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Abstract

We revisit the classical online portfolio selection problem. It is widely assumed that a trade-off
between computational complexity and regret is unavoidable, with Cover’s Universal Portfolios al-
gorithm, SOFT-BAYES and ADA-BARRONS currently constituting its state-of-the-art Pareto fron-
tier. In this paper, we present the first efficient algorithm, BISONS, that obtains polylogarithmic
regret with memory and per-step running time requirements that are polynomial in the dimension,
displacing ADA-BARRONS from the Pareto frontier. Additionally, we resolve a COLT 2020 open
problem by showing that a certain Follow-The-Regularized-Leader algorithm with log-barrier regu-
larization suffers an exponentially larger dependence on the dimension than previously conjectured.
Thus, we rule out this algorithm as a candidate for the Pareto frontier. We also extend our algo-
rithm and analysis to a more general problem than online portfolio selection, viz. online learning
of quantum states with log loss. This algorithm, called SCHRODINGER’S-BISONS, is the first
efficient algorithm with polylogarithmic regret for this more general problem.

Keywords: Portfolio Management, Online Learning, Quantum Learning

1. Introduction

We study the classical online portfolio selection problem (Cover, 1991). In this problem, there are
d assets (e.g. stocks) that an investor can invest money in on any given day. On each day, indexed
byt = 1,2,...,T, the investor can choose a portfolio over the d assets, which is a distribution
of their wealth on the assets, after observing the refurns (i.e. ratio of closing price to opening
price) of the assets on the previous day. The goal is to compete with the best constant-rebalanced
portfolio (CRP) in hindsight, which redistributes wealth on each day to maintain a fixed proportion
in each asset. Importantly, we study the case without assumptions on the quality of the returns, i.e.
any individual asset might suffer a total loss at any time. On any day, the wealth of the investor
increases by a factor equal to the inner product between the portfolio chosen by the investor and
the vector of returns for the d assets. The goal is to develop algorithms that minimize the investor’s
regret, which is the difference between the logarithm of the total wealth earned by the investor after
T days (starting with an initial wealth of $1), and the logarithm of the total wealth earned by the best
CRP in hindsight. Equivalently, the online portfolio selection problem can be seen as an instance
of online convex optimization (OCO), where the loss is the negative logarithm of the inner product
between the portfolio and the returns vector.

The online portfolio selection problem can be seen as a special case of a more general problem,
viz. online learning of quantum states with log loss. In this problem, the goal is to learn to predict
the outcome of a sequence of rwo-outcome measurements of an unknown quantum state on logs (d)
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qubits. Without going into quantum computing jargon (we refer the reader to (Aaronson et al.,
2018) and Appendix B.1 for a more detailed discussion of the setting), this online learning problem
can be specified as follows. In each time step the learner constructs a quantum state, which is a
d x d positive semidefinite Hermitian matrix of trace 1, and in response, receives a two-outcome
measurement, which is a d x d Hermitian matrix with eigenvalues in [0, 1] . The loss of the learner
is the negative logarithm of the trace product between the quantum state generated by the learner
and the measurement. The trace product can be interpreted as a probabilistic prediction of observing
one of two outcomes in the measurement, and hence it is natural to use the log loss for measuring
the quality of the prediction. The goal is to minimize regret with respect to the best quantum state in
hindsight. It is easy to see that the online portfolio selection problem is exactly the special case of
this problem where both the quantum state and loss matrices are restricted to be diagonal matrices.
Aaronson et al. (2018) developed regret minimizing algorithms for Lipschitz loss functions of the
trace product — in particular, the natural log loss setting was not handled by their algorithms.

Our first main contribution is the development of new algorithms, BISONS for the online
portfolios problem and SCHRODINGER’S-BISONS for the quantum learning problem, with re-
gret bounds of O(d?log?(T)) and O(d®log?(T)) respectively, and O (poly(d)) 2 per-iteration run-
ning time. This result is noteworthy for two reasons. BISONS is the first algorithm that enjoys
polylogarithmic regret with O (poly(d)) memory and running time per-iteration, and we show that
the quantum learning problem is only slightly harder than the online portfolios problem. Techni-
cally, the BISONS algorithm operates in epochs (inspired by the ADA-BARRONS algorithm of
Luo et al. (2018)), with each epoch running a Follow-The-Regularized Leader (FTRL) algorithm
with quadratic surrogate losses using the log-barrier regularizer, with an additional linear bias term
added to the surrogate loss. The linear bias term is crucial to the analysis and ensures that the regret
within any epoch is non-positive, while the final epoch incurs polylogarithmic regret.

Extending the algorithm and its analysis to the quantum learning problem presents several tech-
nical challenges. First, the non-commutativity of the matrices involved makes the construction of
the linear bias term non-trivial; we use semidefinite programming duality to design the linear term.
Second, since the matrices are complex and Hermitian, standard convex analysis machinery such
as gradients, Hessians and the intermediate value theorem need to be custom developed for the
analysis. As observed earlier, the portfolios problem is a special case of the quantum learning prob-
lem when the matrices are all diagonal, and in this case SCHRODINGER’S-BISONS collapses to
BISONS. Hence, we only give a regret bound analysis for SCHRODINGER’S-BISONS using the
machinery developed; the bound for BISONS follows easily accounting for the dimension of the
problem.

Our second main contribution is that we provide novel insights about a certain natural FTRL
algorithm for the online portfolios problem. Van Erven et al. (2020) conjectured, in a COLT 2020
open problem, that FTRL with log-barrier regularization (denoted LB-FTRL) obtains the optimal
O(dlog(T)) regret bound. If this were true, this would provide the first (semi-)efficient algorithm
with optimal regret. We resolve the COLT 2020 open problem by disproving this conjecture with a

1. It may not be apparent that the portfolio selection problem is a special case of the quantum learning problem since
we didn’t assume that returns in the online portfolio selection problem lie in [0, 1]. But since the regret in the
portfolio problem is invariant to multiplicative scaling of the returns vectors, we may indeed assume this without
loss of generality. We do caution the reader that in the description that follows, we will actually assume a different
(but equivalent) normalization for technical reasons: i.e., the returns sum up to 1, and the trace of the measurement
matrices equals 1.

2. The @() notation suppresses polylogarithmic dependence on 7" and d.
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Figure 1: Algorithms for the portfolio problem. Worst-case regret (y-axis) in the Poly(d) < T,
T < expexp(d) regime over per-step computational complexity (x-axis). Our contribu-
tions are inred. 0 < v < % is some universal constant.

lower bound of (2% 1og(T") log log(T')) on the regret of the LB-FTRL algorithm. This result effec-
tively removes the LB-FTRL algorithm as a candidate for an optimal trade-off between complexity
and regret, since our algorithm obtains superior regret (when 7' < exp exp(d)) at a significantly
better run-time and memory complexity.

Related work. The classical online portfolios has a rich literature starting with Cover (1991),
who presented the Universal Portfolios algorithm with optimal regret. However, its fastest known
implementation (Kalai and Vempala, 2000) requires O(T?(T +d)d?) average per-step computation.
Motivated by this inefficiency, early work (Agarwal et al., 2006; Hazan et al., 2007; Hazan and Kale,
2015) develped very efficient second order algorithms — the primary one being Online Newton
Step (ONS) — for this problem, under the assumption that the returns of any stock are bounded
away from O on any day. This assumption translates to a bound GG on the gradient of the loss
function. ONS obtains O(Gdlog(T)) regret at a per-step computational complexity of O(d®).
Simpler first order methods based on online gradient descent (Zinkevich, 2003) or multiplicative
weights update (Helmbold et al., 1998) can also be applied to the problem, obtaining regret bounds
of O(G+/Tlog(d)) and O(G+/T) respectively, at a per step complexity of O(d).

Since Cover’s original work did not have a dependence on G, recent work has focused on over-
coming the dependency on G via both first and second order methods. The SOFT-BAYES algorithm
(Orseau et al., 2017) is a first order method that obtains O(+/dT log(d)) regret, while preserving
linear run-time in d. ADA-BARRONS (Luo et al., 2018) is a second order method based on ONS and
achieves O(d? log4(T)) regret. However, it requires computing the solution of log-barrier FTRL at
any point, which increases its per-step complexity to (’~)(d2'5T ).

Concurrently Mhammedi and Rakhlin (2022) also improved ADA-BARRONS and obtained
O(d?log®(T)) regret in d? log(T) memory and d> log(T') computational complexity respectively.
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The tradeoff between regret and computational complexity described above is plotted schemat-
ically in Figure 1. Characterizing the Pareto frontier of this tradeoff has been a subject of study
over two decades. In particular, special attention has been given to the log-barrier FTRL algorithm
(Agarwal and Hazan, 2005), which obtains a regret of O(min{G?dlog(T),dlog?(T)}), but has
been conjectured to obtain the optimal O(d log(T')) regret by Van Erven et al. (2020).

The online learning of quantum states problem has a shorter history, being introduced by Aaron-
son et al. (2018). While the log loss version of the problem hasn’t been studied before, it is easy to
see that the log loss is 1-mixable (Vovk, 1995), and hence Vovk’s Aggregating Algorithm can be ap-
plied to the problem to obtain an algorithm with O(d? log(T")) regret —in fact, this algorithm exactly
coincides with Cover’s Universal Portfolios algorithm in the online portfolio setting. Implementing
this algorithm however is computationally rather inefficient.

Notation. For a natural number d we define [d] := {1,2,...,n}, and A([d]) to be the set of
distributions over [d], seen as vectors in R?. We denote the set of d x d Hermitian matrices by H<.
We denote the set of d x d positive semi-definite Hermitian matrices by ”Hi. Through the paper
|| - || denotes the £, norm. Given a vector v and a positive semi-definite matrix M/, we define the
semi-norm ||v||as := /Tr(v*Mwv). Given two Hermitian matrices X,Y we define the standard
inner product (which is always a real number) between them as (X,Y) := Tr(X*Y) = Tr(XY).
We define additional notation required for the analysis of the quantum learning problem in the
Appendix D.

We use the acronyms PSD for positive semi-definite Hermitian matrices and PD for positive
definite Hermitian matrices. In general, throughout the paper we denote matrices with capital letters
and vectors by small letters. When denoting functions, capital letters are reserved for functions that
are defined as sums of functions.

2. Problem setting

Online Optimal Portfolio: The agent interacts with the environment in finite time-steps t =
1,...,T. At any time-step, the agent picks a portfolio distribution z; € A = A([d]), observes a
non-negative returns vector r; € Ri and suffers the log loss

fe(xe) = fme) == —log({xy, 1e)) -

Since multiplicative scaling of r; shifts the loss by a constant independent of z;, the regret is un-
changed if we scale r; so that it lies in .A. The goal of the agent is to minimize its regret, defined as
the cumulative loss compared to the best static action in hindsight.

T
Reg = max Reg(u) = gg; (fi(ze) = folu)) - (1)

Quantum Learning with Log Loss: This problem generalizes the online optimal portfolios prob-
lem as follows. The agent’s action set is A := {X|X € H%,Tr(X) = 1}. The agent at every round
picks a PSD Hermitian matrix X; € A, observes a PSD loss matrix R;. As in the portfolios case,
the regret is invariant to multiplicative scalings of R;, so instead of assuming that its eigenvalues lie
in [0, 1] as mentioned in the introduction, we may equivalently assume that R; € A. The agent then
suffers the log loss

fo(Xe) = f(Xe; Re) == —log({( Xy, Ry)) -
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The task of the agent is to mimimize regret defined analogously to (1). In the Appendix B.1, we
show that the above problem formulation captures problem of online learning of quantum states
with log loss as described in Aaronson et al. (2018).

