In this supplementary material, we give first a technical result in Section 1. Then, Section 2 proposes the proofs of main results.

For the sake of simplicity we denote T for T_T. We use in the sequel the notation C which represents a positive constant that does not depend on n. Each time C is written in some equation, one should understand that there exists a positive constant such that the equation holds. Therefore, the values of C may change from line to line and even change in the same equation. When an index K appears, C_K represents a constant depending on K (and not on n).

1 A TECHNICAL RESULT

Let us remind the reader that $\mathcal{E}(g) = \mathcal{R}(g) - \mathcal{R}(g^*)$ for any classifier $g \in \mathcal{G}$.

Proposition 1.1. For any classifier $g \in \mathcal{G}$, we have

$$\mathcal{E}(g) = \mathbb{E}\left[\sum_{i,k \neq i, k} \left|\pi_i^*(T) - \pi_k^*(T)\right| \mathbb{I}_{\{T \neq Y \}} \mathbb{I}_{\{g(T) \neq i \}} \mathbb{I}_{\{g^*(T) = i \}} \mathbb{I}_{\{g(T) = k \}} \mathbb{I}_{\{g^*(T) = k \}}\right].$$

We deduce the result of Proposition 1.1 from the following observation on the event $\{g^*(T) = i\}$

$$\pi_i^*(T) - \pi_k^*(T) = |\pi_i^*(T) - \pi_k^*(T)|.$$

2 PROOFS OF MAIN RESULTS

Proof of Proposition 2.1. We first denote for all $k \in \mathcal{Y}$

$$\Phi_k^i := \frac{d\mathbb{P}_k|_{\mathcal{F}_T}}{d\mathbb{P}_i|_{\mathcal{F}_T}},$$

with $\mathcal{F}_T := \sigma (T_T) = \sigma (N_t, 0 \leq t \leq T)$. We classically obtain:

$$\log(\Phi_k^i) = - \int_0^t (\lambda_k^*(s) - 1) \, ds + \int_0^t \log(\lambda_k^*(s)) \, dN_s,$$

by writing w.r.t. a Poisson process measure of intensity 1 (see Chapter 13 of [Daley and Vere-Jones 2003]). Thus,
for \(t \geq 0 \), we have the following equation for the mixture measure
\[
dP |_{\mathcal{F}_t^N} = \sum_{k=1}^K p_k dP_k |_{\mathcal{F}_t^N} = \sum_{k=1}^K p_k \Phi_k^t dP_0 |_{\mathcal{F}_t^N}
\]
and then
\[
dP_k |_{\mathcal{F}_t^N} = \frac{p_k \Phi_k^t dP_0 |_{\mathcal{F}_t^N}}{\sum_{j=1}^K p_j \Phi_j^t dP_0 |_{\mathcal{F}_t^N}} = \frac{\Phi_k^t}{\sum_{j=1}^K p_j \Phi_j^t}.
\]
Finally, by using the definition of \(F_k^* \), it comes
\[
\pi_k^* (T_T) = \frac{p_k^* e^{F_k^*}}{\sum_{j=1}^K p_j^* e^{F_j^*}},
\]
that concludes the proof. □

