
Inductive Synthesis of Finite-State Controllers for POMDPs

Roman Andriushchenko1 Milan Češka1 Sebastian Junges2 Joost-Pieter Katoen3

1Brno University of Technology, Brno, Czech Republic
2Radboud University, Nijmegen, The Netherlands

3RWTH Aachen University, Aachen, Germany

Abstract

We present a novel learning framework to obtain
finite-state controllers (FSCs) for partially observ-
able Markov decision processes and illustrate its
applicability for indefinite-horizon specifications.
Our framework builds on oracle-guided inductive
synthesis to explore a design space compactly rep-
resenting available FSCs. The inductive synthesis
approach consists of two stages: The outer stage
determines the design space, i.e., the set of FSC
candidates, while the inner stage efficiently ex-
plores the design space. This framework is easily
generalisable and shows promising results when
compared to existing approaches. Experiments in-
dicate that our technique is (i) competitive to state-
of-the-art belief-based approaches for indefinite-
horizon properties, (ii) yields smaller FSCs than
existing methods for several POMDP models, and
(iii) naturally treats multi-objective specifications.

1 INTRODUCTION

Partially observable MDPs (POMDPs) model sequential
decision making processes in which the agent only ob-
serves limited information about the current state of the
system [Smallwood and Sondik, 1973, Kaelbling et al.,
1998]. The key challenge in the analysis of POMDPs is
to compute a policy satisfying some constraints, captured as
a threshold on (discounted) reward or as a task description
given in, e.g., a temporal logic. In full generality, policies
need arbitrary memory to reflect the belief state of the agent.
Point-based [Pineau et al., 2006, Spaan and Vlassis, 2005]
and Monte Carlo methods [Silver and Veness, 2010] excel
in finding such policies. Solving the generally undecidable
policy learning problem profits from having complementary
approaches in the portfolio. A natural alternative is to search
for (small) finite-state controllers (FSCs) [Hansen, 1998].

Such controllers provide benefits in terms of explainabil-
ity [Bonet et al., 2010, Wang and Niepert, 2019], resource-
consumption [Grześ et al., 2013], and generalisability [Inala
et al., 2020]. Recently, an automata learning framework
has been proposed for synthesising permissive FSCs [Wu
et al., 2021]. In this paper, we propose a novel approach—
inductive synthesis—to find FSCs for POMDPs.

Inductive synthesis is a technique developed in the con-
text of program synthesis, originally proposed by Church
in the 1950’s, the task to construct a program that prov-
ably satisfies a given formal specification. As developing
a program (or in this context, a controller) from scratch is
mostly infeasible, variants emerged, most notably syntax-
guided synthesis [Alur et al., 2015, 2018] variations such
as sketching [Solar-Lezama et al., 2006]. In sketching, the
user provides a sketch that outlines a controller implement-
ation, and a specification that constrains the controller’s
behaviour. The principal engine behind many instances of
sketching is (oracle-guided) inductive synthesis [Jha and
Seshia, 2017] and falls in a more general framework of
learner-teacher frameworks. In a nutshell, this methodo-
logy suggests to heuristically guess candidate solutions, to
validate them, and in case the solution is not satisfactory,
learn in order to refine the search heuristic. The successful
application of inductive synthesis has inspired numerous ap-
plications beyond classical programming, including recent
works on sketching of probabilistic programs [Nori et al.,
2015, Ceska et al., 2021, Andriushchenko et al., 2021b] and
(variations of) programmatic reinforcement learning [Verma
et al., 2018, Inala et al., 2020]. This paper proposes induct-
ive synthesis to search for FSCs in POMDPs.

Our inductive synthesis framework works in two stages, see
Fig. 1. Let us first discuss the outer stage. Here, a learner con-
structs a design space containing (finitely many) FSCs. A
teacher provides the ‘best’ FSC within this design space, and
potentially additional diagnostic information. The learner
either accepts the FSC provided by the teacher as final result,
or adapts the design space. Naturally, teachers will provide
much better FSCs much faster whenever the design space

Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022), PMLR 180:85–95.

mailto:<ceskam@fit.vutbr.cz>?Subject=Your UAI 2022 paper

Learner Teacher

Searcher EvalA
bs

tr
O

ra
cl

e

FSC

value & conflicts

design space

best FSC

design space

value bounds

(sub)design space

value bounds

Figure 1: Nested inductive synthesis framework with an
abstraction oracle. The framework takes a POMDP and a
specification and finds an FSC that satisfies the specification.

for these FSCs is small. The key ingredient for the outer
stage is thus to start with a small design space and to stra-
tegically modify this design space based on the obtained
feedback from the teacher. A similar idea was proposed
in [Kumar and Zilberstein, 2015], where the entropy of the
observations is used as criterion for adding memory to the
FSC. We use the FSC returned by the teacher together with
the state-values induced by this FSC. Additionally, we use
an abstraction oracle, see below.

The inner stage describes the internals of the teacher that de-
termines the ‘best’ FSC within the design space. The teacher
may naively use enumeration, but can also be realised us-
ing branch-and-bound [Grześ et al., 2013] or mixed-integer
linear programming (MILP) [Amato et al., 2010, Kumar
and Zilberstein, 2015]. We realise the teacher by (another)
inductive synthesis loop. We search for an FSC by sym-
bolically representing the design space as a propositional
logic formula. The policy evaluation analyses a fixed policy
w.r.t. the given specification (e.g., a reward function and a
threshold). If the policy refutes the specification, the evalu-
ation engine indicates the distance to satisfaction (e.g., the
achieved value) as well as conflicts—critical parts of the
FSC that suffice to violate the specification—that are used
to prune the search design space [Ceska et al., 2021].

Both learning stages have access to an additional oracle
that, inspired by Andriushchenko et al. [2021a], over-
approximates the design space. This larger abstract design
space can efficiently be analysed as the underlying problem
solved by the abstraction oracle resembles the analysis of
fully observable policies. The oracle yields constraints to
what the best FSC within the original design space will pos-
sibly achieve. This information is an essential ingredient to
guide the search in both stages.

The separate policy evaluation—a natural component in
an inductive synthesis framework—brings some advant-
ages. The policy evaluation (i.e., solving systems of linear
equations) via dedicated algorithms is faster than letting
an (MI)LP solver solve these equations [Dehnert et al.,
2014]. This improves upon performance of MILP-based
approaches (either primal [Winterer et al., 2020] or dual
[Kumar and Zilberstein, 2015]) for FSC synthesis. Further-

more, as the policy is fixed, our framework provides an
elegant alternative to existing approaches for constrained
POMDPs [Poupart et al., 2015, Khonji et al., 2019] and
multi-objective POMDPs [Soh and Demiris, 2011, Roijers
et al., 2013, Wray and Zilberstein, 2015]. It additionally
paves the way to learn robust FSCs for POMDPs with im-
precise probabilities, similar to [Cubuktepe et al., 2021].

