
Proceedings of Machine Learning Research 179:1–13, 2022 Conformal and Probabilistic Prediction and Applications

Assessing Explanation Quality by Venn Prediction

Amr Alkhatib amak2@kth.se

Henrik Boström bostromh@kth.se

School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Sweden

Ulf Johansson ulf.johansson@ju.se

Dept. of Computing, Jönköping University, Sweden
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Abstract

Rules output by explainable machine learning techniques naturally come with a degree of
uncertainty, as the complex functionality of the underlying black-box model often can be
difficult to approximate by a single, interpretable rule. However, the uncertainty of these
approximations is not properly quantified by current explanatory techniques. The use of
Venn prediction is here proposed and investigated as a means to quantify the uncertainty
of the explanations and thereby also allow for competing explanation techniques to be
evaluated with respect to their relative uncertainty. A number of metrics of rule explanation
quality based on uncertainty are proposed and discussed, including metrics that capture
the tendency of the explanations to predict the correct outcome of a black-box model on
new instances, how informative (tight) the produced intervals are, and how certain a rule is
when predicting one class. An empirical investigation is presented, in which explanations
produced by the state-of-the-art technique Anchors are compared to explanatory rules
obtained from association rule mining. The results suggest that the association rule mining
approach may provide explanations with less uncertainty towards the correct label, as
predicted by the black-box model, compared to Anchors. The results also show that the
explanatory rules obtained through association rule mining result in tighter intervals and
are closer to either one or zero compared to Anchors, i.e., they are more certain towards a
specific class label.

Keywords: Venn prediction · Explainable machine learning · Rule mining

1. Introduction

Many machine learning algorithms achieve state-of-the-art performance in solving real-
world problems in finance, medicine, biology, etc., but they usually produce black-box (non-
interpretable) models (Linardatos et al., 2021). Understanding the logic used to produce
the predictions is often a necessity for the user to place trust in such models. Using white
box (interpretable) models is one possible solution, but they often come with a substantial
loss of predictive performance (Loyola-González, 2019). Explainable machine learning is
a practical solution to explain the predictions of a black-box model without losing the
predictive performance.

Explanation techniques are classified into model-agnostic or model-specific. The first
allows for explaining any black-box model, e.g., as in (Ribeiro et al., 2016a), while the
latter exploits properties of the underlying model to produce the explanations, e.g., as in
(Boström et al., 2018). The explanation techniques can also be classified according to the
scope of the produced explanations into local and global techniques (Molnar, 2022). A local
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explanation technique is instance-based, i.e., it explains a single prediction of a black-box
model. On the other hand, global explanation techniques explain how a model behaves in
general (Molnar, 2022).

Explanation techniques can produce explanations in various forms. Plots are one possi-
ble form that is conceivably intuitive and easy to understand, e.g., the Partial Dependence
Plot (PDP) (Friedman, 2001) and the Accumulated Local Effects (ALE) Plot (Apley and
Zhu, 2020). Other explanation techniques produce explanations in the form of (additive)
feature importance scores, e.g., LIME (Local Interpretable Model-agnostic Explanations)
(Ribeiro et al., 2016b) and SHAP (SHapley Additive exPlanations) (Lundberg and Lee,
2017). Another popular approach to explaining predictions is to use rules; this format is
claimed to be relatively easy to understand and is often preferred over alternative types of
explanations. Anchors is a prominent example of such a technique (Ribeiro et al., 2018).
However, these techniques have been observed to sometimes generate overly specific ex-
planatory rules with low fidelity (faithfulness) to the underlying black-box model (Delaunay
et al., 2020).

The low fidelity problem of some explanatory rules can partly be explained by the under-
lying black-box model being complex and not allowing for being approximated by a single
explanatory rule. Since the fidelity can vary substantially between different explanations
(rules), there is a need to properly quantify their uncertainty. Venn prediction (Vovk et al.,
2005) is a multi-probabilistic method with proven validity guarantees that can be used to
produce well-calibrated probability estimates (Johansson et al., 2019), and which we here
propose and investigate as a means to quantify the uncertainty.

The main contributions of this study are:

• A novel method for quantifying the uncertainty of rule-based explanations

• A set of metrics designed to measure the uncertainty of the explanatory rules

• An empirical investigation comparing the uncertainty of explanations as produced by
Anchors and an association rule mining explanatory technique

The following section briefly discusses related work on rule-based explanation techniques
and Venn prediction. In Section 3, we describe how to quantify the uncertainty of the rules,
then, a set of metrics to measure the uncertainty of the explanatory rules is proposed. In
Section 4, we present and discuss the results of an empirical investigation in which expla-
nations obtained through Anchors are compared to explanations generated by association
rule mining. Finally, in Section 5, we summarize the main findings and outline directions
for future work.

