Greedy Modality Selection via Approximate Submodular Maximization (Supplementary material)

 Runxiang Cheng*1
 Gargi Balasubramaniam*1
 Yifei He*1
 Yao-Hung Hubert Tsai2
 Han Zhao1

 ¹University of Illinois Urbana-Champaign, Illinois, USA
 ²Carnegie Mellon University, Pennsylvania, USA

1 PRELIMINARY FOR MISSING PROOFS

Proposition 1.1. Let $X, Y \in \{0, 1\}$ be random variables, \mathcal{H} be the class of functions of X such that $\forall h \in \mathcal{H}, h(X) \in [0, 1]$, and $\ell(\cdot, \cdot)$ be the cross-entropy loss. We have:

$$\inf_{h \in \mathcal{H}} \mathbb{E}[\ell(Y, h(X))] = H(Y \mid X) \tag{1}$$

Proof. Let x, \hat{y} be the instantiation of X, \hat{Y} respectively, where $\hat{Y} \coloneqq h(X)$. $\mathbb{1}(\cdot)$ denotes the indicator function, and $D_{\mathrm{KL}}(\cdot \parallel \cdot)$ denotes the Kullback–Leibler divergence.

$$\mathbb{E}_{\mathcal{D}}[\ell(Y, h(X))] = \mathbb{E}_{X, Y}[-\mathbb{1}(Y=1)\log\hat{Y} - \mathbb{1}(Y=0)\log(1-\hat{Y})]$$
(2)

$$= -\mathbb{E}_{X}[\mathbb{E}_{Y|x}[\mathbb{1}(Y=1)\log\hat{y} + \mathbb{1}(Y=0)\log(1-\hat{y})]]$$
(3)

$$= -\mathbb{E}_{X}[\Pr(Y=1 \mid x) \log \hat{y} + \Pr(Y=0 \mid x) \log(1-\hat{y})]$$
(4)

$$= \mathbb{E}_{X} \left[\Pr(Y = 1 \mid x) \log \frac{1}{\hat{y}} + \Pr(Y = 0 \mid x) \log \frac{1}{1 - \hat{y}} \right]$$
(5)

$$= \mathbb{E}_X[\Pr(Y=1 \mid x) \log \frac{\Pr(Y=1 \mid x)}{\hat{y}} + \Pr(Y=0 \mid x) \log \frac{\Pr(Y=0 \mid x)}{1-\hat{y}}]$$
(6)

$$+\mathbb{E}_{X}[-\Pr(Y=1 \mid x)\log\Pr(Y=1 \mid x) - \Pr(Y=0 \mid x)\log\Pr(Y=0 \mid x)]$$
(7)

$$\mathbb{E}_X[D_{\mathrm{KL}}(\Pr(Y \mid x) \parallel h(x))] + \mathbb{E}_X[H(Y \mid x)]$$
(8)

$$= D_{\mathrm{KL}}(\Pr(Y \mid X) \parallel h(X)) + H(Y \mid X)$$
(9)

Since $H(Y \mid X) \ge 0$ and is unrelated to h(X), $\mathbb{E}_{\mathcal{D}}[\ell(Y, h(X))]$ is minimum when $h(X) = \Pr(Y \mid X)$.

2 MISSING PROOFS

Proposition 2.1. Given $Y \in \{0,1\}$ and $\ell(Y,\hat{Y}) \coloneqq \mathbb{1}(Y=1)\log \hat{Y} + \mathbb{1}(Y=0)\log(1-\hat{Y}), f_u(S) = I(S;Y).$

Proof. By Definition 3.1 and Proposition 1.1, we have:

=

$$f_u(S) = \inf_{h \in \mathcal{H}} \mathbb{E}[\ell(Y, c)] - \inf_{h \in \mathcal{H}} \mathbb{E}[\ell(Y, h(S))]$$
(10)

$$=H(Y \mid c) - H(Y \mid S) \tag{11}$$

$$=H(Y) - H(Y \mid S) \tag{12}$$

$$=I(S;Y) \tag{13}$$

*Equal contribution.

