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Abstract

Multimodal learning considers learning from multi-
modality data, aiming to fuse heterogeneous
sources of information. However, it is not always
feasible to leverage all available modalities due
to memory constraints. Further, training on all the
modalities may be inefficient when redundant in-
formation exists within data, such as different sub-
sets of modalities providing similar performance.
In light of these challenges, we study modality
selection, intending to efficiently select the most
informative and complementary modalities under
certain computational constraints. We formulate
a theoretical framework for optimizing modality
selection in multimodal learning and introduce a
utility measure to quantify the benefit of select-
ing a modality. For this optimization problem, we
present efficient algorithms when the utility mea-
sure exhibits monotonicity and approximate sub-
modularity. We also connect the utility measure
with existing Shapley-value-based feature impor-
tance scores. Last, we demonstrate the efficacy of
our algorithm on synthetic (Patch-MNIST) and
real-world (PEMS-SF, CMU-MOSI) datasets.

1 INTRODUCTION

Multimodal learning considers learning with data from mul-
tiple modalities (e.g., images, text, speech, etc) to improve
generalization of the learned models by using complemen-
tary information from different modalities.1 In many real-
world applications, multimodal learning has shown superior
performance [Bapna et al., 2022, Wu et al., 2021], and has
demonstrated a stronger capability over learning from a
single modality. The advantages of multimodal learning

*Equal contribution.
1We use the terms modality/view interchangably.

have also been studied from a theoretical standpoint. Prior
work showed that learning with more modalities achieves
a smaller population risk [Huang et al., 2021], or utilizing
cross-modal information can provably improve prediction in
multiview learning [Zhang et al., 2019] or semi-supervised
learning [Sun et al., 2020]. With the recent advances in
training large-scale neural network models from multiple
modalities [Devlin et al., 2018, Brown et al., 2020], one
emerging challenge lies in the modality selection problem.

From the modeling perspective, it might be tempting to use
all the modalities available. However, it is inefficient or even
infeasible to learn from all modalities as the total number of
input modalities increases. A modality often consists of high-
dimensional data. And model complexity can scale linearly
or exponentially with the number of input modalities [Zadeh
et al., 2017, Liu et al., 2018], resulting in large consumption
of computational and energy resources. The marginal benefit
from the new modalities may also decrease as more modali-
ties have been included. In some cases, learning from fewer
modalities is sufficient to achieve the desirable outcome,
due to the potential overlap in the information provided
by these modalities. Furthermore, proactively selecting the
modalities most informative towards prediction reduces the
cost of collecting the inferior ones. For example, in sensor
placement problems where each sensor can be treated as a
modality, finding the optimal subset of sensors for a learning
objective (e.g., temperature or traffic prediction) eliminates
the cost of maintaining extra sensors [Krause et al., 2011].

In light of the aforementioned challenges, in this paper, we
study the optimization problem of modality selection in mul-
timodal learning: given a set of input modalities and a fixed
budget on the number of selected modalities, how to select
a subset that optimizes prediction performance? Note that
in general this problem is of combinatorial nature, since one
may have to enumerate all the potential subsets of modal-
ities in order to find the best one. Hence, without further
assumptions on the structure of the underlying prediction
problem, it is intractable to solve this modality selection
problem exactly and efficiently.
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To approach these challenges, we propose a utility function
that conveniently quantifies the benefit of any set of modal-
ities towards prediction in most typical learning settings.
We then identify a proper assumption that is suitable for
multimodal/multiview learning, which allows us to develop
efficient approximate algorithms for modality selection. We
assume that the input modalities are approximately condi-
tionally independent given the target. Since the strength
of conditional independence is now parameterized, our re-
sults are generalizable to problems on multimodal data with
different levels of conditional independence.

We show that our definition of utility for a modality naturally
manifests as the Shannon mutual information between the
modality and the prediction target, in the setting of binary
classification with cross-entropy loss. Under approximate
conditional independence, mutual information is monotone
and approximately submodular. These properties intrinsi-
cally describe the empirical advantages of learning with
more modalities, and allow us to formulate modality selec-
tion as a submodular optimization problem. In this context,
we can have efficient selection algorithms with provable
performance guarantee on the selected subset. For example,
we show a performance guarantee of the greedy maximiza-
tion algorithm from Nemhauser et al. [1978] under approxi-
mate submodularity. Further, we connect modality selection
to marginal-contribution-based feature importance scores
in feature selection. We examine the Shapley value and
Marginal Contribution Feature Importance (MCI) [Catav
et al., 2021] for ranking modality importance. We show
that these scores, although are originally intractable, can be
solved efficiently under assumptions in the context of modal-
ity selection. Lastly, we evaluate our theoretical results on
three classification datasets. The experiment results confirm
both the utility and the diversity of the selected modalities.
To summarize, we contributes the following in this paper:

• Propose a general measure of modality utility, and iden-
tify a proper assumption that is suitable for multimodal
learning and helpful for developing efficient approxi-
mate algorithms for modality selection.

• Demonstrate algorithm with performance guarantee
on the selected modalities for prediction theoretically
and empirically in classification problems with cross-
entropy loss.

