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Abstract

Federated data analytics is a framework for dis-
tributed data analysis where a server compiles
noisy responses from a group of distributed low-
bandwidth user devices to estimate aggregate statis-
tics. Two major challenges in this framework are
privacy, since user data is often sensitive, and com-
pression, since the user devices have low network
bandwidth. Prior work has addressed these chal-
lenges separately by combining standard compres-
sion algorithms with known privacy mechanisms.
In this work, we take a holistic look at the problem
and design a family of privacy-aware compression
mechanisms that work for any given communi-
cation budget. We first propose a mechanism for
transmitting a single real number that has optimal
variance under certain conditions. We then show
how to extend it to metric differential privacy for
location privacy use-cases, as well as vectors, for
application to federated learning. Our experiments
illustrate that our mechanism can lead to better util-
ity vs. compression trade-offs for the same privacy
loss in a number of settings.

1 INTRODUCTION

Federated data analytics is a framework for distributed data
analysis and machine learning that is widely applicable
to use-cases involving continuous data collection from a
large number of devices. Here, a central server receives
responses from a large number of distributed clients, and
aggregates them to compute a global statistic or a machine
learning model. An example is training and fine-tuning a
speech-to-text model for a digital assistant; here a central
server has a speech-to-text model, which is continuously
updated based on feedback from client devices about the
quality of predictions on their local data. Another example

is maintaining real-time traffic statistics in a city for ride-
share demand prediction; here, a central server located at the
ride-share company collects and aggregates location data
from a large number of user devices.

Most applications of federated data analysis involve two
major challenges – privacy and compression. Since typical
use-cases involve personal data from users, it is important to
maintain their privacy. This is usually achieved by applying
a local differentially private (LDP) algorithm (Duchi et al.,
2013; Kasiviswanathan et al., 2011) on the raw inputs at
the client device so that only sanitized data is transmitted
to the server. Additionally, since the clients frequently have
low-bandwidth high-latency uplinks, it is also important to
ensure that they communicate as few bits to the server as
possible. Most prior work in this area (Girgis et al., 2021;
Kairouz et al., 2021; Agarwal et al., 2021) addressed these
two challenges separately – first, a standard LDP algorithm
is used to sanitize the client responses, and then standard
compression procedures are used to compress them before
transmission. However, this leads to a loss in accuracy of the
client responses, ultimately leading to a loss in estimation
or learning accuracy at the server. Moreover, each of these
methods requires a very specific communication budget and
is not readily adapted to other budgets.

In this work, we take a closer look at the problem and pro-
pose designing the privacy mechanism in conjunction with
the compression procedure. To this end, we propose a formal
property called asymptotic consistency that any private fed-
erated data analysis mechanism should possess. Asymptotic
consistency requires that the aggregate statistics computed
by the server converge to the non-private aggregate statistics
as the number of clients grows. If the server averages the
client responses, then a sufficient condition for asymptotic
consistency is that the clients send an unbiased estimate of
their input. Perhaps surprisingly, many existing mechanisms
are not unbiased, and thus not asymptotically consistent.

We first consider designing such unbiased mechanisms that,
given any communication budget b, transmit a continuous
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scalar value that lies in the interval [0, 1] with local differ-
ential privacy and no public randomness. We observe that
many existing methods, such as truncated Gaussian, lead to
biased solutions and asymptotically inconsistent outcomes
if the inputs lie close to an end-point of the truncation inter-
val. Motivated by this, we show how to convert two existing
local differentially private mechanisms for transmitting cat-
egorical values – bit-wise randomized response (Warner,
1965) and generalized randomized response – to unbiased
solutions.

We then propose a novel mechanism, the Minimum Variance
Unbiased (MVU) mechanism, that given b bits of communi-
cation, exploits the ordinal nature of the inputs to provide
a better privacy-accuracy trade-off. We show that if the in-
put is drawn uniformly from the set {0, 1/(2b − 1), . . . , 1},
then the MVU mechanism has minimum variance among all
mechanisms that satisfy the local differential privacy con-
straints. We show how to adapt this mechanism to metric
differential privacy (Andrés et al., 2013) for location privacy
applications. To adapt it to differentially private SGD (DP-
SGD; Abadi et al. (2016)), we then show how to extend
it to vectors within an Lp-ball, and establish tight privacy
composition guarantees.

Finally, we investigate the empirical performance of the
MVU mechanism in two concrete use-cases: distributed
mean estimation and private federated learning. In each case,
we compare our method with several existing baselines, and
show that our mechanism can achieve better utility for the
same privacy guarantees. In particular, we show that the
MVU mechanism can match the performance of specially-
designed gradient compression schemes such as stochastic
signSGD (Jin et al., 2020) for DP-SGD training of neural
networks at the same communication budget.