2. Related Work

In this section, we start out by discussing some model-agnostic rule-based explanation
techniques. We then continue with a description of Venn predictors.
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2.1. Rule-Based Explanations

Explainable machine learning is a research area that has recently gained some attention,
and many explanation techniques provide its explanations in the form of rules. Anchors
(Ribeiro et al., 2018) is an example of such a technique, which generates explanations such
that non-included features should have no effect on the model’s outcome. It is claimed that
the rules are easier to understand and often preferred to alternative types of explanation
(Ribeiro et al., 2018). However, it has been shown that Anchors may produce specific
rules with low fidelity (Delaunay et al., 2020). Local Rule-based Explanations (LORE)
(Guidotti et al., 2019) is another model-agnostic method, which trains a white-box model
using synthetic data in the neighborhood of the instance of interest, while the neighborhood
examples are generated using a genetic algorithm. The trained white-box model acts as a
faithful explainer locally on a specific data instance but not as a general explainer on other
data instances. The logic of the local white-box model is used to explain in the form of a
decision rule. LORE also provides a set of counterfactual rules, pointing out some changes
in the features that can result in another outcome. Since Anchors and LORE provide local
explanations, GLocalX (Setzu et al., 2021) was proposed as a method to generate global
explanatory rules. GLocalX measures the similarity of different rules and merges similar
local rules into a more general one. The generated general rules can emulate the black-box
model, and their faithfulness can be tested on a dataset. In order to provide guarantees on
the fidelity of the extracted explanatory rules, Johansson et al. (2022) utilized the conformal
prediction framework. However, this novel method is limited to regression models.

2.2. Venn Predictors

A probabilistic predictor aims to predict the probability distribution of the label on a
test object, given the training data. A valid predictor has probability distributions that
perform well against statistical tests based on subsequent observation of the labels. Such
validity cannot be achieved in a general sense (Gammerman et al., 1998). However, Venn
predictors (Vovk et al., 2003) can overcome this impossibility by two means. First, multiple
probabilities for each label are produced, containing the valid one, and second, the statistical
validity tests are restricted to calibration. Precisely, the observed frequencies must match
the produced probabilities; for instance, if several predictions were made with a probability
estimate 0.9, these predictions should be correct in about 90% of the cases.

Venn predictors were introduced in a transductive setting requiring one model to be
trained for each class label for each instance, which incurs a high computational cost. How-
ever, Lambrou et al. (2015) developed the Inductive Venn Predictors (IVPs) to overcome the
computational inefficiency problem. Since the inductive Venn prediction is a key concept
used in our proposed method, next, we describe the IVPs.

Assume we have training data in the form of {z1, . . . , zl}. Inductive Venn predictors
require the data to be split into two subsets, a proper training set used to train the under-
lying model and calibration set to estimate label probabilities for each test example. Let
the proper training set be {z1, . . . , zq}, and similarly, the calibration set be {zq+1, . . . , zl}.
Each instance in the two sets is composed of two parts zi = (xi, yi), an object xi and a label
yi.
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Given a new test object xl+1, Venn prediction estimates the probability that yl+1 = Yj ,
for each label Yj in the set of possible labels Yj ∈ {Y1, . . . , Yc}. Inductive Venn prediction
is based on the fundamental idea of dividing the calibration data into several categories
and using the frequency of label Yj in each category to estimate label probabilities for new
instances belong to the same category. A Venn taxonomy is used to specify the categories,
and each taxonomy results in a different Venn predictor. Typically, the taxonomy is based
on the underlying model, and a new object xi is assigned to a category based on the model’s
output. One simple Venn taxonomy is to divide the instances into one category for each
predicted label.