• Establish theoretical connections between modality
selection and feature importance scores, i.e., Shapley
value and Marginal Contribution Feature Importance.

2 PRELIMINARIES

In this section, we first describe our notation and problem
setup, and we then provide a brief introduction to submodu-
lar function maximization and feature importance scores.

2.1 NOTATION AND SETUP

We use X and Y to denote the random variables that take
values in input space X and output space Y , respectively.
The instantiation of X and Y is denoted by x and y. We use
H to denote the hypothesis class of predictors from input to
output space, and Ŷ to denote the predicted variable. Let X
be multimodal, i.e., X = X1× ...×Xk. Each Xi is the input
from the i-th modality. We use Xi to denote the random
variable that takes value in Xi, and V to denote the full set
of all input modalities, i.e., V = {X1, ..., Xk}. Throughout
the paper, we often use S and S′ to denote arbitrary subsets
of V . Lastly, we use I(·, ·) to mean the Shannon mutual in-
formation, H(·) for entropy, `ce(Y, Ŷ ) for the cross-entropy
loss 1(Y = 1) log Ŷ +1(Y = 0) log(1−Ŷ ), and `01(Y, Ŷ )
for zero-one loss 1(Y 6= Ŷ ).

For the simplicity of discussion, we primarily focus on the
setting of binary classification with cross-entropy loss2. In
this setting, a subset of input modalities S ⊆ V and output
Y ∈ {0, 1} are observed. The predictor aims to make pre-
diction Ŷ ∈ [0, 1] which minimizes the cross-entropy loss
between Y and Ŷ . The goal of modality selection is to select
the subset of input modalities to this loss minimization goal
under certain constraints. Our results rely on the following
assumption to hold.

Assumption 2.1 (ε-Approximate Conditional Indepen-
dence). There exists a positive constant ε ≥ 0 such that,
∀S, S′ ⊆ V, S ∩ S′ = ∅, we have I(S;S′ | Y ) ≤ ε.

Note that when ε = 0, Assumption 2.1 reduces to strict con-
ditional independence between disjoint modalities given the
target variable. In fact, this is a common assumption used
in prior work in multimodal learning [White et al., 2012,
Wu and Goodman, 2018, Sun et al., 2020]. In practice, how-
ever, strict conditional independence is often difficult to be
satisfied. Thus, we use a more general assumption above,
in which input modalities are approximately conditionally
independent. In this assumption, the strength of the condi-
tional independence relationship is controlled by a positive
constant ε, which is the upper bound of the conditional
mutual information between modalities given the target.

Connection to feature selection. It is worth mentioning
that modality selection shares a natural correspondence to
the problem of feature selection. Without loss of generality,
a modality could be considered as a group of features; the-
oretically, the group could even contain a single feature in
some settings. But a distinction between these two problems
lies in the feasibility of conditional independence. In mul-
timodal learning where input data is often heterogeneous,
the (approximate) conditional independence assumption is

2We choose binary class setting for ease of exposition, our
general proofs and results directly extend to multi-class setting.
We have only used the binary case to derive the conditional entropy
(supplementary material), and to further showcase Corollary 3.1
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more likely to hold among input modalities. Whereas in the
feature level, such an assumption is quite restrictive [Zhang
et al., 2012], as it boils down to asking the data to approxi-
mately satisfy the Naive Bayes assumption.

2.2 SUBMODULAR OPTIMIZATION

Submodularity is a property of set functions that has many
theoretical implications and applications in computer sci-
ence. A definition of submodularity is as follows, where 2V

denotes the power set of V , and the set function f assigns
each subset S ⊆ V to a value f(S) ∈ R.

Definition 2.1 (Nemhauser et al. [1978]). Given a finite
set V , a function f : 2V → R is submodular if for any
A ⊆ B ⊆ V , and e ∈ V \B, we have f(A∪{e})−f(A) ≥
f(B ∪ {e})− f(B).

In other words, adding new elements to a larger set does
not yield larger marginal benefit comparing to adding new
elements to its subset. One common type of optimization
on submodular function is submodular function maximiza-
tion with cardinality constraints. It asks to find a subset
S ⊆ V that maximizes f(S) subject to |S| ≤ q. Finding
the optimal solution to this problem is NP-hard. However,
Nemhauser et al. [1978] propose that a greedy maximization
algorithm can provide a solution with approximate guaran-
tee to the optimal solution in polynomial time. We provide
the pseudocode of this greedy algorithm below.

Algorithm 1: Greedy Maximization
Data: Full set V = {X1, ..., Xk}, constraint q ∈ Z+.
Input: f : 2V → R, and p ∈ Z+, where p ≤ q ≤ |V |
Output: Subset Sp

S0 = ∅
for i = 0, 1, ..., p− 1 do

Xi = argmaxXj∈V \Si
(f(Si ∪ {Xj})− f(Si))

Si+1 = Si ∪ {Xi}

In this algorithm, V is the full set to select elements from, f
is the submodular function to be maximized, p is the number
of iterations for the algorithm to run, and q is the cardinality
constraint. It starts with an empty set S0, and subsequently
adds to the current set Si the element Xi that maximizes
the marginal gain f(Si ∪ {Xj})− f(Si) at each iteration i.
Algorithm 1 runs in pseudo-polynomial time O(p|V |), and
has an approximation guarantee as follows.