2 PRELIMINARIES

In private federated data analysis, a central server calcu-
lates aggregate statistics based on sensitive inputs from n
clients. The statistics might be as simple as the prevalence
of some event, or as complicated as a gradient to a large
neural network. To preserve privacy, the clients transmit a
sanitized version of their input to the server. Two popular
privacy notions used for sanitization are local differential
privacy (Duchi et al., 2013; Kasiviswanathan et al., 2011)
and metric differential privacy (Andrés et al., 2013).

2.1 PRIVACY DEFINITIONS

Definition 1. A randomized mechanismM with domain
dom(M) and range range(M) is said to be ϵ-local differ-
entially private (LDP) if for all pairs x and x′ in the domain
ofM and any S ⊆ range(M), we have that:

Pr(M(x) ∈ S) ≤ eϵ Pr(M(x′) ∈ S).

Here ϵ is a privacy parameter where lower ϵ implies better
privacy. The LDP mechanismM is run on the client side,
and the result is transmitted to the server. We assume that the
clients and the server do not share any randomness. It might
appear that a local DP requirement implies that a client’s
response contains very little useful information. While each
individual response may be highly noisy, the server is still
able to obtain a fairly accurate estimate of an aggregate
property if there are enough clients. Thus, the challenge
in private federated data analysis is to design protocols —
privacy mechanisms for clients and aggregation algorithms
for servers — so that client privacy is preserved, and the
server can obtain an accurate estimate of the desired statistic.

A related definition is metric differential privacy (metric-
DP) (Chatzikokolakis et al., 2013), which is also known as
geo-indistinguishability (Andrés et al., 2013) and is com-
monly used to quantify location privacy.

Definition 2. A randomized mechanismM with domain
dom(M) and range range(M) is said to be ϵ-metric DP
with respect to a metric d if for all pairs x and x′ in the
domain ofM and any S ⊆ range(M), we have that:

Pr(M(x) ∈ S) ≤ eϵd(x,x
′) Pr(M(x′) ∈ S).

Metric DP offers granular privacy that is quantified by the
metric d – inputs x and x′ that are close in d are indistin-
guishable, while those that are far apart in d are less so.

2.2 PROBLEM STATEMENT

In addition to balancing privacy and accuracy, a bottleneck
of federated analytics is communication since client devices
typically have limited network bandwidth. Thus, the goal
is to achieve privacy and accuracy along with a limited
amount of communication between clients and servers. We
formalize this problem as follows.

Problem 3. Suppose we have n clients with sensitive data
x1, . . . , xn where each xi lies in a domain X , and a central
server S seeks to approximate an aggregate statistic Tn. Our
goal is to design two algorithms, a client-side mechanism
M and a server-side aggregation procedure An, such that
the following conditions hold:

1. M is ϵ-local DP (or ϵ-metric DP).

2. The output ofM can be encoded in b bits.

3. An(M(x1), . . . ,M(xn)) is a good approximation to
Tn(x1, . . . , xn).

Prior works addressed the communication challenge by mak-
ing the clients use a standard local DP mechanism followed
by a standard quantization process. We develop methods
where both mechanisms are designed together so as to ob-
tain high accuracy at the server end.
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2.3 ASYMPTOTIC CONSISTENCY

We posit that any good federated analytics solution (M,An)
whereM is a client mechanism and An is the server-side
aggregation procedure should have an asymptotic consis-
tency property. Loosely speaking, this property ensures that
the server can approximate the target statistic Tn arbitrarily
well with clients. Formally,

Definition 4. We say that a private federated analytics
protocol is asymptotically consistent if the output of the
server’s aggregation algorithm An(M(x1), . . . ,M(xn))
approaches the target statistic Tn(x1, . . . , xn) as n→∞.
In other words, for any α, δ > 0, there exists an n0 such
that for all n ≥ n0, we have:

Pr(|An(M(x1), . . . ,M(xn))−Tn(x1, . . . , xn)| ≥ α) ≤ δ

While the server can use any aggregation protocol An, the
most common is a simple averaging of the client responses
– An(M(x1), . . . ,M(xn)) = 1

n

∑
iM(xi). It is easy to

show the following lemma.

Lemma 5. IfM(x) is unbiased for all x and has bounded
variance, and if An computes the average of the client
responses, then the federated analytics solution is asymptot-
ically consistent.

While asymptotic consistency may seem basic, it is sur-
prisingly not satisfied by a number of simple solutions. An
example is whenM(x) is a Gaussian mechanism whose
output is truncated to an interval [a, b]. In this case, if xi = a
for all i, the truncated Gaussian mechanism will be biased
with E[M(xi)] > xi, and consequently the server’s aggre-
gate will not approach a for any number of clients.

