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Abstract
We introduce a modification of follow the regularised leader and combine it with the log determi-
nant potential and suitable loss estimators to prove that the minimax regret for adaptive adversarial
linear bandits is at most O(d

√
T log(T )) where d is the dimension and T is the number of rounds.

By using exponential weights, we improve this bound to O(
√
dT log(kT )) when the action set has

size k. These results confirms an old conjecture. We also show that follow the regularized leader
with the entropic barrier and suitable loss estimators has regret against an adaptive adversary of
at most O(d2

√
T log(T )) and can be implement in polynomial time, which improves on the best

known bound for an efficient algorithm of O(d7/2
√
T poly(log(T ))) by Lee et al. (2020).

Keywords: Adversarial linear bandits, high probability bounds, adaptive adversary.

1. Introduction

Let A be a compact subset of Rd and assume its affine hull spans Rd.1 An agent and environment
interact sequentially over T rounds. In each round t the agent and adversary act simultaneously.
The agent chooses an action at ∈ A and the adversary chooses a vector yt ∈ X ◦ = {y ∈ Rd :
maxa∈A |⟨a, y⟩| ≤ 1}. The agent observes ℓt = ⟨at, yt⟩ and the regret is

RegT = max
u∈A

RegT (u) ,

where RegT (u) =
∑T

t=1⟨at − u, yt⟩.

Contributions Our focus is on high probability and adaptive bounds.

1. We introduce follow the regularized leader with fixed point bias (FTRL-FB) that injects a
linear bias into the objective of follow the regularized leader and solves a fixed point problem.
The negative terms in the resulting regret bound are used to cancel terms that appear when
controlling the variance of loss estimators when proving high probability bounds.

2. By lifting the linear bandit to the space of information matrices and instantiating FTRL-FB
with the log determinant potential function we prove there exists an agent such that RegT =
O(d

√
T log(T/δ)) with probability at least 1 − δ. This shows that for general action sets

the minimax regret for adaptive adversaries is the same as for oblivious adversaries. One
of the insights from our analysis is that by lifting to the space of positive definite matrices
we introduces a kind of positivity that arises naturally for finite-armed (orthogonal) bandits
and was the limiting factor in extending the high probability bounds in that setting to general
linear bandits.

1. There is no loss of generality since otherwise, we can always project A into a lower dimensional subspace.
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3. By combining FTRL-FB with the entropic barrier we design a polynomial time algorithm for
which RegT = O(d2

√
T log(T/δ) with probability at least 1−δ, which improves on the best

known bound for a polynomial time algorithm by a factor of d
3
2 (Lee et al., 2020).

4. We improve the results by Bartlett et al. (2008) by using modern exploration techniques to
show that when |A| = k, then a suitable version of exponential weights on A has regret
O(
√

dT log(k/δ)) with high probability. Although this result is not especially novel, we are
not aware of where it has appeared before. And, although it provides the strongest guarantees,
we find it the least exciting because it does not introduce new ideas.

Related work Adversarial linear bandits by now have quite a long history (McMahan and Blum,
2004; Awerbuch and Kleinberg, 2004; Dani and Hayes, 2006). These early works set the scene
for future work but provide suboptimal (not

√
T ) regret in either the adaptive or oblivious setting.

More recent works provide a web of results emphasizing different aspects of the problem, espe-
cially: computational efficiency, data-dependent bounds and high probability bounds (and adaptive
adversaries). A summary of these results is given in Table 1.

High probability bounds for finite-armed adversarial bandits have been understood since near
the beginning (Auer et al., 2002) with a number of more recent refinements providing alternative
mechanisms (Abernethy and Rakhlin, 2009; Kocák et al., 2014; Neu, 2015). The ideas in these
works strongly exploit the positivity of actions in the probability simplex. The only known way
to apply these techniques to linear bandits is to lift the algorithm to play exponential weights on
the space of actions. This was done by Bartlett et al. (2008), who use old exploration techniques
to show this idea can achieve regret against an adaptive adversary of RegT = Õ(d3/2

√
T ). We

improve the dependence on the dimension using modern exploration techniques. The disadvantage
of this approach is that there is little hope for an efficient implementation.

There is very little work providing algorithms that are both efficient and where the regret is
controlled with high probability. The best known bound is by Lee et al. (2020), who provide a
polynomial time algorithm for which the regret is Õ(d7/2

√
T ) with high probability.

One of our algorithms makes use of the entropic barrier, which was introduced by Bubeck and
Eldan (2014) who proved it is d(1 + o(1))-self concordant. The latter result was recently improved
by Chewi (2021) who proved that the entropic barrier is d-self-concordant.

Notation The Dirac distribution on x is δx. Give set A ⊂ Rd, the relative interior of A is denoted
by ri(A) and its interior is int(A). The space of probability measures on A with the Borel σ-algebra
is denoted by ∆(A). The convex hull of A is denoted by X and when A is finite we let k = |A|
be the number of actions. For any distribution p ∈ ∆(A), denote the mean by µ(p) = Ea∼p[a],
the covariance matrix by Cov(p) = Ea∼p[(a − µ(p))(a − µ(p))⊤]. For any a ∈ A, we further
define the lifting a =

(
a
1

)
and the lifted covariance matrix Ĉov(p) = Ea∼p[aa

⊤]. Let Ft =
σ(a1, ℓ1, . . . , at, ℓt) be the σ-algebra generated by the interaction sequence observed by the learner
until round t and let Et[·] = E[·|Ft]. Bregman divergences with respect to a differentiable convex
function F : Rd → R ∪ {∞} is DF (x, y) = F (x) − F (y) − ∇x−yF (y) where ∇vF (y) is the
directional derivative of F at y in direction v. The domain of DF is Rd × dom(F ) and we adopt
the convention that DF (x, y) = ∞ whenever x /∈ dom(F ).
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Paper Action set Regret Efficient Adaptive adversary

Auer et al. 2002, Neu 2015 simplex
√
dT YES YES

Abernethy et al. 2008 continuous d3/2
√
T YES NO

Bartlett et al. 2008 finite d3/2
√
T NO YES

Audibert and Bubeck 2010 continuous d
√
T NO∗ NO

Hazan and Karnin 2016 continuous d
√
T YES NO

Ito et al. 2020 continuous d
√
L∗
T YES NO

Lee et al. 2020 continuous d7/2
√
T YES YES

OUR WORK continuous d
√
T NO YES

continuous d2
√
T YES YES

finite d
√
T NO∗ YES

Table 1: A history of results for adversarial linear bandits. Logarithms have been omitted from
regret bounds. For algorithms designed for linear bandits with finitely many actions we
have substituted log(k) for d as would be obtained by standard covering arguments. These
algorithms are labelled as being inefficient with a star because their running time is at least
linear in k and we are principally interested in the case where k is exponential in d.

2. Main techniques

We start by recalling the basic result about follow the regularized leader specialized to our situation.
Let K be a closed, nonempty and convex subset of Rd and let (ŷt)Tt=1 and (bt)

T
t=1 be sequences of

vectors in Rd. The sequence (ŷt) will later be replaced by estimated losses and the (bt) will be bias
terms introduced by the algorithm. Let F : Rd → R ∪ {∞} be convex and differentiable on the
interior of its domain and η > 0 and define a sequence (xt)

T
t=1 by

xt = arg min
x∈K

〈
x,

t−1∑
s=1

(ŷs − bs)

〉
+

F (x)

η
(1)

The following theorem is standard (Lattimore and Szepesvári, 2020, Theorem 28.5):

Theorem 1 Suppose that (xt) are chosen according to (1) and u ∈ K, then

T∑
t=1

⟨xt − u, ŷt⟩ ≤
F (u)− F (x1)

η
+

T∑
t=1

⟨xt − u, bt⟩+
T∑
t=1

max
x∈K

[
⟨xt − x, ŷt − bt⟩ −

DF (x, xt)

η

]
.

