Mitigating Statistical Bias within Differentially Private Synthetic Data (Supplementary Material)

Sahra Ghalebikesabi
Harrison Wilde
Jack Jewson
Arnaud Doucet
Sebastian Vollmer
Chris Holmes

1 University of Oxford
2 University of Warwick
3 Universitat Pompeu Fabra
5 University of Kaiserslautern, German Research Centre for Artificial Intelligence (DFKI)

A ADDITIONAL MATERIAL

A.1 UNBIASED IMPORTANCE WEIGHTING BY OUTPUT PERTURBATION

A simple approach to ensure DP of an algorithm is to add noise \cite{Dwork2006} to its output, that is the estimated importance weights of the synthetic data. We establish general results under which such a noise perturbation of an unbiased non-private weights algorithm \(\hat{w}(x) \) preserves the unbiasedness of IS estimation.

Theorem 1. Let \(\sigma^2(h)/N \) denote the variance of the IS estimate \(I_N(h|w) \) defined in Equation (2). Then the IS estimator \(I_N(h|w^*) \) using noise perturbed importance weights \(w^*(x_i) = \hat{w}(x_i) + \zeta_i \), where \(\zeta_i \) are i.i.d. and \(E[\exp(\zeta_i)] = 1 \), is unbiased and has variance \(\sigma_{*}^2(h)/N \) where

\[
\sigma_{*}^2(h) = \sigma^2(h) + \text{Var}[\exp(\zeta)] E_p\left[(\hat{w}(x)h(x))^2 \right].
\] (1)

We refer the reader to Supplement B.3 for the proof. In the following we will analyse how the noise \(\zeta \) has to be chosen to ensure DP.

Corollary 1. The IS estimator with importance weights defined by

\[
\log w^*(x_i) = \beta^T x_i + \zeta_i
\] (2)

for \(\zeta_i \sim \text{Laplace}(\log(1 - \rho^2), \rho) \) and \(\rho = \frac{2\sqrt{d}}{N_D \lambda} < 1 \)

is \((N_S \epsilon, 0)\)-differentially private. It is further unbiased and for \(\rho < \frac{1}{2} \) has variance as defined in equation (1).

\[
\text{Var}[\exp(\zeta)] = \exp(2\log(1 - \rho^2)) \left(\frac{1}{1 - 4\lambda^2} - \frac{1}{(1 - \lambda^2)^2} \right).
\]

Note that privacy budget is additive. If we want to release \(N_S \) DP weights, we thus have to scale the noise proportional to \(N_S \). Although this approach increases the variance of the estimator, it remains unbiased.

A limitation of this approach is that \(\rho < \frac{1}{2} \). Alternatively, \cite{Blum2005} show that adding Gaussian noise \(\zeta' \sim N(0, \frac{2}{\pi} S(f)^2 \log \frac{2}{\delta}) \) to an algorithm \(f \) ensures \((\epsilon, \delta)\)-DP for \(\delta > 0 \). From our analysis it follows that we could adjust Corollary 1 as follows.

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).
Corollary 2. The IS estimator with importance weights defined by

$$\log w^*(x_i) = \beta^T x_i + \zeta_i'$$

for $\zeta_i' \sim N(-\frac{\gamma^2}{2}, \gamma^2)$ and $\gamma = \sqrt{\frac{8d}{(ND\lambda_0)^2} \log \frac{2}{\delta}}$

is $(NS\epsilon, \delta)$-differentially private with $\delta > 0$ and $\epsilon < 1$. It is further unbiased and has variance as defined in equation (7) with $\text{Var}[\exp(\zeta')] = \gamma^2$.

This result trivially extends to the case of $\epsilon \geq 1$ with accordingly adjusted noise scales following results from Balle and Wang (2018).

Sources of Bias and Variance. This analysis gives us insights on two sources of bias and variance. The first one is the bias and/or variance introduced by privatising the weights. The estimator of Ji and Elkan (2013) is biased but as a result adds noise with a smaller variance, whereas to be unbiased by noising the weights we have to pay a price of increasing the variance, e.g., by adding more noise or by releasing fewer samples. The second source is the bias and variance introduced by estimating the weights through the classifier. The importance weighting procedure is only unbiased when we know exactly how to estimate the true weights. Using a logistic regression to estimate these cannot reasonably be considered as unbiased for any complicated data. However, using an arbitrarily complex classifier such as a classification neural network could arguably be considered as less biased at estimating the density ratio if it converges, but possibly increases the variance of the estimators due to the increased number of parameters to learn.