Proof of Proposition 3.2. Let \((p, \mu, h)\) and \((p', \mu', h')\) two tuples. We denote \(\pi \) and \(\pi' \) the associated elements in \(\Pi \) (see Equation \(3 \)). We have that
\[
\left\| \pi(T) - \pi'(T) \right\|_1 \leq \left\| \pi(T) - \pi_{p, \mu', h'}(T) \right\|_1 + \left\| \pi_{p, \mu', h'}(T) - \pi'(T) \right\|_1
\]
(1)
Since for any \(k, j \) and \((x_1, \ldots, x_K)\),
\[
\left| \frac{\partial \Phi_k^t(x_1, \ldots, x_K)}{\partial p_j} \right| \leq \frac{1}{p_0},
\]
we deduce by mean value inequality
\[
\left\| \pi_{p, \mu', h'}(T) - \pi'(T) \right\|_1 \leq \frac{K}{p_0} \left\| p - p' \right\|_1.
\]
Besides for any \(k, j \) and \(p \),
\[
\left| \frac{\partial \Phi_k^t(x_1, \ldots, x_K)}{\partial x_j} \right| \leq 1,
\]
we also deduce
\[
\left\| \pi(T) - \pi_{p, \mu', h'}(T) \right\|_1 \leq K \sum_{k=1}^K \left| F_{p, (\mu, h)}(T) - F_{p, (\mu', h')}(T) \right|.
\]
Therefore, from Equation \(3 \), we obtain
\[
\mathbb{E} \left[\left\| \pi(T) - \pi'(T) \right\|_1 \right] \leq \frac{K}{p_0} \left\| p - p' \right\|_1
\]
\[
+ K \sum_{k=1}^K \mathbb{E} \left[\left\| F_{p, (\mu, h)}(T) - F_{p, (\mu', h')}(T) \right\|_1 \right].
\]
Hence, it remains to bound the second term in the r.h.s. of the above inequality. Using Cauchy-Schwarz inequality, for each \(k \), we have that
\[
\mathbb{E} \left[\left\| F_{p, (\mu, h)}(T) - F_{p, (\mu', h')}(T) \right\|_1 \right]
\]
\[
= \mathbb{E} \left[\left\| \int_0^T \log \left(\frac{\lambda_{p, (\mu, h)}(t)}{\lambda_{p, (\mu', h')}(t)} \right) dN_t \right\|_1 \right]
\]
\[
- \int_0^T \left(\lambda_{p, (\mu, h)}(t) - \lambda_{p, (\mu', h')}(t) \right) dt
\]
\[
\leq \mathbb{E} \left[\left(\int_0^T \left| \frac{\lambda_{p, (\mu, h)}(t)}{\lambda_{p, (\mu', h')}(t)} \right| dN_t \right)^{1/2} \right] + \mathbb{E} \left[\int_0^T \left| \lambda_{p, (\mu, h)}(t) - \lambda_{p, (\mu', h')}(t) \right| dt \right].
\]
(2)
Now, we observe that
\[
\left| \lambda_{p, (\mu, h)}(t) - \lambda_{p, (\mu', h')}(t) \right| \leq |\mu' - \mu| + \|h - h'\|_\infty, T N_T,
\]
where \(N_T = N_{[0, T]} \) denotes the number of jump times of the observed process lying on \([0, T]\). Therefore we deduce
\[
\mathbb{E} \left[\int_0^T \left| \lambda_{p, (\mu, h)}(t) - \lambda_{p, (\mu', h')}(t) \right| dt \right]
\]
\[
\leq T \left(|\mu' - \mu| + \|h - h'\|_\infty, T \mathbb{E} [N_T] \right).
\]
(3)
Now, we bound the first term in the r.h.s. of Equation \(2 \). Using that \(x \mapsto \log(1 + x) \) is Lipschitz we obtain:
\[
\log \left(\frac{\lambda_{p, (\mu, h)}(t)}{\lambda_{p, (\mu', h')}(t)} \right) \leq \log \left(\frac{\mu'}{\mu} \right)
\]
\[
+ \left| \frac{\lambda_{p, (\mu, h)}(t)}{\mu'} - \frac{\lambda_{p, (\mu', h')}(t)}{\mu} \right|
\]
\[
\leq \frac{1}{\mu_0} |\mu' - \mu| + \frac{1}{\mu_0^2} \left| \mu \lambda_{p, (\mu, h)}(t) - \mu' \lambda_{p, (\mu', h')}(t) \right|
\]
\[
\leq \frac{1}{\mu_0} |\mu' - \mu| + \frac{1}{\mu_0^3} \left| \mu' \lambda_{p, (\mu, h)}(t) - \mu \lambda_{p, (\mu', h')}(t) \right|
\]
\[
+ \frac{\mu_3}{\mu_0^2} \left| \lambda_{p, (\mu, h)}(t) - \lambda_{p, (\mu', h')}(t) \right|
\]
\[
\leq \frac{1}{\mu_0} |\mu' - \mu| + \frac{1}{\mu_0^3} \left| \mu - \mu' \lambda_{p, (\mu', h')}(t) \right|
\]
\[
+ \mu_1 \left| \mu' - \mu \right| + \|h - h'\|_\infty, T N_T \right).
\]
(4)
Using Doob’s decomposition, we get
\[
\mathbb{E} \left[\left(\int_0^T \left(\frac{\lambda(\mu, h_k(t))}{\lambda(\mu', h_k(t))} \right) \mathcal{L}_Y(t) \, dt \right)^2 \right] =
\mathbb{E} \left[\int_0^T \log \left(\frac{\lambda(\mu, h_k(t))}{\lambda(\mu', h_k(t))} \right) \lambda_Y(t) \, dt \right]
+ \mathbb{E} \left[\left(\int_0^T \left(\frac{\lambda(\mu, h_k(t))}{\lambda(\mu', h_k(t))} \right) \lambda_Y(t) \, dt \right)^2 \right].
\] (5)