Some of the recently proposed solutions for federated learn-
ing are also not guaranteed to be asymptotically consistent.
Examples include the truncated Discrete Gaussian mecha-
nism (Canonne et al., 2020; Kairouz et al., 2021) as well
as the Skellam mechanism (Agarwal et al., 2021). While
these mechanisms are unbiased if the range is unbounded
and there are no communication constraints, their results do
become biased after truncation.

2.4 COMPRESSION TOOL: DITHERING

A core component of our proposed mechanisms is dither-
ing – a popular approach to quantization with a long his-
tory of use in communications (Schuchman, 1964; Gray
and Stockham, 1993), signal processing (Lipshitz et al.,
1992), and more recently for communication-efficient dis-
tributed learning (Alistarh et al., 2017; Shlezinger et al.,
2020). Suppose our goal is to quantize a scalar value
x ∈ [0, 1] with a communication budget of b bits. We con-
sider the B = 2b points G = {0, 1

B−1 ,
2

B−1 , . . . , 1} as the

quantization lattice; i.e., the B points uniformly spaced by
∆ = 1/(B − 1). Dithering can be seen as a random quan-
tization function Dither : [0, 1]→ G that is unbiased, i.e.,
E[Dither(x)] = x.1 Moreover, the distribution of the quan-
tization errors Dither(x)− x can be made independent of
the distribution of x.

While there are many forms of dithered quantization (Gray
and Stockham, 1993), we focus on the following. If x ∈
[ i
B−1 ,

i+1
B−1 ) where 0 ≤ i ≤ B− 1, then Dither(x) = i

B−1

with probability (B−1)( i+1
B−1 −x), and Dither(x) = i+1

B−1

with probability (B − 1)(x− i
B−1 ). A simple calculation

shows that E[Dither(x)] = x and moreover that the vari-
ance is bounded above by E[(Dither(x) − x)2] ≤ ∆2/4.
This procedure is equivalent to the non-subtractive dithering
scheme Dither(x) = minq∈G |q − (x − U)|, where U is
uniformly distributed over the interval [−∆/2,∆/2]; see,
e.g., (Aysal et al., 2008, Lemma 2).

3 SCALAR MECHANISMS

We consider Problem 3 when the input xi is a scalar in the
interval [0, 1], and the statistic2 T is the average 1

n

∑n
i=1 xi.

Our server side aggregation protocol will also output an
average of the client responses. Our goal now is to design a
client-side mechanismM that is ϵ-local DP, unbiased, and
can be encoded in b bits.

Notation. The inputs to our client-side mechanism M
are: a continuous value x ∈ [0, 1], a privacy parameter
ϵ and a communication budget b. The output is a num-
ber i ∈ {0, . . . , B − 1} where B = 2b, represented as
a sequence of b bits. Additionally, we have an alphabet
A = {a0, . . . , aB−1} shared between the clients and server;
a number i transmitted by a client is decoded as the letter ai
in A. The purpose of A is to ensure unbiasedness.

3.1 STRATEGY OVERVIEW

Our privacy-aware compression mechanism operates in
two phases. In the offline phase, it selects an input bit-
width value bin and pre-computes an output alphabet A
and a sampling probability matrix P ∈ RBin×Bout , where
Bout = 2b, Bin = 2bin . Both P and A are shared with
the server and all clients. In the online phase, the client-
side mechanismM first uses dithering to round an input
x ∈ [0, 1] to the grid {0, 1

Bin−1 , . . . , 1} while maintaining
unbiasedness, and then draws an index j from the categori-

1When the number of grid points B is clear from the context,
we simply write Dither(x) to simplify notation; otherwise we
write DitherB(x) to indicate the value of B.

2To simplify notation, we drop the subscript n from statistics
Tn and aggregation functions An, when the number of clients n is
clear from the context.
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Algorithm 1 Strategy for privacy-aware compression

1: Input: x ∈ [0, 1], privacy budget ϵ, communication
budget b = bout, input bit-width bin.

2: Offline phase:
3: Let Bout = 2b, Bin = 2bin .
4: Construct sampling probability matrix P ∈ RBin×Bout

and output alphabet A = {a0, . . . , aBout−1} to satisfy
ϵ-DP and unbiasedness constraints.

5: Online phase:
6: i = (Bin − 1) ·Dither(x) ∈ {0, 1, . . . , Bin − 1}.
7: Draw j ∈ {0, . . . , Bout − 1} from the categorical distri-

bution defined by probability vector Pi.
8: Return aj .

cal distribution defined by the probability vector Pi, where
i = (Bin − 1) · Dither(x). The client then sends aj to the
server. Algorithm 1 summarizes the procedure in pseudo-
code. Note that the strategy generalizes to any bounded
input range by scaling x appropriately.

