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Abstract

End-to-end learning of dynamical systems with
black-box models, such as neural ordinary differ-
ential equations (ODEs), provides a flexible frame-
work for learning dynamics from data without pre-
scribing a mathematical model for the dynamics.
Unfortunately, this flexibility comes at the cost of
understanding the dynamical system, for which
ODEs are used ubiquitously. Further, experimental
data are collected under various conditions (in-
puts), such as treatments, or grouped in some way,
such as part of sub-populations. Understanding
the effects of these system inputs on system out-
puts is crucial to have any meaningful model of a
dynamical system. To that end, we propose a struc-
tured latent ODE model that explicitly captures
system input variations within its latent represen-
tation. Building on a static latent variable specifi-
cation, our model learns (independent) stochastic
factors of variation for each input to the system,
thus separating the effects of the system inputs in
the latent space. This approach provides action-
able modeling through the controlled generation
of time-series data for novel input combinations
(or perturbations). Additionally, we propose a flex-
ible approach for quantifying uncertainties, lever-
aging a quantile regression formulation. Results
on challenging biological datasets show consistent
improvements over competitive baselines in the
controlled generation of observational data and in-
ference of biologically meaningful system inputs.

1 INTRODUCTION

Dynamical systems are fundamental models in many sci-
entific domains. Examples include the study of biological
processes such as gene regulation (Calderhead et al., 2009),

human cardiovascular systems (Zenker et al., 2007), epi-
demiology (Siettos and Russo, 2013), and synthetic biology
(Roeder et al., 2019). The evolution of continuous-time dy-
namical systems are commonly modeled mathematically by
ordinary differential equations (ODEs) as

dx

dt
= f (x(t), t,u(t)) , x(0) = x0 , t ∈ [0, T ] , (1)

and are governed by mathematical rules known as dynam-
ics f(·), where x(t) ∈ RD is the state (snapshot of the
process at time t) or solution of the ODE system, and u(t)
are the system inputs. Moreover, given a state x0 as the
initial condition, the dynamics define a temporal trajec-
tory from a starting point at t = 0. Such systems can be
categorized as deterministic vs. stochastic, or linear vs. non-
linear. In practice, we are given a set of noisy observations
y(t) = m(t,x(t)) at t = t0, . . . , tT , where m(·) is the
unknown emission function, and we typically make assump-
tions to estimate functions {f(·), x(t), m(·)} parametrically
or nonparametrically.

Classical state-space models, such as the Kalman filter
(Kalman, 1960), assume a parametric linear Gaussian state-
space model for the dynamics and emission functions. Be-
cause these assumptions are violated in practice and limit
model flexibility, modifications were introduced which can
generalize to nonlinear systems (Julier and Uhlmann, 1997,
2004). Recent variants of the Gaussian state-space model
retain the Markovian structure of hidden Markov models
and leverage neural networks for learning nonlinear dynam-
ics and emission functions (Krishnan et al., 2017; Fraccaro
et al., 2017; Miladinović et al., 2019).

While nonlinear systems are flexible, they are difficult to
solve and rarely yield closed-form solutions for x(t). Hence,
implicit approximations to numerical integration of sys-
tem dynamics have been considered, e.g., methods that
directly solve for x(t) for a known f(·), leveraging the
adaptive Euler method (Runge, 1895; Kutta, 1901; Alexan-
der, 1990). Such approaches are computationally imprecise
and challenging to scale for complex systems. Several ap-
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proaches adopt gradient matching using Gaussian processes
(GPs) (Calderhead et al., 2009; Graepel, 2003; Rasmussen,
2003), and related approaches based on a reproducing kernel
Hilbert space (RKHS) (González et al., 2014) primarily, to
avoid numerical integration. Unfortunately, kernel learning
with GPs or RKHS is challenging to scale for large datasets
and requires complete observability of x(t) (Ghosh et al.,
2021). Alternatively, some methods conveniently presume
discrete-time nonlinear dynamical modeling for determin-
istic and easy-to-evaluate state-space solutions, such as re-
current (or autoregressive) neural networks (Valpola and
Karhunen, 2002; Karl et al., 2017; Yingzhen and Mandt,
2018), albeit constrained to pre-specified time-horizons.