Proposition 2.2. $\forall M \subseteq N \subseteq V$, $I(N;Y) - I(M;Y) = I(N \setminus M;Y \mid M) \ge 0$.

Proof. Let $N := \{X_1, ..., X_n\}, M := \{X_1, ..., X_m\}, n \ge m.$

$$I(N;Y) - I(M;Y) = \sum_{i=1}^{n} I(X_i;Y \mid X_{i-1},...,X_1) - \sum_{i=1}^{m} I(X_i;Y \mid X_{i-1},...,X_1)$$
(14)

$$= \sum_{i=m+1}^{n} I(X_i; Y \mid X_{i-1}, ..., X_1)$$
(15)

$$= I(N \setminus M; Y \mid M)$$

$$\geq 0$$
(16)
(17)

Proposition 2.3. Under Assumption 2.1, I(S;Y) is ϵ -approximately submodular, i.e., $\forall A \subseteq B \subseteq V, e \in V \setminus B$, $I(A \cup \{e\}; Y) - I(A; Y) + \epsilon \ge I(B \cup \{e\}; Y) - I(B; Y).$

Proof. For subset A, we have:

$$I(A \cup \{e\}; Y) - I(A; Y) = I(\{e\}; Y \mid A)$$
(18)

$$= I(\{e\}; Y, A) - I(\{e\}; A)$$
(19)

$$= I(\{e\}; Y) + I(\{e\}; A \mid Y) - I(\{e\}; A)$$
(20)

Similarly, $I(B \cup \{e\}; Y) - I(B; Y) = I(\{e\}; Y) + I(\{e\}; B \mid Y) - I(\{e\}; B)$. Given Assumption 2.1 holds, we denote $I(\{e\}; A \mid Y) = \epsilon_A$ and $I(\{e\}; B \mid Y) = \epsilon_B$ where $\epsilon_A, \epsilon_B \leq \epsilon$. In the worst case where $\epsilon_A = 0$, absolute submodularity is still satisfied if $\epsilon_B \leq I(\{e\}; B) - I(\{e\}; A)$, i.e.,

$$I(B \cup \{e\}; Y) - I(B; Y) = I(\{e\}; Y) + I(\{e\}; B \mid Y) - I(\{e\}; B)$$
(21)

$$= I(\{e\}; Y) - I(\{e\}; B) + \epsilon_B$$
(22)

$$\leq I(\{e\};Y) - I(\{e\};B) + I(\{e\};B) - I(\{e\};A) = I(A \cup \{e\};Y) - I(A;Y)$$
(23)

But if $\epsilon_B > I(\{e\}; B) - I(\{e\}; A)$, the submodularity above will not hold. However, because $\epsilon_B \leq \epsilon$, we can define approximate submodularity characterized by the constant $\epsilon \ge 0$. Specifically:

$$I(B \cup \{e\}; Y) - I(B; Y) = I(\{e\}; Y) + I(\{e\}; B \mid Y) - I(\{e\}; B)$$
(24)

$$= I(\{e\}; Y) - I(\{e\}; B) + \epsilon_B$$
(25)

$$\leq I(\lbrace e \rbrace; Y) - I(\lbrace e \rbrace; B) + \epsilon \tag{26}$$

$$\leq I(\{e\};Y) - I(\{e\};A) + \epsilon$$
(27)

$$\leq I(\{e\};Y) - I(\{e\};A) + \epsilon_A + \epsilon \tag{28}$$

$$\leq I(A \cup \{e\}; Y) - I(A; Y) + \epsilon \tag{29}$$

Theorem 2.1. Under Assumption 2.1, let $q \in \mathbb{Z}^+$, and S_p be the solution from Algorithm 1 at iteration p, we have:

$$I(S_p; Y) \ge (1 - e^{-\frac{p}{q}}) \max_{S:|S| \le q} I(S; Y) - q\epsilon$$
(30)