We instantiate our framework to learn deterministic FSCs,
i.e., FSCs that do not use randomisation. Finding optimal
deterministic FSCs is NP-complete whereas finding optimal
randomised FSCs is ETR-complete1 [Junges et al., 2018,
2021]. Algorithmically, finding randomised FSCs requires
solving non-convex optimisation problems with thousands
of variables. This often limits the guarantees on global
(almost-)optimality that are practically feasible [Kumar and
Zilberstein, 2015]. Deterministic FSCs are additionally be-
neficial in terms of reproducibility of their behaviour, which
is useful for debugging. We use an evaluation framework
that supports indefinite horizon queries, e.g., queries with a
discount factor one. These queries generalize infinite hori-
zon properties with a discount factor <1 and finite-horizon
settings as used in Goal-POMDPs [Bonet and Geffner, 2009,
Kolobov et al., 2011]. These queries naturally occur when
using temporal logic specifications and are particularly ad-
equate for safety-critical aspects.

The experimental evaluation shows the applicability of our
approach on a wide range of benchmarks with promising
results. Particularly, it significantly outperforms approaches
based on MILP optimisation. We further compare it with the
state-of-the-art belief-based approaches, namely, with recent
works in formal verification on under-approximation for
indefinite-horizon specifications [Norman et al., 2017, Bork
et al., 2022]. Our inductive synthesis approach is highly com-
petitive and for several POMDPs (having a moderate num-
ber of observations/actions and large/infinite belief-space),
it is able to find small FSCs improving lower bounds of
existing solutions.

2 PROBLEM STATEMENT

A (discrete) distribution over a finite set X is a function
µ : X → [0, 1] s.t.

∑
x µ(x) = 1. The set Distr(X) con-

tains all distributions over X .

A Markov decision process (MDP) is a tuple M =
(S, s0, Act, P) with a finite set S of states, an initial state
s0 ∈ S, a finite set Act of actions, and a transition probabil-
ity function P (s′ | s, a) that gives the probability of evolving
to s′ after taking action a in s. A Markov chain (MC) is an
MDP with |Act| = 1; its transition function is written as
P (s′ | s). MDPs can additionally be equipped with a reward
function r(s, a). We do not use discount factors, see the
paragraph on specifications below.

1The class ETR lies between NP and PSPACE.

86

T

0/0 1/1 2/2 3/1 4/3

5/4 6/4 7/4

8/5 9/5

*

*

* *
* *

*

*

*

*

Figure 2: A simple maze problem (left), a part of a 2-FSC
(right, top) and a part of the induced MC (right, bottom).

A Partially Observable MDP (POMDP) M =
(S, s0, Act, P, Z,O) extends MDP M with a finite
set Z of observations, and a (deterministic) observation
function 2 O that returns for every state s an observation
O(s) = z ∈ Z. The observation z ∈ Z is said to be trivial
if there is only one state s ∈ S with O(s) = z.

Finite State Controllers (FSCs) are automata that com-
pactly represent policies. We call its states (memory) nodes
to distinguish them from POMDP states. We also refer to an
FSC with k nodes as having k memory. FSCs in the literat-
ure come in various styles, in particular either as Moore ma-
chines, with the output—the action it selects—determined
by the node, or as Mealy machines, with the output de-
termined by the taken transition [Amato et al., 2010]. In
the context of sketching FSCs and their inductive explora-
tion, it is convenient to describe FSCs as Mealy machines.
Furthermore, we restrict ourselves to deterministic FSCs.

Formally, a finite-state controller (FSC) for a POMDP M is
a tuple F = (N,n0, γ, δ), where N is a finite set of nodes,
n0 ∈ N is the initial node, γ(n, z) determines the action
when the agent is in node n and observes z, while δ updates
the memory node to δ(n, z), when being in n and observing
z. For |N | = k, we call an FSC a k-FSC.

Imposing k-FSC F onto POMDP M yields the in-
duced Markov chain MF = (SF , (s0, n0), P

F) with
SF = S ×N and using3 z = O(s):

PF ((s′, n′) | (s, n)) = P (s′ | s, γ(n, z)) · [δ(n, z) = n′].

Example 1. As running example, we use a simple vari-
ant of the maze problem [Hauskrecht, 1997], where an
agent tries to reach the state sT , modelled by the POMDP
M with S = {s0, . . . s9, sT }, Act = {u, d, l, r}, and
Z = {z0, . . . , z5}. The initial state is given by a uniform
distribution over S. Fig. 2 (left) depicts P and O where
state sx is labelled by x/y with x the state index and y its
observation, i.e., O(sx) = zy. The arrow direction from
x/y to x′/y′ represents the action; e.g., → corresponds to
action r. The maze is slippery. An action is successful with
probability 0.9; with 0.1, the agent does not move. Actions

2Observation functions resulting in a distribution over obser-
vations can be encoded by deterministic observation functions at
the expense of a polynomial blow-up [Chatterjee et al., 2016].

3Iverson-brackets: [x] = 1 if predicate x is true, 0 otherwise.

without effect are omitted from the figure. Fig. 2 (right,
top) illustrates a fragment of a 2-FSC where γ(n0, z0) =
γ(n0, z1) = r (for memory node n0 and observations z0
and z1, action r is chosen), γ(n0, z3) = γ(n1, z1) = l,
δ(n0, z0) = δ(n0, z1) = n0 (memory node n0 is not
changed for z0 an z1) and δ(n0, z3) = δ(n1, z1) = n1. This
FSC tries to resolve the inconsistency (formalised later) in
the observation z1, i.e., in s1 the action r is optimal but in s3
action l is optimal (w.r.t. reaching sT). Fig. 2 (right, bottom)
illustrates a fragment of the induced MC containing two
copies of s2.

Specifications contain two parts: a set of constraints given
by quantitative properties and a single optimisation object-
ive. Constraints are defined as indefinite-horizon reachabil-
ity and expected reward properties, but our approach also
supports more general probabilistic temporal logic prop-
erties [Baier and Katoen, 2008]4 Let target set T ⊆ S,
thresholds λ1 ∈ [0, 1] and λ2 ∈ R+ and ./∈ {≤,≥}. The
POMDP M under FSC F satisfies the constraint P./λ1

if
the probability PrF of reaching T in the induced MC MF

meets ./ λ1. Similarly, the constraint R./λ2 is satisfied if
the expected reward RF accumulated in MC MF until
reaching T meets ./ λ2. We call an FSC F admissible (for
M), if M under F satisfies the given (set of) constraint(s).
Objectives either minimise or maximise reachability prob-
abilities (as in goal-POMDPs) or (un)discounted expected
reward properties, denoted as P∗ and R∗ respectively for
∗ ∈ {min,max}. The probability or reward obtained by
FSC F on M is called the value of F . For conciseness, we
assume throughout the paper that the specification contains
a maximisation objective. Minimisation is analogously sup-
ported (but may require flipping bounds and inequalities).

Problem statement. We aim to construct an algorithm
that: i) quickly finds a (small) admissible FSC F and ii)
incrementally improves F w.r.t. the optimisation objective.
We can view the algorithm as solving a sequence of decision
problems, where the first decision problem is to find some
admissible FSC F0 and decision problem i+1 is to find an
admissible FSC Fi+1 whose value improves upon the value
of the previous FSC Fi.

