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Abstract

Dealing with uncertain data in statistical estimation problems or in machine learning is not really
a new issue. However, such uncertainty has so far mostly been modelled either as sets, being
called for instance coarse data or partial labels, or as probability distributions over data values,
being called for instance soft labels. Integrating this uncertainty in the learning process can be
challenging, but also rewarding, as it can improve both the quality of the made predictions as well as
our understanding of the obtained model. Within this setting, rich uncertainty models generalizing
both probabilities and sets offer both new challenges and opportunities, and I will summarise some
of them in this short note.
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1. Introduction

There are various reasons to get interested in how to model data uncertainty and reason with it.
Data uncertainty may indeed appear in various situations. For instance, measurement tools may
only provide measurements up to a given precision, or expert labelling some data may be uncertain
in front of ambiguous or previously unseen situations. In other settings, it is quite common to only
ask for part of the information: for example, in preference learning, users will typically only give
preferences over a subset of alternatives rather than over all of them. Finally, in co-learning or
self-supervised learning settings, unlabelled data are typically labelled according to some model
predictions, which are themselves uncertain.

Dealing with such uncertain data in statistics and machine learning is of course not a new issue.
Formally, we will be uncertain about the value that a data can take over a space ) of possible values
(typically a finite set in multi-class problems or a subset of R in a regression problem). For most
works concerning this issue, how this uncertain data is modelled and accounted for can be divided
into two main options:

* The first considers that a piece of uncertain data is modelled by a set £ C ) of possi-
ble values, one of which is the true one. This corresponds, for instance, to the coarse data
described by Rubin and Little seminal work (Little and Rubin, 2019). Another set-valued
problem explored by several authors in supervised machine learning is to deal with partial
class labels (Cour et al., 2011; Liu and Dietterich, 2014).

* The second considers that an uncertain data can be modelled as a probability distribution p
over the possible values ) a data can take. This is a usual assumption in database litera-
ture (Aggarwal and Philip, 2008), and such a modelling is also commonly used in machine
learning to build pseudo-labels (a.k.a. soft labels) whose use often results in more regular,
better calibrated models (Miiller et al., 2019).
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While probabilities and sets are often considered apart from each other, uncertainty theories such as
belief functions (Shafer, 1976) and imprecise probabilities (Augustin et al., 2014) generalize both by
considering more expressive uncertainty theories. They therefore offer nice theoretical frameworks
to build a unified theory of learning with uncertain data. Moreover, many recent works (Martin,
2019; Griinwald, 2018; Vovk and Petej, 2014) point out that providing generic calibrated predictions
in a number of situations actually requires to use more expressive models than probability, or at least
to provide imprecise statements about those probabilities.

In this short note, I will first discuss the nature and modelling of data uncertainty, and in par-
ticular why convex sets of probabilities, a.k.a. credal sets, are interesting models to consider. This
will be done in Section 2. Focusing on the case of purely imprecise, set-valued data, I will then
discuss in Section 3 the challenges, both in terms of computation and interpretation, that may arise
from using such uncertainty models. To finish on a more optimistic note, I will discuss in Section 4
how using rich uncertainty models can actually be beneficial to the learning process, and present
interesting opportunities for the future.

2. Discussing data uncertainty and the way to model it

When thinking about modelling the uncertainty we have about a quantity, people have considered
quite a number of distinctions: examples of known distinctions include, for instance

* aleatoric versus epistemic uncertainty, that is uncertainty due to te intrinsic randomness of a
process versus uncertainty due to lack of knowledge;

* objective versus subjective uncertainty, that is whether uncertainty can be measured as an
objective quantity, or only depends on the agent that tries to model it;

* generic versus singular uncertainty, that is whether the uncertainty concerns a whole popula-
tion or a repeatable experiment, or a unique non-repeatable situation;

* reducible versus non-reducible uncertainty, that is whether uncertainty can be reduced or
even suppressed by collecting more information, or if it will remain whatever the amount of
information we will obtain in the future.

Such distinctions are useful to convey the idea that uncertainty is multi-faceted, but can be the topic
of endless debates about their exact meaning and nature, and it is not my goal here to enter into such
kind of debates.

However, when concerned with data, or rather datum uncertainty, it is fair to say that our un-
certainty usually! concerns a fixed but ill-known value Y, in the sense that if we had prefect, trust-
worthy information about the piece of data, we would end up with a single precise value. This
uncertainty may be reducible or not, depending on whether we can acquire more measurements, but
the quantity we are interested in is mostly of a non-statistical, singular nature.