3. Algorithm

Algorithm 1: BISONS
input: T, B, n, B, €4, €y.
initialize: Ve € N : p§ = d1,GS(-) = FS(-) = ' R(), 2§ = u§ = arg min, 4 G&(x).
e+ 1,7+ 1

fort=1,... do
ft < receive from playing z; < z¢.

ff = ft < construct according to (2).
Ff e Feoy+ Jf
Go — G_y + g¢, where go(x) := fe(x) — (w,p¢ —pC_;)B
x?, | < APPROX-SOLVE.(GS%,x%), uf | APPROX-SOLVE, (F€, u¢)
Vi€ [d] : p7yq,; = max{p7,, x76—+1,i_1}
if 3i ¢ (2(1+6n)B)us y; > (Pri1;)"" then
‘ e<e+1, 7« 1// Reset the algorithm

else
| 7+ 717+1

end

end

In this section, we present our main algorithm BISONS (Algorithm 1). The algorithm is in-
spired by the algorithm ADA-BARRONS proposed by Luo et al. (2018), but improves the regret
bound obtained by Luo et al. (2018) by a factor of log? (T'), while simultaneously and more im-
portantly improving the run-time by factors polynomial in 7. BISONS is the first algorithm with
constant per-step computational complexity that obtains polylogarithmic regret in the portfolio prob-
lem.

The algorithm operates in epochs, where each epoch ends when either the global time reaches
T or when a certain reset condition (detailed below) is met. We call an epoch completed if it ends
by reset, which sets the internal time 7 of the algorithm back to 1 and lets the algorithm forget all
history. Thus, we keep only one copy of all parameters in memory and reset them to the initial
values when the epoch is completed.

Let 71 ...7g € [1,T] denote the timesteps following a restart trigger event. By convention we
set To = 1 and Tg41 := T + 1. We define an epoch {&;} of the algorithm as the period between
successive resets of the algorithm, i.e. & := [7;,Ti+1 — 1]. Note that by definition there is no
restriction over the length of these epochs and they can be of variable lengths.
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On a high level, BISONS works by approximating at every step, the true loss function f;(x) by
a quadratic surrogate loss

fulw) = flw) + (=0, V flae)) + g@ — 21, Vfi(zr))”, 2)

where 5 < 1 is an input parameter to the algorithm. Let e, 7 be the epoch and internal time of the
algorithm at time ¢, then we define z; = z¢ and f ¢ = ft For reasons that become clear in section 4,
BISONS further augments the above surrogate loss with a linear bias term, defined at every internal
step T as

97(x) := fi(x) = (@, p§ — p7 1) B, 3)
where {p¢ € R4} is an auxiliary sequence maintained by the algorithm and B is a bias scaling factor

which is a parameter input to the algorithm. To produce the output ¢ BISONS runs approximated
FTRL over the biased surrogate losses. Let the FTRL solution be

xzr = arg min G5_,(z) = arg mangs 'R(z), 4)
€A zeA T
where 7 is a learning rate parameter and R(z) := — Zle log(x;) is the log-barrier regularization.

Then approximated FTRL invokes a solver 2, <— APPROX-SOLVE(G;_1,Z_1, &, ), Which outputs

an approximated solution z¢ ~ x%°. The algorithm further maintains a reference solution by run-
ning approximated FTRL over the surrogate losses without bias 4% <— APPROX- SOLVE(FT LUS_1,Eu),
which is close to the FTRL solution

T—1
ur® = arg min F°_,(z) = arg mmz fé(x) +n1R(x). Q)
z€A zeA T

Further, the asset dependent bias p is updated according to
Vield: p7,; = max{pi_lyi,aziﬁi_l}. (6)

Finally, the algorithm is reset (i.e. the bias vector p is reset and all previous losses are discarded)

whenever
1 e —1

m(prﬂ,i)

We require the following condition for the solver.

El’l/ S [d] . uﬂe'-i-l,’i >

Assumption 1 We assume APPROX-SOLVE,, APPROX-SOLVE,, satisfy at any time T:

IVGE(@r11)liv26e (41 < min{6n, 61/ [VGE ()l v2,.ce (2,1}

1
F T < —,
HV SL‘ +1 H Fe(wry1)]"t — 8\/ﬁ
V2f(z)141TV2f(z
where Vi f(w) = V2 f(x) - fl(;)vgfflz)ldf( 2.

3. V& f can we seen as the projected Hessian over the affine subspace of the actions. We formally define it in the
Appendix
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The following theorem and corollary capture our main regret bound for BISONS. We show that the
total regret in any completed epoch is always non-positive and the total regret in the last uncompleted
epoch is bounded. Summing the regrets over individual epochs (which is only an over-estimation
of the true regret) gives the final result.

Theorem 1 Assuming* T > 110d?, the solvers satisfy assumption 1, setting the input parameters
as B = %dlog(T), n = é,ﬁ = 7%, we have that the regret of BISONS over a completed
(i.e. end triggered by the reset condition) epoch against any comparator w : min; u; > T is
non-positive. Further, for the epoch that runs until the end of time T, the regret is bounded by
O(d? log*(T)).

The proof is given in Appendix E, a sketch is provided at the end of Section 4. The following
corollary is immediate:

Corollary 2 Assuming T > 110d?, the total regret of BISONS with parameters from Theorem 1
is bounded by O(d? log?(T)).

Runtime: The following lemma shows that given the parameter tuning of Theorem 1, a single
damped Newton step update (defined in Lemma 15) is sufficient to solve the minimization problem
to the accuracy required by Assumption 1. Hence the per-step runtime is upper bounded by O(d?)
via vanilla matrix inversion (see Appendix F for further details and the proof of the lemma).

Lemma 3 For all e, 7 when executing Algorithm 1 with the parameter tuning of Theorem 1 it is
sufficient to apply one damped Newton step (defined in Lemma 15) in the APPROX-SOLVE,, and
APPROX-SOLVE,, subroutines to satisfy Assumption 1.

3.1. Extension to Quantum Learning

In this section, we describe the SCHRODINGER’S-BISONS algorithm (formally defined in the ap-
pendix as Algorithm 3) for the quantum learning problem. SCHRODINGER’S-BISONS follows the
same structure as BISONS, and uses the same choice of surrogate function ft, point played X,
and comparator U; as in online optimal portfolio which are still well defined by (2), (4) and (5)
respectively.

We highlight the main differences from the online optimal portfolio in this section. The main
differences between the two cases firstly is that the regularizer R used is the log-det-barrier, which
reduces to the log-barrier for diagonal matrices: R(X) = —logdet(X). Secondly, and the primary
non-trivial step in the generalization, is the appropriate definition of the biases P; and the reset

condition. Analogous to Algorithm 1, the reset condition is generalised to U7 A W[Pﬁ]_l,

for some biases Pf ensuring Pf = [X¢]~! for all s, in the same epoch with s < ¢. This ensures
that within any epoch fte stays a valid lower bound for the comparator U? for that epoch. This
property is summarized as Lemma 31 in the appendix.

The main hurdle for extending our results to the quantum setting is to find a suitable bias rule
P¢ that generalises (6). The goal is to construct Pr that satisfies P7,; = Pf and Pf = (X)L,
Unlike in the online optimal portfolio case, there is no canonical “smallest” P¢ with that property
in general. Instead we choose to look for a choice satisfying these constraints that suffers a small

4. Without loss of generality, we can fill up missing time-steps with r+ = 14/d, which result in constant losses.
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cost of bias > >°7_ (X¢, P¢ — P¢_,). This objective, which can be characterized via semi-definite
programming duality, leads to an optimal choice given by

1 1 1 1
Fo = PE XS] (L= (Xl PEXE ] (X2, ™

where (-) is the operator that sets all negative eigenvalues to 0, i.e. if M is a Hermitian matrix with
eigendecomposition M = U*PU + V*NV, where P and N are diagonal matrices with the non-
negative and negative eigenvalues respectively, and the columns of U and V are the corresponding
eigenvectors, then My = U*PU.

Remark 4 For diagonal matrices, (7) picks P(i, i) = max{[X¢]~1(i,q), P

¢ _1(4,1)} and is hence
a strict generalization of (6).

Surprisingly, we show in the appendix that the cost of bias remains O(dlog(T")B), so we do not
pay anything for this generalization. We note that relying on the “negative regret via linear bias”
technique used here is crucial towards obtaining this generalization. It is not clear how to use the
“negative regret by increasing learning rate” approach used in ADA-BARRONS here. We now state
the theorem governing the regret for SCHRODINGER’S-BISONS.

Theorem 5 Assuming T > 110d?, setting B = %dQ log(T), n = ﬁ, 8 = 171—5 the regret
of SCHRODINGER’S-BISONS over a single epoch against any comparator U = T—11; is non-
positive if the end is triggered by the reset condition. Otherwise, if the algorithm runs until the end
of time T, then the regret is bounded by O(d* log*(T)).

Theorem 5 can be used to prove the following regret bound for SCHRODINGER’S-BISONS
yields the following corollary analogous to Corollary 2. Missing proofs are in Appendix E.

Corollary 6 ForT > 110d?, the regret of SCHRODINGER’S-BISONS is bounded by O(d® log?(T)).

4. Overview of the Analysis

Intuition for the regret bound. Using quadratic surrogate losses instead of the true losses is a
standard technique for improving computation complexity while preserving logarithmic regret (see
the Online Newton Step (ONS) method from Hazan et al. (2007)). We use the same quadratic
surrogate ft as the ONS method (with a different choice of ). Such analyses including ONS
often require that the surrogate is a lower bound for the function value of the comparator u, i.e.
fi(u) < fi(u) at all time-steps. Since u is unknown, this is typically enforced by ensuring lower
boundedness over the entire domain. However in the case of optimal portfolio, a uniform lower
bound requires 3 to scale inversely with the largest observed gradient (G, a quantity we wish to
avoid in our bound.

Luo et al. (2018) observe that for any ¢, f;(u) > fi(u) only if there exists i such that u; =
Q( xiﬂ‘ ). Intuitively this condition is triggered when the stock ¢ underperformed up to time ¢, thereby
receiving a low weight from the algorithm, but later on recovers overproportionally. To counter this
case, our algorithm biases stocks to give them more weight according to the poorest performance
they experienced. The bias term we introduce in our algorithm ensures a negative contribution to
appear in the regret analysis. This quantity is carefully tuned such that, if a reset happens, the regret

5. See Section 4 for an explanation of what cost of bias means and how it shows up in the analysis.
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for this phase is non-positive. To demonstrate how the negative regret contribution appears, consider
the following decomposition of the surrogate losses:

T T

Z(ft(xt> = fi(w)) = Z(gt(xt) — gt(u) + (vt — u,pt — pr—1)B)
t=1 t=1
r
= Regg(u) + Z<xt7pt - pt71>B —<U,p7 - p0>B :
——— 1 R
FTRL regret bound negative regret

cost of bias

The FTRL regret over the sequence of functions g, is bounded via ONS analysis. Further recall that
the bias parameters p; satisfy for all 7, p;; = maxs<; x; 1 Therefore for all t,%, pti — pi—1,4 7 0
implies x4 = py; ! We can now bound the cost of bias is any epoch by

T

Z<5L't7pt_pt 1 Zzpm Dti — Pt—1,i B<Zlog (pri/d)B

t=1 i=1 t=1

We show in our analysis that py; < T at all time-steps, so this term is bounded by O(dlog(T)B).
If a reset is triggered at timestep 7, then by the reset condition we have for the comparator u,
(maintained by the algorithm), 3i € [d] : u;pr = Q(B7!). Hence the negative regret is of
order Q(%), which is, given the right tuning, significantly larger than the cost of bias. We argued
the above for the comparator », maintained by the algorithm, which is the FTRL solution of the
quadratic surrogate losses ft. This choice of comparator is the core reason behind our runtime
improvement. We now explain why this works.