3 INDUCTIVE EXPLORATION OF FSCS
This section presents the inner loop (see Fig. 1) in which
we search among a given set of k-FSCs. Before we describe
the ingredients, we formalise the representation of the set
of k-FSCs. We then outline the two oracles that our search
can use to prune the search space. A hybrid strategy [An-
driushchenko et al., 2021a] combines the two oracles by
switching based on perceived performance while commu-
nication between the oracles takes place.

4These properties can describe the setting of goal-POMDPs,
finite horizon reachability and rewards, and discounted rewards.

87

3.1 FAMILIES OF FSCS

A POMDP and a single FSC yield a single induced MC. A
POMDP and a set of FSCs thus induces a set of MCs. The
set of FSCs has additional structure which enables concisely
describing the set of MCs. We first consider full FSCs where
for each observation the same amount of memory is used
and where there are no restrictions on the memory updates.
We generalise this to a class of reduced FSCs that are more
memory efficient.

Definition 1. A family of full k-FSCs is a tuple Fk =
(N,n0,K), where N is a set consisting of k nodes, n0 ∈ N
is the initial node, K = N × Z is a finite set of parameters
each with domain V(n,z) ⊆ Act×N .

From a family, one may obtain a k-FSC by choosing val-
ues for each parameter, effectively determining the action
γ(n, z) and the next node δ(n, z). Thus, each family de-
scribes a set of FSCs by varying the substitutions of the para-
meters. We often use Fk to denote such a set of k-FSCs. We
remark that this set contains O((|Act||N |)(|N ||Z|)) many
FSCs. A POMDP M and a family Fk naturally induces the
family of MCs MFk = {MF | F ∈ Fk}.

Example 2. The family F2 of all 2-FSCs for our maze
problem is given by N = {n0, n1}, K = {(ni, zj) |
i ∈ {0, 1} ∧ j ∈ {0, . . . , 5}}, and V(n,z) = {u, d, l, r} ×
{n0, n1} for all (n, z) ∈ K.

While FSCs have k available memory nodes in conjunction
with every observation, memory may only be required in
some observation (see e.g., the running example). Therefore,
we consider reduced FSCs given by a memory restriction
µ : Z → N, where µ(z) determines the number of memory
nodes used in the observation z.

Definition 2. A reduced family Fµ given by the memory
model µ is a sub-family of Fk for k = maxz∈Z{µ(z)}
where (n, z) ∈ K implies n ≤ µ(z), and the domains
V(n,z) are as in Fk. If a memory update δ(n, z) = n′ is
invalid in the resulting observation z′ (i.e., n′ > µ(z′)),
then δ(n, z) = n0.

The reduced family for k-FSCs yields a significantly re-
duced number of parameters

∑
z∈Z{µ(z)}. This is less

than k · |Z| if µ(z) < k for most observations z. Indeed,
in many experiments, we can use µ(z) = 1 for all but a
few observations. Such reduction has several key benefits:
Foremost, the family of reduced FSCs induces a smaller
design space, but it also yields FSCs where less memory is
needed, which can be beneficial for their interpretability.

3.2 MDP-ABSTRACTION TEACHER

We introduce a teacher which, for a POMDP and a FSC-
family, provides safe upper and lower bounds on the value of

the FSCs in this family. Instead of considering the individual
FSCs, the oracle considesr an abstraction (represented as a
single MDP) of the set of induced MCs.

Definition 3. MDP AF = (S×N, (s0, n0), ActF , PF) is
an abstraction of MC family MF with ActF = Act×N
and PF ((s′, n′) | (s, n), (a, n′)) = P (s′ | s, a) if (a, n′) ∈
V(n,O(s)), and 0 otherwise.

For MDPs and our specifications, it suffices to consider de-
terministic memoryless policies, i.e., policy π for MDP AF

is a function π : S×N → ActF . It is consistent (w.r.t.
the observations) if O(s) = O(s′) implies π((s, n)) =
π((s′, n)) for all s, s′ ∈ S, n ∈ N . The set of consistent
policies in AF corresponds to the policies for the family
F . The policy π is inconsistent in a FSC-family parameter
(n, z) ∈ K if ∃s, s′ ∈ S : O(s) = O(s′) = z∧π((s, n)) 6=
π((s′, n)). It is inconsistent in observation z ∈ Z, if it is
inconsistent in the parameter (n, z) ∈ K for some n ∈ N .

Example 3. Assume we want to maximise the probability to
reach sT . The stars in Fig. 2 represent the optimal policy π∗

in MDP AF where F is set of all 1-FSCs for the maze
problem. π∗ is inconsistent in the observations z1 and z4.

The analysis of MDP AF provides useful information about
the family F . For conciseness, consider the constraint P≥λ

bounding the reachability probability to states in T . We can
compute the policy π∗ in AF that maximises this reachabil-
ity probability. In particular, this policy achieves probability
Prπ

∗
. If Prπ

∗
< λ, then all F ∈ F violate the constraint

P≥λ and F can be safely discarded. Otherwise, we check
the consistency of policy π∗. If π∗ is consistent, it represents
an FSC satisfying P≥λ. Similarly, a minimising policy may
witness that the entire family F satisfies P≥λ. If analysing
AF is inconclusive, we refine F by splitting, see below.

The optimisation objective is handled by iteratively updating
a new (initially trivial) constraint representing the running
value of the optimum so far. Once an admissible policy π
is found, we update the new constraint according to the
objective value that π achieves. Reasoning about multiple
constraints works as follows. If the entire family F violates
some constraint, F is discarded. If F satisfies the constraint,
this constraint will neither be checked again for F nor for
its subfamilies. Otherwise, if the analysis of F was incon-
clusive with respect to some constraint, F is refined.

Beyond pruning families, analysing AF provides state-
vectors ub and lb such that ∀s ∈ S, lb(s) and ub(s) bound
the probability to reach T from s. These bounds are used in
the inner and outer synthesis loop, as we will see below.5

5Furthermore, the state-vectors ub and lb allow bootstrapping
the analysis of MDP AFi where Fi is a subfamily of F : This
exploits the fact that Fi shares the structure of F while some
actions for some states are removed.

88

General refinement strategy The refinement strategy is
a key component in driving the exploration of the family F .
It decomposes F into sub-families by splitting the domain
of selected parameters from K. In contrast to the general
strategy used in program synthesis [Ceska et al., 2019], we
leverage the specific topology of the FSC families.