In order forM to satisfy ϵ-DP and unbiasedness, we must
impose the following constraints for the sampling probabil-
ity matrix P = [pi,j ] and output alphabet A = {aj}Bout−1

j=0 :

Row-stochasticity:
Bout−1∑
j=0

pi,j = 1 ∀i (1a)

Non-negativity: pi,j ≥ 0 ∀i, j (1b)

ϵ-DP: pi′,je
−ϵ ≤ pi,j ≤ pi′,je

ϵ ∀i ̸= i′

(1c)

Unbiasedness:
Bout−1∑
j=0

ajpi,j =
i

Bin − 1
∀i. (1d)

Conditions (1a) and (1b) ensure that P is a probability ma-
trix. Condition (1c) ensures ϵ-DP, while condition (1d) en-
sures unbiasedness. Note that these constraints only define
the feasibility conditions for P and A, and hence form the
basis for a broad class of private mechanisms. In the follow-
ing sections, we show that two variants of an existing local
DP mechanism Randomized Response Warner (1965) – bit-
wise Randomized Response and generalized Randomized
Response – can be realized as special cases of this family of
mechanisms.

3.2 UNBIASED BITWISE RANDOMIZED
RESPONSE

Randomized Response (RR) (Warner, 1965) is one of the
simplest LDP mechanisms that sanitizes a single bit. Given
a bit y ∈ {0, 1}, the RR mechanism outputs the y with some
probability p and the flipped bit 1−y with probability 1−p.
If p = 1

1+e−ϵ , then the mechanism is ϵ-local DP.

Unbiased Bitwise Randomized Response Mechanism.

The RR mechanism does not directly apply to our task as it
is biased and applies to one bit. We obtain unbiasedness by
using the output alphabet A = {− 1

eϵ−1 ,
eϵ

eϵ−1}, and repeat
the one-bit mechanism b times on each bit of x, with a
privacy budget of ϵ/b each time. It is not hard to see that
unbiased RR with b = 1 is a special case of Algorithm 1.
For b > 1, we can construct the resulting probability matrix
P by applying unbiased RR to each bit independently and
similarly obtain the resulting output alphabet A.

We prove in Appendix A that Unbiased Bitwise Multiple
RR satisfies ϵ-local DP and is unbiased.

3.3 UNBIASED GENERALIZED RANDOMIZED
RESPONSE

Generalized Randomized Response is a simple generaliza-
tion of the one-bit RR mechanism for sanitizing a categori-
cal value x ∈ {1, . . . ,K}. The mechanism transmits x with
some probability p, and a draw from a uniform distribution
over {1, . . . ,K} with probability 1 − p. The mechanism
satisfies ϵ-local DP when p = eϵ−1

K+eϵ−1 .

Unbiased Generalized Randomized Response. We can
adapt Generalized RR to our task by dithering the input
x to the grid {0, 1

Bout−1 , . . . , 1} where Bout = 2bout , and
then transmitting the result using Generalized RR. Alter-
natively, we can derive the sampling probability matrix
P = eϵ−1

Bout+eϵ−1IBout +
1

Bout+eϵ−1 , where IBout is the identity
matrix. However, this leads to a biased output. To address
this, we change the alphabet to A = {a0, a1, . . . , aBout−1}
such that unbiasedness is maintained. Specifically, for any
i ∈ {0, . . . , Bout−1}, we need to ensure that when the input
is i

Bout−1 , the expected output is also i
Bout−1 , which reduces

to the following equation:

ai ·
eϵ − 1

Bout + eϵ − 1
+

Bout−1∑
j=0

aj ·
1

Bout + eϵ − 1
=

i

Bout − 1
.

Writing this down for each i gives Bout linear equations,
solving which will give us the values of a0, . . . , aBout−1. We
establish the privacy and unbiasedness properties of Unbi-
ased Generalized RR in Appendix A. A similar unbiased
adaptation was also considered by Balle et al. (2019).

3.4 THE MVU MECHANISM

A challenge with Unbiased Bitwise RR and Unbiased Gen-
eralized RR is that both algorithms are not intrinsically
designed for ordinal or numerical values, which may result
in poor accuracy upon aggregation. We next propose a new
method that improves estimation accuracy by reducing the
variance of each client’s output while retaining unbiasedness
and hence asymptotic consistency.