Improving the run-time. The key to our improved runtime complexity is using the FTRL solution
over the surrogate losses as comparator for the reset condition. This computation is as costly as x;,
which can be done in O(d?®) arithmetic operations, in contrast to O(dT') required by previous
algorithms with optimal regret, e.g. ADA-BARRONS (Luo et al., 2018). We first setup some
auxiliary notation to simplify our argument. Let ¢;(x) = (z, ;) be the linear reward at time ¢, then
we can rewrite f; = h o £; and ft = hy o f;, where yp := L(xy) and h(x), ﬁt(az) : Ry — Rare
functions defined as

~

h(z) = —log(x),  hu(x) :=h(ye) + (& — y) W' (ye) +

2 ).

Note that both 5, iLt are convex functions.
We now define an additional function it =
he o by, with hy(z) = hy(z) if © < By,
and hy (6~ ys) + (z - ﬁ_lyt)ﬁg(ﬁ_lyt) other-
wise. Geometrically hy coincides with h; for
up to 6 ~*v; and follows its linear extension at
x = 371y, afterwards (see Figure 2). From the
convexity of ht, it follows that both ht and ft
are convex. Furthermore as shown by the fol-

lowing lemma, it holds that @ is a proper lower hy(x) "7 ==
approximation of A and therefore it is a proper
lower approximation of f. Figure 2: Surrogate losses
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Lemma 7 Forall z € (0,00) : @(x) < h(x),
where equality holds for x = y,.

The proof can be found in Appendix E. We have introduced the function ﬁ merely as a tool for
the analysis. An important invariant of our algorithm that our reset condition ensures is:

Lemma8 Lern < min{é, g, é} Consider any epoch e with the reset points T._1 < To < T.
Let L represent the length of the epoch, i.e. L = T. — To_1, we have that, it holds that

u‘r+1 +n R(UTJrl)

IIMh

L
: re
ggﬂ;j}(x) +1n

While we defer the proof to Appendix E, the high level idea is that the reset condition ensures that
l(ur11) < B Yy, for all s < 7. That means that the LHS is equal to the RHS around u, 1. Since
ur41 by definition is the minimizer of the RHS (which is a strictly convex function), hence it is a
local minimizer of the LHS, and thereby due to convexity, also a global minimizer. We are now
ready to provide a full proof sketch for Theorem 1.

Proof sketch of Theorem 1. Let 7 denote the last time-step of any particular epoch. Then

T

Reg(u) = Y (filwr) - Z Je(u)) (by Lemma 7)

t=1
= ax (Z(ft(xt) — fiw)) =" R() + T]lR(u)>
=1
- Z fi(uri1)) = " R(ur1) + 1 L R(u) (by Lemma 8)

= Reg,(tr11) — 0 ' R(ury1) + Z<33t — Uri1, Pt — P—1) B+ 10" R(u) .
t=1

We show in the detailed proof that the FTRL regret over g is bounded by O(% log(T")) and the
regularizer is bounded by O(% log(T")) due to the constraint on w. As discussed before, the cost

of bias is bounded by O(dlog(T)B) and the negative regret in case a reset is triggered is of order
Q(%) Set 3 = ©(n) = ©(35), then the regret is bounded by

Reg(u) = O(dlog(T)B) — Q(B?)I{reset triggered} .

Finally tuning B = ©(dlog(T")) completes the proof. [ |

Comparison with ADA-BARRONS (Luo et al., 2018) ADA-BARRONS uses the same surrogate
loss as us, but computes x; via online mirror descent (OMD) updates with increasing learning
rate. This technique is closely related to using linear biases (see Foster et al. (2020) for a detailed
discussion), however as we show via our application to the quantum learning problem (See Section
3.1), the latter is more flexible and additionally saves a log(7") factor in the regret. ADA-BARRONS
does not use a fixed 3 but instead doubles the parameter 3. with every reset. They ensure bounded

10
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regret by tuning the negative regret of phase e, such that it cancels the Reg, term of the next phase
e + 1. Additionally, they show that the total number of epochs is bounded by log(7"). We go a step
further and not only cancel the Reg, term, but all positive regret contributions. This allows us to
use a fixed $ and saves another log(7") factor in the regret. Finally, our algorithm uses the FTRL
solution over surrogate losses instead of the FTRL solution over the true losses for the comparator
u; as run by ADA-BARRONS. This is made possible via the introduction of the auxiliary functions
ft combined with Lemma 8 and yields the improvement in computational complexity.

5. Lower bound for FTRL

In this section, we disprove a COLT 2020 conjecture (Van Erven et al., 2020) regarding FTRL for
the online portfolio selection problem. Throughout this section, we consider FTRL with regularizer
R(z) = — Zle log(x;), simply referred to as LB-FTRL. In round ¢, this algorithm plays z; :=
arg minge 4 Iy (), where Fy(t) := n" 1 R(x) +Zt;:11 fi(x) and n > 0 is a constant hyperparameter.
This is in some sense a natural choice, since the adversary can “force” the player to operate with
this regularization by picking r; = e; for i € [d]. Indeed Van Erven et al. (2020) conjectured that
FTRL obtains the optimal bound of O(dlog(7T)), while we prove an exponentially worse lower
bound of (2% 1og(T) log log(T')). Our main theorem is the following (all missing proofs appear in
Appendix G):

Theorem 9 The worst-case regret of LB-FTRL for any T > Poly(2%) is Q(2% log(T) log log(T)).

Remark. This lower bound extends easily to the quantum version of LB-FTRL which uses the
log-det regularizer via the observation that when all the loss matrices R; are diagonal, log-det regu-
larized LB-FTRL reduces to vanilla (log barrier regularized) LB-FTRL.

Lower bound proof sketch. First, we note that the action set A([d]) lies in a (d — 1)-dimensional
subspace of R?. For technical reasons, it will be convenient to work with a full dimensional action
set with non-zero volume. Hence, we define the projection operator IT : R¢ — R4~! with kernel
c = éld and II~! its inverse mapping into A.% Thus .4 gets mapped to II.A, which has non-zero
volume in R4, In a slight overload of notation, we consider f'! (Z;7) as a function with argument
Z € 11 A by the identity

M@ r) = fI g r) = —log((IT 1%, 7)) = —log(1/d + (&, 1Ir))

and use Vi fi(z) = VU (Ilx;ry), VEfi(z) = V2 (Iz; ) as shorthand notation for the gra-
dient and Hessians with respect to the above definition of fr;. We define Vi Fy(x) and VZ Fy ()
analogously.

The lower bound rests on the following key lemma, which shows that the regret of LB-FTRL is
lower bounded by a certain stability quantity which also appears in the upper bound for FTRL in the
standard analysis; so the stability controls the regret tightly. This is, to the best of our knowledge,
a novel idea and is crucial in showing that LB-FTRL does not obtain O(dlog(T)) regret in the
portfolio problem.

6. Let U be ad x (d — 1) matrix whose columns form an orthonormal basis for the subspace orthogonal to ¢. Then IT
can be defined as TTz = U*x, and TT" ! as T v = Uv + ¢.

11
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Lemma 10 The regret of LB-FTRL is lower bounded as follows:

T
Reg = Q (Z ||VHft($t)||%v%Ft(m))—1) '
t=1

We now give a high level intuition of why a lower bound of 7 log(T") is possible. The extra
log log(T') factor requires a careful layering construction that is deferred to the appendix. The
lower bound relies on certain “target” portfolio vectors and associated returns vectors that satisfy a
particular admissibility property:

Definition 11 For some integer T > 0, a sequence of target portfolio vectors ti, . .., t7 € A([d]
and associated returns vectors o1, .. .,or € A([d]), are called admissible if Vj < i : (t;,05) =
Q(1/Poly(d)), and Vi : (t;,0;) = 0.

Given admissible sequences of target portfolio and returns vectors, we can now use them to
define adversarial sequences of returns for the LB-FTRL learner. This is done in Algorithm 4
(Appendix G), whose simplified form appears in Algorithm 2 below. Here, we use the notation
t=01-T"*;+T “%cand o, = (1 —-T " %o; + T %c.

Algorithm 2: Sequence for large regret (simplified version).

Input: (ti,oi)ZT:l,a = %,T
fori=1,2,...,7 do
fork=1,...,7“do
while z; # t; do
r¢ — move-to-x(t;; Fi_1)
t—t+1
end
Ty <— O;
t+—t+1

end

end

Function move-to-x (x; F'):

g < IIVF ()

g < min{T~2/lgll, , T o7 19
return:II~1g

The following key lemma gives a lower bound on the regret of LB-FTRL when Algorithm 4 is
used to generate the returns vectors:

Lemma 12 Suppose that for some integer T > 0, t1,...,t7 € A([d]) and 01, ...,07 € A([d])
are admissible sequences of target portfolio and returns vectors. Then there exists Ty = Poly(T,d),
such that for any T' > T} the regret of LB-FTRL against the sequence of reward vectors ry gener-
ated by Algorithm 4 (Appendix G) using these sequences is lower bounded by

Reg = Q(T log(T") loglog(T)) .

12



PARETO FRONTIER FOR ONLINE LEARNING OF PORFOLIOS AND QUANTUM STATES

The main idea of Algorithm 4 is to force the LB-FTRL learner to sequentially visit each of the
points (ti)iT:1 for T steps (0 < o < 1 is some fixed parameter), and receive the return o; at point
t;. Since t; may be on the boundary of A([d]), which the LB-FTRL learner cannot reach exactly,
we refer to visiting ¢; if the learner plays t; = (1 — T~%)t; + T~ “c, which is the target pulled
towards the center by T~<. Let us first assume that it is possible to force the LB-FTRL learner to
visit the points ¢; as stated, and that we only need to account for the times that the learner plays the
t; points in the Hessian V%Ft(xt) in Lemma 10. We can now analyze the regret by simplifying the
stability terms in Lemma 10 via the following bound:

Vifi(z) |
) s IVafela)l”
||V]_[ft(xt)H(V2HFt(xt)) b= Tr(VEFi(24))

During the T times we visit ¢; and receive o;, the term |V (£}; 0;)||? is of order T2 (ignoring
dimension dependence), since it scales with (1 — T~*)t; + T~ %c,0;)~2 = T?%(c,0;) 2. The
trace in the denominator (ignoring the regularizer) after the m-th visit of ¢, is

DT |[Vnf (s 0)|” + ml|Vif (¢ 00)|” = O(TPoly(d)T®) +m ||V f (£ 00)| .

J<u

which uses (¢}, 0;) = Q(1/Poly(d)) for i < j. We can assume that T is large enough that T7%/2 =
Q(Poly(d)), so for any m > T%/2, the denominator is of order O(m || V11 f(t}; 0;) I%). Hence the
stability in Lemma 10 is approximated by

N
Z Z Vi /(2 OZ)H2:Q(TIOE§(T))-

=1 a2 M VIt 00)]

This shows that the stability is large if the LB-FTRL learner’s trajectory can be controlled to visit
the t;’s as specified. In fact, this is possible without increasing the trace of the Hessian significantly.
At any step where the learner plays ¢/ and receives o;, the next LB-FTRL iterate will move away
from t}; we then force the learner to move back to t; by interleaving the o; returns with additional
movement-returns 1, (see the move—to-x subroutine in Algorithm 2), which satisfy ||VIIr;|| =
O(T‘é). Since the contribution to the Hessian is roughly quadratic in ||VIIr¢||, the cumulative
contribution to the Hessian trace of all movement steps does not exceed O(Poly(d)), which is
negligible in the argument above. Finally, one needs to show that the required number of movement-
returns is small enough such that the sequence does not exceed 7" time steps. In our detailed proof,
we show that this always holds for oo = % and sufficiently large 7.