Proof. Let $S^* \coloneqq \max_{S:|S| \le q} I(S;Y)$ be the optimal subset with cardinality at most q. By Proposition 3.2, $|S^*| = q$. We order S^* as $\{X_1^*, ..., X_q^*\}$. Then for all positive integer $i \le p$,

$$I(S^*;Y) \le I(S^* \cup S_i;Y) \tag{31}$$

$$= I(S_i; Y) + \sum_{j=1}^{q} I(X_j^*; Y \mid S_i \cup \{X_{j-1}^*, ..., X_1^*\})$$
(32)

$$= I(S_i; Y) + \sum_{j=1}^{q} (I(\{X_j^*, ..., X_1^*\} \cup S_i; Y) - I(\{X_{j-1}^*, ..., X_1^*\} \cup S_i; Y))$$
(33)

$$\leq I(S_i; Y) + \sum_{j=1}^{q} (I(\{X_j^*\} \cup S_i; Y) - I(S_i; Y) + \epsilon)$$
(34)

$$\leq I(S_i; Y) + \sum_{j=1}^{q} (I(S_{i+1}; Y) - I(S_i; Y) + \epsilon)$$
(35)

$$\leq I(S_i;Y) + q(I(S_{i+1}) - I(S_i;Y) + \epsilon)$$
(36)

Eq. (31) is from Proposition 3.2, Eq. (32) and Eq. (33) are by the chain rule of mutual information, Eq. (34) is from Proposition 3.3, Eq. (35) is by the definition of Algorithm 1 that $I(S_{i+1}; Y) - I(S_i; Y)$ is maximized in each iteration *i*. Let $\delta_i := I(S^*; Y) - I(S_i; Y)$, we can rewrite Eq. (36) into $\delta_i \le q(\delta_i - \delta_{i+1} + \epsilon)$, which can be rearranged into $\delta_{i+1} \le (1 - \frac{1}{q})\delta_i + \epsilon$.

Let $\delta_0 = I(S^*; Y) - I(S_0; Y)$. Since $S_0 = \emptyset$, we have $\delta_0 = I(S^*; Y)$. By the previous results, we can upper bound the quantity $\delta_p = I(S^*; Y) - I(S_p; Y)$ as follows:

$$\delta_p \le (1 - \frac{1}{q})\delta_{p-1} + \epsilon \tag{37}$$

$$\leq (1 - \frac{1}{q})((1 - \frac{1}{q})\delta_{p-2} + \epsilon) + \epsilon$$
(38)

$$\leq (1 - \frac{1}{q})^p \delta_0 + (1 + (1 - \frac{1}{q}) + \dots + (1 - \frac{1}{q})^{p-1})\epsilon$$
(39)

$$= (1 - \frac{1}{q})^p \delta_0 + (\frac{1 - (1 - \frac{1}{q})^{p-1+1}}{1 - (1 - \frac{1}{q})})\epsilon$$
(40)

$$= (1 - \frac{1}{q})^p \delta_0 + (q - q(1 - \frac{1}{q})^p)\epsilon$$
(41)

$$\leq (1 - \frac{1}{q})^p \delta_0 + q\epsilon \tag{42}$$

$$\leq e^{-\frac{p}{q}}\delta_0 + q\epsilon \tag{43}$$

Eq. (39) to Eq. (41) is through the summation of the geometric series $1 + (1 - \frac{1}{q}) + ... + (1 - \frac{1}{q})^{p-1}$. Eq. (43) is by the inequality $1 - x \le e^{-x}$ for all $x \in \mathbb{R}$. Substitute the definitions of δ_p and δ_0 into Eq. (43) completes the proof.