Notice that the bias terms (bt) appear linearly in the first sum on the right-hand side and con-
tribute to the stability term in the second sum on the right-hand side. The challenge when proving
high probability bounds is to choose (bt) in such a way that the linear terms cancel the standard
deviation of the loss estimators while the contribution to the stability is small. Note that xt depends
on (ŷs)

t−1
s=1 and (bs)

t−1
s=1, so there is no problem defining (bt) adaptively.
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FTRL-FB We also introduce a novel modification of FTRL that eliminates the bias term from
the stability component of the bound. The modified algorithm needs to solve a fixed point problem
that is likely not computationally efficient in general. Nevertheless, the analysis becomes more
straightforward and the role of the bias is conceptually simpler. Suppose that b : ∪∞

t=0(K × Rd)t ×
K → Rd is continuous. Then the modified algorithm computes bt and xt as solutions to the fixed
point problem

bt = b(x1, ŷ1, . . . , xt−1, ŷt−1, xt) xt = arg min
x∈K

〈
x,

t−1∑
s=1

ŷs −
t∑

s=1

bs

〉
+

F (x)

η
. (2)

When F is strictly convex, the mapping x 7→ arg maxx∈K⟨x, u⟩ + F (x)/η is continuous for any
u, which means that Brouwer’s theorem establishes the existence of a solution for xt and bt.

Theorem 2 If (xt)Tt=1 and (bt)
T
t=1 satisfy Eq. (2) and u ∈ K, then

T∑
t=1

⟨xt − u, ŷt⟩ ≤
F (u)−minx∈K F (x)

η
+

T∑
t=1

⟨xt − u, bt⟩+
T∑
t=1

max
x∈K

[
⟨xt − x, ŷt⟩ −

DF (x, xt)

η

]
≜ stabilityt

.

The proof is deferred to Appendix E. Comparing the bound in Theorem 2 to that in Theorem 1,
we can see that in the latter the bias term only appears linearly.

2.1. Motivation: high probability bounds

All our algorithms are based on the following elementary regret decomposition:

Lemma 3 Let xt = Et−1[at]. With probability at least 1− δ, for any u ∈ X ,

RegT (u) ≤
√

2T log(1/δ) +

T∑
t=1

⟨xt − u, yt − ŷt⟩
≜devt(u)

+⟨xt − u, ŷt⟩ ,

where ŷt is an arbitrary sequence of vectors in Rd.

In all our applications ŷt will be a (conditionally) unbiased estimator of yt so that Et−1[ŷt] = yt.
The sum of the last terms in Lemma 3 will be bounded using follow the regularized leader. By
concentration of measure arguments, provided that devt(u) has suitable tails, we should expect

T∑
t=1

devt(u) = O


√√√√ T∑

t=1

Et−1[devt(u)2] log

(
1

δ

) .

Combining this with the regret bound in Theorem 2 yields

RegT (u) ≤ O


√√√√ T∑

t=1

Et−1[devt(u)2] log

(
1

δ

)+

T∑
t=1

⟨xt − u, bt⟩+
T∑
t=1

stabilityt .
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ALMOST MINIMAX OPTIMAL HIGH PROBABILITY BOUNDS FOR ADVERSARIAL BANDITS

Generally speaking the stability term is relatively easy to control with high probability. The chal-
lenge is that the first term can be of order T , so one needs to choose the biases so that the bias terms
cancel the variation of the deviation terms for all u simultaneously. The same challenge has been
faced by Lee et al. (2020), who generate negative regret via increasing learning rates. Foster et al.
(2020) discussed the close relationship between increasing learning rate and adding linear biases.
Generally speaking, any application of the negative regret by increasing learning rate (e.g. (Agar-
wal et al., 2017; Luo et al., 2018; Lee et al., 2020)) can also be solved via linear biases at improved
logarithmic terms. Additionally, the increasing learning rate trick is limited to biases of the type
bt ∝ ∇F (xt), which does not work for our last algorithm.

3. Algorithms

We present three algorithms, all based on FTRL(-FB) with different potential functions, exploration
mechanisms and biases. The first uses the entropic barrier (also known as continuous exponential
weights). This algorithm can be implemented in polynomial time provided the learner has access to
a representation of X that allows linear optimization. The second algorithm makes use of a novel
lifting to the space of information matrices and the log determinant for regularization. The analysis
of this algorithm is especially clean, but at the moment we do not know if it can be implemented
efficiently. Finally we show that (discrete) exponential weights with John’s exploration can also be
modified to obtain high probability bounds, but it is very unlikely that any efficient implementation
exists. The theorems are presented first, with the algorithms appearing in subsections afterwards.
We present the proof of Theorem 5 in its subsection, while all other proofs are deferred to the
appendix.

Theorem 4 (ENTROPIC BARRIER) Assume that A = X . For any δ ∈ (0, 1), with probability at
least 1− δ there exists a tuning of Algorithm 1 such that the regret against any adaptive adversary
is at most

RegT = O
(
d2
√
T log(T/δ)

)
.

The required algorithm parameter to obtain this theorem are given in Appendix F. Note that this
algorithm does not use the fixed-point bias of FTRL and is computationally comparable to the algo-
rithm of Ito et al. (2020). Setting δ = 1/T yields the first efficient algorithm with O(d2

√
T log(T ))

regret for adversarial bandits, improving the recent result of Lee et al. (2020) by a factor of d3/2

and several log(T ) factors. The assumption that A = X is for convenience only. The modifica-
tion needed if this is not the case is to sample an ‘action’ from X and then play randomly from a
barycentric spanner with the required mean. This introduces an easily controllable amount of noise
and complicates the notation but otherwise does not change the results in a material way. Note that
barycentric spanners can be computed using linear optimization on X . For the algorithm using the
log determinant we have the following bound, which is minimax optimal up to logarithmic factors.

Theorem 5 (LOG DETERMINANT) For any δ ∈ (0, 1), with probability at least 1 − δ the regret
of Algorithm 2 against any adaptive adversary is at most

RegT = O
(
d
√

T log(T/δ)
)
.
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Theorem 5 shows that the minimax rate against adaptive adversaries is the same as against oblivious
adversaries, resolving a long-standing open problem.

Our final algorithm is a combination of exponential weights with John’s exploration (Bubeck
et al., 2012) and the biasing technique by Bartlett et al. (2008). There is not much novelty in our
analysis, which simply injects modern exploration techniques into an old algorithm. Nevertheless,
we include it because as far as we know this has not been written anywhere.

Theorem 6 (EXPONENTIAL WEIGHTS) For any δ ∈ (0, 1), with probability at least 1 − δ the
regret of Algorithm 3 against any adaptive adversary is at most

RegT = O
(√

dT log(|A|/δ)
)
.

3.1. Entropic barrier

Recall that the entropic barrier F is defined in terms of its Fenchel dual F ∗, which is

F ∗(θ) = log

(∫
X
exp(⟨x, θ⟩)dx

)
.

By definition of the Fenchel dual, F (x) = supθ⟨x, θ⟩ − F ∗(θ). The following facts have all been
established by (Bubeck and Eldan, 2014). Let pθ be the density of a probability measure on X
defined by

pθ(x) = IX (x) exp (−⟨x, θ⟩ − F ∗(θ)) ,

which is an exponential weights distribution on X . The gradient of F ∗ is x(θ) ≜ ∇F ∗(θ) =∫
X xpθ(x)dx, which is an invertible function with inverse x 7→ θ(x). The Hessian of the entropic

barrier is

∇2F (x) =

(∫
X
(z − x)(z − x)⊤pθ(x)(z)dz

)−1

.

Algorithm 1 follows FTRL with the entropic barrier. To ensure that the loss estimates are bounded,
we sample from a mixture p′t of the exponential weights distribution pt and the uniform distribution
p0. At any round, we add biases proportional to ∇F (xt), where the factor depends on the lifted
information matrices Gt = Ĉov(p′t). The reason we tune the scaling factor according to the lifted
information matrix, is the property

∥u∥2
G−1

t
=
∥∥u− µ(p′t)

∥∥2
G−1

t
+ 1 ,

where the right hand side is related to Et−1[devt(u)
2] which we like to cancel.