Among other things, this means that there is no reason, a priori, to prefer a probabilistic model
when it comes to the problem of describing our uncertainty about Y mathematically. While us-
ing probabilities for non-random quantities and non-statistical settings has been justified by De
Finetti (De Finetti, 2017) and others, there are good arguments indicating that one may prefer more
general models (Walley, 1991).

1. even this can be questioned, and I will briefly discuss it in Section 3
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Figure 1: Illustration of possibility distributions on R

Imprecise probabilities are such general models, that enrich probabilities by considering as their
basic uncertainty models (convex) sets of probabilities, a.k.a., credal sets, usually denoted as P. If
Ay denotes the set of all possible probabilities over ), then a credal set P C Ay is simply a subset
of Ay. Given a credal set P, the lower and upper probabilities of an event A C ) are simply
defined as

P(A) = sup P(A), P(A)= inf P(A). (D
PcP pPepP
They are dual, in the sense that P(A) = 1 — P(A) Such models include both probabilities (in which
case P = P) and sets (in which case the set E ' corresponds to P(A) = 1forany E C A, zero
otherwise). Conversely, given an upper measure P, one can consider the associated credal set

Pp={P: P(A) < P(A)}

of dominated probabilities, and likewise for lower probabilities, considering the set of dominating
probabilities?.

For practical purposes, one will often consider particular credal sets, whose structure offers
some advantages or interests in terms of interpretation, computations and mathematical proper-
ties (Destercke and Dubois, 2014). I will now review some of those models, focusing on those that
are closely linked to conformal prediction and Venn-Abers predictors (Johansson et al., 2019).

2.1. Possibility distributions

A possibility distribution (Dubois and Prade, 1992) is a positive mapping 7 : J — [0, 1] such that
its maximum is one, i.e., max,cx m(z) = 1. From such a distribution is then defined a maxitive or
supremum-preserving upper probability such that

P.(A) =sup () (2)
€A

A particularly interesting feature of the credal set P, induced by a possibility distribution is that it
can be totally characterised by lower confidence values provided over sequences of nested intervals.
In particular, if we define the cut A, as {x : m(x) > a}, the set P, can be defined as

Pr={P:Va€[0,1,P (An) > 1—a}.

2. In general the upper/lower measure inducing a credal set do not need to be their lower/upper envelope, i.e., using
Equation (1) on P may not give back P, but it will be the case for all models considered here
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Figure 2: Probability set induced by imprecise probabilistic assignment.

There is a strong similarity between the sets {x : m(z) > «} and the p-values used in confor-
mal predictions. In fact, one can show that the p-values derived by conformal predictors can be
interpreted as possibility degrees (Lienen et al., 2022; Cella and Martin, 2022). This means that
conformal procedures actually produce calibrated model of data uncertainty in the form of possibil-
ity distributions, that can in turn be used in learning procedures. Such uses will be mentioned and
briefly discussed later on.

It should be noticed, however, that possibility distributions are not able to model precise proba-
bilities, as the interval [P, P,] will always be of the kind [0, o] or [3, 1], therefore not allowing to
model the precise interval [y, y] whenever v € (0, 1).

2.2. Imprecise probability assignments (IPA)

When Y is a discrete space, another commonly used credal representation is the one of imprecise
probability assignments (De Campos et al., 1994), that consists in specifying probabilistic bounds
[p(y),D(y)] over each singleton of the space ). The lower and upper probabilities obtained from
such models are

P(A) =max{) p(y), 1= py)}, P(A)=min{d py),1-> py)}

yeA ygA yeA ygZA

from which can be derived a corresponding credal set P}, 5. Figure 2 provides an illustration
in barycentric coordinates where p; = p(y;) and where p(y1) € [0.3,0.6], p(y2) € [0.4,0.7],
p(y3) € [0,0.3]. In contrast with credal sets induced by possibility distributions, credal sets induced
by imprecise probability assignments include both sets E ([p(y),p(y)] = [0, 1] for any y € E') and

probabilities p ([p(y), p(v)] = [p(v), p(y)]).

Imprecise probability assignments seem to be ideal candidates to model the predictive uncer-
tainty derived from the use of Venn-Abers predictors (Vovk and Petej, 2014), as those typically
provide probability bounds for each possible alternatives. Moreover, while being slightly more
complex representations than possibility distributions, imprecise probability assignments still enjoy
many nice mathematical properties, meaning that the computational cost of using them in learning
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Figure 3: Illustration of p-box.

procedures may be limited. However, to my knowledge, the line of research consisting of using
such models within learning procedures has not been investigated so far.