The key idea is to examine the inconsistencies of the policy
π∗ obtained for a given constraint. Assume π∗ is a maxim-
ising policy inconsistent in parameter (n, z) ∈ K. We estim-
ate the significance of this inconsistency as the average vari-
ance (with respect to inconsistent actions) of ub((n, s)) with
O(s) = z, where ub((n, s)) is weighted by the expected
number of visits of the state (n, s) in the MC induced by π∗

(if π∗ is minimising, we use lb). We refine F using the most
significant inconsistent parameter (n, z). Assume it has do-
main V(n,z) and π∗ selected options v1, . . . , vi. We partition
V(n,z) into {v1}, . . . , {vi} and V(n,z)\{v1, . . . , vi}, and cre-
ate i+1 corresponding subfamilies. This removes the in-
consistency of (n, z) by considering the selected options
v1, . . . , vi within different sub-families.

Incomplete refinement strategy We suggest the follow-
ing incomplete refinement strategy to focus the search (at
the cost of completeness). In particular, we restrict the ex-
ploration to FSCs that are structurally close to π∗ as follows:
we i) fix the options selected by π∗ in perfectly observable
states, ii) fix the options in the consistent parameters, and
iii) remove options in the inconsistent parameters that were
not selected by π∗, i.e., the set V(n,z)\{v1, . . . , vi}.

3.3 COUNTEREXAMPLE-BASED TEACHER

The MDP abstraction employs deductive reasoning: It talks
about a set of FSCs at once to deduce conclusions about the
individual members of this set. In this subsection, we discuss
the orthogonal, inductive, approach. We suggest a (smart)
enumeration over individual FSCs inspired by Ceska et al.
[2021]. If the FSC is satisfactory, i.e., it is admissible and
has good value, this helps the teacher. Otherwise, if the FSC
is not satisfactory, we learn facts, called counterexamples,
that help us to avoid considering other FSCs.

To realise this teacher, we represent the FSCs that have not
been pruned as a propositional formula6. We use the SMT
solver CVC5 [Barbosa et al., 2022] (over quantifier-free
bounded integers) to effectively manipulate the proposi-
tional formula and to find FSCs that have not been pruned.

We assume a constraint P≥λ(♦T), a family F , the state-

6For each parameter k, there is a corresponding integer vari-
able xk whose domain Vk corresponds to all possible realisa-
tions of k. Initially, the design space is encoded as a conjunction
∧k∈K : xk ∈ Vk. Pruning a subfamily corresponds to adding to
this formula a negated clause describing all the pruned realisations.
Details can be found in [Ceska et al., 2021].

vector ub obtained from the maximising policy π∗ in MDP
AF as discussed in Sec. 3.2, and an FSC F ∈ F .

Definition 4. A counterexample (CE) for FSC F and P≥λ

is a subset C ⊆ SF that induces the sub-MC of MF

given as MF
C = (C ∪ succ(C) ∪ {s⊥, s>}, (s0, n0), P

′)
with P ′(s) =

PF (s) if s ∈ C,

[s> 7→ ub(s), s⊥ 7→ 1−ub(s)] if s ∈ succ(C) \ C,
[s 7→ 1] if s ∈ {s>, s⊥},

where succ(C) is the set of direct successors of C, and the
probability to reach T ∪ {s>} in MF

C is < λ.

Intuitively, in the sub-MC, states s outside the CE C evolve
to s> with probability ub(s), the maximal probability to
reach T from s in the family F (i.e., the worst-case possible
in F). They evolve to s⊥ with probability 1−ub(s), the
minimal probability to avoid T in F . For (s, n) ∈ C, the
parameter (n,O(s)) ∈ K is called relevant. The CE for the
constraint P≤λ is defined similarly using lb rather than ub.

For each F ′ ∈ F that for each relevant parameter in a CE C
uses the same values as F , it holds that PF ′

< λ. Therefore,
we can safely remove F ′ from the design space. We say that
C generalised to the set of all such F ′.

Smaller CEs lead to generalisation to larger families of FSCs.
As computing minimal CEs is NP-complete [Funke et al.,
2020], we adopt the greedy approach from [Andriushchenko
et al., 2021a]. Handling multiple constraints is straightfor-
ward as we can compute the CE for each constraint violated
by the FSC F . This can potentially improve the pruning.

Similarly as the incomplete refinement strategy in Sec. 3.2,
we consider an incomplete generalisation of the CEs. In par-
ticular, we redefine the notation of relevant parameters. The
parameter (n,O(s)) for (s, n) ∈ C is relevant only if the ob-
servation O(s) is inconsistent in AF or the option selected
by F is different from the options selected by π∗. This leads
to more aggressive pruning and restricts the exploration to
the FSCs that are topologically close to π∗.

Example 4. Consider a variant of our maze problem
with initial state s0, family F of all 1-FSCs, where the
available set of actions in the observation o3 is restric-
ted s.t. V(n0,z3) ∈ {u, d, r} × {0}. Let FSC F as in
Fig 3 (left). The right part illustrates the induced MC and the
middle part shows the CE C for the constraint P≥1. Note
P ((s4, n0), s⊥) = 1 as ub(s4) = 0. Thus, the relevant para-
meters are (n0, zi) for i ∈ {0, 1, 2}. The generalisation of
C enables pruning a significant part of F . Under incomplete
generalisation, the parameter (n0, z0) is not relevant as it is
consistent in AF and F picks the same option as π∗.

89

0

X/r

Y/d

0,0 1,0 2,0 4,03,0

5,0
0,0 1,0 2,0 3,0

1.0
CE

MC

Figure 3: A CE for the given FSC in the maze problem.

4 MEMORY INJECTION STRATEGY

This section discusses the outer stage of our approach, cf.
Fig. 1, in which the learner decides where to search. In par-
ticular, a subset of FSCs is selected and passed onto the
teacher, as outlined in Sec. 3. We assume access to an ab-
straction oracle that yields bounds on the value for every
state based on an abstraction scheme outlined in Sec. 3.2.
The learner processes this information and derives a new
design space. It does so by combining three ingredients:
1. Adding memory: By allowing FSCs to store more inform-
ation, we (drastically) increase the design space. We allow
to locally increase memory to keep the growth manageable.
2. Removing symmetries: Similar to [Grześ et al., 2013],
it is unnecessary to include symmetric FSCs in the design
space. 3. Analysing abstractions: Use the results from the
abstraction to guide the search.

4.1 ADDING MEMORY

The key idea of the memory injection strategy is to use the
diagnostic information obtained from the preceding inner
loop exploring the design space represented by a family
F to construct a new family F ′, say. These families are
based on two fixed memory structures (either as a full or
reduced FSC). On constructing F ′, memory can be added
that corresponds to one of the observations, see Sec. 3.1.
This section outlines where to add the memory.

To decide how to extend the family F , we use the following
information: 1. The maximising policy π∗ in MDP AF

together with its corresponding bounds ub7. 2. The FSC F ∗

in F obtained from the teacher. That FSC is not available if
the FSC is inadmissible or if the teacher is aborted.

If only π∗ is available, the memory injection strategy em-
ploys a similar idea as the refinement strategy described
in Sec. 3.3. In particular, it evaluates the significance of
the inconsistent observations w.r.t. π∗ by aggregating the
significance of their inconsistent parameters as described
above. By adding the memory to the most significant incon-
sistent observation, we try to resolve the inconsistency and
drive the search towards an FSC that mimics π∗ as often as
possible, i.e., along most paths.