We further divide methods that learn nonlinear dynamics
according to assumptions required for estimating ODE dy-
namics, where f(·) is modeled as a neural network (Chen
et al., 2018), or more recently, parameterized by a latent vari-
able model (Rubanova et al., 2019), that leverages amortized
variational inference (Kingma and Welling, 2013; Rezende
et al., 2014). While a large body of machine learning ap-
proaches assume a known parametric form of the dynamics
f(·) (Linial et al., 2021; Wan et al., 2001; Wenk et al., 2020),
alternative flexible approaches assume that the parametric
form of f(·) is unknown (Rubanova et al., 2019; Roeder
et al., 2019). Moreover, several specifications of variational
inference for latent variable state-space models have been
proposed (Linial et al., 2021; Rubanova et al., 2019; Karl
et al., 2017; Roeder et al., 2019; Miladinović et al., 2019;
Yingzhen and Mandt, 2018; Fraccaro et al., 2017). Of these,
only Roeder et al. (2019) considers a structured hierarchi-
cal latent variable model accounting for both observations
and system inputs. So motivated, we adopt a data-driven
approach to learn unknown functions {f(·),m(·)} parame-
terized by neural networks. Moreover, we leverage a varia-
tional inference approach to learn a structured latent variable
model (separating input- from noise-specific components)
given observations y(t), as well as static system inputs u, to
characterize the unknown dynamics and emission functions.

Closely related to our work are latent variable state-space
models focused on features that separate static from dy-
namic (Yingzhen and Mandt, 2018; Fraccaro et al., 2017),
domain-invariant from domain-specific (Miladinović et al.,
2019), position from momentum (Yildiz et al., 2019), and
parameter (system input) estimation (Linial et al., 2021). In
contrast, our work focuses on synthesizing observational
data y(t) from dynamical systems given: (i) combinations
of previously unseen inputs u (also known as zero-shot
learning), and (ii) a simulated continuous-time state-space
x(t) from an ODE solver. Controlled generation of obser-
vations under combinations of system input is foundational
in experimental science for a mechanistic understanding of
biology phenomena (Roeder et al., 2019; Yuan et al., 2021),
particularly in scenarios when obtaining experimental data
is expensive. Unlike Roeder et al. (2019), we do not impose

Figure 1: Illustration of the proposed structured latent ODE
(SL-ODE) model. Generative: prior z = {zu, zϵ} (2) is
mapped to states X simulated from an ODE solver given
dynamics fθ (4) to generate observations (system outputs)
Y from the emission function m(·). Inference: posterior
qφ,ϕ(z|Y,u) is decomposed according to qϕ(z|Y ) and
qφ(u|zu) (9) where u are system inputs.

a hierarchical-latent structure or assume a known Gaussian
emission process. Additionally our model enables inference
of the system inputs u given observational data y(t), which
is not considered in Roeder et al. (2019).

The key contributions of this paper are as follows:

• We present a principled statistical framework for integrat-
ing structured representation learning from systems inputs
and observations with mechanistic models.

• We demonstrate that the proposed generative model ac-
curately simulates system outputs (observations) given
novel combinations or perturbations of system inputs, i.e.,
zero-shot learning.

• We formulate a flexible quantile regression approach for
quantifying uncertainties in generated observations.

• We demonstrate the benefits of integrating a structured
latent ODE with a flexible emission function for improved
performance over competitive baselines given challenging
biological data: (i) accurately inferring unknown static
system inputs u from noisy observations y(t), and (ii)
improved uncertainty estimates of observational noise.

2 STRUCTURED LATENT ODE MODEL
(SL-ODE)

We propose a mechanistic approach for generating observa-
tions governed by nonlinear dynamical systems. Figure 1
illustrates the proposed approach. Specifically, we leverage
an amortized inference framework (Kingma and Welling,
2013; Rezende et al., 2014) to learn a structured latent rep-
resentation given time-series observational data and static
system inputs. Below we present the proposed generative
process, including a quantile regression formulation for flex-
ible (asymmetric) uncertainty estimation.
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2.1 GENERATIVE PROCESS

We assume observations D = {Y,u}Ni=1, where Yi ∈
RK×T is a matrix of K measurements at T time points,
for i = 1, . . . , N observations and u are the (auxiliary)
static inputs (or system conditions). We propose a genera-
tive process that synthesizes Y given u as follows

zu ∼ pψ(zu| u) , zϵ ∼ p(zϵ) , z = {zu, zϵ} (2)
dx

dt
= fθ(x; z, t) (3)

X = ODESolve (fθ,x0, (t0, t1, .., tT )) (4)
Y ∼ p (Y |mγ(X), σ, τ) , (5)

where the functions defining fθ(·), pψ(·), and mγ(·) are
specified as neural networks parameterized by {θ,ψ,γ},
respectively. We synthesize Y in (5) as governed by black-
box dynamics fθ(·) in (3) parameterized by the latent repre-
sentation z (composed of system inputs and process-noise)
in (2). Moreover, the ODE solver (ODESolve) in (4) enables
recovery of the state-time matrix X at {t0, . . . , tT } for the
corresponding observations Y . See Supplementary Mate-
rial (SM) for detailed formulation of fθ(·) and initial state
mapping z → x0.