2.3. Imprecise cumulative distributions (p-boxes)

The final model I will mention is the one commonly known under the name p-box (or probability
box), that considers sets of probabilities whose cumulative distributions are included between two

bounding cumulative ones. More precisely, if )V = R, a p-box on ) is a pair [F, F] of increasing

functions such that F'(y) < F(y) and F'(o00) = F(c0) = 1. The induced credal set is then defined
as

Prm ={P: E(y) < Fply) < F(y)}.

Figure 3 provides a picture of a p-box. It is clear that p-boxes are reminiscent of the predictive
distributions proposed for example in the conformal setting by Vovk et al. (2018). They include
both standard probabilities (when ¥ = F) and intervals E = [a, b] (modelled by F(y) = 1 for any
y > a, zero else, and F'(y) = 1 for any y > b, zero else). In order for them to model arbitrary sets,
one needs to extend their definition to any ordering over the space ) (Destercke et al., 2008).

3. Learning from credal data: challenges

I will now briefly comment on how uncertain data fits into the learning setting, and some of the
challenges associated to using richer uncertainty models. I will mainly consider a loss minimisation
perspective, even if the same kind of questions can be considered in statistical estimation (Couso
and Dubois, 2018).

Set-valued case

We are now concerned with learning a model hy : X — ) from N observations D = { (T, Yn) }5:1'

When those observations are precise, and assuming that we quantify the loss of predicting through
a loss function ¢ : ) — ) such that ¢(y, hy(z)) is the loss of predicting hy(x) when observing v,
an optimal model is usually obtained by minimizing the empirical risk

1 N
Remp(0) = ¥ Ze(yn,hg(a;n)).
n=1
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If our knowledge of y is replaced by an interval or a set F, this equation is no longer well defined,
as the loss becomes itself ill-defined and can take various values. Common replacements used to
obtain again a precisely defined loss include

* Optimistic (Minimin) approach (Hiillermeier, 2014; Cour et al., 2011):
Copt(E, ho()) = min{{(y, he(x))|y € E}

* Pessimistic (Minimax) approach (Guillaume et al., 2017):
Cpes(E, ho(x)) = max{{(y, ho(x))|y € E}

» "EM-like” or averaging/weighting approaches’

gw(Ea h@(m)) = Z wye(yv h@(ﬂ?))

yelR

The optimistic approach will pick the data and the model that are the most favourable to us. In a
sense, they assume that the true value of imprecise and uncertain data are distributed favourably
with respect to our hypothesis. In contrast, the pessimistic approach will try to find the model that
behaves as well as possible in all possible scenarios or for all possible true values of the uncertain
data. Such a choice may cover, for instance, cases where we want to be robust against data uncer-
tainty. We could think for instance of training performed under some nominal conditions x;, but
where one wants the model to remain as efficient as possible when conditions vary within an interval
x; L €.

As an illustration, considers the case of binary classification Y € {0, 1} with a log-loss function

Uy,p) = —log (py + (1 —p)(1 —y)) = { _i,gg@p) iz _ (1),

where hy(x) = pis the predicted probability p(1). Figure 4 shows the behaviour of the loss function
and of the obtained models for the optimistic and pessimistic versions. One can clearly see that the
choice of the precise loss function induced by an imprecise observation can have a huge impact on
the end-result (in this extreme case, the two models are orthogonal). Beyond the obvious computa-
tional problems that may pose the optimisation of the various loss functions, another challenge is to
explore the underlying statistical hypothesis that correspond to each of the possible choices, as well
as to quantify the impact that such choices could have on the end-result. Hiillermeier et al. (2019)
provide some discussions along this line.

Credal-valued case

In the credal case, our data uncertainty can sometimes be represented by a set I, but would in gen-
eral be represented by a credal set P, possibly induced by one of the models described in Section 2.
In such a case, the same strategies as the ones we just described can still be applied, in particular if

3. With likelihood ~ Lq. (0|(z, E)) = P((z, E)|0) (Denoeux, 2013)
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Figure 5: Extensions of loss functions

we consider a loss function ¢ : Ay — Ay, and if our model hy(z) returns a probability over ). In
such a situation we can easily define, at least theoretically, the extended losses

lopt (P, ho(x)) = min{{(p, hy(x))|p € P},

lpes(P, hg(x)) = max{{(p, ho(x))|p € P}.