Using that \(\mathbb{E} \left[(\lambda_Y(t))^2 \right] < \infty \), the first term in the r.h.s. in Equation (5) can be bounded as follows
\[
\mathbb{E} \left[\int_0^T \log \left(\frac{\lambda(\mu, h_k(t))}{\lambda(\mu', h_k(t))} \right) \lambda_Y(t) \, dt \right] \leq C T \sup_{t \in [0,T]} \mathbb{E} \left[\log^4 \left(\frac{\lambda(\mu, h_k(t))}{\lambda(\mu', h_k(t))} \right) \right]^{1/2} \mathbb{E} \left[(\lambda_Y(t))^2 \right]^{1/2} dt
\leq C T \sup_{t \in [0,T]} \mathbb{E} \left[\log^4 \left(\frac{\lambda(\mu, h_k(t))}{\lambda(\mu', h_k(t))} \right) \right]^{1/2}.\]

Similarly, we obtain:
\[
\mathbb{E} \left[\left(\int_0^T \left(\frac{\lambda(\mu, h_k(t))}{\lambda(\mu', h_k(t))} \right) \mathcal{L}_Y(t) \, dt \right)^2 \right] \leq CZ^2 \sup_{t \in [0,T]} \mathbb{E} \left[\log^4 \left(\frac{\lambda(\mu, h_k(t))}{\lambda(\mu', h_k(t))} \right) \right]^{1/2}.
\]

Then, by Assumption 3.1, we get
\[
\mathbb{E} \left[\left(\int_0^T \left(\frac{\lambda(\mu, h_k(t))}{\lambda(\mu', h_k(t))} \right) \, dN_t \right)^2 \right] \leq C \left(|\mu - \mu'|^2 + \|h - h\|_{\infty,T}^2 \right)
\leq C \left(2\mu_1 |\mu - \mu'| + \|h - h\|_{\infty,T}^2 \right),
\]
where \(C \) is constant which depends on \(\mu_0, \mu_1, h^*, A_1 \), and \(T \). Finally, combining the above equation, Equations (3) and (2) yields the desired result.

\[\text{Proof of Corollary 3.5}\] Let \(\pi \in \Pi \). We recall that
\[g(\pi^k) = \arg \max_{k \in \mathcal{Y}} \pi^k(T)\]
for \(h \in \mathcal{H} \). By Proposition 1.1 we then get
\[
0 \leq \mathcal{E}(g_{\pi})
= \mathbb{E} \left[\sum_{i, k \neq i} |\pi_i^k(T) - \pi_{\hat{k}}^*(T)| \mathbb{I}_{\{g_{\pi}(T) = k\}} \mathbb{I}_{\{g_{\hat{k}}^*(T) = i\}} \right]
\leq 2 \mathbb{E} \left[\max_{k \in \mathcal{Y}} |\pi^k(T) - \pi_{\hat{k}}^*(T)| \mathbb{I}_{\{g_{\pi}(T) \neq g_{\hat{k}}^*(T)\}} \right]
\leq 2 \sum_{k = 1}^K \mathbb{E} \left[|\pi^k(T) - \pi_{\hat{k}}^*(T)| \right].
\]

Finally, applying Proposition 3.4, we obtain the desired result.