A.2 POST-PROCESSING OF LIKELIHOOD RATIOS

The performance of importance weighting can suffer from a heavy right tailed distribution of the likelihood ratio estimates which increases the variance of downstream estimators. A simple remedy is tempering: for a $\tau \in [0, 1]$ the weights $\{\tilde{w}(x_i)^\tau\}_{i=1,...,N_G}$ are less extreme.

Alternatively, Vehtari et al. (2015) propose Pareto smoothed IS (PSIS). This procedure requires to fit a generalised Pareto distribution to the upper tail of the distribution of the simulated importance ratios. Their algorithm does not only post-hoc stabilise IS, but also reports a warning when the estimated shape parameter of the Pareto distribution exceeds a certain threshold. Similarly, Koopman et al. (2009) propose a test to detect whether importance weights have finite variance. In both warnings, there are certain characteristics of the DGP which are not captured by the SDGP and the resulting IS estimates are likely to be unstable. This warning can thus be understood as a general indicator for unsuitable proposal distributions. For large shape parameters the data owner should not release the SDGP. It is also computationally more efficient than comparable distribution divergences such as maximum mean discrepancy or Wasserstein distance. We must also consider that unlike traditional IS where the importance weights are known (at least up to normalisation), here they are being estimated from data, providing further motivation for regularisation.

Aside from unstable likelihood ratios, the computed importance weights can suffer from the inability of the classification method to correctly capture the density ratios. To mitigate this problematic, Turner et al. (2019) propose post-calibration of the likelihood ratios in a non-private setting. If we can assume that the data analyst has access to a small dataset of the DGP, as e.g. in Wilde et al. (2020), we can make use of post-calibration methods, such as beta calibration (Kull et al., 2017).

B PROOFS

B.1 PROPOSITION BIAS AND VARIANCE OF ALGORITHM 1 OF JI & ELKAN (2013)

Consider Ji and Elkan (2013) Algorithm 1, where under the assumption that $\frac{p(y=1)}{p(y=0)} \approx \frac{N_G}{N_S} = 1$, the unprivatised importance weights are estimated using logistic regression

$$\tilde{w}(x_i) = \frac{p^*(y=1|x_i)}{p^*(y=0|x_i)} = \exp \left(\beta^T x_i \right),$$
and then the privacy preserving process adds noise to the $\hat{\beta}$ coefficients of this logistic regression $\beta^* = \hat{\beta} + \zeta$ with $\zeta \sim \text{Laplace}(2\sqrt{d}/(N_D\lambda\epsilon))$, a vector of length d, to generate privatised estimates of the importance weights

$$w(x_i) = \exp \left(\beta^T x_i \right) = \exp \left(\beta^T x_i \right) \cdot \exp \left(\zeta(x_i) \right). \quad (3)$$

The following proposition proves that $w(x_i)$ is a biased estimate of $\hat{w}(x_i)$, the consequences being that if the ‘true’ importance weight really is given by a logistic regression then the procedure of Ji and Elkan (2013) will be biased.

Proposition Let \bar{w} denote the importance weights computed by noise perturbing the regression coefficients as in Equation (3) (Ji and Elkan, 2013 Algorithm 1). The importance sampling estimator $I_N(h|\bar{w})$ is biased.

Proof. Firstly, we show that $\bar{w}(x_i)$ is not an unbiased estimate of $\hat{w}(x_i)$

$$E_{\zeta} [\bar{w}(x_i)] = E_{\zeta} \left[\exp \left(\tilde{\beta}^T x_i \right) \cdot \exp (\zeta(x_i)) \right]$$

$$= E_{\zeta} [\hat{w}(x_i) \cdot \exp (\zeta(x_i))]$$

$$\neq \hat{w}(x_i).$$

As a consequence, we show that even if the true density ratio can be captured by a logistic regression, i.e. there exists β_0 such that $\frac{p(y|x)}{p_G(y|x)} = \exp \left(\beta_0^T x \right)$, then the importance sampling estimator

$$I_N(h|\bar{w}) = \frac{1}{N} \sum_{i=1}^N \bar{w}(x_i) h(x_i), \quad x_i \sim p_G(\cdot),$$