Note that such requirements will be often met in practice, for instance when one uses cross-entropy
as a loss function. Figure 5 illustrates what becomes of the loss function in the various cases. While
using a soft/probabilistic labels will tend to reduce the loss incurred by hy(x), and therefore the
subsequent correction of the model, this loss will always be positive. In contrast, the optimistic
loss may actually reduce to zero (and therefore to no model correction after having observed )))
if hg(x) € P. This is especially interesting if P is well-calibrated, as it is when resulting from a
conformal procedure. In theory, the case of credal labels is therefore not very different from the set-
valued case, but may present additional computational challenges. Lienen and Hiillermeier (2021)
however show that, in the case of possibilistic models, this is quite doable. Note that while we have
here mostly focused on uncertainty in output variables, the ideas presented here readily extend to
uncertain inputs (Hiillermeier et al., 2019), at least in theory.
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A brief discussion about uncertain data in conformal approaches

The previous sections have described how the estimation of a predictive model could be achieved
in spite of having uncertain data. Considering uncertain data within a (inductive) conformal setting
however raises at least an additional question, which is how to deal with uncertain data in the
calibration data set D,,;.

Formally speaking, if a precise data (z;,y;) in the calibration set is mapped to a precise con-
formity score a; € R, then an uncertain data (x;, P;) would be mapped to a corresponding “credal
conformity score” A;. In particular, if (z;,y;) is set-valued, the conformity score would be a set
A; € R having a minimal ; = min A; and a maximal @&; = min A; conformity score. Options to
obtain a final predictions could then be for example to

* systematically select a; = ¢, so as to maximize the size of the produced conformal predic-
tion, but at the expense of being valid only in a conservative way;

* provide inner (by considering «; = @;) and outer approximation of what would be the actual
but ill-known conformal prediction;

* to find an adequate strategy to still ensure validity of the produced prediction, probably with
the need to specify some hypothesis about how the set-valued data have been produced.

While such a situation is less likely to happen for standard multi-class and regression problems
(although hard to label cases and imprecise/noisy output observations are not uncommon in those
problems), they are much more likely to happen in more complex issues, such as frameworks in-
volving complex predictions (e.g., multi-task problems, ranking problems) or frameworks involving
repeated use of data such as in stacking methods.

4. Learning from uncertain data: opportunities

So far, I have mainly mentioned some issues regarding the integration of uncertain data to the
learning process, such as how to find an adequate adaptation of loss functions, or how to compute
with such adaptations.

However, accurately modelling data uncertainty and integrating it in the learning process can
actually be quite beneficial. An obvious advantage is that it would be helpful to know to which
extent a data point should impact our learning process: for instance, if we come back to Figure 5,
it is clear that the bigger will be ) C Ay, i.e., the weaker will be the information we have about a
data, the less change it will induce on our final model. In particular, if our uncertainty about a data
point boils down to ignorance, that is if () = Ay, no change at all will be performed, at least if we
pick Lopt(E, ho(x)).

Immediate techniques where this applies are those where one starts with some labelled Dy, (x4, y;),
i =1,...,n and a number of m observed unlabelled data Dy = (xj,-),j =n+1,...,n+m,
and use a predictive model to label some data in Dy;. Typically, some selected items (e.g. using un-
certainty quantification tools) are removed from Dy and integrated into Dy, by assigning them hard
labels. However, an alternative would be to use (calibrated) credal uncertainty models to obtain a
dataset (x1,y1),- -, (Tn,Yn)s (Tn+1, Pnt1, - - - » Pntm) to which can then be applied to techniques
of Section 3. Figure 6 illustrates this idea, where pseudo-labelled samples which are associated to
credal predictions are just kept in the loop. Such strategies have already been proven efficient in the
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Figure 6: Self-supervised learning with credal approaches (picture from Cascante-Bonilla et al. (2021))

case of possibility distributions (Lienen and Hiillermeier, 2021), and even more as those distribu-
tions are issued from conformal predictors (Lienen et al., 2022).

Those researches show that uncertainty quantification methods, beyond satisfying the necessary
task of quantifying uncertainty, can actually be seen as opportunities to improve learned models
predictive capabilities. This opens up multiple research paths, such as providing extensions to other
settings (for instance by considering interval bounds derived by Venn-Abers predictors).
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