7The state space of MDP AF includes copies of states where
memory has been added. Without symmetry reduction, an optimal
policy (mostly) takes the same action in these copies, thus making
the copies redundant. However, in combination with the symmetry
reduction, the outgoing transitions of these copies differ and the
copies are then no longer redundant.

If additionally F ∗ is available, the idea is similar: to obtain a
better FSC in the next iteration, we identify the observation
in which the choices of F ∗ differ from the observation-free
policy π∗ the most. That is, the inconsistency measure χ(s)
for state s is now the absolute difference in ub(s) (for the
maximising property) w.r.t. two actions: the one provided by
π∗ and the one from F ∗. The inconsistency measure of the
observation z is now the weighted average of χ(s) across
all states s with O(s) = z, where the weight for state s is
the expected number of visits of s in the FSC F ∗.

Note that in both cases the proposed inconsistency measure
is just a heuristic and neither guarantees that adding memory
to the selected observation will improve the value of the
FSC, nor that the memory injection strategy will eventually
find the optimal F ∗. In fact, without additional modifica-
tions to the strategy, the heuristic will keep adding memory
to a single observation because adding memory does not
resolve the inconsistencies. To mitigate this problem, it is
crucial to employ the symmetry reduction.

4.2 SYMMETRY REDUCTION

Adding memory to a selected observation typically creates
a family F that includes FSCs having the same value due
to certain symmetries in their topology. Removing these
symmetries from F reduces: i) the size of F and ii) the
number of inconsistencies of the policy π∗ obtained from
AF , see below. As a result of resolving these inconsist-
encies, the memory injection strategy is capable of better
recognising where else in the POMDP memory is needed.
The importance of symmetry breaking has been recognised
by Grześ et al. [2013], who proposed a generation strategy
for isomorphism-free Moore automata. We propose a dif-
ferent approach based on restricting the family of candidate
FSCs. We illustrate where the symmetries are introduced as
well as how to deal with them in the example below.

Example 5. Consider again the maze problem from Ex-
ample 1 and the specification to minimise the expected num-
ber of steps to reach T . Note that this includes an implicit
constraint to reach T . Let F1 be the family of all 1-FSCs (no
memory was added). The inner loop detects that there is no
admissible 1-FSC satisfying the constraint: in observation z1
we need to be able to pick both actions r and l, and similarly
for observation z4. Assume that the minimising policy π∗

1

in AF1 reveals that the most significant inconsistency is the
one in observation z1. Adding memory to z1 has a twofold
effect on the resulting design space F2.

First, a new parameter (n1, z1) is introduced that encodes
action selection in newly created copies of states with ob-
servation z1. Second, each state having successor s with
observation z1 must be able to choose whether to go to
(s, n0) or its copy (s, n1). In our case, the domains of para-
meters (n0, z0), (n0, z2), (n0, z3) as well as of parameters
(n0, z1) and (n1, z1) (remember the self-loops) will now be

90

{u, r, d, l} × {n0, n1}.
Before proceeding with the inner loop, we first remove
symmetric assignments from the family F2. That is, con-
sider FSC (γ, δ) with γ(n0, z1) = l and γ(n1, z1) = r.
Clearly, this FSC achieves the same value as the symmet-
ric FSC (γ′, δ′) with γ′(n0, z1) = r, γ′(n1, z1) = l and
δ′(·, z) = n1 if δ(·, z) = n0 and vice versa, for each prede-
cessor observation z of z1. The family F ′

2 should include
only one of the two FSCs, so we modify the domains of para-
meters (·, z1) as follows: V(n0,z1) = {u, d, r} × {n0, n1}
and V(n1,z1) = {u, d, l} × {n0, n1}.
The inner loop again detects that no admissible solution ex-
ists. Minimising policy π∗

2 now contains a single inconsist-
ency in observation z4, which we amend by adding memory
to z4. In the resulting family F3, we introduce parameter
(n1, z4) for action/memory selection in the new copy, and
modify parameters (n0, z5), (n0, z4) and (n1, z4) to enable
the transition to the newly created copies (other successors
of observation z4 already account for both possible memory
updates). As in the previous case, we break the symmetry in
action selection in (·, z4): V(n0,z4) = {u, r, l} × {n0, n1}
and V(n1,z1) = {d, r, l} × {n0, n1}. The third iteration of
the inner loop finally yields an optimal FSC with value 7.16.
No additional memory injection can improve upon this.

More generally, for each observation z, we keep a list Iz
Act

of actions in which parameters (·, z) were inconsistent. This
list is updated each time we update memory for observa-
tion z. Upon adding memory to z, we apply the symmetry re-
duction to the corresponding domains of parameters (ni, z).
For simplicity, let |Iz

Act| = µ(z), as in Example 5. In such
a case, V(ni,z) is set to (Act(z)\Iz

Act ∪ {Iz
Act[i]}) × N ,

where Iz
Act[i] is the i-th action in the list Iz

Act. This ensures
that for each action a ∈ Iz

Act there is exactly one parameter
V(·,z) where a is available. If |Iz

Act| 6= µ(z), the construc-
tion of domains V(·,z) becomes more involved: one must
take possible inconsistencies in memory updates into ac-
count. For a comprehensive description of the symmetry
reduction, we refer to the implementation (see Sec. 5). In
general, there are two extreme ways one can proceed with
the symmetry reduction. Either one can enable all of the
actions/memory updates in V(·,z), which will undermine
the observation selection discussed in Sec. 4.1. The other
extreme is to disable choices in V(·,z) arbitrarily. This may
lead to incompleteness, as the following example shows.

Example 6. Assume the following modification of Ex-
ample 1, where an agent now experiences a slight drift
to the west: upon choosing the direction, the agent will
move to the selected direction with probability 0.9 and
will otherwise move one cell to the left (if available). For
instance, when moving down from the state 2, the agent
might instead end up in the state 1. FSC synthesis pro-
ceeds similarly as in Example 5, so assume that after two
memory injections and symmetry reductions we end up
with the same family F ′

2 having V(n0,z1) = {u, d, r} ×

{n0, n1}, V(n1,z1) = {u, d, l} × {n0, n1} and V(n0,z4) =
{u, r, l}×{0, 1}, V(n1,z1) = {d, r, l}×{0, 1}. The optimal
assignment for the state 2 is γ(n0, z2) = d (moving down)
and δ(n0, z2) = n1, since (n1, z4) is the only parameter that
enables movement down from the state 6. However, if due
to drift the agent ends up in state (s1, n1), it cannot move
right (r 6∈ V(n1,z1)) and is forced to move sub-optimally. In
our case, we could have preserved the optimal solution if we
had switched the order of e.g. second symmetry reduction,
although predicting a non-conflicting reduction order would
require additional analysis.