Theorem 2.1 (Nemhauser et al. [1978]). Let q ∈ Z+, Sp

be the solution from Algorithm 1 at iteration p, and e is the
Euler’s number, we have:

f(Sp) ≥ (1− e−
p
q ) max

S:|S|≤q
f(S) (1)

maxS:|S|≤q f(S) is the optimal value from the optimal
subset whose cardinality is at most q. If f is monotone,
argmaxS:|S|≤q f(S) has cardinality exactly q. By running
Algorithm 1 for exactly q iterations, we obtain a greedily-
obtained value that is at least 1− 1

e of the optimal value.

2.3 FEATURE IMPORTANCE SCORES

The feature importance domain in machine learning studies
scoring methods that measure the contribution of individ-
ual features. A common setting of these feature importance
scoring methods is to treat each feature as a participant in
a coalitional game, in which all of them contribute to an
overall gain. Then a scoring method assigns each feature
a importance score by evaluating their individual contribu-
tions. Many notable feature importance scores are adapted
from the Shapley value, defined as follows:

Definition 2.2 (Shapley [1952]). Given a set of all players
F in a coalitional game v : 2F → R, the Shapley value of
player i defined by v is:

φv,i =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!

|F |!
(v(S ∪ {i})− v(S))

(2)

The Shapley value of a player i is the average of its marginal
contribution in game v in each possible player subsets
excluding i. The game v is a set function that computes
the gain of a set of players. Computing the exact Shapley
value of a player is ]P-hard, and its complexity is expo-
nential to the number of players in the coalitional game –
there are O(2|F |) unique subsets, and each subset S could
have a unique 4v(i|S) value [Roth, 1988, Winter, 2002].
Nonetheless, in certain game settings, there are approxi-
mation methods to Shapley value, such as Monte Carlo
simulation [Faigle and Kern, 1992]. When Shapley value is
adapted to the feature importance domain, each input fea-
ture is a player, and v is also called the evaluation function.
But v is not unique – it can be a prediction model or utility
measure; different v may induce different properties to the
Shapley value.

We also examine another feature importance score from
Catav et al. [2021], known as the Marginal Contribution
Feature Importance (MCI). Kumar et al. [2020] has shown
that Shapley-value-based feature importance scores [Shap-
ley, 1952, Lundberg and Lee, 2017, Covert et al., 2020]
could underestimate the importance of correlated features
by assigning them lower scores if these features present
together in the full set. In light of this, MCI is proposed to
overcome this issue. In Definition 2.3, MCI of a feature i is
the maximum marginal contribution in v over all possible
feature subsets. The complexity of computing the exact MCI
of a feature is also exponential to the number of features.
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Definition 2.3 (Catav et al. [2021]). Given a set of all fea-
tures F , and a non-decreasing set function v : 2F → R, the
MCI of feature i evaluated on v is:

φmci
v,i = max

S⊆F
(v(S ∪ {i})− v(S)) (3)

3 MODALITY SELECTION

This section presents our theoretical results. In Section 3.1,
we introduce the utility function to measure the prediction
benefit of modalities, and present its subsequent properties.
In Section 3.2, we present theoretical guarantees of greedy
modality selection via maximizing an approximately sub-
modular function. In Section 3.3, we show computational
advantages of feature importance scores (i.e., Shapley value
and MCI) in the context of modality selection. Due to space
limit, proofs are deferred to supplementary materials.

3.1 UTILITY FUNCTION

In order to compare the benefit of different sets of input
modalities in multimodal learning, we motivate a general
definition of utility function that can quantify the impact of
a set of input modalities towards prediction.

Definition 3.1. Let c be some constant in the output space,
and `(·, ·) be a loss function. For a set of input modalities
S ⊆ V , the utility of S given by the utility function fu :
2V → R is defined to be:

fu(S) := inf
c∈Y

E[`(Y, c)]− inf
h∈H

E[`(Y, h(S))] (4)

In other words, the utility of a set of modalities fu(S) is the
reduction of the minimum expected loss in predicting Y by
observing S comparing to observing some constant value c.
The intuition is based on the phenomena that multimodal in-
put tends to reduce prediction loss in practice. Definition 3.1
can be easily interpretable in different loss functions and
learning settings. Note that it is also used in feature selec-
tion to measure the unversial predictive power of a given
feature [Covert et al., 2020]. Under the binary classification
setting with cross-entropy loss, fu is the Shannon mutual
information between the output and multimodal input.

Proposition 3.1. Given Y ∈ {0, 1} and `(Y, Ŷ ) := 1(Y =
1) log Ŷ + 1(Y = 0) log(1− Ŷ ), fu(S) = I(S;Y ).

The result above is well-known, and has also been proven
in [Grünwald and Dawid, 2004, Farnia and Tse, 2016].
We further can show that I(S;Y ) is monotonically non-
decreasing on the set of input modalities S.