\[\text{Proof of Theorem 2.2}\] Let us remind the reader that \(\hat{\mathbf{p}} = (\hat{p}_k)_{k=1}^\infty \) with \(\hat{p}_k = \frac{1}{T} \sum_{t=1}^n \mathbb{I}_{Y_t = k} \). We consider the following set \(\mathcal{A} = \{ \hat{\mathbf{p}} : \min(\hat{\mathbf{p}}) \geq \frac{p_0}{2} \} \), where \(p_0 \) is defined in Assumption 3.3.
On the one hand, note that on \(\mathcal{A}^c \) we have
\[
|\min(\mathbf{p}^*) - \min(\hat{\mathbf{p}})| \geq \frac{p_0}{2},
\]
which implies that there exists \(k \in \mathcal{Y} \) s.t. \(|p_k^* - \hat{p}_k| \geq \frac{p_0}{2} \).
Thus, by using Hoeffding’s inequality we get
\[
\mathbb{P}(\mathcal{A}^c) \leq \sum_{k=1}^K \mathbb{P} \left(|p_k^* - \hat{p}_k| \geq \frac{p_0}{2} \right)
\leq 2K e^{-np_0^2/2}.
\] (6)

On the other hand, we focus on what happens on the event \(\mathcal{A} \). First, we define
\[
\hat{f} = f_{(\hat{\mathbf{p}}, \hat{\mathbf{h}}, \hat{\mathbf{h}})} = \arg \min_{f \in \mathcal{F}} \mathcal{R}(f),
\] (7)
and then consider the following decomposition
\[
\mathcal{R}(\hat{f}) - \mathcal{R}(f^*) = (\mathcal{R}(\hat{f}) - \mathcal{R}(\hat{f})) + (\mathcal{R}(\hat{f}) - \mathcal{R}(f^*)) =: T_1 + T_2.
\]
By Equation (7), we have that
\[
T_2 = \mathcal{R}(\hat{f}) - \mathcal{R}(f^*)
= \mathcal{R}(f_{(\hat{\mathbf{p}}, \hat{\mathbf{h}}, \hat{\mathbf{h}})}) - \mathcal{R}(f_{(\hat{\mathbf{p}}, \mu, h^*)})
+ \mathcal{R}(f_{(\hat{\mathbf{p}}, \mu, h^*)}) - \mathcal{R}(f_{(\mathbf{p}^*, \mu, h^*)})
\leq \mathcal{R}(f_{(\hat{\mathbf{p}}, \mu, h^*)}) - \mathcal{R}(f_{(\mathbf{p}^*, \mu, h^*)}).
\]
Therefore, on \(\mathcal{A} \), we deduce from the mean value inequality that
\[
T_2 \leq C_{\mathcal{H}} \sum_{k=1}^K |\hat{p}_k - p_k^*|^2,
\] (8)
where C_K is a constant depending on K. For establishing an upper bound for T_1, we first recall the definition of the empirical risk minimizer over $\hat{\mathcal{F}}$:

$$\hat{f} \in \text{argmin}_{f \in \hat{\mathcal{F}}} \mathcal{R}(f),$$

with

$$\mathcal{R}(f) = \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K} (Z_k - f^k(T_i))^2.$$

Besides, let us introduce the set of parameters

$$\mathcal{S} = \{(p, \mu, h) : p \in \mathcal{P}_{p_0/2}, \mu \in [\mu_0, \mu_1], h \in \mathcal{H}_A^{K}\}.$$

Then, on A, we have by definition of \hat{f},

$$T_1 = \mathcal{R}(\hat{f}) - \mathcal{R}(f^\ast)$$

$$= \mathcal{R}(\hat{f}) - \mathcal{R}(\hat{f}) + \hat{\mathcal{R}}(\hat{f}) - \mathcal{R}(\hat{f})$$

$$\leq \mathcal{R}(\hat{f}) - \mathcal{R}(\hat{f}) + \hat{\mathcal{R}}(\hat{f}) - \mathcal{R}(\hat{f})$$

$$\leq 2 \sup_{(p, \mu, h) \in \mathcal{S}} \left| \mathcal{R}(f_{(p, \mu, h)}) - \hat{\mathcal{R}}(f_{(p, \mu, h)}) \right|. \quad (9)$$

By combining (8) and (9), we obtain

$$\mathbb{E}[\mathcal{R}(\hat{f}) - \mathcal{R}(f^\ast)]$$

$$\leq 2 \mathbb{E} \left[\sup_{(p, \mu, h) \in \mathcal{S}} \left| \mathcal{R}(f_{(p, \mu, h)}) - \hat{\mathcal{R}}(f_{(p, \mu, h)}) \right| \right]$$

$$\leq C_K \sum_{k=1}^{K} \left| \hat{p}_k - p_k^\ast \right|^2 \mathbb{I}_{A_4} + \mathbb{E} \left[\left(\mathcal{R}(\hat{f}) - \mathcal{R}(f^\ast) \right) \mathbb{I}_{A_4} \right].$$