Structured Latent-Space Representations To enable
controlled generation of system outputs (observations) from
novel combinations or perturbations of system inputs, we
specify a conditional prior that captures the relationships
among heterogeneous system input values. We assign la-
tent variable z to be the concatenation of input-specific
zu and noise-specific zϵ, variables with prior distributions
pψ(zu|u) and p(zϵ), respectively. Moreover, we learn a
continuous and smooth representation of the input data in
(2). We conveniently assume a Gaussian distribution:

pψ(zu| u) = N
(
µψ(u), diag

(
σ2
ψ(u)

))
, (6)

where µψ(·) and σ2
ψ(·) are the mean and variance functions

of u, respectively. Further, we assume a standard Gaussian
p(zϵ) = N(0, diag(I)) to model process noise affecting
the dynamical system fθ(·), thus modeling approximations
and integration errors. Though we assume a Gaussian dis-
tribution for convenience, more sophisticated alternative
mechanisms for representing z can be considered, such as
normalizing flows (Rezende and Mohamed, 2015).

Black-box Dynamics ODESolve is a solver that simulates
the state-time matrix X ∈ RD×T (4) as the solution to the
dynamics (3) at desired time points {t0, . . . , tT } given the
initial state x0. We control the tradeoff between the accu-
racy of the simulated X and the computational cost with
a tolerance hyperparameter. Note that X can be solved at
arbitrary time-points, including irregularly sampled observa-
tions (see De Brouwer et al. (2019); Rubanova et al. (2019)
for details). We specify the dynamics fθ(·) using a multi-
layer perceptron (MLP) and, following Chen et al. (2018),

we learn the parameters of fθ(·) using the adjoint sensitivity
method. Note that the recently proposed stochastic adjoint
sensitivity method (Li et al., 2020) can be also considered
for computational efficiency.

Emission Process In practice, observations Y can be ei-
ther non-negative or have a skewed distribution across a
diverse range of applications such as those with biolog-
ical signals, e.g., heart-rate, temperature, blood pressure,
etc. While non-skewed distributions such as the standard
Gaussian are convenient, they are inappropriate for such
observations, since they are typically characterized by a
symmetric variance. So motivated, we wish to estimate a
flexible (skewed) distribution by synthesizing observations
Y ∼ p(Y |mγ(X), σ, τ) from an asymmetric Laplace distri-
bution (ALD) (Geraci and Bottai, 2007), where 0 < τ < 1,
σ > 0, −∞ < mγ(X) < ∞, are skew, scale, and location
parameters, respectively. The ALD is formulated as:

pY (Y ;mγ(X), σ, τ) =
τ(1− τ)

σ
× (7)

exp

(
−
(
Y −mγ(X)

σ

)[
τ − I(Y ≤ mγ(X))

])
,

where I (·) is the indicator function. Note mγ(·) is a trans-
formation that maps the state-time matrix X to observa-
tions Y , s.t., P (Y < mγ(X)) = τ , where mγ(X) is
the τ -th quantile of the distribution. Consequently, learn-
ing {mγ(X)}Ss=1 that corresponds to a set of S quantiles
{τ}Ss=1, provides a flexible approach for asymmetric uncer-
tainty estimation. In our experiments we learn σ(t) ∈ RK

and set τ = {0.025, 0.50, 0.975}, so S = 3, thus effectively
learning the median and 95% confidence intervals. How-
ever, alternatives such as the interquantile range, for which
τ = {0.25, 0.75} are also possible.

2.2 LEARNING

We aim to maximize the joint marginal log-likelihood:

max
θ,ψ,γ

EY,u∼D log pθ,ψ,γ(Y,u) =

max
θ,ψ,γ

EY,u∼D log

∫
pθ,ψ,γ(Y,u, z)dz , (8)

where we marginalize out the latent variable z. For high-
dimensional datasets and complex generative models such
as neural networks, integration over the latent variables in
(8) is intractable. Therefore, we introduce a variational pos-
terior qφ,ϕ(z|Y,u) to approximate the true (but intractable)
posterior p(z|Y,u) specified as a neural network with pa-
rameters {φ,ϕ}.