Proposition 3.2. ∀M ⊆ N ⊆ V , I(N ;Y ) − I(M ;Y ) =
I(N \M ;Y | M) ≥ 0.

A combination of Proposition 3.1 and Proposition 3.2 im-
plies that using more modalities as input leads to equivalent
or better prediction. It also shows that Definition 3.1 can
quantitatively capture the extra prediction benefit from the
additional modalities in closed-form (e.g., I(N \ M ;Y |
M)). And this extra benefit is the most apparent when test
loss reaches convergence (e.g., inf). This monotonicity prop-
erty is also a key indication that Definition 3.1 can intrin-
sically characterize the advantage of multimodal learning
over unimodal learning.

Comparison to previous results. Previous work [Amini
et al., 2009, Huang et al., 2021] have discovered similar con-
clusions that more views/modalities will not lead to worse
optimal population error in the context of multiview and
multimodal learning, respectively. They obtained this ob-
servation through analysis to the excess risks of learning
from multiple and single modalities, and show that the ex-
cess risk of learning from multiple modalities cannot be
larger than that of single modality. Instead, our work adopts
an information-theoretic characterization, which leads to
an easy-to-interpret measure on the benefits of additional
modalities. Furthermore, using well-developed entropy es-
timators, it is relatively straightforward to estimate these
measures in practice. As a comparison, excess risks are
hard to estimate in practice, since they depend on the Bayes
optimal errors, which limits their uses in many applications.

Next, we show that fu(S) = I(S;Y ) is approximately
submodular under Assumption 2.1. Previously, Krause and
Guestrin [2012] has shown mutual information to be sub-
modular under strict conditional independence. Here we
provide a more flexible notion of submodularity for mutual
information. There are also other generalizations of submod-
ularity such as weak submodularity [Khanna et al., 2017]
or adaptive submodularity [Golovin and Krause, 2011]. Our
definition of approximate submodularity is more specific to
the case of mutual information and Assumption 2.1.

Proposition 3.3. Under Assumption 2.1, I(S;Y ) is ε-
approximately submodular, i.e., ∀A ⊆ B ⊆ V , e ∈ V \B,
I(A∪ {e};Y )− I(A;Y ) + ε ≥ I(B ∪ {e};Y )− I(B;Y ).

The above proposition states that if conditional mutual infor-
mation between input modalities given output is below a cer-
tain threshold ε > 0, then the utilty function fu(·) = I(·;Y )
admits a diminishing gain pattern controlled by ε. This di-
minishing gain pattern is the definition of submodularity
(Definition 2.1). When conditional mutual information is
zero, input modalities are strictly conditional independent,
and I(·;Y ) is strictly submodular.

3.2 MODALITY SELECTION VIA
APPROXIMATE SUBMODULARITY

With Proposition 3.3, we can formulate the problem of
modality selection as a submodular function maximization
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problem with cardinality constraint, i.e., maxS⊆V I(S;Y )
subject to |S| ≤ q. Usually, q is considerably smaller than
|V |. However, Theorem 2.1 from Nemhauser et al. [1978] is
applicable to I(·;Y ) only if it is strictly submodular. There
the approximation guarantee differs in our case because
the strength of submodularity of I(·;Y ) is controlled by
the upper bound of conditional mutual information under
Assumption 2.1. Under the approximate conditional inde-
pendence assumption, we show the following result.

Theorem 3.1. Under Assumption 2.1, let q ∈ Z+, and Sp

be the solution from Algorithm 1 at iteration p, we have:

I(Sp;Y ) ≥ (1− e−
p
q ) max

S:|S|≤q
I(S;Y )− qε (5)

To summarize, Theorem 3.1 states that any subset of selected
modalities produced by Algorithm 1 has an approximation
guarantee, in the setting of classification with cross-entropy
loss. Since I(·;Y ) is monotonically non-decreasing, we can
run Algorithm 1 for p = q iterations to get the best possible
greedily-obtained value that is at least 1− 1

e of the optimal
value minus qε. The qε term characterizes the fact that,
if the to-be-optimized function is not always submodular,
the upper bound of conditional mutual information ε could
cause a larger approximation error as the algorithm runs
longer. Nonetheless, when ε = 0, our result in Theorem 3.1
reduces to Theorem 2.1.

Using Theorem 3.1, we can further obtain a bound on the
minimum of expected cross-entropy loss and expected zero-
one loss achieved by the greedily-obtained set. Let us first
denote optimal set argmaxS:|S|≤q I(S;Y ) as S∗, then:

Corollary 3.1. Assume conditions in Theorem 3.1 hold,
there exists optimal predictor h∗(Sp) = Pr(Y | Sp) such
that

E[`01(Y, h∗(Sp))] ≤ E[`ce(Y, h∗(Sp))]

≤ H(Y )− (1− e−
p
q )I(S∗;Y ) + qε

(6)

Corollary 3.1 shows that the minimum of both losses
achieved by Pr(Y | Sp) are no more than the uncertainty
of the target output minus the lower bound of our greedily-
obtained value from Theorem 3.1. We can also upper bound
the difference in minimum cross-entropy losses achieved by
the greedily-obtained set and the optimal set.