When estimating label probabilities for a test object xl+1, first, the category of the
object is determined by the model similar to the calibration objects. Afterwards, the label
frequencies in the calibration data in the same category are used to calculate the label prob-
abilities. All possible labels Yj ∈ {Y1, . . . , Yc} are used since the true label yl+1 is unknown,
resulting in a set of label probability distributions. However, a more compact representation
can be used instead of the probability distributions. The compact representation uses the
lower L(Yj) and upper U(Yj) probability estimates for each label Yj . Assume that the Venn
taxonomy assigns the category k to a test object xl+1 and Zk is the of calibration instances
that belong to category k. Consequently, the lower L(Yj) and upper U(Yj) probability
estimates are defined by:

L(Yj) =
|{(xm, ym) ∈ Zk | ym = Yj}|

|Zk|+ 1
(1)

and:

U(Yj) =
|{(xm, ym) ∈ Zk | ym = Yj}|+ 1

|Zk|+ 1
(2)

A prediction ŷl+1 for xl+1 can be made using the lower probability estimates as follows:

ŷl+1 = max
Yj∈{Y1,...,Yc}

L(Yj) (3)

The output of a Venn predictor is the prediction ŷl+1 all together with the following
probability interval:

[L(ŷl+1), U(ŷl+1)] (4)

Vovk et al. (2005) have shown that multi-probability predictions of Venn predictors are
valid, no matter what taxonomy is used. However, it does not mean that the choice of
taxonomy is unimportant, as it has an effect on the prediction accuracy and the size of
the probability intervals of the Venn predictor. It is also essential to note that the smaller
probability intervals are more informative, and the probability estimates should preferably
be as close to one or zero as possible, which indicates high certainty in prediction.
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3. Method

This section first describes a method to quantify the explanatory rules’ uncertainty with
respect to the underlying model predictions, allowing for selecting rules with better fidelity
estimates. Afterwards, we propose a set of metrics to measure the quality of the explanatory
rules based on the uncertainty.

3.1. Explanatory Rule Uncertainty Quantification

The proposed method for uncertainty quantification is agnostic to the explanation tech-
nique, as long as it outputs (explanatory) rules. The uncertainty quantification is done by
using the upper and lower probability estimates of each class label (Yj), where the correct
classes are the predicted ones by the underlying model. Consequently, we will refer to the
upper and lower probability estimates by the upper and lower fidelity estimates or the upper
and lower fidelity bounds.

The uncertainty of each explanatory rule is quantified separately (as an independent
classifier). A calibration set (Xc) is devoted to uncertainty quantification, from which each
rule determines its calibration subset (Xr). A rule can be used to select its calibration
subset by checking all the conditions in the rule’s antecedent. If all the conditions are met
by one instance, it will be included in the rule’s calibration subset (Xr). The selection
is made regardless of the rule’s consequent or the true label (as predicted by the black-
box model). After selecting the instances of the calibration subset, the black-box model is
employed to obtain the labels (Yr) of the instances in the calibration subset (Xr). Xr and
Yr form together the labeled calibration subset (Zr) needed for computing the upper and
lower fidelity estimates.

Finally, Equation (5) and Equation (6) are employed, using Zr, to compute the lower
and upper fidelity bounds of each class label, respectively.

L(Yj) =
|{(xi, yi) ∈ Zr|yi = Yj}|

|Zr|+ 1
(5)

U(Yj) =
|{(xi, yi) ∈ Zr|yi = Yj}|+ 1

|Zr|+ 1
(6)

3.2. Evaluation Metrics

We propose three metrics (and three extensions of them) to measure the uncertainty of
the explanatory rules and present the results as average values over all the rules. One of
the proposed metrics assumes access to a test dataset. In contrast, the other two metrics
can be determined using the upper and lower fidelity estimate values as computed on the
calibration dataset.

The average lower bound (ALB) is the metric to be computed using a test dataset. The
ALB values are reported on test instances with applicable rules, i.e., rules with all conditions
in their antecedents are true with respect to the data instance. If two or more rule-based
explanatory techniques are compared, the test instance must be covered by at least one rule
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from each technique. Otherwise, the test instance is omitted from the evaluation, ensuring
that the techniques are compared on precisely the same data. The ALB is computed for
each data instance by checking the rules that cover that instance. For all the applicable
rules, the average value of the lower bounds of each class label is computed. Only the
average value of the correct class label, as determined by the black-box model, is returned
(Equation (7)). Accordingly, a high ALB value indicates that the rules are predicting the
correct label in accordance with the black-box model and with high certainty.

ALB =
1

n

n∑
i=1

L(Yji), where n is the number of rules (7)

The other two metrics are the difference between the upper and lower bound of each
class label (the interval size, Equation (8)) and the absolute difference between the lower
bounds of the two classes (△LB, Equation (9)) since we consider only binary classification
problems in this study.