Finally, equipped with Lemma 12, we are ready to derive an exponential lower bound for LB-
FTRL. All we need to do is construct appropriate admissible sequences of target portfolio and
returns vectors. We define the following sequence of target point sets for any k € [d — 1]: T :=
{3z ’ z € {0,1}%, ||z[|; = k}, i.e. the sets where exactly k components of the vector are non-zero,
and these are of equal size. Define the combined sequence by adding the sets in increasing order of
k, with arbitrary ordering within a set¢1,...,t7 = (¢t € T1),...,(t € T4-1). Foreachi € [T],
define the associated returns vector by o; := m (14— ||t;sl|o ts), i.e. the complement vector that
is non-zero iff ¢; is zero, normalized so that it lies in A([d]). The following lemma now shows that
these sequences are admissible:

13
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Lemma 13 Foralli < j, it holds (t;, 0;) = Q(1/d?), as well as (t;, 0;) = 0.

Proof The second equality follows trivially by construction. For the first observe that for any j < i,
the number of non-zero components in ¢; does not exceed the number of non-zero components in
t;. That means that if ¢; has k non-zero entries, then o; has at least d — %k non-zero entries. Since
t; # ti, o; # o;, there is at least one component of non-zero values overlapping. Finally all
non-zero components are least of size é, which completes the proof. |

Theorem 9 now follows immediately:
Proof [Theorem 9] Combine Lemma 13 with Theorem 12 and observe that the constructed sequence
is of length 2¢ — 2. |

6. Conclusion

We have presented BISONS, the first algorithm with O(poly(d)) memory and per-step running
time that obtains near optimal regret in the optimal portfolio problem without any assumptions on
the gradient. Further, we have shown that key techniques in our algorithm BISONS can be adapted
to work with the more general setting of quantum learning with log loss as well, at an additional
factor of d in the regret.

Further, we showed that previous conjectures about LB-FTRL are wrong and that the worst-
case regret of LB-FTRL is at least of order 2¢1og(T") loglog(T'). In the natural regime of T' <
exp(exp(d)) the regret of BISONS outperforms LB-FTRL at a significantly lower run-time and
memory complexity. Therefore we practically eliminate LB-FTRL as a candidate for optimal trade-
off between regret and computational complexity.
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Appendix A. Self-concordant functions: Definitions and useful properties

Definition 14 A convex function f : K — R over K C R" is called M self-concordant, if f is in
C3, f(xx) — oo for xp — x € OK and Vo € K,Yu € R™:

3
V3 )y ] < 20 [fulls gy -
The following two Lemmas are standard results (Nesterov et al., 2018).
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Lemma 15 Let f be an M self-concordant function over K and x,y € K such that

|z = yllg2 ) <1/M,

then it holds

272 2 1 2
(=3 | = lgey)*V10) 2 V20) 2 (o V )

Additionally, the damped newton step update

Ty =2 — [VQf(x)]_lvf(x)
T 1+ M ”Vf(x)”[VQf(ff)]*l

satisfies for any x such that ||V f (2)|| g2 (-1 < 1/M:

IV @)z p@ -1 < 2M IV F (@)l pay -1 -

Lemma 16 For an M self-concordant function f, the function af for « > 0 is M/\/a self-
concordant.

As corollaries, we get the following useful properties.

Lemma 17 Let f be an M self-concordant function over K C R™ and x,y € K. Then it holds

min Hx B H S max;,clz,y ||:L‘ - yHV2f(z)
z€[z,y] J V() = 1+ Mmaxze[z,y] HJZ - y”VQf(z) .

Proof If min,cp, 1 |7 — yllv2 F2) 2 ﬁ then the lemma follows immediately. Otherwise assume

20 = arg minze[w,y} HI‘ - yHVQf(z)’Zl = arg max gz o HI’ - yHVQf(z) and ﬁ > H.%' - yHVQf(zO) >
20 — 21llg2f(sy)- We have by Lemma 17

|20 — 21Hv2f(zO) l20 — ZlHVQf(ZO)
1-M ||ZO — Zl||V2f(zo) “1-M ||I‘ - y||V2f(zo) '

20 = 21llg2 () <

Since zgp — z1 = ¢(x — y) for some ¢ € R, this implies

1z = yllw2s(z)
M|z = yllg2sz)

H‘T - yHV2f(z1) S 1—

Rearranging completes the proof. |

Lemma 18 For any M -self-concordant function f over KK C R™ and any x,y € I, it holds that

1
in [|[Vf(z) -V =SSy
Jin [V F(@) = VIOl = €< 37
§
2yl =vlvere = 100y
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Proof We prove the statement

I

. max;elz,y] ||.7J - yHVQf(z)
\Y% -V >
in V1@ = VIOl 2 T, o = yllos o M

from which the Lemma follows directly by rearranging.
Denote z(ar) = = + a(y — z), and 2’ = arg min_cp, 1 [V (@) — Vf(y)ll[g27()-1- then

1
/o |z — szwf(z(a)) da=(Vf(x)=Vf(y),z—y) <|z— y”vf2(z/) IV f(z) - Vf@)”[v?f(z')]—l

< max ||z — min |Vf(z) -V .
= e | y||Vf2(z) cefo] IV f(z) f(y)H[VQf(z)] 1

Finally let o/ = arg mMax,e(o,1] |z — Z/HVZf(Z(a)). We have

!

1 o 1
/0 2 = Y1132 (o)) v :/0 2 = Y132z ay) dev + /w 7 = Y32 5 (oo v

o o = yl32 ey ! Il = yll2 oy
> da—l—/ da
/0 (1+(a’—oz)MHﬂf—y||v2f(Z(a/)))2 o (1-|—(oz—o/)MHx—yHsz(Z(O/)))2

_ / o 2 = 192 ey do s /1‘“' 12 = Yl1%2 ey i
o (I+aM |z —yllgzsiay)? o (+aM|z—yllyzpia)?

/ﬂ (et oo N e L R0%)
“Jo (L+aM |z = yllgzsa)? 1+ M |z = yllg2 ez

i

where the first inequality follows from

max ZCE—ZCV/ :CK—OLI max Xr — = || — ’
e 8% oy [1260) = 2@ gz =1 | cpmax Nl = vllezge) = 17 = vllv2 e

and applying Lemma 17.
Finally dividing both upper and lower bounds by

Jnax, 12 = yllo2pz) = 2 = yllozsz(ar))
completes the proof. |

The following lemma follows directly from chaining Lemma 15 and Lemma 18.

Lemma 19 For any M-self-concordant function f over K C R™ and any z,y € K and any
& < 1/2M, it holds that

min ||V f(z) = Vf(W)llv2pe)-1 =€

z€[z,y]
— 2 B 5
mwﬂy) < V2f(z) = %VW
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Appendix B. Quantum Learning: Preliminaries

B.1. Reductions for Online Learning of Quantum States with Log Loss

In this section we describe the online learning of quantum states problem as described in (Aaronson
et al., 2018), and show that when the loss function is the log loss (and more generally, the KL-
divergence), the problem can be cast in the form in Section 2. Recall that a quantum state on
log, d qubits is a d X d Hermitian PSD matrix of trace 1. A two-outcome measurement is a d x d
Hermitian matrix with eigenvalues in [0, 1]. When a quantum state X is measured using a two-
outcome measurement F/, the result is a Bernoulli random variable with probability of 1 being
(X, E).

Aaronson et al. (2018) formulated the problem of online learning of quantum states as fol-
lows. In each round t, the learner constructs a quantum state X;. In response, nature provides a
two-outcome measurement F; and a value by € [0,1]. The value b; may be considered to be an
approximation of (X, F;) for some unknown quantum state X that we’re trying to learn, or it can
be thought of as the outcome in {0, 1} of measuring the state X using F;. However, as is standard in
online learning, the pair (Ey, b;) doesn’t have to be consistent with any quantum state. The quality
of the learner’s prediction is given by a loss function ¢ : Ry x [0, 1] — R, and the loss in round ¢ is
computed as £((Xy, E;), b;). The goal is to minimize the regret, defined in the usual way as

T T
Reg = > L((Xy, Ey),by) —  min Y (X, Ey),by).
=1

=1 quantum state X

We now show that in either of the following two settings, the problem can be recast in the form
given in Section 2.

Setting 1: b, € {0,1}, and ¢ is the log loss, i.e. £(p,b) = —log(bp + (1 — b)(1 — p)).

In this case, note that by setting the loss matrix to be R; := byEy + (1 — b;)(Iy — E¢), we have
—log({X, Ry)) = ¢({X, E}), b;) for any quantum state X . This completes the reduction to the form
in Section 2.

Setting 2: b, € [0, 1], and ¢ is the KL-divergence, i.e. {(p,b) = blog(%) +(1-0) log(%).

In each round ¢, sample a Bernoulli random variable y; with probability of 1 being b;. Then, setting
Ry = 1B + }:?ZZ (Iz — E4), it is easy to check that E,, [—log((X, R¢))] = ¢((X, E}), b;) for any
quantum state X . This completes a randomized reduction to the form in Section 2. Note that setting
1 is the special case of this setting when b; € {0, 1}, and in this case the randomized reduction
becomes deterministic and coincides with the reduction described for setting 1.

B.2. Preliminary Notation, Definitions and Useful Properties

In this section, we collect some basic notation, definitions and useful properties which allow for
the extension of the usual concepts in online convex optimization to the case when the domain is
Hermitian matrices.

Notation Recall that, we denote the set of d x d Hermitian matrices by H¢ C C?*¢, the set of

d x d positive semi-definite Hermitian matrices by Hi. Further, given two Hermitian matrices X, Y
we define the standard inner product between them as (X,Y) := Tr(X*Y) = Tr(XY). It is well-
known, that the set of Hermitian matrices of fixed size constitute a finite dimensional real vector
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space (Olver et al., 2006). For any M € A, we denote ]\_4> € RY as the canonical representation such
that (X,Y) = <Y, 7) and A = {]\—4> | M € A}. In the quantum case, d = dim;;q and d = d in
the portfolio case.
In an overload of notation, any function H : A — R induces a function H : j — R and we use
H(X) € R? to denote the gradient with respect to the function over this real valued vector space,
while , VH(X) € H? denotes the matrix representation of that gradient, and V2H (X) € RIxd i
the Hessian in the real representation.
All functions in this paper are canonically defined over the cone C = {61\7 |M e A c> 0}
induced by A. By definition our action set satisfies A= {]\—/} cC <]\—/[> , I_d>> = 1} . For any twice

differentiable function H : _C> — R, we define the restriction to via the limit of the functions
Hy(X) = H(X) + A(X, L)) — 1)2, since

H(X)ifX €A

lim Hy(X) = )
A—00 oo otherwise.

For any X,Y,Z € A, we have V\H(Z) = VH(Z). Further since V2H,(X) = V2H(X) +
T
AT, . we have ViH(Z)(? - 7) = VQH(Z)(7 — 7) and

tim [V2H,(X)] 7 = (vE(0] - HE T [V H)]

Ao I, [V2H(X)'T,

)

which implies IR
lim [VZH\(X)] " 'Ig = 0.

A—00

For any Hessian of functions R, F or G in the remainder of the upper bound sections, we refer
to the restricted version obtained by lim)_, .

In the following lemma proves the Hessian of the — log det() function is PD and lower bounded
over the Hermitian subspace.

Lemma 20 For any PSD matrix R, and PD matrix X, the matrix representation of the gradient
of function f(X) = —logdet(X) is Vf(X) := —X L. Further the hessian satisfies the following
properties

e For any PD X, and any Hermitian M, we have that

MTN2f(X)M = Tr(MX'MX1).
e For any PD X, and any Hermitian M # 0, we have that
MV (XM > 0.
e Forany PD X, s.t. Tr(X) < 1, and any Hermitian M, we have that
M2 F ()M > || M2
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e Forany PD X and any Hermitian M, we have that

MT[V2f(X)] 7'M = Tr(MXMX).

o fis 1 self-concordant.