Posterior Distribution Several variations for modeling
qφ,ϕ(z|Y,u) consistent with assumed generative models
have been proposed. For instance, Kingma et al. (2014);
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Siddharth et al. (2017), assume a latent u and decompo-
sition q(z,u|Y ) = q(z|Y,u)q(u|Y ). However, such as-
sumptions require ad hoc auxiliary objectives for efficiently
learning from u. Moreover, q(z|Y,u) does not capture re-
lationships among the different input values or learn input-
specific representations, which is crucial for mechanistic
understanding and zero-shot learning. Fortunately, more re-
cently, Joy et al. (2021) formulated a principled inference
model that allows capturing input-specific representations
by leveraging both Bayes’ theorem and conditional indepen-
dence Y ⊥⊥ u|z (consistent with our assumed generative
graph) via

qφ,ϕ(z|Y,u) =
qφ(u|zu)qϕ(z|Y )

qφ,ϕ(u|Y )
, (9)

where qϕ(z|Y ) and qφ(u|zu) are neural networks parame-
terized by {φ,ϕ}, and

qφ,ϕ(u|Y ) =

∫
qφ(u|zu)qϕ(z|Y )dz . (10)

Moreover, we specify the variational distribution as Gaus-
sian qϕ(z|Y ) = N

(
µψ(Y ), diag

(
σ2
ψ(Y )

))
and categor-

ical qφ(u|zu) = Cat (u|πφ(zu)), if u is discrete or Gaus-
sian otherwise.

Evidence Lower Bound Introducing (9) to approximate
the posterior in (8) yields a tractable evidence lower bound
(ELBO) for each observation as derived by Joy et al. (2021):

logpθ,ψ,γ(Y,u) ≥ log qφ,ϕ(u|Y ) + log p(u)+ (11)

Eqϕ(z|Y )

[
qφ(u|zu)
qφ,ϕ(u|Y )

log

(
pθ,ψ,γ(Y |z)pψ(z|u)
qφ(u|zu)qϕ(z|Y )

)]
,

where log p(u) is a constant, log qφ,ϕ(u|Y ) is a classifica-
tion or regression conditional distribution formulation for
u discrete or continuous, respectively, and qφ(u|zu)

qφ,ϕ(u|Y ) are
weights for the log-likelihood ratio we seek to maximize.
We leverage the simulated state-time matrix X trajectories
from the ODESolver, as a means of constraining the map-
ping z → Y in pθ,ψ,γ(Y |z) with learned dynamics fθ(·)
according to the emission process in (5) formulated as an
ALD distribution in (7). We learn neural network parameters
{θ,ψ,γ,φ,ϕ} by maximizing the evidence lower bound
(ELBO) in (11) via stochastic gradient descent.

Theoretical Connections Assuming a perfectly disen-
tangled latent space (Higgins et al., 2018), we propose a
generative process that synthesizes observations Y given
system-inputs u, subject to latent variable z = {zu, zϵ},
which is a concatenation of independent sources of variation,
i.e., input-specific zu and noise-specific zϵ. However, in-
ferring the independent factors from posterior qφ,ϕ(z|Y,u)
(9) without supervision is impossible in arbitrary generative

models (Locatello et al., 2019). Hence we leverage the for-
mulation from (Joy et al., 2021), which naturally enables
system-input inference qφ,ϕ(u|Y ) consistent with our as-
sumed data-generation model (see Figure 1), and without
requiring additional ad hoc loss terms.

2.3 INFERENCE

ODE models are commonly used for observational data im-
putation, i.e., interpolating or extrapolating tasks (Rubanova
et al., 2019; Chen et al., 2018). For interpolation, ODE
models generate an observation conditioned on values from
a subset of time points TI ⊆ {t0, ..., tT } within the full-
time interval t ∈ [0, T ]. Moreover, for extrapolation tasks,
the ODE model generates observations at future time points
t > T , conditioned on values from previous times t ∈ [0, T ].
Unlike previous works, here we focus on deeper understand-
ing of system input effects, namely, (i) synthesizing ob-
servations given latent variable sample z from the prior
distribution in (2), and (ii) inferring system inputs u given
observations. Further, we consider the challenging zero-shot
learning setup for synthesizing data from novel combina-
tions or perturbations of system inputs.

3 RELATED WORK

Variational Learning Recent machine learning research
in variational inference for latent state-space models has
benefited from advances in computational efficiency of inte-
grating mechanistic models with observational data (Zenker
et al., 2007). For instance, recently proposed neural ODEs
(Rubanova et al., 2019) have enabled learning of continuous-
time dynamics f(·) at low computational costs. For these
latent state-space models, the estimation of model parame-
ters is specified as a maximum-likelihood problem, where
the dynamics are set as a constraint (González et al., 2014).
Most approaches rely on amortized inference (Kingma and
Welling, 2013; Rezende et al., 2014) to learn an intractable
posterior (Linial et al., 2021; Roeder et al., 2019; Rubanova
et al., 2019). However, these variational learning methods
diverge in two main aspects: i) proposed probabilistic graph-
ical model, and ii) assumptions needed to estimate {f(·),
m(·)}, the dynamics and emission functions, respectively.
Unlike existing approaches that assume a Gaussian emission
process, the proposed method SL-ODE formulates a flexi-
ble quantile regression approach for capturing uncertainties
in observational data. See Table 1 for an overview of the
various modeling assumptions.