Since for $k,j \in \mathcal{J}$, $\mathbb{E}[|\hat{p}_k - p_k^\ast|^2] \leq C/n$ with C an absolute constant and \hat{f} and f^\ast are bounded, by using Equation (6), we obtain:

$$\mathbb{E}[\mathcal{R}(\hat{f}) - \mathcal{R}(f^\ast)]$$

$$\leq 2 \mathbb{E} \left[\sup_{(p, \mu, h) \in \mathcal{S}} \left| \mathcal{R}(f_{(p, \mu, h)}) - \hat{\mathcal{R}}(f_{(p, \mu, h)}) \right| \right]$$

$$\leq C_K \left(\frac{1}{n} + \exp \left(- \frac{n\beta_0^2}{2} \right) \right). \quad (10)$$

It remains to control the first term in the right hand side of the above inequality. By Assumption 4.1 with $\varepsilon = 1/n$ and since $p \in \mathcal{P}_{p_0/2}$, and $\mu \in [\mu_0, \mu_1]$, there exists a finite set $\mathcal{S}_n \subset \mathcal{S}$ such that for each $(p, \mu, h) \in \mathcal{S}$, there exists $(p_n, \mu_n, h_n) \in \mathcal{S}_n$ satisfying

$$\|p_n - p\|_1 \leq \frac{C_K}{n}, \quad |\mu_n - \mu| \leq \frac{1}{n}, \quad \|h_n - h\|_{\infty, T} \leq \frac{1}{n}.$$

Moreover, we have $\log(\text{card}(\mathcal{S}_n)) \leq C_K \log(n^d)$. For $(p, \mu, h) \in \mathcal{S}$, let us denote $f = f_{(p, \mu, h)}$ and $f_n = f_{(p_n, \mu_n, h_n)}$ the corresponding element of \mathcal{S}_n. Then, we have

$$\mathbb{E}[\mathcal{R}(f) - \hat{\mathcal{R}}(f)] \leq \mathbb{E}[\mathcal{R}(f) - \mathcal{R}(f_n)]$$

$$\leq |\mathcal{R}(f) - \hat{\mathcal{R}}(f)| + |\mathcal{R}(f_n) - \hat{\mathcal{R}}(f_n)| + |\hat{\mathcal{R}}(f_n) - \hat{\mathcal{R}}(f)|.$$

Moreover, since f and f_n are bounded, we deduce that by denoting $\pi_n := \pi_{n, p_n, \mu_n, h_n}$,

$$\mathbb{E}[|\mathcal{R}(f) - \mathcal{R}(f_n)|] \leq \mathbb{E}[\|\pi(T) - \pi_n(T)\|_1] \leq \frac{C}{n},$$

where the last inequality is obtained with the same arguments as in the proof of Proposition 3.4. In the same way, we also get

$$\mathbb{E}[|\hat{\mathcal{R}}(f) - \hat{\mathcal{R}}(f_n)|] \leq \frac{C}{n}.$$

Finally, from the above inequalities, we obtain that

$$\mathbb{E} \left[\sup_{\mathcal{S}_n} \left| \mathcal{R}(f) - \hat{\mathcal{R}}(f) \right| \right]$$

$$\leq \frac{2C}{n} + \mathbb{E} \left[\max_{\mathcal{S}_n} \left| \mathcal{R}(f) - \hat{\mathcal{R}}(f) \right| \right].$$

Moreover, by Hoeffding’s inequality, it comes for $t \geq 0$,

$$\mathbb{P} \left(\max_{\mathcal{S}_n} \left| \mathcal{R}(f) - \hat{\mathcal{R}}(f) \right| \geq t \right)$$

$$\leq \min(1, 2 \text{card}(\mathcal{S}_n) \exp(-2nt^2)).$$

Integrating the previous equation leads to

$$\mathbb{E} \left[\max_{\mathcal{S}_n} \left| \mathcal{R}(f) - \hat{\mathcal{R}}(f) \right| \right]$$

$$\leq \int_0^{\infty} \min(1, \exp(-2 \text{card}(\mathcal{S}_n) - 2nt^2)) \, dt$$

$$\leq \int_0^{\infty} \exp \left(-(2nt^2 - \log(2 \text{card}(\mathcal{S}_n))) \right) \, dt$$

$$\leq \sqrt{\frac{\log(2 \text{card}(\mathcal{S}_n))}{2n}} + \frac{\sqrt{n}}{2 \sqrt{2n}}.$$