Corollary 3.2. Assume conditions in Theorem 3.1 hold.
There exists optimal predictors h∗

1 = Pr(Y | Sp), h∗
2 =

Pr(Y | S∗) such that

E[`ce(Y, h∗
1(Sp))]− E[`ce(Y, h∗

2(S
∗))]

≤ e−
p
q I(S∗;Y ) + qε (7)

This result expresses a guarantee on the maximum loss dif-
ference from the greedily-obtained set versus the optimal set

using optimal predictors. Both bounds from Corollary 3.1
and Corollary 3.2 are paramterized by the duration and con-
straint (p, q) of Algorithm 1, as well as the approximation
error induced by ε. As the algorithm attempts to select a
larger set of modalities, both bounds become looser.

Overall, under the setting described in Section 2, the (ap-
proximate) submodularity of the utility function allows us
to have a solution in polynomial time with approximation
guarantee for modality selection under cardinality constraint.
Under this theoretical formulation, we can directly extend
results of other submodular optimization problems to solve
modality selection problems with different constraints and
objectives [Wolsey, 1982, Krause and Golovin, 2014].

3.3 MODALITY IMPORTANCE

We also examine the possibility of adapting feature impor-
tance scores to the context of modality selection, by using
them to rank individual modalities. Specifically, we consider
Shapley value and MCI. We will show that both the compu-
tations of the exact Shapley value and MCI of a modality set
is efficient, if our utility function is used as the underlying
evaluation function. As previously shown, the utility of a
modality fu({Xi}) = I(Xi;Y ) in the classification with
cross-entropy loss setting. To proceed, we first show the
following propositions for I(Xi;Y ).

Proposition 3.4. Under Assumption 2.1, I(S;Y ) is ε-
approximately sub-additive for any S ⊆ V , i.e., I(S ∪
S′;Y ) ≤ I(S;Y ) + I(S′;Y ) + ε.

Shapley value. In the classic definition (Definition 2.2), the
complexity of computing the exact Shapley value of a player
is exponential. However, because Definition 2.2 involves a
summation of the marginal contribution I(S ∪ {Xi};Y )−
I(S;Y ), we can leverage the sub-additivity to provide an
upper bound of the Shapley value φI,Xi

via a summation
of I(Xi;Y )s for all possible subsets. Analogously, the
super-additivity should provide a lower bound of φI,Xi

again expressed by I(Xi;Y ). Putting two bounds together
gives us an efficient approximation of φI,Xi

. Nonetheless,
for I(S;Y ) to be super-additive, variables in S must be
marginally independent. Thus, we further introduced As-
sumption 3.1 for this setting. Although Assumption 3.1 is
seemingly stronger than Assumption 2.1, it will provide
great convenience in approximating the Shapley value of a
modality efficiently with a better guarantee parameterized
by ε, as the following shows.

Assumption 3.1 (ε-Approximate Marginal Independence).
There exists a positive constant ε > 0 such that, ∀S, S′ ⊆
V, S ∩ S′ = ∅, we have I(S;S′) ≤ ε.

Proposition 3.5. Under Assumption 3.1, I(S;Y ) is ε-
approximately super-additive for any S ⊆ V , i.e., I(S ∪
S′;Y ) ≥ I(S;Y ) + I(S′;Y )− ε.
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Proposition 3.6. If conditions in Proposition 3.4 and Propo-
sition 3.5 hold, we have I(Xi;Y )−ε ≤ φI,Xi ≤ I(Xi;Y )+
ε for any Xi ∈ V .

If Proposition 3.4 holds, the Shapley value of any modality
Xi ∈ V will be upper bounded by its own prediction util-
ity plus ε, i.e., φI,Xi

≤ I(Xi;Y ) + ε. On the other hand,
we can further lower bound the Shapley value if Proposi-
tion 3.5 also holds, I(Xi;Y ) + ε ≤ φI,Xi . In both bounds,
I(S∪{Xi};Y )− I(S;Y ) becomes I(Xi;Y ), and the sum-
mation of all fraction factors in fact equals to 1. If both
Proposition 3.4 and Proposition 3.5 hold with ε = 0, I(·;Y )
is additive, in which case, the Shapley value of a modality
is exactly its prediction utility, i.e., φI,Xi = I(Xi;Y ). Fur-
thermore, by the efficiency property of the Shapley value,
we must have I(V ;Y ) =

∑
Xi∈V φI,Xi

.

MCI. As claimed by Catav et al. [2021], MCI has an extra
benefit over Shapley value (Section 2.3). By its definition,
solving MCI of a feature requires O(2|F |), where |F | is the
total number of features. But if the evaluation function of
MCI is submodular, we can efficiently compute the exact
MCI. Using Proposition 3.3, we have the following result.

Proposition 3.7. Under Assumption 2.1, ∀Xi ∈ V , we have
I(Xi;Y ) ≤ φmci

I,Xi
≤ I(Xi;Y ) + ε.