with $\bar{w}(\cdot)$ calculated using ‘privatised’ $\beta^* = \beta_0 + \zeta$, ζ distributed as above, is a biased estimate of $E_{p_D} [h(x)]$. Indeed, we have

$$E_{x_1, N \sim p_G} \left[\frac{1}{N} \sum_{i=1}^N \bar{w}(x_i) h(x_i) \right] = E_{x_1, N \sim p_G} \left[\frac{1}{N} \sum_{i=1}^N \exp \left(\beta_0^T x_i \right) \cdot \exp (\zeta(x_i)) h(x_i) \right]$$

$$= \frac{1}{N} \sum_{i=1}^N E_{x_i \sim p_G} [w(x_i) \cdot \exp (\zeta(x_i)) h(x_i)]$$

$$= \frac{1}{N} \sum_{i=1}^N E_{x_i \sim p_D} [\exp (\zeta(x_i)) h(x_i)]$$

$$\neq E_{x_i \sim p_D} [h(x_i)].$$

The proof of Proposition provides several insights on what is required for an unbiased estimator. The fact that the bias depends explicitly on the observation suggests either 1) asking the data curator to debias the noise given the synthetic data they are about to release or 2) adding noise to the weights themselves rather than to the process of how they are calculated.

Ji and Elkan (2013) compute the variance of the estimator $\beta^* = \hat{\beta} + \zeta$ where $\zeta \sim \text{Laplace}(\frac{4(d+1)d}{N_D\lambda\epsilon^2})$ as

$$\text{Var}(\beta^*) = \text{Var}(\hat{\beta}) + \text{Var}(\zeta) = \text{Var}(\hat{\beta}) + \frac{4(d+1)d}{N_D\lambda\epsilon^2}.$$

They show that the asymptotic variance of importance sampling with the unperturbed weights obtained from the logistic regression w_{\logreg} can be upper bounded by

$$\text{Var}(I_N(h, w_{\logreg})) = \alpha^T \text{Var}(\hat{\beta}) \alpha = \alpha^T \frac{dI_d}{N_D\lambda^2} \alpha$$

with

$$\alpha = \sum_{x_i, x_j \in D} e^{\beta_0^T (x_i + x_j)} (h(x_i) - h(x_j))(x_i - x_j)$$

$$\sum_{x_i, x_j \in E} e^{\beta_0^T (x_i + x_j)}$$

where β_0 optimises the loss function of a logistic regression on fixed G and the true distribution of D. The asymptotic variance of the importance sampling estimator with the weights w_{\logreg} from the logistic regression with parameter β^* is then

$$\text{Var}(I_N(h, w^*_{\logreg})) = \alpha^T \text{Var}(\beta^*) \alpha = \alpha^T \left(\frac{dI_d}{N_D\lambda^2} + \frac{4(d+1)d}{(N_D\lambda\epsilon^2)} \right) \alpha.$$
B.2 PROPOSITION 2: DEBIASING OF JI & ELKAN (2013)

As prescribed by Ji and Elkan [2013] Algorithm 1, consider importance weights
\[\tilde{w}(x_i) = \exp \left(\beta^T x_i \right) = \exp \left(\tilde{\beta}^T x_i \right) \cdot \exp \left(\zeta^T x_i \right). \]
(4)

for privacy preserved \(\hat{\beta} \) coefficients of this logistic regression \(\beta^* = \beta + \zeta \) with \(\zeta \sim \text{Laplace}(2\sqrt{d}/(N_D\lambda\epsilon)) \), a vector of length \(d \). Proposition 1 proved that using \(\tilde{w}(\cdot) \) resulted in biased expectation estimation. However, Proposition 2 demonstrates that we can debias this in closed form.