Our proposed method – the Minimum Variance Unbiased
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Figure 1: Optimized sampling probability matrix P (top row) and output alphabet A = {a0, . . . , aBout−1} (bottom row) of
the MVU mechanism with bin = bout = 3 for ϵ = 1, 3, 5, 10. At ϵ = 1, the DP constraint forces entries in each column to be
similar, and the unbiasedness constraint causes the magnitude of aj to be large. At ϵ = 10, the weaker DP constraint allows
the optimal P matrix to become close to the identity matrix and aj ≈ j/(B − 1).

(MVU) mechanism – addresses this problem by directly
minimizing the variance of the client’s output. This is done
by solving the following optimization problem:

min
p∈[0,1]Bin×Bout

a∈RBout

Bin−1∑
i=0

Bout−1∑
j=0

pi,j

(
i

Bin − 1
− aj

)2

(2)

subject to Conditions (1a)− (1d).

The objective in (2) measures the variance of the output of
the mechanism when the input i is uniformly distributed
over the set {0, 1

Bin−1 , . . . , 1}. Conditions (1a)-(1d) ensure
that the MVU mechanism is ϵ-DP and unbiased, hence sat-
isfying requirements for our task.

Solving the MVU mechanism design problem. We solve
(2) using one of two approaches depending on size of
the probability matrix P and ϵ. For smaller problems and
when ϵ is not too small, we use a trust region interior-
point solver (Conn et al., 2000). As ϵ approaches 0, the
problem becomes poorly conditioned and we only approx-
imately solve the problem by relaxing the unbiasedness
constraint (1d). In this case we use an alternating minimiza-
tion heuristic where we alternate between fixing the values
aj and solving for pi,j , and holding pi,j fixed and solving
for aj , while incorporating constraint (1d) as a soft penalty
in the objective. Each of the corresponding subproblems is
a quadratic program and can be solved efficiently. Figure 1
shows examples of the MVU mechanism for bin = bout = 3
and ϵ ∈ {1, 3, 5, 10} obtained using the trust region solver.

Relationship between DP and compression. The MVU
mechanism highlights an intriguing connection between DP
and compression. Since the mechanism hides information

in the input x by perturbing it with random noise, as ϵ→ 0,
fewer bits are required to describe the noisy outputM(x).
In the limiting case of ϵ = 0, all information is lost and the
output can be described by zero bits. In Appendix B, we
demonstrate this argument concretely by showing that as
ϵ→ 0, the marginal benefit of having a larger communica-
tion budget decreases.

4 EXTENSIONS

We now show how to extend the MVU mechanism to obtain
privacy-aware and accurate compression mechanisms for
metric-DP and vector spaces.

4.1 METRIC DP

In location privacy, client devices send their obscured loca-
tions to a central server for aggregation. Metric DP (Defi-
nition 2) is a variation of LDP that applies to this use-case.
We are given a position x and a metric d which measures
how far apart two positions are. Our goal is to output a pri-
vate position x′ so that fine-grained properties of x (such as,
exact address, city block) are hidden, while coarse-grained
properties (such as, city, or zip-code) are preserved.

We show how to adapt the MVU mechanism to metric DP.
For simplicity, suppose that we measure position on the line,
so x ∈ [0, 1]. We modify Condition (1c) to instead satisfy
the metric DP constraint with respect to the metric d:

pi′,je
−ϵd(i/(Bin−1),i′/(Bin−1)) ≤ pi,j ≤ pi′,je

ϵd(i/(Bin−1),i′/(Bin−1)).
(3)

Thus we can get an MVU mechanism for metric DP by solv-
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ing the modified optimization problem in (2) and following
the same procedure in Algorithm 1.

4.2 EXTENSION TO VECTOR SPACES

We next look at extending the MVU mechanism to vector
spaces. Specifically, a client now holds a d-dimensional
vector x in a domain X ⊆ Rd, and its goal is to output an
ϵ-local DP version that can be communicated in bd bits. The
domain X is typically a unit Lp-norm ball for p ≥ 1.

A plausible approach is to apply the scalar MVU mechanism
independently for each coordinate of x. While this will
provide the optimal accuracy for p = ∞, for p < ∞, the
client’s variance will be higher. A second approach is to
extend the MVU mechanism directly to X by using an
alphabet A × A × . . . × A = Ad and then solving the
corresponding optimization problem (2). Unfortunately this
is computationally intractable even for moderate d.

Instead, we show how to obtain a more computationally
tractable approximation when X is an Lp-ball. We are moti-
vated by the following lemma.

Lemma 6. Let X be the unit Lp-ball with diameter ∆.
Suppose M is an ϵ-metric DP scalar mechanism with
d(y, y′) = |y − y′|p. Then, the mechanismMd : X → Rd

that maps x to the vector (M(x1), . . . ,M(xd)) is ϵ∆p-
local DP. Additionally, ifM is unbiased, thenMd is unbi-
ased as well.