Proof We use the following results from Hjorungnes and Gesbert (2007) (Table 2), which show that
the differential along the Hermitian matrices are equal to real symmetric ones. The differential of
log det(Z) is Tr(Z~! dZ) and the differential of Z~'is —Z~1dZZ~! . In our case, the differential
is dZ = hM for a scalar h that goes to 0, and Z is evaluated at X, hence

(M, ¥ f(X)) = lim = (— log det(X + hM) + log det(X)) = —Tr(MX ),
—

and

_>T€2 ot p—1( -1 —1\y _ -1 -1

MTV?F(XOM = lim b (=Tr(M(X +hM) ™) + Te(MX 1) = Te(MX ' MX ).

—

Next we have that
MTV2A(X)M = Te(MX T MX ) = Tr(X 2 x72)%) = SN (X2 x12) > o,

where the last inequality follows because we know that M/ is Hermitian and not identically 0. Next
we show that for any Hermitian matrix M and any PD matrix X such that Tr(X) < 1, we have that

— — —

MV f(X)M > ||M]*.
This is proved as follows. By the spectral theorem, we can write X ~! as U* diag(A)U, where U is
a unitary matrix, and A is the vector of eigenvalues of X —1 which are all at least 1 since Tr(X) < 1.

Now we have

MTV2f(X)M = Te(MX " MX 1) = Te(MU* diag(A)UMU* diag(A)U)
= Tr(M diag(A)M diag(A)),

where M := UMU*. Now consider the function f : Ri — R defined as
F(\) = Tr(M diag(A\) M diag()\)).

An easy calculation using the fact that M is Hermitian yields, for any i € [d],

af(N)
O\

= [M* A + 2| M *Xi > 0.
P

Since A > 1 entrywise, the above inequality implies that
=, — ~
M*V?f(X)M = f(A) > f(1) = Tr(M?) = || M][*.
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Next, the inverse Hessian is well defined since the function has just been shown to be strongly
convex. The convex conjugate f* is defined over —H and is given by

1Y) = ;1;%<X7Y> — f(X) = —d+logdet(-Y ") = —d — f(-Y),

as can be seen by setting the derivative to 0 in the optimization over X. Since V2f*(Vf(X)) =
[V2f(X)]"!(Rockafellar, 2015), the statement follows from the first property. Finally for self-
concordancy, we have just shown

V2F(X)[M, M] = Te(MX TMX 1) = Te(X 3 MX~3)?),

from which follows

V3 F(X)[M, M, M) = lim A=} (Tr(M (X + hM) ™ M (X +hM) ™) = Te(MX M X))

= 2Tr(MX *MX'MXx~1)
= OTr((X 2 MX 2)3).

. N | _1
Denote ()\i)le the eigenvalues of the matrix X ~2 M X 2, then we have

3

d d d
Ve COE 3T =2 30N <2 3P < 23 D =23,
i=1 i=1 =1

Lemma 21 Any function of the form H(X) = n 'R(X) + Q(X) for a quadratic Q with PSD
hessian is /1 self-concordant.

Proof The quadratic part only affects the RHS in the definition of self-concordancy, hence it is
sufficient to show the statement for p~* R(X). This follows directly from the last point in Lemma 20
and 16. |

The definition of surrogate functions and the biased surrogate functions are naturally extended
to the quantum learning case from the definitions provided in (2), (3). We now recall the definitions
provided in the algorithm description,

GAX) =) gi(X)+n 'R(X) and X} ,,°:= ar;g(eril\in G (X).
s=1

Fe(X) = Zfse(X) +n 'R(X) and U’ := ar;g(emAian(X).
s=1

The following lemma establishes some conditions on the minimizers. We drop the notation for
epoch e from these statements for brevity.

Lemma 22 We have that the following statements hold for all T,
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o Xr.1>=0,Ur, =0, ie liein the interior of the action set A
e Given any Hermitian matrices X, U such that Tr(X) = Tr(U) = 0, we have that

(VG (X241). X) = 0and (VE,(U},1),U) = 0.

o Further we have that
?QF r+1 1€F r+1

(V20-(X20)] 7 V6 (X )

Proof The first statement is immediate by noting that for any X > 0 with at least one eigenvalue
approaching 0, we have that R(X') and thus G, approaches co and for all PD matrices € A, G is
finite.

For the second statement we will prove the first inequality. The proof for the second inequality
is analogous. We assume X # 0, otherwise the statement is immediate. Since X*,; > 0, there
exists a 6 > 0 such that X* = X* , & §X such that X*, X~ € A. Consider the function
X(a) := X7, +adX over a € [—1,1]. The function G- (X (c)) is continuously differentiable in
« and the derivative at o = 0 is via chain rule
‘ o,

A Gr(X ()

= (VG- (X711), X) .

a=0
Since X (0) = X7, is the mlmmlzer this must be 0. The last statement follows immediately from

the previous calculation and that Id is in the kernel of the Hessian inverse. |

We provide the proof of the following lemma whose restriction over the reals is well-known and
is used repeatedly in the proofs of Online Newton Step like algorithms.

Lemma 23 Given a sequence of PD matrices X1 = Xo = X3... X7, we have that

T-1

D (XN Xepn — Xi) <log(det(X7)) — log(det(X7)).
t=1

Proof We first begin by providing the proof of a simpler statement which implies the above state-
ment via a simple summation. Given two PD matrices X < Y, we have that

Y71y — X) <log(det(Y)) — log(det(X)).
To prove the above we consider the following function ¢(«) defined as
¢(a) :=logdet(aY + (1 — a)X).
Using Lemma 20 we see that ¢ is a concave function over « and that
(@) =Y - X,(aY +(1—a)X)™ ).

Therefore using concavity we have that ¢'(1) < ¢(1) — ¢(0) which implies the requisite statement
by substitution.
|
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Appendix C. Algorithm for Quantum Learning with Log Loss

Algorithm 3: SCHRODINGER’S-BISONS
input: 7', B, n, S.
initialize: Ve € N : P = dI;, G5(-) = FS(-) = ' R(-), X¢ = Uf = arg miny 4 G5(X).
e+ 1,71

fort=1,... do
ft < receive from playing X; < X¢.

ff = ft < construct according to (2).

Ff o Feoy+ ff

GE — G°_, 4 ¢¢, where g¢(X) := f¢(X) — (X, Pt — P¢ )B.

X¢.| < APPROX- SOLVEX( °(-), X9, Ugy g APPROX-SOLVEy (F¢(-), U¥)

e 1 e 1-1
Py = PE [Xe,] 78 (Id—[ XelFPEXE]E) [Xe)
ifU¢ +l7ém[Pf+l] 1then
‘ e+e+1,7<1// Reset the algorithm

else
| 7+ 7+1

end

end

Appendix D. Preliminary definitions and properties

In this section we provide some general definitions and other properties necessary for the analysis
of the BISONS algorithm. Given a PSD matrix A € ’H‘i, we associate a norm over H< , defined for
any W € Hi as

IW,y = VI(WAWA) = \/Te((AV2 W A1/2)2).
Lemma 24 For any positive semi-definite A, ||-|| 4 is a pseudo-norm.

Proof The only non-trivial property is the triangle inequality. We have

IV + W% = Te((A2(V + W)A2)?) = [V|A + W% + 2Tr((A2V A2) (AT W A2))

1 1 1 1
< VIR + W5 + 2\/Tr((A2VA2)2)Tr((A2WA2)2) = (IVIL4+ W 14)%,

where the inequality is due to the fact that for PSD matrices A, B, we have that Tr(AB) <
Tr(A2)Tr(B?2), which follows from the Cauchy-Schwarz inequality. [

Lemma 25 Forany PD matrices A, B such that ||A — B|| g—1 < X for some \ > 0, the eigenvalues
of B"2 AB™2 lie within the interval 1—X 14+ AL
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Proof We have

IA = B|3-1 = Tr((A - B)B~'(A— B)B™)
=Tr(B 2AB™ 2 — I)?)

where ev; represents the i** eigenvalue. Therefore every eigenvalue satisfies

levi (B 2AB2) — 1| < \.

For any PSD matrix A, B define

[A,B] ={aA+ (1 —a)B|ac]0,1]}. (8)

Lemma 26 For any PD matrix A, B such that

max |[|[A— Bljc1 <A,
C€e[A,B]

for some \ > 0. Then it holds for all D, E € [A, B]:
D=<(1+NE, Dl'<@1+)NEL.
Proof Since D, E € [A, B, there exists ¢ : |c| < 1 suchthat D — E = ¢(A — B). Hence
I1D = El[p-1+ <A

Applying Lemma 25 completes the first part. Repeating the same argument, but now starting with
|D — E||p-1 < A, yields the second claim. [

Lemma 27 For any function H(-) = n~'R(-)+Q(") for a quadratic function Q with PSD Hessian,
it holds that for any A, B € A and for any & > 0 and for any D, E € [A, B]:

max HZ - §H€2H<C) <t=(1+ i) '\D=E=<(1+n€)D.

C€|A,B]
Proof We have

e 14 Bl = i e [ 4~ B

CelA,B] C€lA,B]

< Vi max HX B §H?%LI(C) S VI

~1¥2R(C) C€ElA, B

Applying Lemma 26 completes the proof. |
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Appendix E. BISONS detailed analysis

In this section we provide the details for the analysis of our algorithms 1, 3, eventually proving
Theorems 1 and 5. Before delving into the analysis we request the reader to familiarize themselves
with the requisite notation, definition and properties listed out in Sections D, C. Since BISONS is
a special case of SCHRODINGER’S-BISONS, we will provide the analysis focused on the quantum
learning case, i.e. the domain will be PSD Hermitian matrices, however all the statements will hold
when these matrices are real and diagonal as will be the case for the online optimal portfolio.

We first provide a proof of Lemma 7. We further begin the core analysis by providing some
useful auxiliary lemmas and the lemmas governing the stability of the output of the algorithm in
the next two subsections. We will restrict attention in the next two subsections to any fixed epoch
and there for brevity we will remove the epoch superscript e, from the lemma statements as well as
proofs. All the statements should be understood to hold for any particular epoch.

E.1. Proof of Lemma 7

Proof Equality at z = y; holds by construction. We have h/(z) = —x~!, which is concave and
%(az) = min{—(1 + B)y; ' + Bay; %, —By; '}, which is piece-wise linear. A quick calculation
shows 1/ (y;) = hi(y;) and B/(87y;) = h}y(8 'y,). Hence for z < y;, we have h'(x) < hi(x)
and for =1y, > = >y, we have B/ () > h}(x). Finally, the derivative of h/(x) is monotonically
increasing which implies 1/ (z) > h}(x) for z > 8™y, which completes the proof. [ |

E.2. Auxiliary Lemmas

In this section we collect some basic lemmas regarding the matrices X, P generated by the algo-
rithm. We recall the definition of P, defined in (7) as
1 1 _
<Id - X7g PT—1X7?> X )
+

N
N

PT =+ X’T_
which in particular implies that for all 7,
1 1 1 1
XT2+1 (PT-H - PT)XT2+1 = (Id - X7-2+1PTXT2+1> .
+

The next two lemmas state the main properties satisfied by our choice of P.. These properties
prompt the choice of the definition for P;.
Lemma 28 We have that for all T,

P,=P, 4y and P.»X '

Proof The first statement is immediate from the definition of P;. For the second inequality note
that

1 1 1 1 1 1
XPP X7 = X7 Pr 1 X7 + <Id - X7 PT—1X72> = Ig, ©)
+
which implies that P, = X 1. |
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Lemma 29 For any 7, we have
(X741, Pry1 — Pr) = (P4, Pryy — Pr).