Proposition 2 Let \(\tilde{w} \) denote the importance weights computed by noise perturbing the regression coefficients as in Equation (4) (Ji and Elkan, 2013 Algorithm 1) with \(\zeta \sim p_\zeta \). Define
\[b(x_i) := 1 / \mathbb{E}_{\zeta \sim p_\zeta} \left[\exp \left(\zeta^T x_i \right) \right], \]
and adjusted importance weight
\[\tilde{w}^*(x_i) = \tilde{w}(x_i) \cdot b(x_i) = \tilde{w}(x_i) \cdot \exp \left(\zeta^T x_i \right) \cdot b(x_i). \]

The importance sampling estimator \(I_N(h|\tilde{w}^*) \) is unbiased and \((\epsilon, 0)\)-differentially private. The variance of estimator \(I_N(h|\tilde{w}^*) \) has the following decomposition
\[\text{Var}_{p_G} \left[I_N(h|\tilde{w}^*) \right] = \frac{\bar{\sigma}^2(h)}{N} + \left(1 - \frac{1}{N} \right) \bar{\tau}^*(h). \]

with
\[\bar{\sigma}^2(h) = \sigma^2(h) + \mathbb{E}_{x \sim p_G} \left[h(x)^2 \tilde{w}(x)^2 \text{Var}_{\zeta \sim p_\zeta} \left[b(x \exp(\zeta x)) \right] \right], \]
\[\sigma^2(h) = \text{Var}_{x \sim p_G} \left[h(x) \tilde{w}(x) \right], \]
\[\bar{\tau}^*(h) = \mathbb{E}_{x, x' \sim p_G} \left[h(x) \tilde{w}(x) h(x') \tilde{w}(x') \left(\frac{b(x)b(x')}{b(x + x')} - 1 \right) \right]. \]

Proof. Consider \((x_1, \ldots, x_N, \zeta)^{i.i.d.} \sim p_G^\ast\), i.e. \(x_i^{i.i.d.} \sim p_G \), \(i = 1, \ldots, N \) and \(\zeta \sim p_\zeta \) and
\[I_N(h|\tilde{w}^*) = \frac{1}{N} \sum_{i=1}^{N} h(x_i) \tilde{w}(x_i) \exp \left(\zeta^T x_i \right) b(x_i), \]
then
\[\mathbb{E}_{p_G^\ast} \left[I_N(h|\tilde{w}^*) \right] = \mathbb{E}_{x \sim p_G(x)} \mathbb{E}_{\zeta \sim p_\zeta} \left[h(x) \tilde{w}(x) \exp \left(\zeta^T x \right) b(x) \right] \]
\[= \mathbb{E}_{x \sim p_G(x)} \left[h(x) \tilde{w}(x) b(x) \mathbb{E}_{\zeta \sim p_\zeta} \left[\exp \left(\zeta^T x \right) \right] \right] = \mathbb{E}_{x \sim p_G(x)} \left[h(x) \tilde{w}(x) \right] = \mathbb{E}_{x \sim p_D(x)} \left[h(x) \right] \]
and as a result \(I_N(h|\tilde{w}^*) \) is an unbiased estimator of \(\mathbb{E}_{x \sim p_D(x)} \left[h(x) \right] \). The variance of estimator \(I_N(h|\tilde{w}^*) \) is given by
\[\text{Var}_{p_G} \left[I_N(h|\tilde{w}^*) \right] = \frac{1}{N^2} \sum_{i=1}^{N} \text{Var}_{p_G} \left[h(x_i) \tilde{w}^*(x_i) \right] + \frac{2}{N^2} \sum_{i=1}^{N} \sum_{j<i} \text{Cov}_{p_G} \left[h(x_i) \tilde{w}^*(x_i), h(x_j) \tilde{w}^*(x_j) \right] \]
\[= \frac{\sigma^2(h)}{N} + \left(1 - \frac{1}{N} \right) \bar{\tau}^*(h). \]

(6)