Lemma 6 suggests the following algorithm: Use the MVU
mechanism for ϵ-metric DP with d(y, y′) = |y − y′|p for
each coordinate, then combine to get an ϵ-local DP solution
for vectors with Lp-sensitivity ∆. Since ∥·∥∞ ≤ ∥·∥p, each
coordinate of x lies in a bounded range [−∆,∆], so we can
scale x by x′ ← (x+∆)/2∆ so that all entries belong to
[0, 1] and the MVU mechanism can be applied to x′. Note
that this scaling operation changes the Lp-sensitivity to 1/2.

This solution is computationally tractable since we only
need to solve an optimization problem for the scalar MVU
mechanism – so involving ≈ B2

out = 22bout variables and
constraints (instead of ≈ 22boutd). We investigate how this
mechanism works in practice in Section 5.

4.3 COMPOSITION USING RÉNYI-DP

Repeated applications of the MVU mechanism will give
an additive sequential privacy composition guarantee as in
standard ϵ-DP. We next show how to get tighter composition
bounds for the MVU mechanism using RDP accounting as
in Mironov (2017).

Suppose that x,x′ ∈ {0, 1/(Bin−1), . . . , 1}d are quantized
d-dimensional vectors, and let Q0, Q1 be the output distri-
butions of the mechanismM for inputs x,x′, respectively.

By the definition of Rényi divergence (Rényi, 1961),

Dα(Q0||Q1) =
1

α− 1

d∑
l=1

log

Bin−1∑
j=0

pαil,j

pα−1
i′l,j

,

where i, i′ ∈ {0, 1, . . . , Bin−1}d are such that x = i/(Bin−
1) and x′ = i′/(Bin − 1). Let Dα denote the Bin ×Bin ma-
trix with entries Dα

i,i′ =
1

α−1 log
∑Bin−1

j=0 pαi,j/p
α−1
i′,j . Then,

computation of the α-RDP parameter forM can be formu-
lated as the following combinatorial optimization problem:

max
i,i′∈{0,1,...,Bin−1}d

d∑
l=1

Dα
il,i′l

s.t. ∥i−i′∥pp ≤ (Bin−1)p∆p.

This optimization problem is in fact an instance of the
multiple-choice knapsack problem (Sinha and Zoltners,
1979) and admits an efficient linear program relaxation by
converting the integer vectors i, i′ to probability vectors, i.e.,

max
p∈Rd×Bin×Bin

d∑
l=1

⟨Dα,pl⟩F (4)

subject to
d∑

l=1

⟨C,pl⟩F ≤ (Bin − 1)p∆p

∑
i,j

(pl)ij ≤ 1 and pl ≥ 0 ∀l,

where ⟨·, ·⟩F denotes Frobenius (vectorized) inner prod-
uct and C denotes the distance matrix with entries Cij =
(i − j)p. This LP relaxation can still be prohibitively ex-
pensive to solve for large d since p contains dB2

in variables.
Fortunately, in such cases, we can obtain an upper bound
via the greedy solution; see Appendix A for the proof.

Lemma 7. Let (i∗, j∗) = arg maxi,j D
α
ij/Cij and let d0 =

(Bin − 1)p∆p/Ci∗j∗ . Then (4) ≤ d0D
α
i∗j∗ .

To summarize, for composition with RDP accounting at
order α, we can either solve the LP relaxation in (4) or
compute the greedy solution to obtain an upper bound for
Dα(P ||Q), and then apply the usual composition for RDP.

5 EXPERIMENTS

We evaluate the MVU mechanism on two sets of exper-
iments: Distributed mean estimation and federated learn-
ing. Our goal is to demonstrate that MVU can attain
a better privacy-utility trade-off at low communication
budgets compared to other private compression mecha-
nisms. Code to reproduce our results can be found in the
repo https://github.com/facebookresearch/
dp_compression.
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Figure 2: Distributed mean estimation for scalar data with LDP ϵ = 1, 3, 5. The MVU mechanism with budget b = 1
recovers the CLDP mechanism and the two curves coincide, while with b = 3 MVU attains a low variance across all input
values compared to the baseline mechanisms. See text for details.

5.1 DISTRIBUTED MEAN ESTIMATION

In distributed mean estimation (DME), a set of n clients
each holds a private vector xi ∈ Rd, and the server would
like to privately estimate the mean x̄ = 1

n

∑n
i=1 xi.