Proof Recall, by definition
1 1 1 1
Prin =P+ X 24 <Id - XfHPTXfH) X
+
Hence

d
1 1
(X741, Pri1 — P;) =Tr ((Id — XT?HPTXT?H) > = Zmax{l — X\, 0},
+ i=1

1 1
where \; are the eigenvalues of X ?, ;| P- X2, ;. For the RHS, we have
1

1 1 1 1
<PT_+117 PT+1 - PT> = <(X7?+1PT+1X7?+1)_17 Xf—&-l(PT—l-l - PT)X7?+1> :

1 1
Note that (X ?*, | P41 X2

1 1 1 1
2. L) =X P X2+ (Id — XTQHPTXTQH) modifies the eigenvalues

T+1 T
+

1 1
of X? | Pr X2 , such that they are lower bounded by 1. Therefore

1 1 Lt 1 d max{1 — \;,0} d
(X2 Pra X2) " X2 (Pra — Pr)X2) = Z Thax{lnYy Z max{l — A;, 0},
i=1 max{l, Ai} i=1

where the last equality follows from the nominator being non-zero only if the denominatoris 1. W

The following is a useful lemma we collect here.
Lemma 30 For any T, it holds that

HPT—H - PTHX,_H < ”XT—H - XTHx;l :

1

. 1 1
Proof Denote D = X |(Pry1 — Pr)X?

211, therefore we have that

- 1 1
D= <Id - Xf+1PTXf+1> .
+

We have
- 1 1
P = Pl = 0% =T (0 X, P 7 )
1 1
<Tr ((Id - X7?+1X71X7-2+1)%r)
1 1
< (- xhxxd )
= ”XT-H - X’FH§(;1 )
where the first inequality uses the fact P, = X~ 1 from Lemma 28. |

Finally as a result of our reset condition we have the following lemma.
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Lemma 31 Let s < 7 be two time indices belonging to the same epoch, such that the reset condi-
tion was not triggered up to time index T — 1. Then we have that

Ur 22U, < B71X,.

Proof Due to the reset condition, we know that U, < (2(1 + 67)8) "1 P~! < (28) "' P. Further
since by Lemma 28, P! < X, the second inequality of the lemma follows. By requirement of the
approximated solution, we have

Heﬁ}fl (U-)

1
T— I(U'r 2[

Note by Lemma 21, the function £’ is /7-self concordant and therefore by Lemma 18, this implies
that

HUT - U;H(?Q}%T_I(UT))—l <

Sl-

Further using Lemma 27 and Lemma 25 yields U* < 2U.. |

E.3. Stability Lemmas

In this section we show that successive iterates X, U,, Pr and X.11,U;41, Pr4+1 do not move too
far away from each other due to the log barrier, establishing the requisite stability of our method.
These results are summarized in lemmas 33 and 34. Our stability lemmas hold under the following
constraints over the algorithm parameters 7, (3.

1 1
n < min{ 7, i 53 (10
B<2/V3-1 (11)
T > max{2d, 7'} (12)

As a reminder by Assumption 1 we have that following properties,

e
HQF’T(UT-‘FI H

< m1n{67], 6/ H?G }

(V26 (Xr41)] [32G (X))

%\

(V2 F (Uri)]-
Lemma 32 For any 7, it holds that
X L2+ N0X = P2 (1+ 0P
Proof We assume LHS above is true. By Lemma 28 we have that,
X S (LX< (L NP

Therefore we have that,

I, <14+ T+1PX
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Hence by definition of Py,

X2, (Prt — (L+ NPOXZ, = (Ii— X2, Py XTH) S X2, PXE
= (la—(1+2) T+1P XT+1)+ =0.
Finally, this implies
(Pry1—(14+NP) =20 & Py =X(1+MNP:

as claimed. [ |

Lemma 33 [fn satisfies constraint (10), then for any t € [T):

X <X, =X (14+6nX
1+677 T+1 2D T_( + 77) T+1

as well as
P‘r+1 = (1+6’I7)P‘r

Proof We prove the statement for X, for which the claim for P follows directly via Lemma 32.
The proof follows by induction. Set by convention Xy = X; = éId, then the condition holds for
7 = 0. Further we will bound the following quantity quantity,

VG (X,) - ?GAXTH)HW)QGT - < |[Ve.x,

min
Ze[Xr, Xr41]

+[Fecra]

W)ZG (X)) (V26 (X,)]

The first term is bounded by

H?G

= [Fernor

L

(V26 (X,)) (V26 (X1))
= WGH N2e, aoops T [¥or 00 LX)
§67)+H?f7( (?207()( - +BH?T—?T—1H
<o+ L0 0 F B[P P Jimm
<on+ v (Hvﬁ(x» L HBIE-Pl )
<6+ i Vi X FBIX, — Xo ]l

Te(X2R, X2)

< 6n+ n(l+60B) <37. 13)

The third inequality above follows via the approximation assumption on the approximate solver, the
second last equation via the definition of the relevant quantities and the inequality follows from the
constraints on 7 defined in (10) and induction assumption. Note from the optimality of X*, ; that

H?GT(XT) VG (X — H?G

(14)

X H(%GT X)) (X))~
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Combining the derivations above with Lemma 19 we get that

V3G, e V2G.(X2,) (15)

(1 - 6n
By the condition on the approximate solver, we have

HVGT(XTJrl)||(?2GT(XT+1))—1 < 6777

hence using (14) and Lemma 19 we have that,

62 7-+1 32 T T+1

S 12772)
Combining everything yields
. 67
min ?GT X;) — ?GT X, H <3n+ <4./n.
SelXr Xr41 ) K]l o ey r = 37 (1= 6n)(1—12n2) v

Note by Lemma 21, the function G is /7-self concordant and therefore chaining Lemma 18 and
27 yields

A X 2 X S AX
for

4n

)\=1+1 <1+67.

Lemma 34 [fn and B satisfy constraints (10) and (11) and no reset is triggered at time T — 1, then
U1 22U, and U? r X 2U;.

Proof We begin by bounding the respective norm

Ee[g,i{}fﬂ] VE(Ur) =V (Urs H [V2F,(2) = HeFT(UT [V2F, (U,)] - H?F Ur1 H[??FT(UT)]—I
The first term is
H?F U.)) HgFT ! (?2FT(UT - ‘€fT(UT) (Ur))~*
< 8\[+\fHVfT . (Lemma 20)
Recall Vf-(U,) = (1 +p5-p )[?: }}2 ) <XR,§%T>' Since no reset is triggered at time 7 — 1,
(Ur,Rr)

we have using Lemma 31 that 0 < X < 4t 35" Therefore we have that

|V £

= (1 +8-8 <UT’RT>> (U, R, U, R,)

U,
XnRy) (KR (”6_5 X
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&ﬁji € [0,1/20] we get that

Maximizing the above expression over all choice of

P
- 43 ~— 38

|vi-w)
which follows by the constraint on 3 in (11). This results in
cl(lin)ey?
w1 = VA 24y

H?F

Further using the optimiality of U*, ; we have that

VFU;) = VF(Uz)| =R
H (Ur 41 (V2F,(Ur))~ (U,))~1
Therefore using Lemma 19 we have that
2f 19° 2 *
LU < (17) VPRI
By the conditions on the solver, we have
L
(V2Fr(Ur41)) \[
This implies using (17) and Lemma 19 that
) NZ_, .
VUL < (§) VU,
Combining everything yields
S 1 7 19
- + - — _

n |[¥Ew) - VE®U, H
=l Un 1] lier @ =207 T8y7 6 14

Finally chaining Lemma 18 and 27 yields
AW R U 2 AU

for
1
A=1+—2_<2.

Further chaining (16), (17), Lemma 18 and 27 similarly as above implies U,

Finally we provide some loose upper bounds on the inverses of the iterates

30
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Lemma 35 [fn and S satisfy constraints (10) and (11), we have that for any T such that the reset
condition is not triggered upto index T — 1,

2
U=l <2 (“ Z? L d) I,
2
and X' < P71 < ((1 Zﬁ@ Tn + g)> 1.

If further T satisfies constraint (12), then the last term is upper bounded by T?1,.

Proof Lemma 22 shows that for all Hermitian matrices H, such that Tr(H) = 0 we have that
(VF._1(U}), H) = 0. Further since V F-_1 (U}) is Hermitian, these facts imply that VF._ (U}) =
71, for some v € R. Substituting the definition of V F._; we get that

T—1
N A4BR . WULRIRY o
VId_SZ:;( Xor) ome )T (49
<X‘7RS>

Using Lemma 31 we get that (U*, Rs) < ¥ and therefore the above equality implies that
Ut < A1,
Further using (18) we have that

T—1

v = (Uf,VE_1(U})) = (U?, Z (_

§=Ti—1

(1+ B)Rs
(X, Rs)

(UF, Rs) Rs e
<X57Rs>2 -7 U‘r >
7—1

1+ B)(U*, Ry U R\ d
S (AR | SRR

+ 8

= (X.. Ry) (X, R.)?
_(Q+p)T d
- 4B n
Combining these leads to
_ 1+ 6)°T
Urt = ((4?17 +d)Ig

By Lemma 31, we have U~ L=< 2U* 1 and by the reset condition we have P, < %UT_ 1 which

completes the first part of the lemma. Finally, since n < 3/4, (14 )2 < 3and T > max(2d, 371),

we have

(1+8)*T  d _ . 5
475277+B§T .
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E.4. Main proofs

For the next three lemmas, once again for brevity we drop the epoch superscript. Further we define
the inherent dimension of the problem d as d for the standard optimal portfolio case and d? for the
quantum case. The next lemma bounds the cost of bias in our algorithm.

Lemma 36 Let n, 3,1 satisfy constraints (10)-(12). Consider any epoch e with the reset points
Te—1 < Te < T. Let L represent the length of the epoch, i.e. L = T, — To_1. Then the cost of bias
within the epoch is bounded as follows

L L
> (Xe,Pr=Pry) =) (P71, Pr— Proy) < 2dlog(T).

T=1 T=1

Proof By using Lemma 23 and Lemma 29, we have

L L
S (Xe,Pr—Pry)=> (P71, Pr— Pry) < logdet(Py,/d).
=1 T=1
Finally by Lemma 35, we have P;, < T°I,, which completes the proof. |

Lemma 37 For all 7, the approximation gap FT(UTH) E. (Ur,,) is bounded by

T

1
- 5677

Proof By convexity, Cauchy-Schwartz and Lemma 18, we have

Fr(Ur1) = Fr(Ur 1) S (VE(Uri), Upr = Uryy)

A~

FT(UT+1) F(UT+1)

< [Fhrw.)| o= T2
= H Ursa SE XU =Y MR TS 28, (U )
VU H
H Urt1) V2 (Uy 1)~
R
L= Vi)
VIV E Uiz, 0, -0
The algorithm requires
. 1
V(U <., <.
|95 V2P (Uns)] 7 T 8/
which completes the proof. |

The following lemma bounds the regret with respect to biased surrogate functions g, within an
epoch.