where the weights are dependent under \(p_G^\ast \) because \(\zeta \) is not sampled independently for each \(x_i \), it is only sampled once. The terms making up (6) are
\[\bar{\sigma}^2(h) = \text{Var}_{p_G} \left[h(x) \tilde{w}(x) \exp(\zeta x) b(x) \right] \]
\[= \mathbb{E}_{p_G} \left[\left(h(x) \tilde{w}(x) \exp(\zeta x) b(x) \right)^2 \right] - \mathbb{E}_{p_G} \left[h(x) \tilde{w}(x) \exp(\zeta x) b(x) \right]^2 \]
\[= \mathbb{E}_{x \sim p_G} \left[h(x)^2 \tilde{w}(x)^2 \text{Var}_{\zeta \sim p_\zeta} \left[b(x)^2 \exp(\zeta^2) \right] \right] - \mathbb{E}_{p_G} \left[h(x) \tilde{w}(x)^2 \right]^2 \]
\[= \mathbb{E}_{x \sim p_G} \left[h(x)^2 \tilde{w}(x)^2 \left(\text{Var}_{\zeta \sim p_\zeta} \left[b(x \exp(\zeta x)) \right] + 1 \right) \right] - \mathbb{E}_{p_G} \left[h(x) \tilde{w}(x) \right]^2 \]
\[= \sigma^2(h) + \mathbb{E}_{x \sim p_G} \left[h(x)^2 \tilde{w}(x)^2 \text{Var}_{\zeta \sim p_\zeta} \left[b(x \exp(\zeta x)) \right] \right]. \]
with \(E_{\zeta \sim p_G} \left[b(x) \exp(\zeta x) \right] = 1 \) by construction and \(\sigma^2(h) \) defined in (5), and
\[
\tau^*(h) = \text{Cov}_{p_G} \left[h(x) \tilde{w}(x) \exp (\zeta^T x) b(x), h(x') \tilde{w}(x') \exp (\zeta^T x') b(x') \right] \\
= E_{x,x' \sim p_G, \zeta \sim p_G} \left[h(x) \tilde{w}(x) \exp (\zeta^T x) b(x) \cdot h(x') \tilde{w}(x') \exp (\zeta^T x') b(x') \right] \\
- E_{x, \zeta \sim p_G} \left[h(x) \tilde{w}(x) \exp (\zeta^T x) b(x) \right] \cdot E_{x', \zeta \sim p_G} \left[h(x') \tilde{w}(x') \exp (\zeta^T x') b(x') \right].
\]

By \(E_{\zeta} \left[\exp (\zeta^T x) b(x) \right] = 1 \), and \(x, x' \overset{iid}{\sim} p_G \) the second term simplifies to
\[
E_{x \sim p_G} \left[h(x) \tilde{w}(x) \exp (\zeta^T x) b(x) \right] \cdot E_{x' \sim p_G} \left[h(x') \tilde{w}(x') \exp (\zeta^T x') b(x') \right] = E_{x \sim p_G} \left[h(x) \tilde{w}(x) \right]^2.
\]
The first term can be simplified as
\[
E_{x, x' \sim p_G, \zeta \sim p_G} \left[h(x) \tilde{w}(x) \exp (\zeta^T x) b(x) \cdot h(x') \tilde{w}(x') \exp (\zeta^T x') b(x') \right] \\
= E_{x, x' \sim p_G} \left[h(x) \tilde{w}(x) h(x') \tilde{w}(x') (b(x) b(x') \exp (\zeta^T (x + x')) \right] \\
= E_{x, x' \sim p_G} \left[h(x) \tilde{w}(x) h(x') \tilde{w}(x') \left(\frac{b(x) b(x')}{b(x + x')} - 1 \right) \right] \\
+ E_{x \sim p_G} \left[h(x) \tilde{w}(x) \right] E_{x' \sim p_G} \left[h(x') \tilde{w}(x') \right] \quad \text{(indep.)}
\]
\[
= E_{x, x' \sim p_G} \left[h(x) \tilde{w}(x) h(x') \tilde{w}(x') \left(\frac{b(x) b(x')}{b(x + x')} - 1 \right) \right] \\
+ E_{x \sim p_G} \left[h(x) \tilde{w}(x) \right]^2.
\]

As a result
\[
\tau^*(h) = E_{x,x' \sim p_G} \left[h(x) \tilde{w}(x) h(x') \tilde{w}(x') \left(\frac{b(x) b(x')}{b(x + x')} - 1 \right) \right]
\]

