αE(s,a)∼dD [|f(w1(s, a))− f(w2(s, a))|] (228)

≤αBf ′,αE(s,a)∼dD [|w1(s, a)− w2(s, a)|] (229)

=αBf ′,α‖w1 − w2‖1,dD . (230)

For E(s,a)∼dD [|w1(s, a)− w2(s, a)|ev(s, a)], from Assumption 5 we know

E(s,a)∼dD [|w1(s, a)− w2(s, a)|ev(s, a)] (231)

≤Be,αE(s,a)∼dD [|w1(s, a)− w2(s, a)|] (232)

=Be,α‖w1 − w2‖1,dD . (233)

Therefore we have

|Lα(v, w1)− Lα(v, w2)| ≤ (Be,α + αBf ′,α)‖w1 − w2‖1,dD . (234)

Appendix L. Proof of PRO-RL-BC

L.1. Proof of Lemma 19

Notice that by the variational form of total variation, we have for any policies π, π′ and s ∈ S ,

‖π(·|s)− π′(·|s)‖1 = max
h:∥h∥∞≤1

[Ea∼π(·|s)h(a)− Ea∼π′(·|s)h(a)] (235)

= Ea∼π(·|s)[h
s
π,π′(a)]− Ea∼π′(·|s)[h

s
π,π′(a)], (236)

which implies that

Es∼d[‖π(·|s)− π′(·|s)‖1] = Es∼d

[
Ea∼π(·|s)[h

s
π,π′(a)]− Ea∼π′(·|s)[h

s
π,π′(a)]

]
(237)

= Es∼d

[
Ea∼π(·|s)[hπ,π′(s, a)]− Ea∼π′(·|s)[hπ,π′(s, a)]

]
, (238)

where the last step comes from the definition of hπ,π′ .

L.2. Proof of Theorem 20

Let ϵUO denote
(
4(αBf,α+Bw,αBe,α)

αMf

) 1
2 ·
(

2 log
8|V||W|

δ
n1

) 1
4

+
(
4(1−γ)Bv,α

αMf

) 1
2 ·
(

2 log
8|V|
δ

n0

) 1
4

. Suppose

E denote the event
‖ŵ − w∗

α‖2,dD ≤ ϵUO, (239)

then by Theorem 16, we have

Pr(E) ≥ 1− δ

2
. (240)

Our following discussion is all conditioned on E. Let l′i,π,h denote ŵ(si, ai)(hπ(si)−h(si, ai))
then we know:

ED2 [l
′
i,π,h] = E(s,a)∼dD [ŵ(s, a)(h

π(s)− h(s, a))] (241)

=

(∑
s,a

dD(s, a)ŵ(s, a)

)
E
s∼d̂′

[
Ea∼π(·|s)[h(s, a)]− Ea∼π̂(·|s)[h(s, a)]

]
, (242)
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where d̂′(s) =
∑

a′ d
D(s,a′)ŵ(s,a′)∑

s′,a′ d
D(s′,a′)ŵ(s′,a′)

. Notice that 0 ≤ ŵ(s, a) ≤ Bw,α, |h(s, a)| ≤ 1, then by

Hoeffding’s inequality we have for any π ∈ Π and h ∈ H, with at least probability 1− δ
2 ,

∣∣∣∣ 1n2

n2∑
i=1

l′i,π,h −

∑
s′,a′

dD(s′, a′)ŵ(s′, a′)

E
s∼d̂′

[
Ea∼π(·|s)[h(s, a)]− Ea∼π̂(·|s)[h(s, a)]

] ∣∣∣∣
≤2Bw,α

√
2 log 4|H||Π|

δ

n2
≤ 2Bw,α

√
6 log 4|Π|

δ

n2
:= ϵstat,2. (243)

Besides, the following lemma shows that d̂′ is close to d∗α and
(∑

s′,a′ d
D(s′, a′)ŵ(s′, a′)

)
is

close to 1 conditioned on E:

Lemma 43 Conditioned on E, we have

‖d̂′ − d∗α‖1 ≤ 2ϵUO, (244)∣∣∣∣
∑

s′,a′

dD(s′, a′)ŵ(s′, a′)

− 1

∣∣∣∣ ≤ ϵUO. (245)

The proof of the above lemma is in Appendix L.3.
With concentration result (243) and Lemma 43, we can bound Es∼d∗α [‖π(·|s) − π∗

α(·|s)‖1]. To
facilitate our discussion, we will use the following notations:

h := hπ,π∗
α
∈ H, (246)

h
′
:= argmax

h∈H

n2∑
i=1

ŵ(si, ai)[h
π(si)− h(si, ai)], (247)

h̃ := argmax
h∈H

n2∑
i=1

ŵ(si, ai)[h
π∗
α(si)− h(si, ai)]. (248)

Then we have

Es∼d∗α [‖π(·|s)− π∗
α(·|s)‖1] (249)

≤E
s∼d̂′

[‖π(·|s)− π∗
α(·|s)‖1] + 4ϵUO (250)

=E
s∼d̂′

[Ea∼π(·|s)[h(s, a)]− Ea∼π∗
α(·|s)[h(s, a)]] + 4ϵUO (251)

=E
s∼d̂′

[Ea∼π(·|s)[h(s, a)]− Ea∼π̂(·|s)[h(s, a)]]

+ E
s∼d̂′

[Ea∼π̂(·|s)[h(s, a)]− Ea∼π∗
α(·|s)[h(s, a)]] + 4ϵUO (252)

=E
s∼d̂′,a∼π̂(·|s)[h

π
(s)− h(s, a)] + E

s∼d̂′,a∼π̂(·|s)[(−h
π∗
α(s))− (−h(s, a))] + 4ϵUO (253)

≤E
s∼d̂′,a∼π̂(·|s)[h

π
(s)− h(s, a)] + E

s∼d̂′
[‖π∗

α(·|s)− π̂(·|s)‖1] + 4ϵUO (254)

≤E
s∼d̂′,a∼π̂(·|s)[h

π
(s)− h(s, a)] + Es∼d∗α [‖π

∗
α(·|s)− π̂(·|s)‖1] + 8ϵUO (255)

≤E
s∼d̂′,a∼π̂(·|s)[h

π
(s)− h(s, a)] + 10ϵUO, (256)
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where the first and sixth steps come from (244), the fifth step is due to ‖h‖∞ ≤ 1 and the last step
from Theorem 16.

For E
s∼d̂′,a∼π̂(·|s)[h

π
(s) − h(s, a)], we utilize concentration result (243) and have with at least

probability 1− δ:

E
s∼d̂′,a∼π̂(·|s)[h

π
(s)− h(s, a)] (257)

≤

∑
s′,a′

dD(s′, a′)ŵ(s′, a′)

E
s∼d̂′

[
Ea∼π(·|s)[h(s, a)]− Ea∼π̂(·|s)[h(s, a)]

]
+ 2ϵUO (258)

≤ 1

n2

n2∑
i=1

[ŵ(si, ai)(h
π
(si)− h(si, ai))] + ϵstat,2 + 2ϵUO (259)

≤ 1

n2

n2∑
i=1

[ŵ(si, ai)(h
′π
(si)− h

′
(si, ai))] + ϵstat,2 + 2ϵUO (260)

≤ 1

n2

n2∑
i=1

[ŵ(si, ai)(h̃
π∗
α(si)− h̃(si, ai))] + ϵstat,2 + 2ϵUO (261)

≤E
s∼d̂′,a∼π̂(·|s)[h̃

π∗
α(s)− h̃(s, a)] + 2ϵstat,2 + 4ϵUO (262)

≤E
s∼d̂′

[‖π∗
α(·|s)− π̂(·|s)‖1] + 2ϵstat,2 + 4ϵUO (263)

≤2ϵstat,2 + 10ϵUO, (264)

where the first step comes from (245), the second is due to (243), the third and fourth is from the
definition of h

′
and π, the fifth step utilizes (245) and (243), the sixth step is due to ‖h̃‖∞ ≤ 1 and

the last step is from (244) and Theorem 16.