Structured Latent-Space Representations Structured
latent space modeling for nonlinear dynamical systems
has been considered in the context of Kalman variational
auto-encoders that retain the Markovian structure of hid-
den Markov models (Krishnan et al., 2017; Fraccaro et al.,
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Table 1: Summary of related work. We categorize methods in terms of (i) assumptions required for estimating {f(·),m(·)},
the ODE and emission functions, respectively, and (ii) ability to perform tasks essential for the mechanistic understanding
of system input effects: inferring of system inputs u given observations Y and controlled generation of Y given u.

Method ODE function f(·) Emission function m(·) Predicts u Controlled generation given u Continuous-time Asymmetric Uncertainty

UKF (Wan et al., 2001) required required ✗ ✗ ✗ ✗
GOKU-net (Linial et al., 2021) required learned ✓ ✗ ✓ ✗
Hierarchical-ODE (Roeder et al., 2019) learned required ✗ ✓ ✓ ✗
DMM (Krishnan et al., 2017) learned learned ✗ ✗ ✗ ✗
Latent-ODE (Rubanova et al., 2019) learned learned ✗ ✗ ✓ ✗

SL-ODE (proposed) learned learned ✓ ✓ ✓ ✓

2017; Miladinović et al., 2019; Yingzhen and Mandt, 2018).
Such latent state-space models focus on separating static
from dynamic (Fraccaro et al., 2017; Yingzhen and Mandt,
2018), domain-invariant from domain-specific (Miladinović
et al., 2019), and position from momentum (Yildiz et al.,
2019) latent variables. Complementary to these methods,
we do not impose the Markovian structure but instead pro-
pose to learn a principled structured variational posterior
qφ,ϕ(z|Y,u) conditional on both observations Y and sys-
tem inputs u, which we decompose according to (9). Our
structured latent-space enables previously overlooked tasks
essential for the mechanistic understanding of system in-
put effects on dynamical systems: (i) controlled genera-
tion of observations given system inputs, and (ii) inference
of system inputs from observations. Variational inference
methods rarely account for system inputs except for Roeder
et al. (2019); Linial et al. (2021). While Roeder et al. (2019)
enables controlled generation, their formulation does not
facilitate system input inference given observations, and
though Linial et al. (2021) enables system input inference,
controlled generation is not considered.

4 EXPERIMENTS

Below we provide details on the baseline methods
considered for comparisons, the datasets employed,
and the metrics used to evaluate our proposed ap-
proach. PyTorch code to replicate all experiments can
be found at https://github.com/paidamoyo/
structured_latent_ODEs. We summarize the SL-
ODE training procedure, which is shared across all baseline
methods except for the optimized evidence lower bound in
Algorithm 1. See the SM for comprehensive details of the
neural architectures of the baselines and proposed model.

4.1 BASELINES

For fair comparisons, i.e., all models use the same neural
network architecture to model the ODE f(·), emission m(·),
and encoder (maps observations y(t) to latent z) functions.
However, we preserve the assumed data generative process
for each baseline. Recent state-of-the-art generative models
for disentangled representations, i.e., identifying indepen-
dent factors of variation in data Y , leverage amortized infer-

ence (Locatello et al., 2019; Kim and Mnih, 2018). There-
fore, we compare to competitive variational ODE-based
baselines. We consider the following baselines:

• Latent-ODE: Gaussian latent variable model (Rubanova
et al., 2019).

• GOKU-Net: Gaussian latent variable model accounting
for system input inference (Linial et al., 2021).

• Hierarchical-ODE: Hierarchical latent variable model
with conditional prior for system inputs (Roeder et al.,
2019).

See Table 1 for a summary of the modeling assumptions in
the baseline methods. Note that all baseline methods con-
sider a Gaussian emission process, where the observation
noise ϵ(t) is shared across all observations. In contrast, our
work adopts a flexible quantile regression approach formu-
lated as an asymmetric Laplace distribution (7).

4.2 DATASETS

We perform evaluation on three biological datasets described
below: (i) CARDIOVASCULAR SYSTEM, (ii) SYNTHETIC
BIOLOGY, and (iii) HUMAN VIRAL CHALLENGE.