Corollary 2.1. Assume conditions in Theorem 3.1 hold, there exists optimal predictor $h^*(S_p) = \Pr(Y \mid S_p)$ such that

$$\mathbb{E}[\ell_{01}(Y, h^*(S_p))] \le \mathbb{E}[\ell_{ce}(Y, h^*(S_p))] \le H(Y) - (1 - e^{-\frac{p}{q}})I(S^*; Y) + q\epsilon$$
(44)

Proof. Denote the quantity $(1 - e^{-\frac{p}{q}}) \max_{S:|S| \le q} I(S; Y) - q\epsilon$ from Theorem 3.1 as letter b. By the definition of mutual information, we have $H(Y \mid S_p) \le H(Y) - b$. Following Proposition 1.1, $\inf_{h:S_p \to [0,1]} \mathbb{E}[\ell_{ce}(Y, h(S_p))] \le H(Y) - b$. In other words, $\exists h^* = \Pr(Y \mid S_p) \ s.t. \ \mathbb{E}[\ell_{ce}(Y, h^*(S_p))] \le H(Y) - b$.

When the predictor is probabilistic (i.e., h(X) = 0 if and only if $h(X) \le 0.5$), $\ell_{01}(Y, \hat{Y}) = \mathbb{1}(Y \neq \hat{Y})$ naturally extends to $Y \mathbb{1}(\hat{Y} \le 0.5) + (1 - Y) \mathbb{1}(\hat{Y} > 0.5)$, which is upper bounded by $\ell_{ce}(Y, \hat{Y})$ for all (Y, \hat{Y}) . Therefore, for the same h^* as

above, we have:

$$\mathbb{E}[\ell_{01}(Y, h^*(S_p))] \le \mathbb{E}[\ell_{ce}(Y, h^*(S_p))] \le H(Y) - b$$
(45)

-

Corollary 2.2. Assume conditions in Theorem 3.1 hold. There exists optimal predictors $h_1^* = \Pr(Y \mid S_p)$, $h_2^* = \Pr(Y \mid S^*)$ such that

$$\mathbb{E}[\ell_{ce}(Y, h_1^*(S_p))] - \mathbb{E}[\ell_{ce}(Y, h_2^*(S^*))]$$

$$\leq e^{-\frac{p}{q}}I(S^*; Y) + q\epsilon$$
(46)

Proof. Following Theorem 3.1, and denote $\arg \max_{S:|S| \le q} I(S; Y)$ as S^* , we have:

$$I(S_p; Y) \ge (1 - e^{-\frac{p}{q}}) \max_{S:|S| \le q} I(S; Y) - q\epsilon$$
(47)

$$\implies H(Y) - H(Y \mid S_p) \ge (1 - e^{-\frac{p}{q}})(H(Y) - H(Y \mid S^*)) - q\epsilon$$

$$\tag{48}$$

$$\implies H(Y \mid S_p) - H(Y \mid S^*) \le e^{-\frac{r}{q}} (H(Y) - H(Y \mid S^*)) + q\epsilon \tag{49}$$

$$\implies H(Y \mid S_p) - H(Y \mid S^*) \le e^{-\frac{\nu}{q}} (I(S^*;Y)) + q\epsilon$$
(50)

Using Proposition 1.1 completes the proof.

Proposition 2.4. Under Assumption 2.1, I(S;Y) is ϵ -approximately sub-additive for any $S \subseteq V$, i.e., $I(S \cup S';Y) \leq I(S;Y) + I(S';Y) + \epsilon$.

Proof.

$$I(S \cup S'; Y) = I(S; Y) + I(S'; Y \mid S)$$
(51)

$$= I(S;Y) + I(S \cup Y;S') - I(S;S')$$
(52)

$$= I(S;Y) + I(S';Y) + I(S;S' \mid Y) - I(S;S')$$
(53)

$$\leq I(S;Y) + I(S';Y) + \epsilon \tag{54}$$

Eq. (53) to Eq. (54) because $I(S; S' | Y) \le \epsilon$ by Assumption 2.1, and I(S; S') is always non-negative.

Proposition 2.5. Under Assumption 3.1, I(S;Y) is ϵ -approximately super-additive for any $S \subseteq V$, i.e., $I(S \cup S';Y) \ge I(S;Y) + I(S';Y) - \epsilon$.