Combining (256) and (264), we have conditioned on E, with at least probability 1− δ
2 , we have

Es∼d∗α [‖π(·|s)− π∗
α(·|s)‖1] ≤ 2ϵstat,2 + 20ϵUO. (265)

Notice that ϵUO ≤ 2
5
4

√
En1,n0,α(Bw,α,Bf,α,Bv,α,Be,α)

αMf
. Therefore, with at least probability 1− δ, we

have:

Es∼d∗α [‖π
∗
α(·|s)− π(·|s)‖1] ≤ 4Bw,α

√
6 log 4|Π|

δ

n2
+ 50

√
En1,n0,α(Bw,α, Bf,α, Bv,α, Be,α)

αMf

(266)

This finishes our proof.
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L.3. Proof of Lemma 43

The proof is similar to Lemma 37. First notice that

∣∣∣∣
∑

s′,a′

dD(s′, a′)ŵ(s′, a′)

− 1

∣∣∣∣ (267)

=

∣∣∣∣
∑

s′,a′

dD(s′, a′)ŵ(s′, a′)

−

∑
s′,a′

dD(s′, a′)w∗
α(s

′, a′)

∣∣∣∣ (268)

=

∣∣∣∣∑
s′,a′

dD(s′, a′)
(
ŵ(s′, a′)− w∗

α(s
′, a′)

) ∣∣∣∣ (269)

≤
∑
s′,a′

dD(s′, a′)|ŵ(s′, a′)− w∗
α(s

′, a′)| (270)

≤‖ŵ − w∗
α‖2,dD (271)

≤ϵUO, (272)

which proves the second part of the lemma. For the first part, we have

‖d̂′ − d∗α‖1 (273)

=
∑
s

∣∣∣∣ 1∑
s′,a′ d

D(s′, a′)ŵ(s′, a′)

∑
a′

dD(s, a′)ŵ(s, a′)− d∗α(s)

∣∣∣∣ (274)

≤
∑
s

(∣∣∣∣ 1∑
s′,a′ d

D(s′, a′)ŵ(s′, a′)
− 1

∣∣∣∣∑
a′

dD(s, a′)ŵ(s, a′)

)

+
∑
s

∣∣∣∣∑
a′

dD(s, a′)ŵ(s, a′)− d∗α(s)

∣∣∣∣ (275)

=
∑
s

(∣∣∣∣ 1∑
s′,a′ d

D(s′, a′)ŵ(s′, a′)
− 1

∣∣∣∣∑
a′

dD(s, a′)ŵ(s, a′)

)
︸ ︷︷ ︸

(1)

+
∑
s

∣∣∣∣∑
a′

dD(s, a′)ŵ(s, a′)−
∑
a′

dD(s, a′)w∗
α(s, a

′)

∣∣∣∣︸ ︷︷ ︸
(2)

. (276)

For term (1), notice that

∣∣∣∣ 1∑
s′,a′ d

D(s′, a′)ŵ(s′, a′)
− 1

∣∣∣∣ =
∣∣1−∑s′,a′ d

D(s′, a′)ŵ(s′, a′)
∣∣∑

s′,a′ d
D(s′, a′)ŵ(s′, a′)

≤ ϵUO∑
s′,a′ d

D(s′, a′)ŵ(s′, a′)
.

(277)
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Therefore,

∑
s

(∣∣∣∣ 1∑
s′,a′ d

D(s′, a′)ŵ(s′, a′)
− 1

∣∣∣∣∑
a′

dD(s, a′)ŵ(s, a′)

)
(278)

≤ϵUO

∑
s

∑
a′ d

D(s, a′)ŵ(s, a′)∑
s′,a′ d

D(s′, a′)ŵ(s′, a′)
(279)

=ϵUO. (280)

For term (2), ∑
s

∣∣∣∣∑
a′

dD(s, a′)ŵ(s, a′)−
∑
a′

dD(s, a′)w∗
α(s, a

′)