Scalar DME. We first consider the setting of scalar data,
i.e., d = 1. For a fixed value x ∈ [−1, 1], we set xi = x for
all i = 1, . . . , n with n = 100, 000 and then privatize them
before taking average. We measure the squared difference
between the private estimate and x̄ = x, which is coinci-
dentally the variance of the mechanism at x. The baseline
mechanisms that we evaluate against are (unbiased) Bit-
wise Randomized Response (bRR), (unbiased) Generalized
Randomized Response (gRR), the communication-limited
local differentially private (CLDP) mechanism (Girgis et al.,
2021), and the Laplace mechanism without any compres-
sion. The CLDP mechanism uses a fixed communication
budget of b = 1, whereas for bRR and gRR we set b = 3,
and for MVU we set b = 1, 3.

Figure 2 shows the plot of input value x vs. variance of
the private mechanism at x. Interestingly, MVU with b =
1 recovers the CLDP mechanism for ϵ = 1, 3, 5, while
MVU with b = 3 is consistently the lowest variance private
compression mechanism. For larger ϵ, it is evident that the
variance of both gRR and MVU are comparable or even
slightly lower that of the Laplace mechanism, even when
compressing to only b = 3 bits in their output.

Vector DME. We next look at vector data with d = 128
and n = 10, 000. We draw the sensitive vectors from two
distinct distributions3: (i) Uniform at random from [0, 1]d

and then normalize to L1-norm of 1; and (ii) Uniform over
the spherical sector Sd−1∩Rd

≥0. In these settings, the vectors
xi have L1- and L2-sensitivity of 1, respectively.

For baselines, we consider the CLDP mechanism (Girgis
et al., 2021), the Skellam mechanism (Agarwal et al., 2021),

3We intentionally avoided zero-mean distributions since some
of the private mechanisms converge to the all-zero vector as ϵ → 0.

the Laplace mechanism (for setting (i) only), and the Gaus-
sian mechanism (for setting (ii) only). Both the Skellam and
the Gaussian mechanisms are (ϵ, δ)-DP for δ > 0. For a
given ϵ > 0, we set δ = 1/(n + 1) and choose the noise
parameter µ for the Skellam mechanism using the optimal
RDP conversion, and the noise parameter σ for the Gaus-
sian mechanism using the analytical conversion in Balle and
Wang (2018). For communication budget, we set b = 3 for
MVU and b = 16 for Skellam (which requires a large b in
order to prevent truncation error). The CLDP mechanism
does not allow flexible selection of communication budget,
and instead outputs a total number of log2(d) + 1 bits for
the L1-sensitivity setting, and b = log2(d) + 1 = 8 bits per
coordinate for the L2-sensitivity setting. See Appendix B
for a more detailed explanation.

Figure 3 shows the mean squared error (MSE) for privately
estimating x̄ across different values of ϵ. In the left plot
corresponding to the L1-sensitivity setting, MVU can attain
MSE close to the Laplace mechanism at a greatly reduced
b = 3 bits per coordinate. In comparison, CLDP and Skel-
lam attain MSE that is more than an order of magnitude
higher than Laplace.

The right plot corresponds to L2-sensitivity. Here, the MVU
mechanism (dark green line) is significantly less competi-
tive than the baselines. This is because the L2-metric DP
constraint for the MVU mechanism forces rows of the sam-
pling probability matrix P to be near-identical, hence is
near-singular and does not admit a well-conditioned unbi-
ased solution. To address this problem, we instead optimize
the MVU mechanism to satisfy L1-metric DP and use the
Rényi accounting in Section 4.3 to compute its RDP guaran-
tee, then apply RDP-to-DP conversion to give an (ϵ, δ)-DP
guarantee at δ = 1

n+1 . The light green line shows the perfor-
mance of the L1-metric DP mechanism, which now slightly
outperforms both CLDP and Skellam at a much lower com-
munication budget of b = 3. These results demonstrate that
the MVU mechanism attains better utility vs. compression
trade-off for vector data as well.
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Figure 3: Distributed mean estimation for n = 10, 000 data vectors with L1- (left) and L2-sensitivity (right). Error bars
represent standard deviation across 10 repeated runs with different private vectors. Methods that are (ϵ, δ)-DP use the same
value of δ = 1/(n+ 1). The MVU mechanism can attain an MSE close to that of the Laplace and Gaussian mechanisms
while compressing the output to only b = 3 bits per coordinate.

5.2 PRIVATE SGD

Federated learning (McMahan et al., 2017) often employs
DP to protect the privacy of the clients’ updates. We next
evaluate the MVU mechanism for this use case and show
that it can serve as a drop-in replacement for the Gaussian
mechanism for FL protocols, providing similar DP guaran-
tees for the client update while reducing communication.