Human Viral Challenge A real-world physiological
dataset collected over multiple days from subjects equipped
with Empatica E4 wearable wristband devices. On the sec-
ond day, subjects were inoculated (challenged) with an
H3N2 influenza pathogen, causing some to become infected,
as clinically determined by viral shedding between 24 and
48 hours after inoculation. Moreover, peak symptoms usu-
ally occur, in average, 72 hours after inoculation. See She
et al. (2020) for additional experimental details. We learn
from 35 subjects’ noisy time-series observations from four
sensors y(t) = [HR,TEMP,EDA,ACC]: heart rate (HR),
temperature (TEMP), electrodermal activity (EDA), and
accelerometer (ACC). Automated infection detection (e.g.,
viral shedding) from a healthy baseline, around inoculation
time and before shedding, has the potential to improve health
awareness and is crucial in implementing effective infection
prevention strategies. Hence, we evaluate our model on 5-
fold cross-validation (due to small sample size) for subject
outcome u = [u1, u2], where u1 ∈ {0, 1} and u2 ∈ {0, 1}
indicates symptoms and viral shedding respectively.

290

https://github.com/paidamoyo/structured_latent_ODEs
https://github.com/paidamoyo/structured_latent_ODEs


Table 2: Performance comparisons for HUMAN VIRAL CHALLENGE via 5-fold cross-validation. System inputs u are binary
outcomes indicating viral shedding and symptoms. We report methods without system input inference or controlled prior
generation mechanisms as NA (not available).

Method u Accuracy (%) ↑ L1 error (posterior, prior) ↓ ELBO ↑
Latent-ODE NA (108.08, NA) -362.48
GOKU-Net 0.66 (91.97, NA) -477.87
Hierarchical-ODE NA (260.78, 347.97) -426.43
SL-ODE-Gaussian (ablation) 0.63 (88.86, 110.71) -355.89
SL-ODE (proposed) 0.67 (39.73, 40.3) -327.73

Cardiovascular System In a clinical setting, identifica-
tion of system inputs u and states x(t) given noisy patient-
specific clinical observations y(t) has the potential to im-
prove differential diagnosis and predict responses to ther-
apeutic interventions. As a result, several models for the
cardiovascular system have been adapted in critical care
environments, including a simplified cardiovascular system
ODE model (Zenker et al., 2007), also recently considered
in Linial et al. (2021). Following Linial et al. (2021) we gen-
erate ODE states x(t) = (SV (t), Pa(t), Pv(t), S(t)) rep-
resenting cardiac stroke volume (amount of blood ejected
by the heart), arterial blood pressure, venous blood pres-
sure, and autonomic baroreflex tone (reflex responsible
for adapting perturbations in blood pressure and keeping
homeostasis), respectively. We observe noisy sequences
y(t) = (Pa(t), Pv(t), fHR(t)) + ϵ(t), where fHR(t) is the
patients heart-rate, and ϵ(t) is the observation noise.

We wish to infer system inputs u = (Iexternal, RTPRMod
)

from 1000 time-series observations y(t), where Iexternal <
0 implies a patient is loosing blood, while RTPRMod

<
0 implies septic shock (i.e., total peripheral resistance is
getting low), resulting in four interpretable conditions:

• Healthy (both non-negative).
• Hemorrhagic shock (Iexternal < 0, RTPRMod

≥ 0).
• Distributive shock (Iexternal ≥ 0, RTPRMod

< 0).
• Combined shock (Iexternal < 0, RTPRMod

< 0).

Synthetic Biology The SYNTHETIC BIOLOGY case study
is derived from a laboratory experimental dataset. Mea-
surements are collected to model the dynamic behavior of
genetically engineered devices in bacterial cell cultures with
different combinations of shared genetic components. Char-
acterization of cell culture response in genetic components
given experimental conditions (or treatments) to generate
desired responses for diagnostic, therapeutic, biotechnology
applications, etc., is time-intensive and unreliable (Nielsen
et al., 2016). Therefore, we wish to learn a structured la-
tent representation of the system inputs and observations to
characterize novel devices consisting of combinations from
select genetic components, i.e., zero-shot learning, across
different treatments. Below we summarize the dataset; see
Roeder et al. (2019) for a detailed description including

Algorithm 1 SL-ODE: Structured Latent ODE Model.
Input: ODE solver, Hyper-parameters
Parameter: Initialize parameters {θ,ψ,γ,φ,ϕ}
Output: Maximize ELBO

1: z ∼ qϕ(z|Y ) specified as Encoder (y(t);ϕ)
2: x0 = InitState(z;θ)
3: Simulate

X = ODESolve (fθ,x0, (t0, t1, .., tT ))

s.t.
dx

dt
= fθ(x; z, t).