Finally, since there are at least two elements in \mathcal{S}_n, combining the above inequality and Equation (10) yields

$$\mathbb{E}[\mathcal{R}(\hat{f}) - \mathcal{R}(f^\ast)] \leq \sqrt{\frac{\log(2 \text{card}(\mathcal{S}_n))}{2n}} + \frac{C}{n},$$

which concludes the proof.

\textbf{Proof of Theorem 4.3} Let us denote

$$\Delta_n := \sum_{k=1}^{K} (\hat{p}_k - p_k^\ast)^2,$$
where based on $D_{n_1} := D_1$, $\hat{p}_k = \frac{1}{n_1} \sum_{i=1}^{n_1} I_{Y_i = k}$. Note that Δ_n is independent from $D_{n_2} := D_2^2$. Recall that n is assumed to be even and $n_1 = n_2 = n/2$.

Let us work again on the set $\mathcal{A} = \{\hat{p} : \min(\hat{p}) \geq \frac{p_0}{2}\}$. As in proof of Theorem 4.2 and using same arguments as in where based on D, we can write

$$\mathcal{R}(\hat{f}) - \mathcal{R}(f^*) \leq \mathcal{R}(\hat{f}) - \mathcal{R}(\hat{f}) + \mathcal{R}(\hat{f}) - \mathcal{R}(f^*),$$

and from Equation (3), the second term in the right hand side of the above inequality is bounded by $C_K \Delta_n$.

Let us denote

$$D_f := \mathcal{R}(f) - \mathcal{R}(\hat{f})$$

and

$$\hat{D}_f := \hat{\mathcal{R}}(f) - \mathcal{R}(\hat{f}).$$

Furthermore, let us introduce

$$\tilde{\mathcal{S}} = \{(\mu, h) : \mu \in [\mu_0, \mu_1], h \in \mathcal{H}_A^K\}.$$

By Assumption 4.4, there exists a subset $\tilde{\mathcal{S}}_n \subset \tilde{\mathcal{S}}$ with $\log(\text{card}(\tilde{\mathcal{S}}_n)) \leq C \log(n^d)$, such that for each $(\mu, h) \in \tilde{\mathcal{S}}_n$, there exists $(\mu_n, h_n) \in \mathcal{S}_n$ satisfying

$$|\mu_n - \mu| \leq \frac{1}{n} \text{ and } \|h_n - h\|_{\infty, T} \leq \frac{1}{n}.$$

For $(\mu, h) \in \tilde{\mathcal{S}}$, let us denote $f = f_{(\hat{\mu}, \mu, h)}$ and $f_n = f_{(\hat{\mu}, \mu_n, h_n)}$ the associated element of $\tilde{\mathcal{S}}_n$, then, the following decomposition holds

$$D_{\tilde{f}} \leq D_{\tilde{f}} - 2\hat{D}_{\tilde{f}}$$

$$= (D_{\tilde{f}} - D_{\tilde{f}}) + (2\hat{D}_{\tilde{f}} - 2\hat{D}_{\tilde{f}})$$

$$= (D_{\tilde{f}} - D_{\tilde{f}})$$

$$=: T_1 + T_2 + T_3.$$

As in proof of Theorem 4.2 and using same arguments as in proof of Proposition 3.4, we have

$$\mathbb{E}[T_i] \leq \frac{C}{n}, \text{ for } i = 1, 2.$$

Besides,

$$T_3 \leq \max_{S_n}(D_{\tilde{f}} - 2\hat{D}_{\tilde{f}}).$$

Therefore, gathering the previous inequalities, we deduce that

$$\mathbb{E}[\mathcal{R}(\tilde{f}) - \mathcal{R}(f^*)]$$

$$\leq \mathbb{E}[\max_{S_n}(D_{\tilde{f}} - 2\hat{D}_{\tilde{f}})1_{\mathcal{A}}] + C_K \left(\frac{1}{n} + \exp\left(-\frac{n p_0^2}{4}\right)\right).$$