5 EXPERIMENTAL EVALUATION
Our evaluation focuses on the following questions:

Q1: How does our approach compare with state-of-the-art
belief-based approaches? Belief-based approaches are the
widespread approach to solving POMDPs. They implicitly
or explicitly approximate the large or infinite belief-MDP
instead of searching for policies with a particular structure.
We compare with the approaches by Norman et al. [2017]
(implemented in PRISM Kwiatkowska et al. [2011]) and by
Bork et al. [2022] (implemented in Storm [Dehnert et al.,
2017]). These methods provide state-of-the-art techniques
for finding policies in belief MDPs for indefinite-horizon
specifications, i.e., without discounting.

Q2: How does our approach compare to state-of-the-art
approaches to synthesise deterministic FSCs? To this end,
we qualitatively compare with the state-of-the-art dual MILP
formulation from [Kumar and Zilberstein, 2015] which uses
a max-entropy strategy for adding memory nodes. We also
consider a recent alternative formulation of a primal MILP
in [Winterer et al., 2020] for multi-objective specifications.

Q3: What is the effect of our heuristics on the run-time
and the value of the resulting FSCs? We discuss additional
insights from an ablation study in which we discuss which
settings yield the best performance.

Selected benchmarks and setup The framework out-
lined above has been implemented in PAYNT Andri-
ushchenko et al. [2021b], a tool for inductive synthesis
of probabilistic programs8. Unless mentioned otherwise,
we used benchmarks from [Bork et al., 2020, 2022] ex-
tended by a few more involved variants. Table 1 lists the
statistics of the models including the number of states,
the overall number of actions, and the number of obser-
vations. Our experiments run on a single core of a ma-
chine equipped with an Intel i5-12600KF @4.9GHz CPU
and 32 GB of RAM. An artefact allowing one to repro-
duce our experimental evaluation is available at https:
//doi.org/10.5281/zenodo.6637489.

8See https://github.com/randriu/synthesis

91

https://doi.org/10.5281/zenodo.6637489
https://doi.org/10.5281/zenodo.6637489
https://github.com/randriu/synthesis

Threads to validity This evaluation focuses on show-
ing the potential of our approach using benchmarks from
the verification literature. While the comparison with im-
plementations in Storm and PRISM is thorough, other al-
gorithms were not available and thus we resort to comparing
with the performance reported in those papers. There is a
dire need for a more structural comparison over different
algorithms. Furthermore, the experiments suffice to provide
insights in the performance of the algorithm, but not to draw
conclusions about the relative relevance of individual heur-
istics. Finally, while our approach is general and could be
applied to queries such as expected discounted rewards, it
can only be competitive if it is tailored to that setting.

Q1: Comparison to belief-based methods

Table 1 summarises key experimental results related to Q1.
The columns list the following information (from left to
right): the model and its variant, the model statistics, the
bounds provided by [Norman et al., 2017] and its run-time,
the lower bounds provided by [Bork et al., 2022] and its
run-time (for two settings: the fastest synthesis and the best
bound), the results provided by our approach (including the
number of added memory nodes) and its run-time (the first
interesting solution and the best solution found), and the
upper bounds provided by Bork et al. [2020] allowing us to
judge the quality of the lower bounds.

To simplify the presentation, this table shows results
achieved by our approach using the default setting (different
settings are used for the entries denoted by ∗): the inner loop
is instantiated by the pure MDP abstraction oracle with the
incomplete refinement strategy, and the outer loop uses the
memory injection strategy with symmetry reduction. The
impact of our optimisation heuristics as well as the results
for multi-objective specifications are discussed under Q3.

The results demonstrate that our inductive approach is
competitive with the belief-state space approximation for
indefinite-horizon specifications. For models with a moder-
ate number of observation/actions, we provide better trade-
offs between the run-time and the values of the found
policies. Moreover, we found small FSCs that improve the
lower-bounds in [Bork et al., 2022]. For models with a
large number of observations/actions, we found small high-
value FSCs in comparable run-time. For the Rocks model
and a larger Netw model, we failed to find a good solution.
We highlight two interesting results: For Grid-av 4-0, our
strategy injected four memory nodes (see †) and achieved
the bound provided by the observation-free MDP abstrac-
tion which guarantees the global optimum. For Drone 4-2,
we found a very small FSC that achieves the known upper
bound on the solution value [Bork et al., 2020].

Q2: Comparison to MILP-based FSC synthesis

A direct comparison with MILP-based approaches is com-
plicated due to limited availability of standardised imple-
mentations. Qualitative comparisons are furthermore com-
plicated by differences in benchmarks.

However, based on the Hallway model from [Kumar and
Zilberstein, 2015] and manually translating it to mimic the
effect of discounting and stochastic rewards to an almost
equivalent model 9, we make the following preliminary ob-
servation. The dual MILP optimisation for the fixed-size
reactive FSC (equivalent to our 1-FSC) achieved the value
0.32 in 15 minutes. Given the discount factor 0.95, this cor-
responds to an FSC where the expected number of steps
to reach the target equal to log0.95(0.32) = 22.2. Using
the memory injection strategy, they found an FSC with 14
additional memory nodes in ∼1 hour achieving value 0.46,
i.e., 15.1 expected steps. Our complete strategy explored all
1-FSCs in less than 1s and found a solution achieving 18.5
expected steps. The restricted exploration of full 4-FSCs
found a solution achieving 14.9 expected steps in 218s.
The default strategy used in Table 1 (see above) added one
memory node and found a solution achieving 16.1 expected
steps in less than 1s. Despite all the limitations of this exper-
imental setup, these results indicate that our approach can
be at least as successful as MILP-based synthesis methods.

Similarly, we compare with [Winterer et al., 2020] on the
Grid-av 4-0 model with a constraint on the reachability prob-
ability and the minimisation of an reward. The best solution
of the MILP optimisation with a restricted randomisation
and memory injection has value 3.43 (found within seconds).
This solution is obtained by our default strategy within 1s
by adding one memory node. In 21s, it added seven memory
nodes and found a better solution having value 3.29. This
shows that our inductive approach outperforms the MILP
optimisation also on multi-objective specifications.

Q3: The effect of optimisation heuristics

Efficacious heuristics: We generally remark that the design
spaces in this paper are several orders of magnitude big-
ger than the design spaces supported by the more general-
purpose inductive synthesis framework in [Andriushchenko
et al., 2021b]. The superior performance can mostly be ex-
plained by the tailored representation of the design space
and novel search heuristics.

Incomplete search: To find a good policy, it is not necessary
to be complete. The (default) incomplete refinement strategy
and CE generalisation is beneficial for handling large num-
ber of observations/actions. The complete exploration fails
to find a good solution for, e.g., the Drone models. In our
experiments, we did not observe that the incomplete explor-

9The values of the resulting FSCs are comparable.