B.2.1 Special Case 1: Laplace Noise

Recall that \(x_i \) and \(\zeta \) are \(d \)-dimensional vectors with \(d \geq 1 \). For i.i.d. \(\zeta_j, j = 1, \ldots, d \)
\[
E \left[\exp (\zeta^T x) \right] = E \left[\exp \left(\sum_{j=1}^d \zeta_j x_{ij} \right) \right] \\
= E \left[\prod_{j=1}^d \exp (\zeta_j x_{ij}) \right] \\
= \prod_{j=1}^d E \left[\exp (\zeta_j x_{ij}) \right], \quad \text{(independence)}
\]
which is the moment generating function for random variable \(\zeta_j \) evaluated at \(t = x_{ij} \). Now for \(\zeta_j \overset{iid}{\sim} \mathcal{L}(\mu, \rho) \)
\[
\prod_{j=1}^d E \left[\exp (\zeta_j x_{ij}) \right] = \prod_{j=1}^d \exp \left(\frac{\mu x_{ij}}{1 - \rho^2 x_{ij}^2} \right), \text{ for } |x_{ij}| < 1/\rho \quad \forall j
\]
\[
= \exp \left(\frac{\mu \sum_{j=1}^d x_{ij}}{\prod_{j=1}^d (1 - \rho^2 x_{ij}^2)} \right), \text{ for } |x_{ij}| < 1/\rho \quad \forall j.
\]
as a result
\[
b(x_i) = \prod_{j=1}^d \frac{(1 - \rho^2 x_{ij}^2)}{\exp \left(\mu \sum_{j=1}^d x_{ij} \right)}, \text{ with } |x_{ij}| < 1/\rho \quad \forall j
\] (7)
The variance Of interest to the performance of such an approach are the terms

\[
\text{Var}_{\zeta \sim P_{\zeta}} \left[b(x_i) \exp(\zeta^T x_i) \right] = b(x_i)^2 \text{Var}_{\zeta \sim P_{\zeta}} \left[\exp(\zeta^T x_i) \right]
\]

\[
= b(x_i)^2 \left(\mathbb{E}_{\zeta \sim P_{\zeta}} \left[\exp(\zeta^T x_i)^2 \right] - \mathbb{E}_{\zeta \sim P_{\zeta}} \left[\exp(\zeta^T x_i) \right]^2 \right)
\]

\[
= b(x_i)^2 \left(\mathbb{E}_{\zeta \sim P_{\zeta}} \left[\exp(2\zeta^T x_i) \right] - \mathbb{E}_{\zeta \sim P_{\zeta}} \left[\exp(\zeta^T x_i) \right]^2 \right)
\]

\[
= \prod_{j=1}^d \left(1 - \rho^2 x_{ij}^2 \right)^2 \frac{\exp \left(2\mu \sum_{j=1}^d x_{ij} \right)}{\prod_{j=1}^d \left(1 - 4b^2 x_{ij}^2 \right)^2} - \frac{\exp \left(2\mu \sum_{j=1}^d x_{ij} \right)}{\prod_{j=1}^d \left(1 - \rho^2 x_{ij}^2 \right)^2}
\]

\[
= \prod_{j=1}^d \left(1 - \rho^2 x_{ij}^2 \right)^2 \frac{\exp \left(2\mu \sum_{j=1}^d x_{ij} \right)}{\prod_{j=1}^d \left(1 - 4b^2 x_{ij}^2 \right)^2} - 1
\]

with \(|x_{ij}| < 1/2\rho \quad \forall j\), and

\[
\left(\frac{b(x)b(x')}{b(x+x')} - 1 \right) = \frac{\prod_{j=1}^d \left(1 - \rho^2 x_{ij}^2 \right) \prod_{j=1}^d \left(1 - \rho^2 x_{ij}'^2 \right)}{\exp(\mu \sum_{j=1}^d x_{ij}) \exp(\mu \sum_{j=1}^d x_{ij}')} - 1, \text{ with } |x_{ij}|, |x_{ij}'| \text{ and } |x_{ij} + x_{ij}'| < 1/\rho \quad \forall j
\]

\[
= \frac{\prod_{j=1}^d \left(1 - \rho^2 x_{ij}^2 \right) \left(1 - \rho^2 x_{ij}'^2 \right)}{\prod_{j=1}^d \left(1 - \rho^2 x_{ij}^2 \right) \left(1 - \rho^2 x_{ij}'^2 \right)} - 1.
\]

B.2.2 Special Case 2: Gaussian Noise

Recall that \(x_i\) and \(\zeta\) are \(d\)-dimensional vectors with \(d \geq 1\). The reciprocal of the bias correction

\[
\frac{1}{b(x_i)} = \mathbb{E}_{\zeta}[\exp(\zeta^T x_i)],
\]

is the moment generating function of random variable \(\zeta^T x_i\) evaluated at \(t = 1\). Now if \(\zeta_j \sim \mathcal{N}(\mu, \sigma^2)\), \(j = 1, \ldots, d\), then

\[
\zeta^T x_i = \sum_{j=1}^d \zeta_j x_{ij} \sim \mathcal{N}(\mu \sum_{j=1}^d x_{ij}, \sigma^2 \sum_{j=1}^d x_{ij}^2)
\]

and therefore

\[
\mathbb{E}_{\zeta}[\exp(\zeta^T x_i)] = \exp \left(\mu \sum_{j=1}^d x_{ij} + \frac{1}{2} \sigma^2 \sum_{j=1}^d x_{ij}^2 \right).
\]