Therefore to finish the proof it remains to control the first term in the right hand side of Inequality (11). For $u \geq 0$, on \mathcal{A} and conditionally on D_{n_1}, it holds that,

$$\mathbb{E}\left[\max_{\mathcal{S}_n}(D_{\tilde{f}} - 2\hat{D}_{\tilde{f}})\right]$$

$$\leq u + \int_{u}^{\infty} \mathbb{P}\left(\max_{\mathcal{S}_n}(D_{\tilde{f}} - 2\hat{D}_{\tilde{f}}) \geq t\right) \, dt. \quad (12)$$

Let us introduce the least squares function

$$l_f(Z, T) := \sum_{k=1}^{K} (Z_k - f^k(T))^2.$$

Since for each $(\mu, h) \in \tilde{\mathcal{S}}, f_{(\mu, h)}$ are uniformly bounded by 1, we get from Bernstein’s inequality, conditionally on D_{n_1}, for $t \geq 0$

$$\mathbb{P}\left(D_f - 2\hat{D}_f \geq t\right) \leq \mathbb{P}\left(2(D_f - 2\hat{D}_f) \geq t + D_f\right)$$

$$\leq \exp\left(-\frac{n(t + D_f)^2}{8B_f + (t + D_f)AK/3}\right), \quad (13)$$

with

$$B_f := \mathbb{E}\left[(l_f(Z, T) - l_{f^*}(Z, T))^2\right].$$

Besides, conditionally on D_{n_1}, we have

$$l_{f^*}(Z, T) - l_{f^*}(Z, T) \leq C \sum_{k=1}^{K} (f^k(T) - f^{*k}(T)).$$

Therefore, conditionally on D_{n_1}, we deduce from Cauchy-Schwarz Inequality

$$\mathbb{E}\left[(l_f(Z, T) - l_{f^*}(Z, T))^2\right]$$

$$\leq C_K \sum_{k=1}^{K} \mathbb{E}\left[(f^k(T) - f^{*k}(T))^2\right]$$

$$= C_K (\mathcal{R}(f) - \mathcal{R}(f^*)).$$

Thus, writing

$$B_f \leq 2\mathbb{E}\left[(l_f(Z, T) - l_{f^*}(Z, T))^2\right]$$

$$+ 2\mathbb{E}\left[(l_{f^*}(Z, T) - l_{f^*}(Z, T))^2\right],$$

we deduce

$$B_f \leq C_K \left(\mathcal{R}(f) - \mathcal{R}(f^*) + \mathcal{R}(\tilde{f}) - \mathcal{R}(f^*)\right).$$

Then, as $\mathcal{R}(f) - \mathcal{R}(f^*) = \mathcal{R}(f) - \mathcal{R}(\tilde{f}) + \mathcal{R}(\tilde{f}) - \mathcal{R}(f^*)$, conditionally on D_{n_1} and on the event \mathcal{A}, we deduce from the above inequality and Equation (8) that

$$B_f \leq C_K (D_f + \Delta_n).$$
Hence, from Inequality (13), we get for \(t \geq \Delta_n \),
\[
\mathbb{P}\left(D_f - 2 \hat{D}_f \geq t \right) \leq \exp\left(-C_K nt \right),
\]
which leads to
\[
\mathbb{P}\left(\max_{\mathcal{S}_n}(D_f - 2 \hat{D}_f) \geq t \right) \leq \text{card}(\mathcal{S}_n) \exp\left(-C_K nt \right).
\]
In view of Equation (12), we then obtain that, conditionally on \(D_n \),
\[
\mathbb{E}\left[\max_{\mathcal{S}_n}(D_f - 2 \hat{D}_f) \mathbb{I}_A \right] \leq \max\left(\Delta_n, \frac{C_K \log(\mathcal{S}_n)}{n} \right)
\]
\[
+ \int_{C_K \log(\mathcal{S}_n)/n}^{+\infty} \exp(-C_K nt) dt.
\]
Finally, integrating the above inequality, w.r.t. \(D_n \), yields
\[
\mathbb{E}\left[\max_{\mathcal{S}_n}(D_f - 2 \hat{D}_f) \mathbb{I}_A \right] \leq \frac{C_K \log(\mathcal{S}_n)}{n}.
\]
Hence, this inequality combined with Equation (11) give the desired result.

References