If ε = 0, I(S;Y ) will be strictly submodular for any
S ⊆ V , and the MCI of a modality is exactly its pre-
diction utility, i.e., φmci

I,Xi
= I(Xi;Y ). If Proposition 3.4

holds with ε = 0, I(·;Y ) is sub-additive, then I(V ;Y ) ≤∑
Xi∈V I(Xi;Y ) =

∑
Xi∈V φmci

I,Xi
. If Proposition 3.5 fur-

ther holds with ε = 0, then I(·;Y ) is additive, we can obtain
an efficiency property of the MCI in this problem setting,
i.e., I(V ;Y ) =

∑
Xi∈V φmci

I,Xi
.

Modality selection via MCI ranking. In light of these
properties, we can consider ranking individual modalities
by Shapley value or MCI as an alternative for modality se-
lection besides greedy maximization. The ranking algorithm
computes the Shapley value or MCI for all modalities, and
returns the top-q modalities with maximum scores w.r.t. a
subset size limit q. One advantage of this approach is its
complexity of O(|V |), while greedy maximization requires
O(q|V |). As shown above, solving Shapley value efficiently
requires additional assumptions to hold (Assumption 3.1),
thus MCI ranking would be more preferable.

4 EXPERIMENTS

We present empirical evaluation of greedy maximization (Al-
gorithm 1) and MCI ranking on three classification datasets.

Patch-MNIST. Patch-MNIST is a semi-synthetic static
dataset built upon MNIST [LeCun and Cortes, 1998]. Specif-
ically, we divide each image in the original MNIST into

non-overlapping square patches. Each patch location repre-
sents a single modality. We construct and experiment on two
Patch-MNIST variants, where one variant has 49 patches
and each patch is of size 4 × 4 square pixel, and another
has 9 patches and each patch has the side length of 9 or 10
pixels. Patch-MNIST has ten output classes, 50,000 training
images, and 10,000 testing images.

PEMS-SF. PEMS-SF is a real-world time-series dataset
from UCI ( Dua and Graff [2017]). This dataset represents
the traffic occupancy rate of different freeways of the San
Francisco bay area. The classification task is to predict the
day of the week. Data is obtained from 963 sensors placed
across the bay area, where each sensor represents a single
modality. Each sensor has a time series with 144 time steps,
which we down-sample to 36 via taking the regional means
of size-4 windows. Running Algorithm 1 requires O(q|V |)
with |V | = 963, and each step requires training a new
model. To mitigate extensive run-time, we experiment on 45
out of 963 sensors by filtering sensors in line for the same
freeway. There are a total of 440 instances (days), with the
train-val-test split being 200, 67, 173 samples.

CMU-MOSI. CMU-MOSI is a popular real-world bench-
mark dataset in affective computing and multimodal learn-
ing [Zadeh et al., 2016]. The task is 3-classes sentiment
classification (positive, neutral, negative) from 20 visual
and 5 acoustic modalities with temporal features. Specifi-
cally, CMU-MOSI collects time-series facial action units
and phonetic units from short video clips (10-seconds clip
sampled at 5Hz rate). Each unit is a modality, and consists
of a 50-dimensional feature vector. Training and testing
sample size are 1284 and 686 respectively.

Independence Assumption Validation We validate the in-
dependence conditions (e.g., Assumption 2.1) on all datasets
by comparing the mean conditional Mutual Information
(MI) and the mean marginal MI of disjoint modalities [Gao
et al., 2017]. As shown in Table 1, the conditional MI is
smaller than the marginal MI for MNIST and PEMS-SF.
Both conditional and marginal MI are small for CMU-MOSI.
This implies that modalities should be approximately condi-
tionally independent in these datasets.

Table 1: Mean Marginal/Conditional Mutual Information

Dataset Mean Marg. MI Mean Cond. MI

Patch-MNIST 2.187 0.078
PEMS-SF 0.626 0.223

CMU-MOSI 0.064 0.069

4.1 IMPLEMENTATION

We implement greedy maximization based on the pseudo-
code in Algorithm 1. We implement MCI ranking by com-
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Figure 1: Experiment results for Patch-MNIST with 49 modalities (first row) and with 9 modalities (second row).

puting the MCI for each modality in the full set, and then
select the top-ranked modalities with the largest MCIs.

Utility estimation. From Proposition 3.1, utility fu(S)
equals I(S;Y ), and I(S;Y ) = H(Y ) − H(Y | S).
Based on the variational formulation of the conditional
entropy as the minimum cross-entropy, we approximate
H(Y | S) by using the converged training loss on S to
predict Y [Farnia and Tse, 2016]. Accordingly, to esti-
mate the marginal gain I(Xj ;Y | Si) from Algorithm 1
over high dimensional data, we compute the difference
H(Y | S) − H(Y | S ∪ {Xj}) [McAllester and Stratos,
2020]. To compute MCI of each modality Xj , we just need
to compute I(Xj ;Y ), according to Proposition 3.7.