Computation Note that ∇F (xt) = −η
∑t−1

s=1(ŷs − bs), which means that we do not require
direct gradient access of F . Assuming that linear optimization over X can be solved efficiently,
Lovász and Vempala (2007) show that sampling from p′t as a mixture of two log-concave distribu-
tions admits a polynomial time (approximate) implementation. Similarly, Gt as the variance of p′t
can be ε-approximated with (d/ε)O(1) samples (Lovász and Vempala, 2007, Corollary 4.2). The
eigenvalues of Gt are lower bounded by Ω(1/

√
T ), hence with 1

T -precision, the inverse G−1
t is also

O
(
1
T

)
-approximated. This results in a Poly(dT ) per-step computation.
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Algorithm 1: FTRL-FB with entropic barrier
Input: Action set X , entropic barrier F , η, λ, γ, p0 uniform distribution over X
for t = 1, . . . do

pt(x) ∝ IX (x) exp
(
−η⟨x,

∑t−1
s=1(ys − bs)⟩

)
p′t = pt + λ(p0 − pt)
Let Gt,Gt be the covariance and lifted covariance of p′t and x′t its mean
Sample at from probability measure with density p′t
Observe ℓt and construct ŷt = (Gt)

−1(at − x′t)ℓt

bt = γ
√

Tr(G−1
t · (

∑t
s=1G

−1
s )−1)∇F (xt)

end

Remark 7 Readers might object that this is not efficient as claimed and we cannot compare with
the result of Lee et al. (2020), which is based on the SCRiBLe algorithm. Note however, that
SCRiBLe simply assumes oracle access to gradients and Hessians of the potential F . For general
action sets, there is no self-concordant barrier known whose gradients and Hessians can be com-
puted more efficiently than a ε-approximation in Poly(dε ) time. Finally, our proof does not use any
special properties of the entropic barrier, besides that it is self-concordant and admits a sampling
distribution with information matrix proportional to ∇2F (x)−1. It is an easy exercise to adapt the
proof of Theorem 4 to a SCRiBLe style algorithm at a cost of an extra

√
d factor in the regret.

3.2. Log determinant barrier

The high probability bounds for finite-armed bandits heavily rely on the fact that the comparator
class is the probability simplex and the positivity of the vectors there-in. To generalize those tech-
niques we make use of a new lifting to the space of positive definite matrices using the negative log
determinant as a potential function in combination with FTRL-FB.

Remark 8 A comparable bound to Theorem 5 can be obtained using the standard FTRL algorithm
and a slightly less elegant analysis. Even so, we do not know of an efficient implementation of this
algorithm. The best known implementation for solving the minimization problem requires a runtime
that is linear in the number of arms |A| (Foster et al., 2020), which makes this algorithm unpractical
when the action set is exponentially large.

Let p0 ∈ ∆(A) be a distribution such that ∥x− µ(p0)∥2Cov(p0)−1 ≤ d for all x ∈ X , which
exists by the theory minimum volume enclosing ellipsoids (Todd, 2016, Corollary 2.11). Let η > 0
be a learning rate and

R(d+1)×(d+1) ⊃ H =
{
Ĉov(p) : p ∈ ∆(A), Ĉov(p) ⪰ dηĈov(p0)

}
,

which is convex. Our learner will play on H using FTRL-FB. The losses and their estimates are
lifted to the same space by

γt =

(
0 yt
0 0

)
, and γ̂t =

(
0 ŷt
0 0

)
.
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By the definition of Ĉov(p) the lifted losses and their estimates satisfy ⟨Ĉov(p),γt⟩ = ⟨µ(p), yt⟩
and ⟨Ĉov(p), γ̂t⟩ = ⟨µ(p), ŷt⟩.

Algorithm 2: FTRL-FB with logdet barrier

Input: log determinant barrier F (H) = − log det(H), η =

√
log(T/δ)

T

for t = 1, . . . do
Find Ht as the solution to the fixed point problem

Ht = arg min
H∈H

〈
H,

t−1∑
s=1

γ̂s − η
t∑

s=1

H−1
s

〉
+

F (H)

η
.

Select pt ∈ ∆(A) such that Ht = Ĉov(pt) and let xt = µ(pt) and Ht = Cov(pt)and
Sample at ∼ pt
Observe ℓt and construct ŷt = Cov(pt)

−1(at − xt)ℓt and γ̂t

end

Proof [THEOREM 5] We start by decomposing the regret relative to a fixed comparator into a devi-
ation term and the regret with estimated losses. The latter is bounded using Theorem 2 in step 2. In
step 3 we handle the deviation term and random terms that appeared in step 2. In the last step we put
together the pieces and take a union bound over a suitable finite cover of possible comparators. Let
xt = Et−1[at] = µ(pt) be the mean of the learner’s action distribution in round t and Ht = Cov(pt)
the covariance matrix.

Step 1: Decomposing the regret Let p be such that U = Ĉov(p) ∈ H and u = µ(p) be the mean
of p. Since U ∈ H, by the definition of H, U ⪰ dηH0. By the Courant-Fischer-Weyl min-max
principle, U has larger eignevalues than dηH0 and hence

F (U)− F (H0) = log

(
det(H0)

det(U)

)
≤ (d+ 1) log

(
1

dη

)
. (3)

By Lemma 3, then with probability at least 1− δ,

RegT (u) ≤
√

2T log(1/δ) +

T∑
t=1

⟨Ht −U ,γt − γ̂t⟩+ ⟨Ht −U , γ̂t⟩ . (4)

Step 2: Controlling the empirical regret Note that F is strictly convex (Boyd and Vanden-
berghe, 2004, p.74) so that the fixed point problem defining Ht is guaranteed to have a solution by

8
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Brouwer’s theorem. The second sum in (4) is bounded using Theorem 2 and Lemma 16:

T∑
t=1

⟨Ht −U , γ̂t⟩

≤ F (U)− F (H0)

η
+

T∑
t=1

[
max
H∈H

⟨Ht −H, γ̂t⟩ −
DF (H,Ht)

η
+ η⟨Ht −U ,H−1

t ⟩
]

(Lem. 2)

≤
(d+ 1) log

(
1
dη

)
η

+

T∑
t=1

[
max
H∈H

⟨Ht −H, γ̂t⟩ −
DF (H,Ht)

η
+ η⟨Ht −U ,H−1

t ⟩
]

(by (3))

≤
(d+ 1) log

(
1
dη

)
η

+
η

4

T∑
t=1

∥at − xt∥2H−1
t

+ η
T∑
t=1

⟨Ht −U ,H−1
t ⟩ (Lem. 16)

=
(d+ 1) log

(
1
dη

)
η

+
η

4

T∑
t=1

∥at − xt∥2H−1
t

+ ηdT − η ∥u− xt∥2H−1
t

, (5)

where in the last line we used the definition of the lifting. Notice the negative term that will be used
to cancel the variation of the sum of deviations.

Step 3: Concentration The first sum in (4) vanishes in expectation since γ̂t is a conditionally
unbiased estimate of γt. For a high probability bound we make use of Exercise 5.15 by Lattimore
and Szepesvári (2020). Using the fact that Ht ∈ H so that for any x ∈ X ,

∥x− xt∥2H−1
t

≤ 1

dη
∥x− xt∥2Cov(p0)−1 ≤ 1

η
.

Therefore, by Exercise 5.15 by Lattimore and Szepesvári (2020), with probability at least 1− δ,

T∑
t=1

η ∥at − xt∥2H−1
t

≤ η(d+ 1)T +
1

η
log

(
1

δ

)
, (6)

where we used the fact that Et−1

[
∥at − xt∥2H−1

t

]
= d. Furthermore,

η|⟨u− xt, ŷt⟩| = η|⟨u− xt, H
−1
t (at − xt)ℓt⟩| ≤ 1 .

Then, by the same exercise, with probability at least 1− δ,

T∑
t=1

⟨u− xt, ŷt⟩ ≤
T∑
t=1

⟨u− xt, yt⟩+ η

T∑
t=1

Et−1[⟨u− xt, ŷt⟩2] +
1

η
log

(
1

δ

)

≤
T∑
t=1

⟨u− xt, yt⟩+ η
T∑
t=1

∥u− xt∥2H−1
t

+
1

η
log

(
1

δ

)
.

Therefore, with probability at least 1− δ,

T∑
t=1

⟨Ht −U ,γt − γ̂t⟩ ≤ η

T∑
t=1

∥u− xt∥2H−1
t

+
1

η
log

(
1

δ

)
. (7)
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Step 4: Finishing up Combining (5), (6) and (7), for any U ∈ H, with probability at least 1−2δ,

T∑
t=1

⟨Ht −U ,γt⟩ ≤
(d+ 1) log

(
1
ηd

)
η

+ η(2d+ 1)T +
2

η
log

(
1

δ

)
.