Interval Size = U(Yj)− L(Yj) (8)

△LB = |L(Y1)− L(Y0)| (9)

The interval size and △LB are computed for each rule without an essential need for a
test dataset but using the upper and lower bound values computed on the calibration set.
According to Johansson et al. (2019), a tighter probability interval is more informative,
and the interval bounds should preferably be as close to one or zero as possible. For this
specific motivation, we compute the △LB, in addition to the interval size, to monitor how
close the intervals are to one/zero. Since we have two classes, a certain rule should have one
class’s lower bound close to 1 and the other class’s lower bound close to zero. Consequently,
the absolute difference between the two classes’ lower bounds should preferably be as close
to one as possible. The △LB reflects how confident a rule is toward predicting one class
label. The uncertainty is high if a rule has a small difference between the lower bounds of
the two classes and vice versa.

Since the interval size and △LB are computed only on the calibration set and the value
of both metrics is the average overall rules, which assumes that all explanatory rules are
equally important. Therefore, we also provide weighted average values, where rules with
higher coverage are rewarded with higher weights while computing the average value. In
order to compute the weighted average, each interval size or △LB value is multiplied by
the number of instances that the rule covers, then all the multiplied values are summed and
divided by the total count of multiplied values.

Finally, we provide ALB-P an extension to the ALB metric, which penalizes a method
for explanations with low coverage. Thus, instead of computing the ALB scores on the data
instances with coverage from all the compared methods, each method will be evaluated
on all the data instances, and a zero ALB value is added for each data instance with no
applicable rules.
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4. Empirical Evaluation

In this section, the uncertainty of the rules obtained from two explanatory techniques,
namely Anchors and the association rules, is compared. The quality of the generated
explanatory rules is assessed using the proposed metrics in Subsection 3.2, where better
explanatory rules are the rules with lower uncertainty. We conduct two sets of experiments.
In the first set of experiments, Subsection 4.2, we evaluate the explanatory rules assuming
that all the rules are equally important. While in the second set of experiments, Subsection
4.3, we assign higher weights to the rules with higher coverage.

4.1. Experimental Setup

The experiments are conducted using 12 public datasets1. Each dataset is split into training,
development, calibration, and test sets. The ratios of the splits vary based on the size of the
dataset, but the majority followed 40% training, 20% development, 20% calibration, and
20% test. The black-box model is trained on the first, the explanatory rules are generated
using the black-box predictions on the second set, the uncertainty of the explanatory rules
are quantified on the third, and finally, the quality of the produced rules is evaluated on
the fourth set. All datasets are for binary classification problems except for Compas2,
which contains three classes (Low, Medium, and High) that have been reduced into two
by combining Low and Medium in one class. The black-box models are generated by
XGBoost (Chen and Guestrin, 2016). Some of the models’ hyperparameters (e.g., learning
rate, number of estimators, and the regularization parameter lambda) are tuned through
grid search using 5-fold cross-validation on the training set.

In the following experiments, explanations obtained through Anchors and association
rule mining are compared. Anchors is used with the default hyperparameters, and the con-
fidence threshold has been set to 0.9. In subsection 4.1.1, we describe how the explanatory
rules are obtained using Anchors and the association rule mining.

4.1.1. Obtaining Explanatory Rules

Anchors is used to generate explanations for the black-box model predictions on the devel-
opment set. Then, all the conditions in the obtained rules are added to one set of conditions
(combined conditions). Consequently, each data object is represented by an itemset of con-
ditions (explanation itemset), where the contents of the explanation itemset are the true
conditions in the combined conditions for that object all together with the predicted class
label. The explanation itemsets are the input to the association rule mining algorithm.

An association rule mining algorithm is applied to the explanation itemsets using the
specified confidence and support thresholds.

Finally, the set of obtained association rules is filtered by keeping only the rules for which
some set of conditions in the antecedent and a single class label appear in the consequent.

In all experiments, the Apriori algorithm (Agrawal and Srikant, 1994) is employed for
association rule mining. The association rule mining algorithm requires two hyperparame-
ters; support and confidence. The former is primarily set to 4 but can also be raised if the

1. All the datasets were obtained from https://www.openml.org except Compas
2. https://github.com/propublica/compas-analysis
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number of rules is overwhelming. The confidence threshold is selected based on a trade-off
between the uncertainty (measured on the development set) and the number of rules; ac-
cordingly, high confidence may produce a very small number of rules with high certainty
and vice versa.