Proof. Similarly to the proof of Proposition 3.4, we have:

$$I(S \cup S'; Y) = I(S; Y) + I(S'; Y) + I(S; S' \mid Y) - I(S; S')$$
(55)

$$\geq I(S;Y) + I(S';Y) - \epsilon \tag{56}$$

Eq. (55) to Eq. (56) because $I(S; S') \leq \epsilon$ by Assumption 3.1, and $I(S; S' \mid Y)$ is non-negative.

Proposition 2.6. If conditions in Proposition 3.4 and Proposition 3.5 hold, we have $I(X_i; Y) - \epsilon \le \phi_{I,X_i} \le I(X_i; Y) + \epsilon$ for any $X_i \in V$.

Proof. By Proposition 3.4 and Proposition 3.5, for any $X_i \in V$ and $S \subseteq V$, we have:

$$I(X_i;Y) - \epsilon \le I(S \cup \{X_i\};Y) - I(S;Y) \le I(X_i;Y) + \epsilon$$
(57)

Let's first apply the right inequality in Eq. (57) to Definition 2.2. Because $I(X_i; Y) + \epsilon$ is independent of S, we can simplify the calculation of the upper bound of ϕ_{I,X_i} as follows.

$$\phi_{I,X_i} = \sum_{S \subseteq V \setminus \{X_i\}} \frac{|S|!(|V| - |S| - 1)!}{|V|!} (I(S \cup \{i\}; Y) - I(S; Y))$$
(58)

$$\leq \sum_{S \subseteq V \setminus \{i\}} \frac{|S|!(|V| - |S| - 1)!}{|V|!} (I(X_i; Y) + \epsilon)$$
(59)

$$=\sum_{|S|=0}^{|V|-1} {|V|-1 \choose |S|} \frac{|S|!(|V|-|S|-1)!}{|V|!} (I(X_i;Y)+\epsilon)$$
(60)

$$=\sum_{|S|=0}^{|V|-1} \frac{(|V|-1)!}{|S|(|F|-1-|S|)!} \frac{|S|!(|V|-|S|-1)!}{|V|!} (I(X_i;Y)+\epsilon)$$
(61)

$$=\sum_{|S|=0}^{|V|-1} \frac{1}{|V|} (I(X_i;Y) + \epsilon)$$
(62)

$$=I(X_i;Y) + \epsilon \tag{63}$$

Applying the same procedure to the left inequality in Eq. (57) to Definition 2.2, we have $\phi_{I,X_i} \ge I(X_i; Y) - \epsilon$. Combining both results completes the proof.

Proposition 2.7. Under Assumption 2.1, $\forall X_i \in V$, we have $I(X_i; Y) \leq \phi_{I,X_i}^{mci} \leq I(X_i; Y) + \epsilon$.

Proof. By Proposition 3.3, $I(\cdot; Y)$ would be approximately submodular under Assumption 2.1, thus:

$$I(X_i; Y) + \epsilon = I(\emptyset \cup X_i; Y) - I(\emptyset; Y) + \epsilon$$
(64)

$$\geq \max_{S \subseteq V} I(S \cup X_i; Y) - I(S; Y) = \phi_{I, X_i}^{mci}$$
(65)

On the other hand, if $\arg \max_{S \subseteq V} I(S \cup X_i; Y) - I(S; Y) = \emptyset$, we have $\phi_{I,X_i}^{mci} = I(\emptyset \cup X_i; Y) - I(\emptyset; Y) = I(X_i; Y)$. If $\arg \max_{S \subseteq V} I(S \cup X_i; Y) - I(S; Y)$ is some non-empty subset A, we have $\phi_{I,X_i}^{mci} = I(A \cup X_i; Y) - I(A; Y) \ge I(\emptyset \cup X_i; Y) - I(\emptyset; Y)$. In this case, $\phi_{I,X_i}^{mci} \ge I(X_i; Y)$. Combining both inequalities completes the proof.