We complete the proof with a covering argument and a union bound to control the regret compared
to an adaptive adversary. Let ∥x∥X ◦ = supy∈X ◦⟨x, y⟩ and C be a finite subset of X such that

max
x∈X

min
x′∈C

∥∥x− x′
∥∥
X ◦ ≤ d√

T
.

The covering set C can be chosen so that log |C| ≤ d log(6
√
T ) (Lattimore and Szepesvári, 2020,

Exercise 27.6). Let U = {(1 − dη)Ĉov(δx) + dηH0 : x ∈ C} ⊂ H. By a union bound, with
probability at least 1− 2δ the following holds for all U ∈ U ,

T∑
t=1

⟨Ht −U ,γt⟩ ≤
(d+ 1) log

(
1
ηd

)
η

+ η(2d+ 1)T +
2

η
log

(
|C|
δ

)
.

Let U ∈ U be such that

T∑
t=1

⟨U −U∗, yt⟩ ≤ dηT + d
√
T .

Then, with probability at least 1− 2δ,

RegT ≤

√
2T log

(
1

δ

)
+ d

√
T +

(d+ 1) log
(

1
ηd

)
η

+ η(3d+ 1)T +
2

η
log

(
|C|
δ

)
.

Substituting η =
√

log
(
T
δ

)
/T completes the proof.

3.3. Exponential weights

Our last algorithm is a combination of exponential weights with Kiefer-Wolfowitz exploration (Au-
dibert and Bubeck, 2009) and arguments by Bartlett et al. (2008) and Auer et al. (2002). Nothing
here is particularly remarkable but as far as we know this has not been written down anywhere.
The drawback of this approach is that there seems very little hope for an efficient implementation
when the number of actions is large. Nevertheless, it provides the strongest results when the action
set is small. The algorithm makes use of an exploration distribution p0 ∈ ∆(A) such that when
G0 =

∑
a∈A p(a)aa⊤ is the design matrix of p0, ∥a∥2

G−1
0

≤ d. The existence of such a distribution
is guaranteed by Kiefer-Wolfowitz theorem (Kiefer and Wolfowitz, 1960).

10
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Algorithm 3: Exp3 with Kiefer-Wolfowitz exploration

Input: Exploration distribution p0, learning rate η =
√
log(k/δ)/(dT ) and exploration rate

λ = 2ηd, exploration distribution p0
for t = 1, . . . do

Compute an exponential weights distribution pt ∈ ∆(A)

pt(a) =
exp

(
−η
∑t−1

s=1(ŷs(a)− bs(a))
)

∑
b∈A exp

(
−η
∑t−1

s=1(ŷs(b)− bs(b))
) .

Sample at from p′t = (1− λ)pt + λp0 and observe ℓt
Estimate losses ŷs(a) = ⟨a,G−1

t at⟩ℓt with Gt =
∑

a∈A p′t(a)aa
⊤ for all a ∈ A

Compute bias bt(a) = η ∥a∥2
G−1

t
for all a ∈ A

end

4. Discussion

We have derived a novel modification of FTRL that allows to insert an arbitrary adaptive bias se-
quence to the regret without changing the other moving parts of the analysis. We have resolved
the question of the minimax rate of regret against adaptive linear bandits via two adaptations of the
FTRL-FB framework. We improved the state-of-the-art regret bound against adaptive adversaries
for efficiently implementable algorithms by factor d

3
2 and several log(T ) factors.

Open problems for future work are the question of whether there are action sets of interest for
which the logdet barrier admits efficient implementation. Finally, there is still a gap of factor d
between efficient and inefficient algorithms.
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Sébastien Bubeck, Nicolo Cesa-Bianchi, and Sham M Kakade. Towards minimax policies for online
linear optimization with bandit feedback. In Conference on Learning Theory, pages 41–1. JMLR
Workshop and Conference Proceedings, 2012.

Sinho Chewi. The entropic barrier is n-self-concordant. arXiv preprint arXiv:2112.10947, 2021.

Varsha Dani and Thomas P Hayes. Robbing the bandit: Less regret in online geometric optimization
against an adaptive adversary. In SODA, volume 6, pages 937–943, 2006.

Dylan J Foster, Claudio Gentile, Mehryar Mohri, and Julian Zimmert. Adapting to misspecification
in contextual bandits. Advances in Neural Information Processing Systems, 33, 2020.

Elad Hazan and Zohar Karnin. Volumetric spanners: an efficient exploration basis for learning.
Journal of Machine Learning Research, 2016.

Shinji Ito, Shuichi Hirahara, Tasuku Soma, and Yuichi Yoshida. Tight first-and second-order regret
bounds for adversarial linear bandits. Advances in Neural Information Processing Systems, 33:
2028–2038, 2020.

J. Kiefer and J. Wolfowitz. The equivalence of two extremum problems. Canadian Journal of
Mathematics, 12(5):363–365, 1960.
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Appendix A. Proof of Lemma 3

Since ⟨at, yt⟩ ∈ [0, 1] and Et−1[⟨at − xt, yt⟩] = 0, by Azuma’s inequality,

RegT (u) =

T∑
t=1

⟨at − u, yt⟩

≤
T∑
t=1

⟨at − xt, yt⟩+
T∑
t=1

⟨xt − u, yt⟩

≤
√

2T log(1/δ) +
T∑
t=1

⟨xt − u, yt⟩

=
√
2T log(1/δ) +

T∑
t=1

⟨xt − u, yt − ŷt⟩
devt(u)

+⟨xt − u, ŷt⟩ .

Appendix B. A strengthened Freedman’s inequality

This theorem is an improvement of Lee et al. (2020, Theorem 2.2), which contains an error in its
proof.

Theorem 9 (Strengthened Freedman’s inequality) Let X1, X2, . . . be a martingale difference
sequence with respect to a filtration F1 ⊆ F2 ⊆ . . . such that E[Xt |Ft] = 0 and assume
E[|Xt| |Ft] < ∞ a.s. Then with probability at least 1− δ

T∑
t=1

Xt ≤ 3

√
VT log

(
2max{UT ,

√
VT }

δ

)
+ 2Ut log

(
2max{UT ,

√
VT }

δ

)
,

where VT =
∑T

t=1 Et−1[X
2
t ], UT = max{1,maxs∈[T ]Xs} .

13
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Proof Define Z(i)
t = Xt ·I

(
Ut ≤ 2i

)
, then Z

(i)
t is a sequence of random variables adapted to (Ft)t,

such that Z(i)
t 2−i ≤ 1 almost surely. Hence by Exercise 5.15 by Lattimore and Szepesvári (2020)

with probability at least 1− δ/2i, we have

T∑
t=1

Z
(i)
t ≤

T∑
t=1

(Z
(i)
t − Et−1[Z

(i)
t ]) ≤ 2−i

T∑
t=1

Et−1[Z
(i)
t

2
] + 2i log

(
2i

δ

)
.

By a union bound, this holds with probability 1−δ uniformly over all i. Note that
∑T

t=1 Et−1[Z
(i)
t

2
] ≤∑T

t=1 Et−1[X
2
t ] = VT and for any i such that 2i ≤ UT , we have

∑T
t=1 Z

(i)
t =

∑T
t=1Xt. Hence

with probability 1− δ

T∑
t=1

Xt ≤ min
i:2i≥UT

2−iVt + 2i log

(
2i

δ

)
≤ min

i:2max{UT ,
√
Vt}≥2i≥UT

2−iVt + 2i log

(
2max{UT ,

√
VT }

δ

)

≤ 3

√
VT log

(
2max{UT ,

√
VT }

δ

)
+ 2Ut log

(
2max{UT ,

√
VT }

δ

)
.

Appendix C. Properties of self-concordant barriers

In this section we collect the basic definitions and properties of self-concordant barriers. Let f :
int(X ) → R be a C3 smooth convex function. f is called a self-concordant barrier on X if it
satisfies:

• X (xi) → ∞ as i → ∞ for any sequence x1, x2, . . . ∈ int(X ) ⊂ Rd converging to the
boundary of X ;

• for all x ∈ int(X ) and h ∈ Rd, the following inequality always holds:

d∑
i=1

d∑
j=1

d∑
k=1

∂3f(x)

∂xi∂xj∂xk
hihjhk ≤ 2∥h∥3∇2f(x).

We further call f is a ν-self-concordant barrier if it satisfies the conditions above and also

⟨∇f(x), h⟩ ≤
√
ν∥h∥∇2f(x)

for all x ∈ int(X ) and h ∈ Rd.