4.2. Rule-Based Evaluation

In this experiment, the rules are evaluated using the metrics previously described in Sub-
section 3.2 with an assumption that all the rules are equally important. Consequently,
the interval size and △LB values are computed by taking the average value over all the
rules. The results from comparing Anchors’ rules to the association rules are summarized
in Table 1. The association rules generally have higher certainty levels than the rules of
Anchors.

To test the null hypothesis that there is no difference in the uncertainty, as measured by
ALB, between Anchors and the association rules, and since we only compare two methods
in this experiment, the Wilcoxon signed-rank test (Wilcoxon, 1945) is employed. It turns
out that the null hypothesis may be rejected at the 0.05 level. Similar statistical significance
tests have been carried out for the interval size and △LB and showed that these differences
are statistically significant as well.

We also illustrate the differences between explanations produced by Anchors and asso-
ciation rule mining, by presenting samples of both methods’ rules in Table 2 and Table 3.

In summary, it can be concluded that with association rule mining, we can provide
explanatory rules with reduced levels of uncertainty compared to the rules obtained directly
through Anchors.

4.3. Instance-Based Evaluation

In this set of experiments, the same metrics that are used in Subsection 4.2 are employed
again, but the scores of the rules with higher coverage are rewarded with higher weights
while computing the average value. Only the values of the △LB and the interval size are
considered in the weighted averaging; consequently, the ALB values remain unaffected in this
experiment. We replace ALB with ALB-P to reward higher coverage, as shown in Table 4.
The results in Table 4 show no significant difference, using the Wilcoxon signed-rank test,
between Anchors’ rules and the association rules in terms of the sizes of the prediction
intervals. However, the association rules result in significantly higher △LB values than
Anchors. On the other hand, Anchors provides significantly higher ALB-P values than
association rules, reflecting the high coverage provided by Anchors’ explanations.
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Table 1: Average values of ALB, interval size, and △LB, in addition to the number of rules
and coverage for Anchors and the association rules.

Dataset
Association Rules Anchors

ALB Interval Size △LB #Rules* Cov.** ALB Interval Size △LB #Rules Cov.

ada 0.926 0.01 0.94 209 0.60 0.917 0.09 0.81 311 1.00

Bank Marketing 0.953 0.01 0.97 149 0.84 0.918 0.38 0.54 118 1.00

BNG breast-w 0.988 0.003 0.99 18 0.86 0.981 0.002 0.98 121 1.00

Compas 0.931 0.025 0.93 135 0.80 0.906 0.282 0.54 313 1.00

Churn 0.873 0.03 0.88 96 0.90 0.863 0.189 0.71 398 1.00

Internet Advertisements 0.919 0.008 0.92 179 0.84 0.879 0.019 0.77 294 1.00

Jungle Chess 2pcs 0.99 0.01 0.99 102 1.00 0.99 0.03 0.97 22 1.00

mc1 0.999 0.0007 0.999 349 0.99 0.998 0.058 0.884 35 1.00

Mushroom 0.995 0.01 0.99 273 0.96 0.981 0.02 0.97 123 1.00

Phishing Websites 0.971 0.007 0.97 166 0.62 0.942 0.016 0.88 187 1.00

Spambase 0.937 0.01 0.95 210 0.91 0.928 0.032 0.94 336 0.997

Telco Customer Churn 0.92 0.06 0.88 217 0.80 0.907 0.08 0.74 196 1.00

Average rank*** 1.08 1.08 1 – – 1.92 1.92 2 – –

* The number of rules.
** The coverage value here is the percentage of instances in the dataset that are covered by at least one rule.
*** The average rank shows which method is better on average, with 1 being the best and 2 the worst result.

Table 2: The top 4 explanatory rules of each class output by Anchors for the BNG breast
dataset with the lower (L(Y)) and upper (U(Y)) fidelity estimates of the correct
class label.

Conditions Label L(Y) U(Y)

Cell Size Uniformity ≤ 1 & Cell Shape Uniformity ≤ 1 Benign 0.996894 0.997930
Cell Size Uniformity ≤ 1 & Clump Thickness ≤ 2.22 Benign 0.997630 1
Cell Shape Uniformity ≤ 1 & Clump Thickness ≤ 2.22 Benign 0.997354 1
Cell Shape Uniformity ≤ 1 & Clump Thickness ≤ 4 Benign 0.997465 0.998733

Clump Thickness > 5.66 & Cell Size Uniformity > 4.49 Malignant 0.996805 1
Clump Thickness > 5.66 & Normal Nucleoli > 3.55 Malignant 0.989209 0.992806
Cell Size Uniformity > 4.49 & Bare Nuclei > 6.61 Malignant 0.997135 1

Cell Size Uniformity > 4.49 & Single Epi Cell Size > 2 Malignant 0.960986 0.963039
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Table 3: The top 4 explanatory rules of each class output by association rules for the BNG
breast dataset with the lower (L(Y)) and upper (U(Y)) fidelity estimates of the
correct class label.