Lemma 38 Let n, 8,1 satisfy constraints (10)-(12). Consider any epoch e with the reset points
Te—1 < Te <T. Let L represent the length of the epoch, i.e. L = T, — T._1. The FTRL-regret with
respect to any comparator U over the functions (g.r) _, is bounded by

L

S (6 (X0) — g2(U)) < 1;61 log(T) + 1 R(U),
T=1

where d is the inherent dimension of the problem: d? for the PSD case and d for the simplex case.
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Proof We wish to apply Lemma 47. We first check the conditions. Note that via (13) and Lemma

27 we see that Assumption 3 is satisfied with ¢; = (1 + 67)2. Further the condition on the solver
2

implies that Lemma 47 holds with with factor T 5) < E}J_rg%? < %. Therefore using Lemma 47

we have that

L

> (9:(X7) = 9:(U) = R(U Z |Fgr(x7)

=1

<3 ([P0

?2G (X))~

- BZH? P lH (V26 (X,))~ )’

726‘7 X.))

where we used (a + b)? < \a® + ﬁlﬁ for any A\ > 1, generalizing it appropriately to vectors. We
deal with the above two terms separately. To control the first term note the following

V26, (X,) = I V2R(G) + Y g? FX) T A(X)T.
s=1
Using Lemma 20 we get that for any 7

|74

ZHWT % - Zlogdetaﬁg”f? LX)V (X))
< Zdlog ((J ?ﬁ ?é?;}]{ ‘?fT > .
By Lemma 35, we have X, = T 2I, for all 7 € [L], hence
H?fT(X g m <t
Further, since 7' > 2d and n < 1 we have
Z |97x . lﬁocilog(T).

33



ZIMMERT AGARWAL KALE

For the second norm, we have

3 L N 5 L

(V2G,(Xt)) (V2R(X7))~!

= 772 |Pr — P771HA2XT (by Lemma 20)

T 1 1
=ny Tr ((Id — X2 PT_1X7?)2+>

t=1

T 1 1 1oL
<n> Tr ((Id — XZ2P 1 X2) (Iy— X2 X1 X2 )+>
t=1

T 1 1
<6np>> Tr ((Id - X2 PT_1X$)+>
t=1
T 1 1
= 60" > (X, X, V21— X2 P X2) X7
t=1

= 6772 Z<X‘ra Pr— Pr—l>
t=1

=602y (P!, P — Pr_y) < 1257dlog(T),

1 1
where we use X2XT_11X7? = 1+6
last equality. By n < 4B, 8 < V2-1 by constraint (10),(11), we have

I; by Lemma 33 for the third inequality and Lemma 36 for the

Bzz H? ?t 1H F26. (x-S ?);S—leog( ) < glog(T).

Combining both bounds completes the proof. |

The following lemma lower bounds the negative regret contribution we get.
Lemma 39 Ifn, S satisfy constraints (10) and (11), then for any T, the negative regret is bounded
by

B
—(Ur41, Pr — Py) B < I{reset happened at T}(—152ﬁ + dB).

Proof If no reset happened at 7, we have P- > F, and the term is bounded by 0. Otherwise by
Lemma 33 and the reset condition, we have

1 1
U.1.P) > Upiq, Pryq) > — .
(Ur1, Pr) = 1 +677< r+1, Pr1) = 2(1 + 61)28
By the constraint (10), we have (1 + 67)% < g. Using Py = dI; completes the proof. |
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Proof of Theorem 1 and Theorem 5. We use d to denote d2 in the full PSD case and d in the
regular portfolio case (i.e. all matrices are diagonal matrices). With

264
B—idlog( T)
11d
5= 784
_ b
77— 4B>

the constraints can be seen to (10)-(12) be satisfied. Consider any epoch e with the reset points
Tee1 < Te < T. Let L represent the length of the epoch, i.e. L = T, — T.—1. We drop the
superscript e below for brevity. Then for any comparator U = T~ I, we have that

Te—1

Reg (U) = Y (filXe) - Z () (by Lemma 7)
t=Te_1

T

< max » (fr(X) = f(U") =07 RU') + 07" R(V)

9
=

I
= 5

(Fr(Xr) = fr(UF0)) =0 R(UL41) + 07 ' R(U) (by Lemma 8)
T=1
L T
= (9-(X2) = 9+ (Ur1)) = "R(UL41) + > (X7 — Ups1, B(Pr — Pi 1))
=1 t=1
+ FL(Us1) = FL(Upn) + 1 'RWU)
—_———
<n~'dlog(T)
11 - 1 dl 5B
< gdlog( )+ 561 + 2dlog(T)B + Oi( ) (@ — dB)I{reset happened at 7}
(by Lemma 36-39)
11 -
< ﬁdlog(T) + 7dlog(T)B — —]I{reset happened at 7}
= 365ﬁdcilog2(T) - @ddl og?(T)I{reset happened at 7} .

Proof of Corollary 2 and Corollary 6. We use d to denote d? in the full PSD case and d in the reg-
ular portfolio case (i.e. all matrices are diagonal matrices). Define U° = arg ming ¢ 4 3.1, f¢(X)
and U = (1 — %)U ° 4 %(éld). By construction U = T~ 'I, is satisfied. As denoted earlier
Ti,...,Tg are the reset points of Algorithm 3 over the game with T steps, and 7o = 1 and
Te+1 =T + 1 by convention. We now derive the following succession of inequalities

Reg < Reg(U) — T'log <1 - ;) < Reg(U) + O(d)

< Z > (£i(X2) = ful0)) + O(d) < O(ddlog?(T)),

e=0tcé&,
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where the first inequality follows via a simple bound on the optimality gap between U° and U and
the last step uses the epoch-wise regret bounds established in Theorem 1 and Theorem 5. |

Proof of Lemma 8 In the proof we omit the superscript e for brevity. Define for any s, the set
D, = {X € A(X,R,) < 7YX, Rs)}. As we have shown in Section 4 we have that for all s,
f5|’DS = fi |p, where [|g for a function [ and a set S denotes the restriction of the function / on the
set S. The first step is to show the following for any step 7

-
D, :={Uc AU =p7'P'} C () Ds.
s=1
To derive the above, note that due to U € D, considering any s < 7 and noting that 5 = 0, we
have

_1 _1 1 1
(U,Rs) _ - (UR) _ - (U, X3 *RX2) s (X, 2UX, 2, R)
= 1 1
<X5,R3> RE’Hi <X3,R> R’EHi <XS’X;§R/Xg§> R’EHi

_1 _1 11
=maxev;(Xs 2UX;s ?) < maxev;(PPUP?) < gL,
K KA

which concludes that claim. Next we show that U7, € int(Dy). Since L — 1 did not trigger
a reset, we know that U; < WPEI. By Lemma 33 and 34, we have UZH < 2Uy, and

Pyt < (1+ 6n)PL_J}1. Hence U, < B~'P.|. Finally since f;t\& = ft|& and Uy, is by
definition the minimizer

Up41 = arg mlnz fi(X) + 0 'R(X),
XeA ‘T

this implies that U}, is a local minimum and by convexity a global minimum of the LHS in
Lemma 8. u

Appendix F. Solving the SCHRODINGER’S-BISONS optimization problem

Proof [Proof of Lemma 3] We drop the superscript notation for e for brevity through this proof. We
will prove the statement by induction. The inductive assumption along with (13), gives us that

X <37

[V2G-(X7)] T

Further by Lemma 21 the functions %R, G,, F, are /1 self-concordant. Let X1 = X T be the
one step damped Newton update defined in Lemma 15. Therefore by Lemma 15 we have that:

HQGT(XT*Fl) H

Similarly for U, we have by (16)

H?F

< 2[“?67

< 187*% < 6.

<6y Ve (x,)

[V2Gr (X741)]™ [VQG (X))~ [V2G- (X7) 7!

5

[VQFT(UT 24

S.
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Let U, 1 = U™ be the one step damped Newton update defined in Lemma 15. Therefore by Lemma
15 we have that:

HeﬁT(UTH)H

‘ -

< 2vi |V

<

[V2Er (Ur )]~ [VQFT(UT)] 8

E.

Appendix G. FTRL lower bound omitted proofs.

First, we prove Lemma 10. This lemma follows from Lemma 48, since II.4 has non-zero volume,
and the fact that Assumption 4 holds, as shown by the following lemma:
Lemma 40 For any ) > 0, LB-FTRL satisfies Assumption 4 with co = ﬁ
Proof First note that for any x, y € int(A([d]), we have

T d TIe; ) (Ile; T
) +Z( e'b)( eZ) >~ mi ZvQFt( )

— (x,€;)2 — ze[d] z?

Hence we need to prove that for c; = (1+ (EEEAA have min;¢[q xm/azf‘l > \/ca.
We have

Dp (@, 0) + Doy (w,2) = (@ — 20, VG (a) — VG )
<mt)‘ — 4, — AV fi(xy))

)\ <<x?7rt> _ 1> .
<xt7 rt)
Let H} (z) = G — Y'20 fo(), then

Dy (2, x0) + Dy (e, 27) = (a7 — e, VHN (7)) — VH ()

_7712( ‘ wtz_2>+/\<<$?ﬂ“t>+<1?§ﬂ”t>_2>

ti  Tpy (we,me) (2, 7o)

Since by construction V2G} = V2H}, we have

DG?($?7mt) +DG;\("Et"'L’?) > DH?(x?axt) +DH?(xt’x?)v

)\<1_ (g, 1) > >n_1i $§\,z ﬂftz _ 9
(xt,rt xt,z m '

Let z = min;c g %, then this results in

which implies

S P Ca )
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as required. |

In the remainder of this section, we use f(d,T) = O(g(d,T)), f(d,T) = Q(g(d,T’)) to mean that
there exists universal constants C' > ¢ > 0 and T = Poly(d) such that for all 7' > Ty, it holds
f(d,T) < Cg(d,T) and f(d,T) > cg(d,T) respectively. Poly(x) hereby means that there exists
some fixed exponent a € [0, co) such that the statement holds for z*. Finally f(d,T) = O(g(d,T))
means f(d,T) = O(g(d,T)) and f(d,T) = Q(g(d,T)) hold simultaneously. Also recall that we
assume 1" > Ty = Poly(T, d), specifically we will use 7 < T throughout this section.

Define the scaling factors (c;)!_; = 1 — 2/7~%, where I = | £1log,(7®)]. For € A([d]), we
define the “pulling to the center” operator (*), by &(*) = Y (esllzx) = csz + (1 — c5)e.

Algorithm 4: Sequence for large regret.

Input: (t;,0;)]_,,a = %,T
fori=1,2,...,7 do
fork=1,...,7%do
fors=1,...,[falogy(T)] do
while z; # t*) do

re 4— move—to—x(tz(s) Fi_q)

t<—t+1
end

Ty < OES)

t+—t+1

end

end

end

Function move-to-x(z; F'):

g < IIVF(x)

g < min{T~2/lgll, , T o7 19
return:I1 g

Basic calculations: By definition ¢; = O(1) for all ¢ € [I] U {0}. Further we have for any
s, s e [IJU{0}:

1 — cyey = (25 + 25’)T_a N 2s+s’t—2a _ @(Qmax{s,s’}T_a) ]

For any x,y € A([d]), we have
(@, y)) = é + (M2, Ty ")) = é + sy (T, My) = % + sy (T, ).
By the assumption on the sequence, we have for any j < i:
(Y, 08"y = Q((ti,0) = Q (@) (19)
(89, oy = L= Gt — =0 <2m:;28/}> (20)

38



PARETO FRONTIER FOR ONLINE LEARNING OF PORFOLIOS AND QUANTUM STATES

Bounding the movement steps. The main result of this section is the following Lemma.
Lemma 41 The number of movement steps up to time T is bounded by O (Poly(d)T3°‘+% log(T)Z).

In order to prove this Lemma, we first require the following.

Lemma 42 The while routine over move-to-x for a target t up from time t requires T < 2T;/2 |VaE:(t) |+
1 steps.

Proof We have reached the target, if at time ¢+ 7 is holds V1 Fy,(t) = 0. We select the movement
returns 75 for s € {¢,...,t + 7 — 1} such that

IV Ft1(t)]y = max{0, [V Fs(8) [l — IV fsr1 ()57 -
When we cannot reach the target in one step, the norm of the gradient is

[[TIrs]| > T2 > QlT—l/2
1 -1 -1/2 = 9 '
g+t rg) = 5+ T

IV fsr1 ()]l =

Hence the number of steps 7 until the norm is 0 is bounded by

2T1/2
d

r < VROl + 1.