Lemma 10 (Theorem 2.1.1 in (Nesterov and Nemirovskii, 1994)) If f is a self-concordant bar-
rier on X , then the Dikin ellipsoid centered at x ∈ int(X ), defined as {v : ∥v − w∥∇2f(w) ≤ 1}, is
always within X . Moreover,

∥h∥∇2f(v) ≥ ∥h∥
∇2f(w)

(
1− ∥v − w∥

∇2f(w)

)
holds for any h ∈ Rd and any v with ∥v − w∥∇2f(w) ≤ 1.
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Lemma 11 (Corollary 2.3.1 in (Nesterov and Nemirovskii, 1994)) Let f be a self-concordant
barrier for X ⊂ Rd. Then for any x ∈ int(X ) and any u ∈ X such that x + tu ∈ X for all
t ≥ 0, we have

∥u∥∇2f(x) ≤ −⟨u,∇f(x)⟩.

Next, we show the definition of Minkowsky functions, which is used to define the shrunk deci-
sion domain similar to the clipped simplex in multi-armed bandit setting.

Minkowsky functions. The Minkowsky function of a convex body X with the pole at w ∈ int(X )
is a function πw : X → R defined as

πw(u) = inf

{
t > 0

∣∣∣∣w +
u− w

t
∈ X

}
.

The last lemma shows several useful properties using the Minkowsky function.

Lemma 12 (Proposition 2.3.2 in Nesterov and Nemirovskii (1994)) Let f be a ν-self-concordant
barrier on X ⊆ Rd and u,w ∈ int(X ). Then for any h ∈ Rd, we have

∥h∥∇2f(u) ≤
(

1 + 3ν

1− πw(u)

)
∥h∥∇2f(w),

|⟨∇f(u), h⟩| ≤
(

ν

1− πw(u)

)
∥h∥∇2f(w),

f(u)− f(w) ≤ ν ln

(
1

1− πw(u)

)
.

Throughout this section, we assume that f is a ν-self-concordant barrier for X .

Lemma 13 (Nesterov (2006), Theorem 1) Let f be a self-concordant barrier for X ⊂ Rd. Then
the function

F (x, r) = γ(f(x/r)− 4ν ln(r) ,

for γ = (16
√
ν+7

3
2 )2

27·4ν is a self-concordant barrier on the cone XC := {(x, r) |x/r ∈ X}.

Lemma 14 Let f be a self-concordant barrier for X ⊂ Rd. Then for any u, x ∈ X ,

∥u− x∥∇2f(x) ≤ −γ′⟨u− x,∇f(x)⟩+ 4γ′ν + 2
√
ν ,

where γ′ = 8
3
√
3
+ 7

3
2

6
√
3ν

(γ′ ∈ [1, 4] for ν ≥ 1).

Proof Let F be the self-concordant function of Lemma 13. Note that any (u, 1) is a recessive
direction of XC at (x, 1) for any u, x ∈ X . Hence we can apply Lemma 11 obtaining

∥(u, 1)∥∇2F ((x,1)) ≤ −⟨(u, 1),∇F ((x, 1))⟩ .

Computing the gradient and Hessian explicitly yields

∇F (x, t) = γ

( 1
t∇f(xt )

− 1
t2
x⊤∇f(xt )−

4ν
t

)
∇2F (x, t) = γ

(
1
t2
∇2f(xt ) − 1

t2
∇f(xt )−

1
t3
∇2f(xt )x

− 1
t2
∇f(xt )

⊤ − 1
t3
x⊤∇2f(xt ) 2x⊤∇f(xt ) +

1
t4
x⊤∇2f(xt )x+ 4ν

t2

)
.
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Hence we have

∥(u, 1)∥∇2F ((x,1)) =
√
γ
√

∥u− x∥2∇2f(x) − 2⟨u− x,∇f(x)⟩+ 4ν

− ⟨(u, 1),∇F ((x, 1))⟩ = −γ⟨u− x,∇f(x)⟩+ 4γν .

Combining these

∥u− x∥2∇2f(x) ≤ γ(4ν − ⟨u− x,∇f(x)⟩)2 − 4ν + 2⟨u− x,∇f(x)⟩

= γ(4ν − 1/γ − ⟨u− x,∇f(x)⟩)2 − 1/γ2 + 4ν ,

hence

∥u− x∥∇2f(x) ≤ −√
γ⟨u− x,∇f(x)⟩+ 4

√
γν + 2

√
ν .

Lemma 15 Let λ be the uniform measure on convex body K ⊂ Rd, d ≥ 2, and µ =
∫
xλ(dx) and

Σ =
∫
xx⊤λ(dx)− µµ⊤ be its covariance. Then for all a ∈ K,

∥a− µ∥2Σ−1 ≤ (d+ 2
√
d)2 ≤ 6d2

Proof If F is the entropic barrier on K, then ∇F (µ) = 0 and the result follows from Theorem
4.2.6 in the book by Nesterov (2004) and the fact that F is d-self-concordant and ∇2F (µ) = Σ−1.

Appendix D. Stability of Log Determinant

The purpose of this section is to bound the stability term of follow the regularized leader for the
negative log determinant potential function. Throughout we let D be the Bregman divergence with
respect to H 7→ − log det(H) and γ̂t and other quantities be as defined by Algorithm 2.

Lemma 16 max
H∈H

⟨Ht −H, γ̂t⟩ −
D(H,Ht)

η
≤ η

4
∥at − xt∥2H−1

t
for all t ∈ [T ].

Proof We start with an identity involving the Bregman divergence and then apply the standard local
norm argument.

Step 1: An identity Suppose that G and H are matrices of the form

G =

(
G+ gg⊤ g

g⊤ 1 .

)
H =

(
H + hh⊤ h

h⊤ 1

)
,
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where G and H are both invertible. By the definition of the Bregman divergence,

D(G,H) = F (G)− F (H)− ⟨∇F (H),G−H⟩

= log

(
det(H)

det(G)

)
+Tr

(
H−1(G−H)

)
(Jacobi’s formula)

= log

(
det(H)

det(G)

)
+Tr

(
H−1G

)
− d− 1

= log

(
det(H)

det(G)

)
+Tr

(
H−1G

)
+ ∥g − h∥2H−1 − d

= log

(
det(H)

det(G)

)
+Tr

(
H−1G

)
+ ∥g − h∥2H−1 − d

= D(G,H) + ∥g − h∥2H−1

≥ ∥g − h∥2H−1 ,

where in the final equality we have abused notation by writing D(G,H) as the Bregman divergence
with respect to − log det(·) on the space of d × d matrices instead of (d + 1) × (d + 1) as in the
lemma statement.

Step 2: Local norms and Cauchy-Schwarz Let H = Ĉov(p) ∈ H and Ht = Ĉov(pt). By the
previous step,

⟨Ht −H, γ̂t⟩ −
D(H,Ht)

η
≤ ⟨Ht −H, γ̂t⟩ −

∥µ(p)− xt∥2H−1
t

η

= ⟨xt − µ(p), ŷt⟩ −
∥µ(p)− xt∥2H−1

t

η

≤ ∥xt − µ(p)∥H−1
t

∥ŷt∥Ht
−

∥µ(p)− xt∥2H−1
t

η

≤ η

4
∥ŷt∥2Ht

≤ η

4
∥at − xt∥2H−1

t
,

where in the final inequality we used the definition ŷt = H−1
t (at − xt)ℓt and the fact that the losses

are in [−1, 1].

Appendix E. Proof of Theorem 2

We prove a slightly more general result where η is replaced by ηt in the optimization problem and
(ηt)

T
t=1 is non-increasing, which means that

xt = arg min
x∈K

〈
x,

t−1∑
s=1

ŷs −
t∑

s=1

bt

〉
+

F (x)

ηt
.
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We adopt also the convention that η0 = ∞ and ηT+1 = ηT . Let Yt =
∑t

s=1 ŷs and Bt =
∑t

s=1 bs
and

xT+1 = arg min
x∈K

⟨x, YT −BT ⟩+
F (x)

ηT+1
.