92

Benchmark Size PRISM Storm Inductive synthesis Upper-
Model Spec. S/Act Z first best fastest best bounds
Grid-av

Pmax
17

4
[0.21,1] 0.86 0.93 0.93 (3) 0.93(4)† ≤ 0.984-0 59 <1s <1s <1s <1s <1s

Grid-av
Pmax

17
4

[0.21,1] 0.82 0.85 0.92 (4) 0.93 (5f) ≤ 0.994-0.1 59 <1s <1s 124s <1s 53s*
Grid

Rmin
900

37 TO/MO 121 - 119 (6) - ≥ 116.130-sl 3587 1s - 150s∗ -
Maze

Rmin
15

8
[7.09,7.09] 7.67 - 7.14 (3) 7.09 (3f) ≥ 7.08sl 54 2s <1s - <1s 1s∗

Crypt
Pmax

1972
510

[0.33,0.79] 0.33 - 0.33 (0) - ≤ 0.334 4612 6s <1s - <1s -
Nrp

Pmax
125

41
[0.13,0.24] 0.13 - 0.13 (0) - ≤ 0.138 161 3s <1s - <1s -

Hallway
Rmin

61
23 TO/MO 19.3 19.2 16.3 (1) 14.9 (4f) ≥ 12.4

301 <1s <1s <1s 218s∗
Drone

Pmax
1226

384 TO/MO 0.79 - 0.71 (0) 0.87 (2) ≤ 0.944-1 3026 <1s - 1s 915s
Drone

Pmax
1226

761 TO/MO 0.86 0.91 0.94 (0) 0.97 (2) ≤ 0.974-2 3026 <1s 138s <1s 326s
Refuel

Pmax
208

50
[0.67,0.72] 0.67 - 0.44 (2) 0.67 (2f) ≤ 0.696 565 136s <1s - <1s 45s∗

Netw-p
Rmax

2·104
4909

[557,557] 537 - 540 (0) - ≤ 5582-8-20 3·104 1099s <1s - 105s -
Rocks

Rmin
6553

1645 TO/MO 38 20 42 (0) - ≥ 2012 3·104 <1s 47s 1s -

Table 1: Results for Q1. Bold entries denote the best solutions, – indicates that no better solution was found within 30
minutes, * indicates that non-default settings were used, TO/MO denotes timeout (30 minutes) or out of memory.

ation discards important solutions except the Grid-av 4-0.1
model. For that model, the incomplete strategy performs 10
memory injections and finds in 840s a solution with value
0.92. The complete strategy performs 8 memory injections
and finds in 1189s a solution with value 0.93. For this bench-
mark, the best synthesis result reported in Table 1 (column
best) relied on complete exploration of full 5-FSCs.

Memory injection: this prevents the blowup that just increas-
ing memory nodes has. Without symmetry reduction, the
abstraction-based framework has trouble guiding the search.
Symmetry reduction thus not only reduces the design space
but it also guides the memory injection strategy correctly
select the most promising observation. For example, in the
Maze sl model, the memory injection without symmetry re-
duction repeatedly adds memory to a single observation and
the optimal solution is not found. On the other hand, sym-
metry reduction can discard an optimal solution as demon-
strated on the Grid-av 4-0.1, Maze sl, Hallway and Refuel 6
models. For these models, the column best of Table 1 lists
the results of the exploration of full k-FSCs denoted as kf
for k ∈ {2, 3, 4, 5}.

Hybrid teacher: For the models in Table 1, the use of CEs
or a hybrid teacher (combining MDP abstraction and CE
pruning) does not improve the synthesis process. We believe
that future work towards CE-guided inductive synthesis may
change this balance. As of now, only for models where the
MDP abstraction is significantly larger than the induced

MCs corresponding to the candidate FSCs, the hybrid ap-
proach is superior: e.g., for the Grid 30-sl model, a larger
variant of the grid-like model, the MDP abstraction is 15x
larger than the individual induced MCs. With default set-
tings no admissible FSC is found within 30 minutes. A hy-
brid teacher helps finding an FSC within 150s that improves
the solution found by the belief-based method.

Multi-objective (MO) specifications: Apart from the MO
variant of the Grid-av 4-0 model discussed in Q2, we also
considered a MO variant of the Maze sl model including
a more complicated specification with an additional reach-
avoid constraint. The constraint restricts the optimal FSC,
but the run-time of the synthesis remains < 1s.

6 CONCLUSION

This paper presents a first inductive-synthesis based frame-
work for finding finite-state controllers (FSCs) in POMDPs.
Key ingredients are the novel heuristics to incrementally
construct the memory structure of the FSC as well as two
oracles for searching and evaluating families of FSCs. The
experimental results show promising results indicating that
this framework is competitive with the state-of-the-art altern-
atives. Future work includes the integration of belief-based
approaches as an additional oracle.

93

Acknowledgements

This work has been supported by the Czech Science Found-
ation grant GJ20-02328Y and the ERC AdG Grant 787914
(FRAPPANT). The authors thank Alexander Bork and Filip
Macák for their support in running the experiments.

References

Rajeev Alur, Rastislav Bodík, Eric Dallal, et al. Syntax-
guided synthesis. In Dependable Software Systems En-
gineering, volume 40 of Information and Communication
Security, pages 1–25. IOS Press, 2015.

Rajeev Alur, Rishabh Singh, Dana Fisman, and Armando
Solar-Lezama. Search-based program synthesis. Com-
mun. ACM, 61(12):84–93, 2018.

Christopher Amato, Blai Bonet, and Shlomo Zilberstein.
Finite-state controllers based on Mealy machines for
centralized and decentralized POMDPs. In AAAI, pages
1052–1058. AAAI Press, 2010.

Roman Andriushchenko, Milan Češka, Sebastian Junges,
and Joost-Pieter Katoen. Inductive synthesis for probabil-
istic programs reaches new horizons. In TACAS, volume
12651 of LNCS, pages 191–209. Springer, 2021a.

Roman Andriushchenko, Milan Češka, Sebastian Junges,
Joost-Pieter Katoen, and Šimon Stupinskỳ. PAYNT: a
tool for inductive synthesis of probabilistic programs. In
CAV, volume 12759 of LNCS, pages 856–869. Springer,
2021b.

Christel Baier and Joost-Pieter Katoen. Principles of Model
Checking. MIT Press, 2008.

Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kre-
mer, Hanna Lachnitt, Makai Mann, Abdalrhman Mo-
hamed, Mudathir Mohamed, Aina Niemetz, Andres No-
etzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds,
Cesare Tinelli Ying Sheng, and Yoni Zohar. CVC5: A
versatile SMT-solver. In TACAS (1), volume 13243 of
LNCS, pages 415–442. Springer, 2022.

Blai Bonet and Hector Geffner. Solving POMDPs:
RTDP-Bel vs. point-based algorithms. In IJCAI, pages
1641–1646, 2009.

Blai Bonet, Hector Palacios, and Hector Geffner. Automatic
derivation of finite-state machines for behavior control.
In AAAI, 2010.

Alexander Bork, Sebastian Junges, Joost-Pieter Katoen, and
Tim Quatmann. Verification of indefinite-horizon POM-
DPs. In ATVA, volume 12302 of LNCS, pages 288–304.
Springer, 2020.

Alexander Bork, Joost-Pieter Katoen, and Tim Quatmann.
Under-approximating expected total rewards in POMDPs.
In TACAS (2), volume 13244 of LNCS, pages 22–40.
Springer, 2022.