Lemma 43 For any movement-return v and any x,y € A([d]), it holds

IV f (7)) = Vif (y;r)| = O(@*T™).

Proof
IVaef () — Vanf ()l = |~ SR, A
i) — )| = — r
% /A% 1/d + (Iz,00r)  1/d + (Iy, ITr)
1 1 1 o7 1
< - Th = o(dT Y,
1/d—T 2 1/d+T 2 1/d? =T

where we use that movement returns by construction satisfy [|IIr| < T~ and IMz|| < [jz]] <1
for any x € A([d]). [ |

Lemma 44 Forany x € A([d]) and s € [I] U {0}, the largest possible gradient of any regularizer
part r;(2)) = f(2%); e;),i € [d] is bounded by

s [vre ] =0 (o37).
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Proof
Ile; d T
. (s)H — i< — 4
va(x ‘ ®, e;) ‘ S1-¢ 20
where we used 1 1
@), ) = ~— & 4 eilz,e) > _dCS.

Proof [Proof of Lemma 41] For the initial move- -to-x, we have Fy(t (0)) R(tgo)), hence by com-

bining Lemma 44 and 42, we require (Q(dTO‘Jr ) initial steps. Afterwards, we need to bound the

steps between any two targets t(s) t,(j ), where k < k’. Assume this switch happens at time 7 < T

(since the Lemma statement is concerned with movement steps before time 7T'), directly after the

(s) 5)

agent observed a return o, at target t,i . Hence

)

V@] < [T o) + V@) - vk @)

where we use that HVHFT_l(tE:))H = 0 since the agent was in that point when receiving r.
Splitting the time-steps into movement-returns M, := {t € [r]| ||[IIr;|| < T~'/?} and regular

returns yields
[ur s o] + [ FuFa6) - Va6

< |[vurE?) - vure)| + | 3 Vusi#) - Vusid?)

SGMT

k—1 1

(525 (]« et
7j=1r=0

3 (a0« fruse o)
=0

H

r

< O(d*T?) + O(d?) (Lemma 44 and 43)
*T1 ]
Lo max  LoT108(T) ) o max Lo log(T)
j<tyr,r'€[TJU{0} <tgr),O§-T )) <t e[IU{0} (tgr),ogr )>
= O(Poly(d)T?*log(T)) . (Equation (19) and (20))

The proof is completed by applying Lemma 42, noting that the number of switches is bounded by
IT <T*log(T). [ |

Bounding the Hessian trace. We first bound the Hessian trace of movement-steps.

Lemma 45 The movement time-steps M for any T < T and any t € A([d]) satisfy

Y IVnfEm)l* = 0(d?).

teM-

40



PARETO FRONTIER FOR ONLINE LEARNING OF PORFOLIOS AND QUANTUM STATES

Proof By construction ||IIr|| < T-3, s0

LT

. 2 _
I9n sl = o e |

— = O(d*T™).

Summing over less than T" time-steps completes the proof. |

We are ready to bound the total Hessian.

Lemma 46 Assume 7 < T is the time-step where the m-th iteration through targets (t,gs)) 5= I8
completed, then the trace of the Hessian at any target tl(- %) is bounded by

Tr(VEF(t"))) = O ((Poly(d) + m(s + 1)) d°

L Imo
Proof We split the trace into 4 terms below based on various contributions from (a) the regularizer,
(b) the time steps M where the returns are movement-returns selected by the move-to-x subroutine,
(c) the returns OE»S) selected for j < ¢ and (d) the returns selected for targets tgs), s € [IJu{0}. The
first two terms are bounded by Lemma 44 and 45 respectively.

TEREE) = 30 s + X [enn)
i=1 SEM

i—1 I ) 9 I / )
—i—zz HVHf(tl(»s);og-s))H +mz HVHf(tES),oES))H
Jj=1s'=0 s'=0
< dgj;j +O(d?) + max _ T +m i M

j<is €U0} (), of

—

E’J\

N>
~
o

<O <d3€§j> + O(Poly(d)T*log(T))

s I
+m (Z 27 > 2—28’> 4T ||Tlo;||*

s'=0 s'=s+1

-0 (Poly(d)€§a> +0 < (s+1)d” T; > ITlo;|?

)

where we use equations (19) and (20) and the fact that 7 < 7. O(T*log(T) = O(Lx 2% Z)follows
from
22T~ og(T) < T3 log(T) = O(1).

Finally, observe

1
0= <ti70i> = —

y + (I1t;, Io;) >

— [Hoi| -

SHN
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Hence
20 20

T T
O(POIY(d)ﬁ) = O(POIY(d)ﬁ) |Tlo;|?

which concludes the proof. |

G.1. Main lower bound proof

Proof [Proof of Theorem 12] By Lemma 41, there are O(Poly(d)T Bort 3 log?(T)) movement-
returns before time 7" and the algorithm walks through O(71) = O(T*log(T')) regular returns,
hence for a = %, O(Poly(d)T7/®log®(T)) = O(T'>/16) and there exists a sufficiently large
Ty = Poly(d, T'), such that the algorithm finishes before time 7.

Next we bound the stability term. We have

IVifi(z)|?

2 e —
IVnfiliesreo 2 @2 pyw)

For the m-th time of visiting tgs), the denominator is by Lemma 46 bounded by O((Poly(d)+m(s+
1)))d? gjj | o;||%. For m > T*/2, the trace bound simplifies to O(m(s + 1)d22-25T2%) ||Tlo;||%,
since we assume T%/2 = Q(Poly(d)). The nominator is

Hva(tES); o§.5))H2 — O(d22725T2 |[Tloy|?) .

For the total stability, we have

Finally log(I) = ©(loglog(T")) completes the proof. [ |

Appendix H. Follow-The-Regularized-Leader analysis

Both our main results rely on the standard analysis for FTRL, which we revisit in this section and
extend to approximated solutions for the upper bound. Vanilla FTRL is used for online learning
over a convex action set X', where the environment picks a sequence convex loss functions (gt)z;l
from some function space G. The input to FTRL is a regularizer R : X — R and define

t—1
x} = arg min Gy_1(x) := arg minng(:ﬁ) +n 'R(x).

reX zeX o—1

The algorithm plays z1 = 27 and afterwards invokes a solver x;11 = APPROX-SOLVE(Gy, ¢, 0)
which satisfies

zii1 € {z € X[ [[VGi(2)| (26,21 < IIVGHz)ll(v26, 201} -

We consider in this paper special cases of FTRL that allow for a simple regret analysis.
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Assumption 2 The action set X C R is compact and the regularizer R is strictly convex, twice
continuously differentiable and goes to infinity on the boundary of X.

This assumption is directly satisfies by the simplex .A = A([d]) and the log-barrier regularizer.
Furthermore when G is the class of loss functions arising in the online portfolio or quantum learning
problems, along with the associated log-barrier regularization, the following two assumptions are
also satisfied:

Assumption 3 There exists a universal constant cy, such that for any sequence of functions g1, ... g €
G picked by the environment, any point Ty on the line between x; and xy |, satisfies

V2Gt(ft) j 01V2Gt($t) .

Assumption 4 There exists a universal constant co, such that for any sequence of functions g1, . . . gy €
G picked by the environment, the interpolation between x and x4, 1 defined by

xi‘ = arg I/{}lin Gi—1(z) + gi(x) — (1 — N)(x, Vge(zy)),
xT€E

satisfies for any \ € [0, 1]

VQGt(.%'?> >~ CQVQGt(CCt) .

For any FTRL algorithm satisfying the assumptions above, the regret is tightly lower and upper
bounded as shown in the following lemmas.

The following lemma gives an upper bound on the regret. We will prove this lemma even for
the quantum case. We refer the reader to Section D for relevant definitions of gradient, Hessian and
Bregman divergences in that setting.

Lemma 47 Under Assumptions 2 and 3, the regret of §-approximate FTRL is upper bounded for
any comparator u by

T T
C
> (gi(xe) — gi(w)) < 2(1*;;)2 Z IV (@)1 Fo2g (a1 +
t=

t=1

R(u) — R(x1)
R,

Proof First consider the following inequality which holds for any ¢,

2 1 2 1 2
||VGt(xt)H(V2Gt(a:t))*1 < <(5 ”Vthl(xt)H(VQGt(xt))*l + 17_5 ||v9t(1:t)H(V2Gt($t))1>
1
< (5 IVGia(ze-1) 520,001y + 15 ”Vgt(ﬂ?t)||?v2ct(a:t))l>

1
< <5 IVGit(@e-)fv26, 4@yt + 1% Hv.gt(xt)H%V2Gt(wt))—1)
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where the first inequality follows by noting that that (a + b)? < Aa? + ﬁbz for any A > 1,
generalizing it appropriately to vectors and the second inequality via the approximation guarantee.
This in particular implies via summation that

1 —T
HVGt(Hft)H?vzct(xt))—lSm > 0TIV @) w26 eyt | - 21

T<t

Now note that since =}, minimizes G; we have that Vo € A : (z — x}, {,VGi(2},,)) = 0
(For the quantum learning case this is explicitly derived in Lemma 22). By Taylor’s theorem, there
exists A € [0, 1] such that D¢, (27, |, 7¢) = 5 H:z:t 11 a:tHVQ Go(2))" Therefore we have that

Gt(mt) - Gt(xz—&-l) = Dg, (w4, UC?H)
= (21 — 2111, VGi(2) — VGi(2111)) — Do, (241, 1)

1
= (x4 — 21, VGi(x1)) — 3 [ ﬁtHQvQGt(gzg)

IN

x Ly 2
th - xtHHV?Gt(:@?) HVGt(fEt)”WGt @MH1 T 5 thﬂ - xtHVQGt(a’ct’\)
1
<3 HVGt(xt)szzat(f Ay-1 <4 HVGt(CUt)H (V2Gy (1)1

Summing over all time-steps and using (21) we get that

T T
D Gilmr) — Gi(afy,) < Z 20— 972 IV 9lltv2c, ey -1y -
_ t=1

Next consider the decomposition below

T T—1
> (gelr) w) = Y (Gilxr) = Ge(xe41)) + Grler) — Gr(w)) + 07 (R(u) — R(z1))
t=1 t=1
T
<D (Gulwy) = Gulafia)) + Gr(hy) — Gr(w) +07 ' (R(u) — R(21)).
t=1
<0
Combining the above conclusions we get the lemma. |

Lemma 48 If A has non-zero volume in its embedded space and Assumptions 2 and 4 are satisfied,
then the regret of exact (6 = 0) FTRL is lower bounded by

T T
C2
Ez 1V ge (@ ||(V2Gt(xt) Z gi(zt) — ge(u')) -
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Proof We have

T T
;(Qt(xt tz:; (Gi(xt) — Ge(zp41)) + GT(»”UTH;— Gr(u))+n~" (R(u) ;OR(fﬂl)) .

For the lower bound, we can simply lower bound max, by picking v’ = x7; and omit the last
two terms. It remains to analyse the first term. Given that R(z) — oo on the boundary of X, the
points x; are all strictly in the interior of A.

Gi(xt) — Ge(x441) = Da, (w4, Te41)
= Dg; (VGe(2t41), VGi(zy))
1
=5 IVGi(w41) — VGt(ﬂft)H2v2c*((1fx)vct(xt)+wct(ztm)
Hgt(fl«“t)H (V2Gi(2))) 1 > 2 Hgt(xt)H (V2G(xe)) ! -

The above statement using the decomposition implies the lemma. |
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