Note that BT not BT+1 appears in the objective here, in contrast to xt for 1 ≤ t ≤ T . By the first
order optimality conditions for xt we have for any x ∈ K,

⟨∇F (xt), x− xt⟩
ηt

≥ ⟨Bt − Yt−1, x− xt⟩ . (8)

Our plan is to bound
∑T

t=1⟨xt − u, ŷt − bt⟩, which decomposes as

T∑
t=1

⟨xt − u, ŷt − bt⟩ =
T∑
t=1

⟨xt, ŷt − bt⟩ − ⟨u, YT −BT ⟩ . (9)

The first term is bounded in a now-standard way:

T∑
t=1

⟨xt, ŷt − bt⟩ =
T∑
t=1

⟨xt − xt+1, ŷt⟩+
T∑
t=1

(⟨xt+1, ŷt⟩+ ⟨xt,−bt⟩)

=

T∑
t=1

(
⟨xt − xt+1, ŷt⟩ −

D(xt+1, xt)

ηt

)
+

T∑
t=1

(
⟨xt+1, ŷt⟩+ ⟨xt,−bt⟩+

D(xt+1, xt)

ηt

)

≤
T∑
t=1

(
max
x∈K

⟨xt − x, ŷt⟩ −
D(x, xt)

ηt

)
+

T∑
t=1

(
⟨xt+1, ŷt⟩+ ⟨xt,−bt⟩+

D(xt+1, xt)

ηt

)
A

. (10)
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The first sum on the right-hand side now has the desired form. For the second sum we need to use
the first order optimality conditions in (8) and the definition of the Bregman divergence so that

(A) =
T∑
t=1

(
⟨xt+1, ŷt⟩+ ⟨xt,−bt⟩+

F (xt+1)

ηt
− F (xt)

ηt
− ⟨∇F (xt), xt+1 − xt⟩

ηt

)

≤
T∑
t=1

(
⟨xt+1, ŷt⟩+ ⟨xt,−bt⟩+

F (xt+1)

ηt
− F (xt)

ηt
+ ⟨Bt − Yt−1, xt − xt+1⟩

)
(by (8))

=
T∑
t=1

(
F (xt+1)

ηt
− F (xt)

ηt

)
+ ⟨xT+1, YT −BT ⟩

≤
T∑
t=1

(
F (xt+1)

ηt
− F (xt)

ηt

)
+

F (u)

ηT+1
− F (xT+1)

ηT+1
+ ⟨u, YT −BT ⟩

=
T+1∑
t=1

(F (u)− F (xt))

(
1

ηt
− 1

ηt−1

)
+ ⟨u, YT −BT ⟩

≤
T+1∑
t=1

(F (u)− F (x̃1))

(
1

ηt
− 1

ηt−1

)
+ ⟨u, YT −BT ⟩

=
F (u)− F (x̃1)

ηT
+ ⟨u, YT −BT ⟩ , (11)

where in the first inequality we used the fact that xT+1 minimizes x 7→ ⟨x, YT −BT ⟩+F (x)/ηT+1

on K and in the second we used the fact that x̃1 minimizes F on K as well as the assumption that
the learning rates are non-increasing. By combining (9), (10) and (11) we obtain

T∑
t=1

⟨xt − u, ŷt − bt⟩ ≤
T∑
t=1

(
max
x∈K

⟨xt − x, ŷt⟩ −
D(x, xt)

ηt

)
+

F (u)− F (x̃1)

ηT
.

Rearranging completes the result.
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Appendix F. Proof of Theorem 4

We begin by defining a few constants used in the proofs in this section and by fixing the tuning
parameters of the algorithm:

γ′ =
8

3
√
3
+

7
3
2

6
√
3d

∈ [1, 4]

ι = log

(
48d2T 2

δ

)
+ d log(6

√
T ) = O(d log(T ) + log(1/δ))

λ = min

{
1− (1/2)

2
3 , d

√
ι

T

}
γ =

9γ′
√
ι

(1− λ)
3
2

≤ 72
√
ι

ct =

√√√√√Tr

G−1
t

(
t∑

s=1

G−1
s

)−1


η = min

 1

16
(√

24
λ d+ 72d

√
ι
) , log(T )√

Tι

 .

Recall bt = γct∇F (xt), the agent samples actions from pt = (1 − λ)pθt + λp0, where p0 is the
uniform probability measure on X and pθt is the exponential weights distribution with mean xt and
θt = ∇F (xt). Gt is the covariance of the pt, x′t its mean and ŷt = G−1

t (at−x′t)ℓt the loss estimator.
Ht = ∇2F (xt)

−1 is the covariance of pθt and

Gt =

(
Gt + x′tx

′
t
⊤ x′t

x′t
⊤ 1

)

is the lifted version of covariance matrix Gt.

Basic bounds Recall that H0 is the covariance of p0 and that pt = (1 − λ)pθt + λp0. Using this
with Lemma 15 and the triangle inequality,

∥ŷt∥2Ht
=
∥∥at − x′t

∥∥2
G−1

t HtG
−1
t

≤
∥at − x′t∥

2
G−1

t

1− λ
≤

∥at − x′t∥
2
H−1

0

λ(1− λ)
≤ 24d2

λ(1− λ)
.

Furthermore, for u, v ∈ X ,

η|⟨u− v, ŷt⟩| = η|⟨u− v,G−1
t (at − x′t)ℓt⟩|

≤ η ∥u− v∥G−1
t

∥∥at − x′t
∥∥
G−1

t

≤
η ∥u− v∥H−1

0
∥at − x′t∥H−1

0

λ

≤ 24d2η

λ
,

20



ALMOST MINIMAX OPTIMAL HIGH PROBABILITY BOUNDS FOR ADVERSARIAL BANDITS

where we used the definition of ŷt, Cauchy-Schwarz and Lemma 15 again. Note that ct ≤
√
d and

by the definition of ν-self-concordance and the fact that the entropic barrier is d-self-concordant,

ct ∥∇F (xt)∥∇2F (xt)−1 ≤ d .

Step 1: Decomposing the regret Let u = u∗ + 1
T (x0 − u∗), where x0 is the mean of p0 (the

centroid of X ) and u∗ = arg minx∈C
∑T

t=1⟨x, yt⟩ and C is a 1/
√
T -covering of X with respect to

the norm ∥·∥X ◦ , which is sufficient to bound the regret up to
√
T . See the proof of Theorem 5 for

details.

RegT =
T∑
t=1

⟨x′t − u∗, yt⟩

≤ 2 +

T∑
t=1

⟨x′t − xt, yt⟩+
T∑
t=1

⟨xt − u, yt − ŷt − γct∇F (xt)⟩+
T∑
t=1

⟨xt − u, ŷt + γct∇F (xt)⟩

≤ 2 + λT +
T∑
t=1

⟨xt − u, yt − ŷt − γct∇F (xt)⟩+
T∑
t=1

⟨xt − u, ŷt + γct∇F (xt)⟩ . (12)

Step 2: Bounding the empirical regret The first sum in (12) is the deviation term, which we
control in a moment. The second sum is bounded using the standard FTRL analysis. We can apply
Lemma 17 due to the following computation:

∥ŷt + γct∇F (xt)∥∇2F (xt)−1 ≤ ∥ŷt∥∇2F (xt)−1 + γct ∥∇F (xt)∥∇2F (xt)−1

≤

√
24d2

λ(1− λ)
+ γd (by basic bounds)

≤
√

48

λ
d+ 72d

√
ι ≤ 1

16η
. (by constraint on η)

Hence, by Theorem 1 and Lemma 17,

R̂egT (u) ≜
T∑
t=1

⟨xt − u, ŷt + γct∇F (xt)⟩

≤ F (u)−minx∈X F (x)

η
+

T∑
t=1

max
x∈X

[
⟨x− xt, ŷt + γct∇F (xt)⟩ −

1

η
D(x, xt)

]

≤ d log(T )

η
+ 4η

T∑
t=1

(
∥ŷt∥2Ht

+ γ2c2td
)

(Lemmas 12 and 17)

≤ d log(T )

η
+ 4 · 722ηd(d+ 1)ι log

(
eT

λ

)
+ 4η

T∑
t=1

∥ŷt∥2Ht
. , (Lemma 18)

where in the second last inequality we also used the fact that F is d-self-concordant so that ∥∇F (xt)∥2∇2F (xt)−1 ≤
d.
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Step 3: Concentration Note that Et−1[∥ŷt∥2Ht
] ≤ Tr(G−1

t Ht) ≤ d
1−λ and by the basic bounds,

η ∥ŷt∥2Ht
≤ 24d2η

λ(1− λ)
.