Milan Ceska, Nils Jansen, Sebastian Junges, and Joost-
Pieter Katoen. Shepherding hordes of Markov chains. In
TACAS, volume 11428 of LNCS, pages 172–190. Springer,
2019.

Milan Ceska, Christian Hensel, Sebastian Junges, and Joost-
Pieter Katoen. Counterexample-guided inductive syn-
thesis for probabilistic systems. Formal Aspects Comput.,
33(4-5):637–667, 2021.

Krishnendu Chatterjee, Martin Chmelík, Raghav Gupta, and
Ayush Kanodia. Optimal cost almost-sure reachability in
POMDPs. Artif. Intell., 234:26–48, 2016.

Murat Cubuktepe, Nils Jansen, Sebastian Junges, Ahmad-
reza Marandi, Marnix Suilen, and Ufuk Topcu. Robust
finite-state controllers for uncertain POMDPs. In AAAI,
pages 11792–11800. AAAI Press, 2021.

Christian Dehnert, Nils Jansen, Ralf Wimmer, Erika
Ábrahám, and Joost-Pieter Katoen. Fast debugging of
PRISM models. In ATVA, volume 8837 of LNCS, pages
146–162. Springer, 2014.

Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen,
and Matthias Volk. A Storm is coming: A modern prob-
abilistic model checker. In CAV, volume 10427 of LNCS,
pages 592–600. Springer, 2017.

Florian Funke, Simon Jantsch, and Christel Baier. Farkas
certificates and minimal witnesses for probabilistic reach-
ability constraints. In TACAS, volume 12078 of LNCS,
pages 324–345. Springer, 2020.

Marek Grześ, Pascal Poupart, and Jesse Hoey. Isomorph-
free branch and bound search for finite state controllers.
In IJCAI, pages 2282–2290, 2013.

Eric A Hansen. Solving POMDPs by searching in policy
space. In UAI, pages 211–219, 1998.

Milos Hauskrecht. Incremental methods for computing
bounds in partially observable Markov decision processes.
In AAAI/IAAI, pages 734–739, 1997.

Jeevana Priya Inala, Osbert Bastani, Zenna Tavares, and
Armando Solar-Lezama. Synthesizing programmatic
policies that inductively generalize. In ICLR. OpenRe-
view.net, 2020.

Susmit Jha and Sanjit A. Seshia. A theory of formal syn-
thesis via inductive learning. Acta Inf., 54(7):693–726,
2017.

94

Sebastian Junges, Nils Jansen, Ralf Wimmer, Tim Quat-
mann, Leonore Winterer, Joost-Pieter Katoen, and Bernd
Becker. Finite-state controllers of POMDPs via parameter
synthesis. In UAI, pages 519–529, 2018.

Sebastian Junges, Joost-Pieter Katoen, Guillermo A. Pérez,
and Tobias Winkler. The complexity of reachability in
parametric Markov decision processes. J. Comput. Syst.
Sci., 119:183–210, 2021.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R
Cassandra. Planning and acting in partially observable
stochastic domains. Artif. Intell., 101(1-2):99–134, 1998.

Majid Khonji, Ashkan Jasour, and Brian C Williams. Ap-
proximability of constant-horizon constrained POMDP.
In IJCAI, pages 5583–5590, 2019.

Andrey Kolobov, Mausam, Daniel S. Weld, and Hector
Geffner. Heuristic search for generalized stochastic
shortest path MDPs. In ICAPS. AAAI, 2011.

Akshat Kumar and Shlomo Zilberstein. History-based con-
troller design and optimization for partially observable
MDPs. In ICAPS, volume 25, pages 156–164, 2015.

Marta Z. Kwiatkowska, Gethin Norman, and David Parker.
PRISM 4.0: Verification of probabilistic real-time sys-
tems. In CAV, volume 6806 of LNCS, pages 585–591.
Springer, 2011.

Aditya V. Nori, Sherjil Ozair, Sriram K. Rajamani, and
Deepak Vijaykeerthy. Efficient synthesis of probabilistic
programs. In PLDI, pages 208–217. ACM, 2015.

Gethin Norman, David Parker, and Xueyi Zou. Verification
and control of partially observable probabilistic systems.
Real-Time Systems, 53(3):354–402, 2017.

Joelle Pineau, Geoffrey J. Gordon, and Sebastian Thrun.
Anytime point-based approximations for large POMDPs.
J. Artif. Intell. Res., 27:335–380, 2006.

Pascal Poupart, Aarti Malhotra, Pei Pei, Kee-Eung Kim,
Bongseok Goh, and Michael Bowling. Approximate
linear programming for constrained partially observable
Markov decision processes. In AAAI, pages 3342–3348.
AAAI Press, 2015.

Diederik M Roijers, Peter Vamplew, Shimon Whiteson, and
Richard Dazeley. A survey of multi-objective sequential
decision-making. J. Artif. Intell. Res., 48:67–113, 2013.

David Silver and Joel Veness. Monte-carlo planning in large
POMDPs. In NIPS, pages 2164–2172. Curran Associates,
Inc., 2010.

Richard D Smallwood and Edward J Sondik. The optimal
control of partially observable Markov processes over a
finite horizon. Oper. Res., 21(5):1071–1088, 1973.

Harold Soh and Yiannis Demiris. Evolving policies for
multi-reward partially observable Markov decision pro-
cesses (MR-POMDPs). In GECCO, pages 713–720,
2011.

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodík,
Sanjit A. Seshia, and Vijay A. Saraswat. Combinatorial
sketching for finite programs. In ASPLOS, pages 404–415.
ACM, 2006.

Matthijs T. J. Spaan and Nikos A. Vlassis. Perseus: Ran-
domized point-based value iteration for POMDPs. J. Artif.
Intell. Res., 24:195–220, 2005.

Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh,
Pushmeet Kohli, and Swarat Chaudhuri. Programmat-
ically interpretable reinforcement learning. In ICML,
volume 80 of PMLR, pages 5052–5061. PMLR, 2018.

Cheng Wang and Mathias Niepert. State-regularized recur-
rent neural networks. In ICML, pages 6596–6606. PMLR,
2019.

Leonore Winterer, Ralf Wimmer, Nils Jansen, and Bernd
Becker. Strengthening deterministic policies for POM-
DPs. In NFM, volume 12229 of LNCS, pages 115–132.
Springer, 2020.

Kyle Hollins Wray and Shlomo Zilberstein. Multi-objective
POMDPs with lexicographic reward preferences. In IJ-
CAI, pages 3418–3424, 2015.

Bo Wu, Xiaobin Zhang, and Hai Lin. Supervisor synthesis
of POMDP via automata learning. Automatica, 129:
109654, 2021.

95

	Introduction
	Problem Statement
	Inductive exploration of FSCs
	Families of FSCs
	MDP-abstraction teacher
	Counterexample-based Teacher

	Memory injection strategy
	Adding Memory
	Symmetry reduction

	Experimental evaluation
	Conclusion