Modeling. We now describe models for prediction and util-
ity estimation. For Patch-MNIST, we use a convolutional
neural network with one convolutional layer, one max pool-
ing layer and two fully-connected layers with ReLU for
both estimation and prediction. The network is trained with
Adam optimizer on a learning rate of 1e − 3. For PEMS-
SF, we use a 3-layer neural network with ReLU activation
and batch normalization for estimation. This is trained with
Adam optimizer on a learning rate of 5e− 4. For prediction,
we use a recent a time-series classification pipeline [Demp-
ster et al., 2020] for time-series data processing, followed
by a linear Ridge Classifier [Löning et al., 2019]. For CMU-
MOSI, we experiment with two prediction model types: a
linear classifier with Rocket Transformation for time-series
(same as the one for PEMS-SF); and a plain 3-layer fully-
connected neural network with ReLU activation. On each
dataset, the number of training epochs are the same for all
evaluated approaches across different modality subset sizes.

4.2 EXPERIMENTAL PROCEDURES

In each iteration i of the Algorithm 1 we execute the fol-
lowing: (1) for each candidate modality Xj : (a) train two

models on S and S ∪{Xj} respectively until training losses
converge, (b) take the loss difference to be I(Xj ;Y | Si);
(2) record test loss and accuracy from the model trained
on Si ∪ {Xi} before the model over-fits; (3) add selected
modality Xi to Si and go to next iteration. We use model
parameters before over-fitting for prediction, and parameters
after over-fitting for utility estimation.

Step (2) for PEMS-SF and CMU-MOSI are slightly differ-
ent, in which we record and show the training loss before
over-fitting instead of the test loss. This is because PEMS-
SF and CMU-MOSI have a much smaller sample size than
Patch-MNIST with potentially noisier features, the model
likely will not generalize stably. Thus we first examine The-
orem 3.1 and MCI ranking on a larger sample set which
better represents population and not influenced by the gen-
eralization gap. Then we analyze with the test accuracy to
accounting the generalization.

For Patch-MNIST with 49 modalities, PEMS-SF and CMU-
MOSI, we evaluate Algorithm 1 and MCI ranking against
a randomized baseline at each set size. The randomized
baseline randomly selects a modality iteratively. For Patch-
MNIST with 9 modalities, we further include optimal and
average baselines. At each set size q, the optimal baseline
is the optimal value from all possible subsets of size q, and
the average baseline is the average. We only implement the
optimal baseline for the 9 modalities case because evaluating
on all possible subsets for a larger set is expensive.

Training cost. At each iteration of Algorithm 1, the
marginal utility gain for each candidate modality is evalu-
ated. Since we estimate the conditional mutual information
by training a neural network, and we need to evaluate each
modality subset at different set sizes, each iteration involves
model training. These experiments can be costly for large
datasets and models. The training cost at each iteration of
Algorithm 1 depends on different utility variants, or mutual
information estimation methods in this setting.
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Figure 2: Modality selection paths of Algorithm 1 (first row)
and ranking via MCI (second row) in Patch-MNIST.

4.3 RESULTS AND EMPIRICAL ANALYSIS

4.3.1 Patch-MNIST

Fig. 1 shows the Patch-MNIST experiment results. In this
figure, “Modality subset size” refers to the size of the se-
lected modality set. “Utility” refers to the utility of the
selected set. The “Test CE Loss” and “Test Accuracy” refers
to the cross-entropy loss and prediction accuracy on test
data from the model that is trained on the selected set.

Utility. An immediate observation is the high correlation
among the utility, test cross-entropy loss and accuracy in
both rows. The trend of test accuracy seems identical to the
utility, although they mildly differ when the set size exceeds
30. In addition, the utility and test loss is negatively corre-
lated, matching to Definition 3.1. Utility has a larger upper
bound than test loss, potentially because the utility is esti-
mated by converging training loss, which is often reduced
in greater magnitude than test loss. The utility has a trend
of non-decreasing and diminishing gain, which matches
the monotonicity and (approximate) submodularity shown
in this setting. Adding more modalities is unnecessary if
the subset is already large: in the 49-modalities case, ac-
curacy barely improves after 20 modalities selected; but in
9-modalities case, this pattern is less obvious.

Greedy maximization. Algorithm 1 beats random selec-
tion in both cases. In Fig. 1 (second row), it beats the average
by selecting the modality with maximum utility from the
start, and overlaps its trajectory with the optimal. In Fig. 1
(first row), Algorithm 1 achieves near-maximum utility with
only 7 modalities. These results validate the approximate
guarantee from Theorem 3.1. In fact, the guarantee on utility
is empirically much better than theoretically proven.

MCI ranking. In the 9-modalities case, MCI ranking is as
good as greedy maximization and the optimal baseline when
the full set has fewer modalities. When more modalities are
available for selection (e.g., 49 modalities), Algorithm 1
select a subset that minimizes the loss slightly further than
the highest ranked modalities when set size below 15.

Modality selection path. We plot the modality selection
paths from Algorithm 1 and MCI ranking in Fig. 2. We can

see that MCI selects the modalities that each contain the
most information to output – the center regions. Whereas the
modalities selected by Algorithm 1 are more diverse, cover-
ing different spatial locations of the original image, leading
to an advantage in gaining more information collectively.

4.3.2 PEMS-SF

Fig. 3 shows our experiment results on PEMS-SF. In Fig. 3,
the two leftmost plots show the utility and cross-entropy
loss on the training data. The rightmost plot of Fig. 3 shows
the moving average of test accuracy instead, because model
was not generalized stably under small sample size.