In detail, for MNIST and CIFAR-10 (Krizhevsky et al.,
2009), we train a linear classifier on top of features extracted
by a scattering network (Oyallon and Mallat, 2015) similar
to the one used in Tramer and Boneh (2020); see Appendix
B for details. The base private learning algorithm is DP-SGD
with Gaussian gradient perturbation (Abadi et al., 2016) and
Rényi-DP accounting. The private compression baselines
are the MVU mechanism with budget b = 1 and stochastic
signSGD (Jin et al., 2020) – a specialized private gradient
compression scheme for federated SGD that applies the
Gaussian mechanism and outputs its coordinate-wise sign.
Similar to the distributed mean estimation experiment with
L2-sensitivity, we optimize the MVU mechanism to satisfy
L1-metric DP and then compute its Rényi privacy guarantee
as in Section 4.3.

Figure 4 shows the privacy-utility trade-off curves. We
sweep over a grid of hyperparameters (see Appendix B
for details) for each mechanism and plot the resulting ϵ and
test accuracy as a point in the scatter plot. The dashed line is
the Pareto frontier of optimal privacy-utility trade-off. The
result shows that MVU mechanism outperforms signSGD—
a specially-designed gradient compression mechanism for
federated learning—at nearly all privacy budgets with the
same communication cost of one bit per coordinate. We in-
clude an additional result for a small convolutional network

in Appendix B, where we observe similar findings.

6 RELATED WORK

Federated data analysis with local DP is now a standard solu-
tion for analyzing sensitive data held by many user devices.
A body of work (Erlingsson et al., 2014; Kairouz et al.,
2016; Acharya et al., 2019) provides methods for analytics
over categorical data. The main methods here are Random-
ized Response (Warner, 1965), RAPPOR (Erlingsson et al.,
2014) and the Hadamard Mechanism (Acharya et al., 2019).
Chen et al. (2020) shows that the Hadamard Mechanism
uses near-optimal communication for categorical data.

In work on federated statistics or learning for real-valued
data, Cormode and Markov (2021) provides asymptotically
consistent algorithms for transmitting scalars. They propose
to first sample one or a subset of indices of bits in the fixed-
point representation of the input, and then apply randomized
response independently to each of these bits. Girgis et al.
(2020) provides mechanisms for distributed mean estimation
from vectors inside unit Lp balls. Unlike our method, which
provides a near-optimal solution under any given commu-
nication budget, their methods use specific communication
budgets and are not readily generalizable to any budget b.
Finally, Amiri et al. (2021) propose to obtain a quantized
DP mechanism by composing subtractive dithering with the
Gaussian mechanism, and doing privacy accounting that
factors in both. In contrast, we simply use (non-subtractive)
dithering to initially obtain a fixed-point representation, and
then design a mechanism to quantize and provide DP.

A large body of work focuses on federated optimization
methods with compressed communication (Konečnỳ et al.,
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Figure 4: DP-SGD training with Gaussian mechanism, stochastic signSGD and MVU mechanism on MNIST (left) and
CIFAR-10 (right). Each point corresponds to a single hyperparameter setting, and dashed line shows Pareto frontier of
privacy-utility trade-off. MVU mechanism outperforms signSGD at the same communication budget of b = 1.

2016; Horváth et al., 2019; Das et al., 2020; Haddadpour
et al., 2021; Gorbunov et al., 2021). While most propose bi-
ased compression methods (e.g., top-k sparsification), such
approaches require the use of error feedback to avoid com-
pounding errors (Seide et al., 2014; Stich and Karimireddy,
2020). However, error feedback is inherently incompatible
with DP (Jin et al., 2020), unlike our MVU mechanism.

7 CONCLUSION AND LIMITATIONS

We introduce the MVU framework to jointly design scalar
compression and DP mechanisms, and extend it to the vector
and metric-DP settings. We show that the MVU mechanism
attains a better utility-compression trade-off for both scalar
and vector mean estimation compared to other approaches
in the literature. Our work shows that co-designing the com-
pression and privacy-preserving components can lead to
more efficient differentially private mechanisms for feder-
ated data analysis.

Limitations. Our work presents several opportunities for
further improvement. 1. For vector dithering, Appendix B
shows that the input vector’s norm can increase by a small
additive factor. Our current solution of conditional random
dithering introduces a small but non-negligible bias. Future
work on unbiased norm-preserving vector dithering may be
able to alleviate this issue. 2. Optimizing the MVU mecha-
nism for large values of the input/output bit width bin and
bout can be prohibitively expensive, even with the alternat-
ing minimization heuristic. In order to scale the solution
to higher-dimensional vectors, further effort in designing
more efficient solutions for the MVU mechanism may be
needed. 3. While our work focuses on local differential
privacy, it may be possible to combine our approach with
secure aggregation protocols to derive central differential
privacy guarantees. However, since the MVU mechanism is

not additive, further analysis is required to characterize the
distribution of the aggregate for our mechanism, which we
leave for future work.
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