Conditions Label L(Y) U(Y)

Bare Nuclei ≤ 6.61 & Cell Shape Uniformity ≤ 1 Benign 0.998008 0.999004
Bland Chromatin ≤ 4.66 & Cell Shape Uniformity ≤ 1 Benign 0.996051 0.997038
Bland Chromatin ≤ 3 & Cell Shape Uniformity ≤ 1 Benign 0.997992 0.998996

Cell Shape Uniformity ≤ 1 & Bare Nuclei ≤ 1 Benign 0.997785 0.998893
Clump Thickness > 5.66 & Cell Size Uniformity > 4.49 Malignant 0.996805 1
Clump Thickness > 5.66 & Cell Shape Uniformity > 5.18 Malignant 0.99361 0.996805

Cell Shape Uniformity > 5.18 & Mitoses > 1 Malignant 0.995025 1
Cell Size Uniformity > 4.49 & Mitoses > 1 Malignant 0.995098 1

Table 4: Average values of ALB-P, weighted interval size, and weighted △LB, in addition
to the number of rules and coverage for Anchors and the association rules.

Dataset
Association Rules Anchors

ALB-P Interval Size △LB #Rules Cov. ALB-P Interval Size △LB #Rules Cov.

ada 0.56 0.008 0.94 209 0.60 0.82 0.011 0.90 311 1.00

Bank Marketing 0.798 0.006 0.99 149 0.84 0.896 0.002 0.89 118 1.00

BNG breast-w 0.85 0.002 0.995 18 0.86 0.97 0.002 0.986 121 1.00

Compas 0.74 0.005 0.96 135 0.80 0.85 0.003 0.89 313 1.00

Churn 0.78 0.01 0.91 96 0.90 0.85 0.006 0.89 398 1.00

Internet Advertisements 0.77 0.007 0.92 179 0.84 0.82 0.005 0.82 294 1.00

Jungle Chess 2pcs 0.99 0.012 0.988 102 1.00 0.99 0.013 0.987 22 1.00

mc1 0.989 0.0007 0.999 349 0.99 0.993 0.0014 0.997 35 1.00

Mushroom 0.95 0.0059 0.994 273 0.96 0.97 0.0067 0.976 123 1.00

Phishing Websites 0.60 0.0033 0.98 166 0.62 0.89 0.0047 0.91 187 1.00

Spambase 0.85 0.009 0.957 210 0.91 0.91 0.012 0.953 336 0.997

Telco Customer Churn 0.74 0.005 0.977 217 0.80 0.87 0.0095 0.899 196 1.00

Average rank 1.92 1.375 1.125 – – 1.08 1.625 1.875 – –
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5. Concluding Remarks

We have proposed a method to quantify the uncertainty of the explanations expressed in the
form of rules. Moreover, a set of metrics of rule explanation quality based on uncertainty is
proposed. The metrics measure the tendency of the explanations to predict the correct label
on new instances, how informative the produced intervals are, and the certainty of a rule
to predict one class. We have presented results from an empirical evaluation, comparing
explanatory rules obtained by the state-of-the-art technique Anchors to rules obtained from
association rule mining. Two sets of experiments have been carried out. In the first set, the
performance is averaged across the rules, where all rules are given the same weight, while in
the second set of experiments, the performance is instead averaged over instances, where the
rules are weighted according to their coverage. The explanations produced by association
rule mining were observed to significantly outperform Anchors’ explanations when averaging
across rules. When instead averaging across instances, no significant difference between
Anchors and the association rules was observed regarding the interval size; however, the
association rules maintained significantly higher △LB values, while in contrast, Anchors
achieved significantly higher ALB-P values than association rules. When averaging over
instances, the results indicate that Anchors may be more reliable, while when averaging
over rules, Anchors may produce more uncertain rules compared to those produced by
association rule mining.

One direction for future work is to investigate uncertainty quantification for other ex-
planation types, in addition to rules, in particular additive feature importance scores, which
are produced by several popular explanation techniques. The challenge there would be to
find ways of verifying, or evaluating, the explanations.
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