Utility. The difference in utility and loss among Algo-
rithm 1, MCI ranking and random baseline are small, and
all of them quickly converge to the minimum possible value
after selecting only a few modalities. This is potentially
because almost each of the modality is sufficient to make
training loss small. However greedily selected subsets still
has slightly more utility than subsets from MCI ranking and
random baseline at every set size. Overall, we still observe
the utility is monotone and (approximate) submodular; and
Algorithm 1’s achieved utility matches Theorem 3.1.

Generalization. From the test accuracy plot, we can see a
clear advantage from the greedily-obtained set over others
when the subset size is small. Meanwhile, MCI ranking is
worse than random baseline, which could imply that MCI
ranking does not have a robust performance guarantee as Al-
gorithm 1. Other than that, the test accuracy of Algorithm 1
gradually decreases as more modalities are added. This is
inline with the over-fitting artifact of greedy feature selec-
tion from Blanchet et al. [2008]. However, in the regime of
good generalization, greedy maximization should preserve
the performance guarantee during testing.

4.3.3 CMU-MOSI

The results are alike for both prediction model types men-
tioned in Section 4.1 for CMU-MOSI. Thus we only use
Fig. 4 to show the CMU-MOSI evaluation results from the
3-layer fully-connected neural network. In Fig. 4, the two
leftmost plots show the utility and cross-entropy loss on the
training data. The rightmost plot of Fig. 4 shows the moving
average of test accuracy since the model lacks the capacity
to generalize well for this dataset under small sample size.

Overall, many previous observations from other datasets
still hold for CMU-MOSI. For example, the utility curve
is approximately submodular and monotone as number of
selected modalities increases. Modalities selected by Al-
gorithm 1 and MCI ranking outperform randomly selected
modalities by having more utility, lower training loss, higher
testing accuracy, especially when the number of modalities
is still small. On the other hand, potentially due to the sim-
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Figure 3: Experiment results for PEMS-SF.
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Figure 4: Experiment results for CMU-MOSI.

plicity of the model and noisy features, we are unable to
observe an increase of testing accuracy as more modalities
are included in Algorithm 1 and MCI ranking.

5 RELATED WORK

Multimodal Learning Multimodal learning is a vital re-
search area with many applications [Liu et al., 2017, Pit-
termann et al., 2010, Frantzidis et al., 2010]. Theoretically,
Huang et al. [2021] showed that learning with more modal-
ities achieves a smaller population risk, and this marginal
benefit towards prediction could be upper bounded. How-
ever, the existing measure of marginal benefit [Huang et al.,
2021] is hard to understand and cannot be easily estimated,
and it does not provide further insight on the emerging
modality selection problem.

Submodular Optimization Thanks to the benign property
of submodularity, many subset selection problems, which
are otherwise intractable, now admit efficient approximate
solutions [Fujishige, 2005, Iwata, 2008, Krause and Golovin,
2014]. The first study of greedy algorithm over submodular
set function dates back to Nemhauser et al. [1978]. Since
then, submodular optimization has been widely applied to
diverse domains such as machine learning [Wei et al., 2015] ,
distributed computing, and social network analysis [Zhuang
et al., 2013]. A typical type of problem is submodular max-
imization, which can be subject to a variety of constraints
such as cardinality, matroid, or knapsack constraints (Lee
et al. [2010], Iyer and Bilmes [2013]). In our case, we ex-
tended results from Nemhauser et al. [1978] to the case
of approximate submodularity of mutual information in a
multimodal learning setting.

Feature Selection Feature selection asks to find a feature
subset that can speed up learning, improve prediction and
provide better interpretability to the data/model [Li et al.,
2017, Chandrashekar and Sahin, 2014]. Here we briefly
touch related work on feature selection more relevant to our
context. Information-theoretic measures such as mutual in-
formation have been as a metric for feature selection [Brown
et al., 2012, Fleuret, 2004, Chen et al., 2018]. For example,
Brown et al. [2012] presents a unified information-theoretic
feature selection framework via conditional likelihood max-
imisation. There are also work on feature selection in re-
gression problems through submodular optimization [Das
and Kempe, 2011]. In our context, a distinction between the
problems of modality selection and feature selection are the
assumptions of the underlying data (Section 2).

6 CONCLUSION

In this paper, we formulate a theoretical framework for
optimizing modality selection in multimodal learning. In
this framework, we propose a general utility function that
quantify the impact of a modality towards prediction, and
identify proper assumption(s) suitable for multimodal learn-
ing. In the case of binary classification under cross-entropy
loss, we show the utility function conveniently manifests
as Shannon mutual information, and preserves approximate
submodularity that allows simple yet efficient modality se-
lection algorithms with approximation guarantee. We also
connects modality selection to feature importance scores by
showing the computation advantages of using Shaply value
and MCI to rank modality importance. Lastly, we evaluated
our results on a semi-synthetic dataset Patch-MNIST, and
two real-world datasets PEMS-SF and CMU-MOSI.
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