4: Reconstruct Y ∼ p (Y |mγ(X), σ, τ)
5: Comptute ELBO

Eqϕ(z|Y )

[
qφ(u|zu)
qφ,ϕ(u|Y )

log

(
pθ,ψ,γ(Y |z)pψ(z|u)
qφ(u|zu)qϕ(z|Y )

)]
+ log qφ,ϕ(u|Y ) + log p(u)

6: Backpropagate and update {θ,ψ,γ,φ,ϕ}
7: return solution

ODE dynamics. The system inputs u = [c, g], consist of
two variables:

• A multi-hot vector representing different combinations of
genetics components making up six genetic devices g ∈
{Pcat-Pcat, RS100-S32, RS100-S34, R33-S32, R33
-S175, R33-S34}.

• Different concentrations of chemicals (or treatments) c =
{C6, C12}.

Given the system inputs, we observe 312 noisy time-series
observations captured from four optical devices y(t) =
[OD,RFP,YFP,CFP]: optical density (OD), red fluores-
cent protein (RFP), yellow fluorescent protein (YFP), and
cyan fluorescent protein (CFP). We evaluate our model on
two tasks: (i) 4-fold cross-validation (due to small sample
size) for multiple device inference, and (ii) held-out (novel)
device inference (i.e., zero-shot learning), which we evalu-
ate on observations from g = R33-S34 and g = R33-S32.
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Table 3: Performance comparisons for SYNTHETIC BIOLOGY data via 4-fold cross-validation multiple device inference task.
System inputs u = [g, c], where g are categorical device genetic components and c are continuous treatment values. We
report methods without system input inference or controlled prior generation mechanisms as NA.

Method g Accuracy (%) ↑ cMSE ↓ L1 error (post, prior) ↓ ELBO ↑
Latent-ODE NA NA (17.47, NA) 880.83
GOKU-Net 90.71 1.34 (5.08, NA) 1411.61
Hierarchical-ODE NA NA (18.25, 18.17) 896.07
SL-ODE-Gaussian (ablation) 91.07 0.87 (5.58, 14.21) 1296.11
SL-ODE (proposed) 92.95 0.98 (4.95, 12.87) 1830.89

4.3 QUANTITATIVE ANALYSIS

Experimental results in Tables 2 and 3 (see SM for CAR-
DIOVASCULAR SYSTEM) demonstrate that the proposed
SL-ODE consistently outperforms baseline methods across
all evaluation metrics and datasets. We evaluate SL-ODE
and compare to baseline methods on the following metrics:

• System input inference u given observational data y(t).
We report accuracy and mean squared error (MSE) for
categorical and continuous system inputs, respectively.

• We compare averaged system input-specific L1 error from
posterior or prior predictive distributions against ground
truth observations. For the prior distribution, we evaluate
methods capable of controlled generation given system
inputs u.

• Estimated evidence lower bound for model fit evaluation.

Evidence Lower Bound (ELBO) As expected, the latent-
ODE model has the worst ELBO, since it is the only model
that does not account for system inputs when modeling the
posterior or prior distributions. Therefore, the model capac-
ity is limited to a simple Gaussian posterior distribution. In
contrast, our structured modeling approach has significant
benefits over baseline methods in model fit (or ELBO), due
to its system input inference (9) and structured conditional
prior (2). Though Hierarchical-ODE assumes a conditional
prior, it does not consider a system input inference mecha-
nism. Moreover, while GOKU-Net considers a system input
inference mechanism, it is constrained by its Gaussian prior.

Posterior and prior predictive distributions L1 error
Formulated as an absolute difference between input-specific
predictions and ground truth averaged across observations
and system inputs. Our model achieves the lowest posterior
and prior distributions L1 error across all datasets. However,
we noticed a drop in performance between the SYNTHETIC
BIOLOGY posterior and prior errors. We attribute the perfor-
mance decline to the challenge associated with accounting
for complex system inputs, i.e., heterogeneous (mixture of
categorical and continuous) variables. Note that we do not
report the prior L1 error on GOKU-Net and Latent-ODE
since these models do not consider controlled generation
given system inputs.

(a) SL-ODE

(b) Hierarchical-ODE

Figure 2: Ground truth (black) vs. controlled generated ob-
servations (colored) given system inputs u according to as-
sumed prior for (a) proposed SL-ODE and (b) Hierarchical-
ODE models on CARDIOVASCULAR SYSTEM data. We
average synthesized observational data y(t) across all class-
specific time series and report the estimated median with
95% confidence interval (CI).