∣∣∣∣ (281)

≤
∑
s,a′

dD(s, a′)|ŵ(s, a′)− w∗
α(s, a

′)| (282)

≤ϵUO. (283)

Thus we have
‖d̂′ − d∗α‖1 ≤ 2ϵUO. (284)

Appendix M. Proof of Corollary 28

First by Lemma 35, we know that

L0(v
∗
0, w

∗
0)− L0(v

∗
0, ŵ) ≤

2Bw,0

1− γ

√
2 log 4|V||W|

δ

n
+

√
2 log 4|V|

δ

n0
. (285)

Substitute the definition (6) of L0(v
∗
0, w) = (1−γ)Es∼µ0 [v

∗
0(s)]+E(s,a)∼dD [w(s, a)ev∗0(s)(s, a)]

into the above inequality, we have

∑
s,a

(
d∗0(s, a)ev∗0(s)(s, a)

)
−
∑
s,a

(
d̂(s, a)ev∗0(s)(s, a)

)
≤ 2Bw,0

1− γ

√
2 log 4|V||W|

δ

n
+

√
2 log 4|V|

δ

n0
.

(286)
Note that v∗0 is the optimal value function of the unregularized MDP M and d∗0 is the dis-

counted state visitation distribution of the optimal policy π∗
0 (Puterman, 1994). Therefore, invoking

Lemma 39, we have

J(π)− J(π∗
0) = E(s,a)∼dπ [r(s, a) + γEs′∼P (·|s,a)v

∗
0(s

′)− v∗0(s)]

=
∑
s,a

dπ(s, a)ev∗0(s)(s, a). (287)

Let π = π̃∗
0 in (287), then we can obtain∑

s,a

d∗0(s, a)ev∗0(s)(s, a) = 0. (288)
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Substitute it into (286),

∑
s,a

(
d̂(s, a)(−ev∗0(s)(s, a))

)
≤ 2Bw,0

1− γ

√
2 log 4|V||W|

δ

n
+

√
2 log 4|V|

δ

n0
. (289)

Notice that since v∗0 is the optimal value function, −ev∗0(s)(s, a) ≥ 0 for all s, a. Therefore, we
have:

J(π∗
0)− J(π̂) =

∑
s,a

dπ̂(s, a)(−ev∗0(s)(s, a)) (290)

=
∑
s,a

dπ̂(s)π̂(a|s)(−ev∗0(s)(s, a)) (291)

≤ Bw,u

∑
s,a

dD(s)π̂(a|s)(−ev∗0(s)(s, a)) (292)

= Bw,u

∑
s,a

dD(s)
ŵ(s, a)πD(a|s)∑
a′ ŵ(s, a

′)πD(a′|s)
(−ev∗0(s)(s, a)) (293)

≤ Bw,u

Bw,l

∑
s,a

dD(s)πD(a|s)ŵ(s, a)(−ev∗0(s)(s, a)) (294)

=
Bw,u

Bw,l

∑
s,a

d̂(s, a)(−ev∗0(s)(s, a)) (295)

≤ 2Bw,0Bw,u

(1− γ)Bw,l

√
2 log 4|V||W|

δ

n
+

Bw,u

Bw,l

√
2 log 4|V|

δ

n0
, (296)

where the first step comes from (287), the third step is due to Assumption 12, the fifth step comes
from Assumption 13 and the last step comes from (289). This concludes our proof.

M.1. Proof of Lemma 30

First notice that dD(s) ≥ (1 − γ)µ0(s). Then since dπ(s) ≤ Berg,2µ0(s), ∀s, π, we have for any
policy π:

dπ(s)

dD(s)
≤ 1

1− γ

dπ(s)

µ0(s)
≤ Berg,2

1− γ
. (297)

On the other hand, d∗0(s) ≥ (1− γ)µ0(s), therefore similarly we have:

d∗0(s)

dD(s)
≥ (1− γ)µ0(s)

dD(s)
≥ 1− γ

Berg,2
. (298)
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