Given ξXt ∈ [0, 1] for some ξ > 0, a sequence of non-negative random variables Xt and rearranging
the second part of Exercise 5.15 by Lattimore and Szepesvári (2020), we have w.h.p.

T∑
t=1

Xt ≤
T∑
t=1

Et−1[Xt] + ξ
T∑
t=1

Et−1[X
2
t ] + ξ−1 log(δ′

−1
)

≤ 2
T∑
t=1

Et−1[Xt] + ξ−1 log(δ′
−1

) .

Taking probability at least 1− δ/3, setting ξ = λ(1− λ)/(24d2) and Xt = η∥ŷt∥2Ht
yields

T∑
t=1

η ∥ŷt∥2Ht
≤ 2

ηdT

1− λ
+

24d2

λ(1− λ)
log

(
3

δ

)
.

Also by the basic bounds |⟨xt − u, ŷt⟩| ≤ 24d2/λ and

Et−1[⟨xt − u, ŷt⟩2] ≤ ∥xt − u∥2
G−1

t
≤ 24d2

λ
.

Therefore by Theorem 9 with probability at least 1 − δ/3 for all u in a covering set C of size
log |C| ≤ d log(6

√
T ) simultaneously,

T∑
t=1

⟨xt − u, yt − ŷt⟩ ≤ 3

√√√√ T∑
t=1

∥xt − u∥2
G−1

t

1− λ
ι+

48d2

λ
ι

≤ 3

√√√√ T∑
t=1

∥u∥2
G−1

t
+ 24d2

1− λ
ι+

48d2

λ
ι .

Step 4: Controlling the bias The bias component of the deviation term is bounded using Lemma 14:

T∑
t=1

⟨u− xt, γct∇F (xt)⟩ ≤ − γ

γ′

T∑
t=1

ct ∥u− xt∥H−1
t

+ γ

(
4d+

2
√
d

γ′

)
T∑
t=1

ct

= − γ

γ′

T∑
t=1

ct ∥u∥H−1
t

+ γ

(
4d+

2
√
d+ 1

γ′

)
T∑
t=1

ct .

The positive term is bounded by

γ

(
4d+

2
√
d+ 1

γ′

)
T∑
t=1

ct ≤ γ

(
4d+

2
√
d+ 1

γ′

)√
(d+ 1)T log

(
eT

λ

)
(Lemma 18)

= O(d
3
2

√
T log(T )ι) .
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The negative term is

− γ

γ′

T∑
t=1

ct ∥u∥H−1
t

≤ −(1− λ)γ

γ′

T∑
t=1

ct ∥u∥G−1
t

≤ −9

√
ι

1− λ

T∑
t=1

∥u∥2
G−1

t√∑t
s=1 ∥u∥

2
G−1

s

≤ −3

√√√√ T∑
t=1

∥u∥2
G−1

t

1− λ
ι . (by the max ratio ∥u∥G−1

t+1
/ ∥u∥G−1

t
of Lemma 19)

Step 5: Combining everything We have

RegT = O
(
λT +

d log(T )

η
+ ηdT +

d2ι

λ
+ d

3
2

√
T log(T )ι

)
.

By the choice of λ and η

RegT = O

(
d

3
2

√
T log(T )

(√
d log(T ) + log

(
1

δ

)))
.

Appendix G. Proof of Theorem 6

Recall that p0 is a distribution on A such that for all x ∈ A,

∥x∥2
H−1

0
≤ d ,

where H0 =
∑

a∈A p0(a)aa
⊤ is the design matrix of p0. Exponential weights samples at from

distribution p′t = λp0 + (1− λ)pt, where

pt(a) =
exp

(
−η
∑t−1

s=1(ŷs(a)− bs(a))
)

∑
b∈A exp

(
−η
∑t−1

s=1(ŷs(a)− bs(a))
) .

where ŷt(a) = a⊤G−1
t atℓt with Gt =

∑
a∈A p′t(a)aa

⊤ and bt(a) = η ∥a∥2
G−1

t
. For the sake of

consistent notation let yt(a) = ⟨a, yt⟩.

Step 1: Basic Bounds We start by providing elementary uniform bounds on the loss estimators
and the bias terms.

η|ŷt(a)| = η|a⊤G−1
t atℓt| ≤ η ∥a∥G−1

t
∥at∥G−1

t
≤ η

λ
∥a∥H−1

0
∥at∥H−1

0
≤ ηd

λ
.

Similarly,

|bt(a)| = η ∥a∥2
G−1

t
≤ ηd

λ
.

Based on this, if λ = 2ηd, then η|ŷt(a)− bt(a)| ≤ 1.
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Step 2: Bounding the regret Using the boundedness of η|ŷt(a)−bt(a)| and applying the standard
analysis of exponential weights and a decomposition of the regret yields

RegT =

T∑
t=1

(∑
a∈A

p′t(a)yt(a)− yt(a
∗)

)

≤ λT +

T∑
t=1

(∑
a∈A

pt(a)yt(a)− ⟨a∗, yt⟩

)

≤ λT +

T∑
t=1

∑
a∈A

pt(a) (yt(a)− ŷt(a) + ŷt(a
∗)− yt(a

∗) + bt(a)− bt(a
∗))

+
log(k)

η
+ η

T∑
t=1

∑
a∈A

pt(a)(ŷt(a)− bt(a))
2 .

The last term (the stability) is bounded by

η

T∑
t=1

∑
a∈A

pt(a)(ŷt(a)− bt(a))
2 ≤ 2η

T∑
t=1

∑
a∈A

pt(a)(ŷt(a)
2 + bt(a)

2)

≤ 2η2dT

λ
+

2η

1− λ

T∑
t=1

∥at∥2G−1
t

,

where we used (x+ y)2 ≤ 2x2 + 2y2 and |bt(a)| ≤ 1 for all a and

∑
a∈A

pt(a)ŷt(a)
2 = a⊤G−1

t

∑
a∈A

pt(a)aa
⊤G−1

t a ≤
∥a∥2

G−1
t

1− λ
.

We also have
T∑
t=1

∑
a∈A

pt(a)bt(a) = 2η
T∑
t=1

∑
a∈A

pt(a) ∥a∥2G−1
t

≤ 2ηdT

1− λ
.

Step 3: Concentration Since Et−1[ŷt(a)] = yt(a), with probability at least 1− δ,

T∑
t=1

∑
a∈A

pt(a)(yt(a)− ŷt(a)) ≤ η

T∑
t=1

∑
a∈A

pt(a)Et−1[ŷt(a)
2] +

1

η
log

(
1

δ

)
≤ dηT

1− λ
+

1

η
log

(
1

δ

)
.

Similarly, with probability 1− δ,

T∑
t=1

(ŷt(a
∗)− yt(a

∗)) ≤ η

T∑
t=1

Et−1[ŷt(a
∗)2] +

1

η
log

(
1

δ

)

≤ η
T∑
t=1

∥a∗∥2
G−1

t
+

1

η
log

(
1

δ

)
.
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Lastly, with probability 1− δ, using the fact that Et−1[∥at∥2G−1
t
] = d and η ∥at∥2G−1

t
≤ 1,

2η

1− λ

T∑
t=1

∥at∥2G−1
t

≤ 2η(d+ 1)T

1− λ
.

Step 4: Combining By collecting all the pieces and taking a union bound over all a∗ ∈ A, with
probability at least 1− δ,

RegT ≤ λT + 6η(d+ 1)T +
3

η
log

(
3k

δ

)
+

log(k)

η
.

The result follows by choosing λ = 2ηd and η =

√
log(k/δ)

dT .

Appendix H. Support Lemmas for Entropic Barrier

In this section present a simple lemma for bounding the stability of FTRL with the entropic barrier
and crucial properties of the bias factors.

Lemma 17 Suppose that ∥w∥∇2F (xt)−1 ≤ 1/(16η), then

max
x∈X

⟨xt − x,w⟩ − DF (x, xt)

η
≤ 2η ∥w∥2∇2F (xt)−1 .

Additionally, for xt+1 = arg maxx∈X ⟨xt − x,w⟩ − DF (x,xt)
η , we have ∇2F (xt+1) ⪰ 1

4∇
2F (xt)

Proof Define φ : X → R by

φ(x) = ⟨xt − x, ŷt⟩ −
D(x, xt)

η
.

