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Abstract

This paper proposes a method for conformal multistep-ahead multivariate time-series fore-
casting. The method minimizes the coverage loss when the data exchangeability assumption
does not properly hold. This is done by weighting residual quantiles while computing pre-
diction intervals. Preliminary experiments on real data demonstrate the method’s utility.
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1. Introduction

Background Time series forecasting in critical domain applications is required to pro-
vide predictions together with uncertainty quantification (to improve decision making). Re-
cently, conformal prediction (CP) has been proposed for this task since it allows prediction
intervals with a theoretic coverage guarantee when the data is finite and no assumption
on data distribution is imposed. However, the main obstacle in this context is the data
exchangeability requirement needed for the coverage guarantee (Vovk et al., 2005). In this
paper we consider two recent adaptations of conformal prediction that deal with this ob-
stacle and can be used for time series forecasting (Barber et al., 2022; Stankevičiūtė et al.,
2021). They are considered in the context of inductive conformal prediction (Papadopoulos
et al., 2002) and then combined in a new method proposed in this paper.

Inductive Conformal Prediction Consider a set D of examples (xi, yi) ∈ Rd × R
consisting of objects xi and their associated labels yi with i = 1, . . . , n. The inductive
conformal predictor (ICP) first splits D into a proper training set Dtrain of examples (xi, yi)
with i = 1, . . . , l and a calibration set Dcal of examples (xi, yi) with i = l + 1, . . . , n. Then
it fits an underlying model µ̂ to Dtrain and uses the empiric quantiles Q of the residuals
ri = |yi − µ̂(xi)| of the calibration examples (xi, yi) ∈ Dcal to generate prediction interval
ŷn+1 = µ̂(xn+1)± Q1−α({ri, i = l + 1, . . . , n}) for any new object xn+1 on confidence level
1− α. If D is exchangeable, Vovk et al. (2005) show that ICP has a coverage guarantee.

Beyond Exchangeability Recently, multiple attempts have been made to lift the ex-
changeability requirement. Barber et al. (2022) introduce the coverage gap that measures
by how much the prediction intervals generated by ICP undercover the real labels com-
pared to the targeted coverage rate. It is proven that this coverage gap is theoretically
bound even if the data is not exchangeable. In addition, Barber et al. (2022) introduce a
weighted quantile function Q1−α({(ri, wi), i = l+1, . . . , n}) in the ICP setting. By reducing
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the weights wi of nonconformity scores that contribute to an increase in the coverage gap,
the quality of the predicted intervals can be improved. If, for instance, the weights decrease
more for older training examples, the method is able to adapt to distribution shifts in an
online setting. However, using the residuals as nonconformity measure limits the method
to single target and one-step-ahead predictions.

Multistep-Ahead Time Series In this task, we have a series of ordered observations
oj ∈ R, j = 1, . . . , t and need to generate predictions ôj ∈ R, j = t+1, . . . , t+h for the next
h time steps. Stankevičiūtė et al. (2021) assume exchangeable set D of examples (xi, yi)

with i = 1, . . . , n where xi = [o
(i)
1 , . . . , o

(i)
t ]T and yi = [o

(i)
t+1, . . . , o

(i)
t+h]

T which is split into a

proper training set Dtrain and a calibration set Dcal as for ICP. A model µ̂ : Rt → Rh is
fitted to Dtrain and used to generate predictions ŷi, i = l + 1, . . . , n for Dcal. This results
in h-dimensional residuals ri = [|yi,j − µ̂(xi)j |, j = 1, . . . , h]T for each calibration example
(xi, yi). Given a new object xn+1, the residuals are used to construct a prediction region
ŷn+1 = [µ̂(xn+1)±Q1−α/h({ri,j , i = l+1, . . . , n}), j = 1, . . . , h]T from h conformal predictors
using the Bonferroni correction to reach the desired coverage rate.

2. New Method

Our new method is essentially the method of conformal multistep-ahead time series of
(Stankevičiūtė et al., 2021) that relaxes the exchangeability assumption using the method
of (Barber et al., 2022). It produces set D of examples (xi, yi) from the time-series
data following (Stankevičiūtė et al., 2021), however, without assuming that the set is
exchangeable. Thus, prediction region ŷn+1 for any new example xn+1 is computed as
[µ̂(xn+1) ± Q1−α/h({(ri,j , wi,j), i = l + 1, . . . , n}), j = 1, . . . , h]T by ICP that employs the
weighted quantile function from (Barber et al., 2022). We further extend our new method to
the multivariate time-series setting assuming that oj ∈ Rd which implies that the prediction
region ŷn+1 is in R2×d×h. This is done by using the past residuals of a particular time step
and dimension to estimate the prediction region.

3. Preliminary Results

We predict features Nswdemand, Vicdemand and Transfer using the first 20 000 entries of
ELEC2 dataset (Harries, 1999) with t = 192, h = 12, and a stride of 12 between consecutive
windows, resulting in 1650 examples. These are split into a proper training set, a calibration
set, and a test set containing 660, 660 and 330 examples, respectively, along the time axis.
We note that features Vicdemand and Transfer display a strong distribution shift in the test
set, shown in Figures 1(b) and 1(c).

We choose a recurrent neural network as underlying model and fit it to the training set.
We compute the residuals using the calibration set and evaluate the results on the test set.
Whenever a test instance is processed, its residual is added to the residuals of the calibration
instances in an online manner. The experiment is conducted five times for different random
initializations of the neural network and the results are averaged. Figure 2 shows the
coverage rate on the test set for different confidence levels 1−α using the standard quantile
function (no weights), the weighted quantile function with linearly decreasing weights and
the weighted quantile function with exponentially decreasing weights. Figure 3 displays the
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average prediction interval width for different confidence levels 1−α. For confidence values
of 1 − α > 0.5, the use of the weighted quantile function produces valid intervals, even as
the distribution of the test set shifts, which confirms the utility of the proposed method.

(a) Feature Nswdemand (b) Feature Vicdemand (c) Feature Transfer

Figure 1: Time distributions of features

Figure 2: Empirical coverage rate. Figure 3: Average interval width.

References

R.F. Barber, E.J. Candes, A. Ramdas, and R.J. Tibshirani. Conformal prediction beyond
exchangeability. arXiv:2202.13415 [stat], March 2022.

M. Harries. Splice-2 comparative evaluation: Electricity pricing. Technical report, School
of Computer Science and Engineering, University of New South Wales, 1999.

H. Papadopoulos, K. Proedrou, V. Vovk, and A. Gammerman. Inductive Confidence Ma-
chines for Regression. In Proceedings of 13th European Conference on Machine Learning
(ECML 2002), volume 2430, pages 345–356. Springer, 2002.
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