System input inference We report a competitive advan-
tage over GOKU-Net in SYNTHETIC BIOLOGY and HU-
MAN VIRAL CHALLENGE system input inference, owing to
our structured conditional prior representations (2), which
is not considered in GOKU-Net. Note that we do not re-
port results on Hierarchical-ODE and Latent-ODE methods,
which do not consider system input inference.
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(a) SL-ODE (b) GOKU-Net

Figure 3: Posterior predictive distribution on SYNTHETIC
BIOLOGY data via 4-fold cross-validation multiple device
inference task for (a) proposed SL-ODE and (b) GOKU-
Net models. For clarity, we plot ground truth (dotted) time-
series against median predictions (solid) across three c =
[C6, C12] treatments (minimum, median, and maximum),
e.g., when C6= minimum, output is averaged across all C12.
Shaded areas indicate the predicted 95% CI.

4.4 QUALITATIVE ANALYSIS

We further compare against the best performing baseline
methods Hierarchical-ODE and GOKU-Net in Figures 2 and
3, respectively. Figure 2 demonstrates that the controlled
generated samples from the assumed prior distribution of
SL-ODE match the ground truth class-specific time-series
better than samples from Hierarchical-ODE on the CAR-
DIOVASCULAR SYSTEM dataset. Moreover, the estimated
95% CI of SL-ODE exhibit low-variance predictions. Sim-
ilarly, in Figure 3 we present low-variance predictions at
earlier times than GOKU-Net on the SYNTHETIC BIOLOGY
dataset multi-device task per reported 95% CI posterior pre-
dictive distributions. See SM for complete multiple device
inference results across all methods. We observe a similar
trend on the HUMAN VIRAL CHALLENGE dataset (see re-
sults in SM), albeit capturing imperfect dynamics limited by
the ODE class. This demonstrates that our quantile regres-
sion emission formulation (7) has a competitive advantage
for capturing flexible and asymmetric uncertainties over the
typical choice of standard Gaussian emission process. Ad-
ditionally, the ablation study illustrates that the proposed
SL-ODE with an asymmetric Laplace likelihood (7) has
a quantitative competitive advantage over the alternative
(SL-ODE-Gaussian) with Gaussian likelihood.

Finally, Figure 4 shows posterior and prior predictive sum-
maries on the challenging SYNTHETIC BIOLOGY held-out
device task (so-called zero-shot learning) across all treat-

(a) SL-ODE: Posterior (b) SL-ODE: Prior

Figure 4: SL-ODE SYNTHETIC BIOLOGY held-out device
(g = R33-S34) task. Ground truth vs. (a) posterior predic-
tive distribution and (b) controlled generated observations
given system inputs u = [g, c] according to assumed prior
distribution (2). We plot the median (circles) with 95% CI
against ground truth observations (crosses) averaged (200
z samples) across all observations at the final time-point
sweeping all c = [C6, C12] treatments.

ment values. Interestingly, except for mid C12 treatments
from YFP, SL-ODE closely matches ground truth obser-
vations for the posterior and prior predictive distributions.
Accurately synthesizing data under novel input combina-
tions is crucial for experimental science, where obtaining
data is typically expensive and time consuming. We antici-
pate performance gains with additional training data from an
S34 device component known to bind to C12 (Roeder et al.,
2019). See SM for additional zero-shot learning results from
held-out device g = R33-S32.

5 CONCLUSIONS

We have presented a principled statistical framework for
integrating mechanistic models with amortized inference.
We applied this framework to a constrained maximum-
likelihood estimation of time-series observational data and
static system inputs. Moreover, we demonstrated the bene-
fits of capturing system input-specific variations in the latent
space for a deeper understanding of system input effects on
dynamical systems. Further, the proposed inference method
does not assume known ODE dynamics or emission func-
tions. Unlike prior works that presume a Gaussian emission
process, we quantify observation noise with quantile re-
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gression for flexible (skewed) uncertainty estimation. We
presented results on three challenging biological datasets,
characterizing human physiological event states, cardiovas-
cular systems, and genetically engineered devices in syn-
thetic biology. We demonstrated significant performance
gains over competitive baselines in uncertainty estimation
and mechanistic understanding tasks: controlled generation
of observational data given novel system input combina-
tions, and inference of biologically meaningful inputs from
observational data. In the future, we plan to extend our struc-
tured representation formulation to account for time-varying
system inputs, frequently encountered in several dynamical
systems, such as gene regulation (Calderhead et al., 2009).
Finally, current research aims to account for irregularly sam-
pled observations (De Brouwer et al., 2019; Rubanova et al.,
2019), these approaches may also augment the scope of the
proposed structured latent ODE model.
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