We start by showing that φ(x) ≤ 0 for all x ∈ X with ∥x− xt∥H−1
t

= 1/2. By Taylor’s theorem,

there exists ξ on the chord connecting x and xt such that D(x, xt) = 1
2 ∥x− xt∥2∇2F (ξ). Since

H−1
t = ∇2F (xt), our assumption that ∥x− xt∥H−1

t
= 1/2 means that x is in the Dikin ellipsoid

of F centered at xt. Hence, by Lemma 10,

D(x, xt) =
1

2
∥x− xt∥2∇2F (ξ)

≥ 1

2
∥x− xt∥2∇2F (xt)

(1− ∥ξ − xt∥∇2F (xt)
)2

≥ 1

8
∥x− xt∥2∇2F (xt)

=
1

32
,

where we use the identity H−1
t = ∇2F (xt). Combining this with Cauchy-Schwarz shows that

φ(x) = ⟨xt − x,w⟩ − D(x, xt)

η

≤ ∥x− xt∥∇2F (xt)
∥w∥∇2F (xt)−1 −

1

32η

=
1

2
∥w∥∇2F (xt)−1 −

1

32η

≤ 0 .
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Therefore φ(x) ≤ 0 for all x with ∥x− xt∥∇2F (xt)
= 1/2. Note that φ is concave and φ(xt) = 0.

Hence, φ(x) ≤ 0 for all x with ∥x− xt∥∇2F (xt)
≥ 1/2. Suppose now that ∥x− xt∥∇2F (xt)

≤ 1/2.
By repeating the argument above,

φ(x) = ⟨xt − x,w⟩ − D(x, xt)

η

≤ ∥x− xt∥∇2F (xt)
∥w∥∇2F (xt)−1 −

1

8η
∥x− xt∥2∇2F (xt)

≤ 2η ∥w∥2∇2F (xt)−1 .

Combining the cases completes the result. The second part follows by observing that xt+1 satisfies
∥xt+1 − xt∥∇2F (xt)

≥ 1/2, as we have shown above.

Lemma 18 Let

ct :=

√√√√√Tr

G−1
t

(
t∑

s=1

G−1
s

)−1
 .

Then it holds that

T∑
t=1

c2t ≤ (d+ 1) log

(
eT

λ

)
T∑
t=1

ct ≤

√
(d+ 1)T log

(
eT

λ

)

c2t ≥
∥u∥2

G−1
t∑t

s=1 ∥u∥
2
G−1

s

.

Proof Due to convexity, we have

c2t = Tr

G−1
t

(
t∑

s=1

G−1
s

)−1
 ≤ log det

(
t∑

s=1

G−1
s

)
− log det

(
t−1∑
s=1

G−1
s

)
,

hence

T∑
t=1

c2t ≤ d+ 1 + log det

(
T∑

s=1

G−1
s

)
− log det (G1) .

The distribution generating G1 is the uniform sampling distribution, hence G−1
s ⪯ 1

λG
−1
1 .

T∑
t=1

c2t ≤ (d+ 1) log

(
eT

λ

)
.
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The second statement follows by Cauchy-Schwarz:

T∑
t=1

ct ≤

√√√√T
T∑
t=1

c2t .

Finally, the last equation follows by

∥u∥2
G−1

t∑t
s=1 ∥u∥

2
G−1

s

≤ max
u′∈Rd

∥u′∥2G−1
t∑t

s=1 ∥u′∥2
G−1

s

= max
u′∈Rd

∥∥(∑t
s=1G

−1
s )−1/2u′∥∥2

G−1
t

∥u′∥2

= λmax

( t∑
s=1

G−1
s

)−1/2

G−1
t

(
t∑

s=1

G−1
s

)−1/2


≤ Tr

( t∑
s=1

G−1
s

)−1

G−1
t

 .

Lemma 19 For any u ∈ X it holds ∥u− xt∥2G−1
t

≤ ∥u∥2
G−1

t
+ 24d2, if further xt+1 is in the

1
2 -Dikin ellipsoid, then

∥u∥2
G−1

t+1

∥u∥2
G−1

t

≤ 8.

Proof The first part follows from.

∥u− xt∥2G−1
t

=
∥∥u− x′t

∥∥2
G−1

t
+ 2λ

〈
xt + x′t

2
− u,G−1

t (xt − x0)

〉
≤ ∥u∥2

G−1
t

+ 2λ

∥∥∥∥xt + x′t
2

− u

∥∥∥∥
G−1

t

∥xt − x0∥G−1
t

≤ ∥u∥2
G−1

t
+ 2

∥∥∥∥xt + x′t
2

− u

∥∥∥∥
H−1

0

∥xt − x0∥H−1
0

≤ ∥u∥2
G−1

t
+ 24d2 . (Lemma 15)

For the second part, observe that because xt+1 is in the 1
2 -Dikin ellipsoid and by Lemma 10 we have

H−1
t+1 ⪯ 4H−1

t .
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For any u ∈ Rd, it holds that

∥u∥2Gt
= ∥u∥2Gt

+ (1 + ⟨u, x′t⟩)2

= (1− λ) ∥u∥2Ht
+ λ ∥u∥2H0

+ λ(1− λ)⟨u, xt − x0⟩2 + (1 + ⟨u, x′t⟩)2

≤ (1− λ) ∥u∥2Ht
+ λ ∥u∥2H0

+ λ(1− λ)⟨u, xt+1 − x0⟩2 + (1 + ⟨u, x′t+1⟩)2

+ λ(1− λ)⟨u, xt − xt+1⟩⟨u, xt + xt+1 − 2x0⟩+ 2⟨u, x′t − x′t+1⟩+ ⟨u, x′t − x′t+1⟩⟨u, x′t + x′t+1⟩
= (1− λ) ∥u∥2Ht

+ λ ∥u∥2H0
+ λ(1− λ)⟨u, xt+1 − x0⟩2 + (1 + ⟨u, x′t+1⟩)2

+ (1− λ)⟨u, xt − xt+1⟩(2 + ⟨u, λ(xt + xt+1 − 2x0) + x′t + x′t+1⟩)
= (1− λ) ∥u∥2Ht

+ λ ∥u∥2H0
+ λ(1− λ)⟨u, xt+1 − x0⟩2 + (1 + ⟨u, x′t+1⟩)2

+ (1− λ)⟨u, xt − xt+1⟩(2 + ⟨u, xt + xt+1⟩)
= (1− λ) ∥u∥2Ht

+ λ ∥u∥2H0
+ λ(1− λ)⟨u, xt+1 − x0⟩2 + (1 + ⟨u, x′t+1⟩)2

+ 2(1− λ)⟨u, xt − xt+1⟩(1 + ⟨u, xt+1⟩) + (1− λ)⟨u, xt − xt+1⟩2

≤ 5(1− λ)

4
∥u∥2Ht

+ λ ∥u∥2H0
+ λ(1− λ)⟨u, xt+1 − x0⟩2 + (1 + ⟨u, x′t+1⟩)2

+ 2(1− λ)⟨u, xt − xt+1⟩(1 + ⟨u, x′t+1⟩) + 2λ(1− λ)⟨u, xt − xt+1⟩⟨u, xt+1 − x0⟩

≤ 5(1− λ)

4
∥u∥2Ht

+ λ ∥u∥2H0
+ λ(1− λ)⟨u, xt+1 − x0⟩2 + (1 + ⟨u, x′t+1⟩)2

+ (1− λ)(⟨u, xt − xt+1⟩2 + (1 + ⟨u, x′t+1⟩)2) + λ(1− λ)(⟨u, xt − xt+1⟩2 + ⟨u, xt+1 − x0⟩2)

=
(6 + λ)(1− λ)

4
∥u∥2Ht

+ λ ∥u∥2H0
+ 2λ(1− λ)⟨u, xt+1 − x0⟩2 + (3− 2λ)(1 + ⟨u, x′t+1⟩)2

≤ (6 + λ)(1− λ) ∥u∥2Ht+1
+ λ ∥u∥2H0

+ 2λ(1− λ)⟨u, xt+1 − x0⟩2 + (3− 2λ)(1 + ⟨u, x′t+1⟩)2

≤ 8 ∥u∥2Gt+1
.

We have shown Gt ⪯ ∗Gt+1, which directly implies G−1
t+1 ⪯ ∗G−1

t .
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