The variance Of interest to the performance of such an approach are the terms

\[
\text{Var}_{\zeta \sim P_{\zeta}} \left[b(x_i) \exp(\zeta^T x_i) \right] = b(x_i)^2 \text{Var}_{\zeta \sim P_{\zeta}} \left[\exp(\zeta^T x_i) \right]
\]

\[
= b(x_i)^2 \left(\mathbb{E}_{\zeta \sim P_{\zeta}} \left[\exp(2\zeta^T x_i) \right] - \mathbb{E}_{\zeta \sim P_{\zeta}} \left[\exp(\zeta^T x_i) \right]^2 \right)
\]

\[
= \exp \left(-2\mu \sum_{j=1}^d x_{ij} - \sigma^2 \sum_{j=1}^d x_{ij}^2 \right) \left(\exp \left(2\mu \sum_{j=1}^d x_{ij} + 2\sigma^2 \sum_{j=1}^d x_{ij}^2 \right) - \exp \left(2\mu \sum_{j=1}^d x_{ij} + \sigma^2 \sum_{j=1}^d x_{ij}^2 \right) \right)
\]

\[
= \exp \left(\sigma^2 \sum_{j=1}^d x_{ij}^2 \right) - 1
\]
and
\[
\left(\frac{b(x)b(x')}{b(x+x')} - 1 \right) = \exp \left(-\mu \sum_{j=1}^{d} x_j - \frac{1}{2} \sigma^2 \sum_{j=1}^{d} x_j^2 \right) \exp \left(-\mu \sum_{j=1}^{d} x'_j - \frac{1}{2} \sigma^2 \sum_{j=1}^{d} x'_j^2 \right) \exp \left(-\mu \sum_{j=1}^{d} (x_j + x'_j) - \frac{1}{2} \sigma^2 \sum_{j=1}^{d} (x_j + x'_j)^2 \right) - 1
\]
\[
= \exp \left(\frac{1}{2} \sigma^2 \sum_{j=1}^{d} \left((x_j + x'_j)^2 - x_j^2 - x'_j^2 \right) \right) - 1
\]
\[
= \exp \left(\sigma^2 \sum_{j=1}^{d} x_j x'_j \right) - 1
\]

B.2.3 Differential Privacy

The differential privacy of the approach follows from the post-processing theorem: since the synthetic data \(x_1, \ldots, x_N\) is already privatised, the corresponding weights \(\tilde{w}(x_1), \ldots, \tilde{w}(x_N)\) are \((\epsilon, \delta)\) differentially private, and the adversary can be assumed to know which differential privacy mechanism is used \cite{BalleWang2018}. The data curator can debias the weights without any additional privacy budget.

B.2.4 Variance Comparison of Debiasing Ji & Elkan (2013)

\cite{JiElkan2013} provide bounds for the asymptotic variance of their privatised estimator. Here, we investigate the finite sample variance of their (biased) method and compare it with the finite variance of our unbiased estimator form Proposition 2. Note that we do not consider self-normalised IW while this is an implicit assumption made by \cite{JiElkan2013}.

The variance of estimator \(I_N(h|\bar{w})\), where \(\bar{w}\) is defined in Equation (4), is given by

\[
\text{Var}_{p_G} \left[I_N(h|\bar{w}) \right] = \frac{1}{N^2} \sum_{i=1}^{N} \text{Var}_{p_G} \left[h(x_i)\bar{w}(x_i) \right] + \frac{2}{N^2} \sum_{i=1}^{N} \sum_{j<i} \text{Cov}_{p_G} \left[h(x_i)\bar{w}(x_i), h(x_j)\bar{w}(x_j) \right]
\]
\[
= \frac{\sigma^2(h)}{N} + \left(1 - \frac{1}{N} \right) \tau(h).
\]

where, \(x, x' \sim p_G\). The term \(\bar{\sigma}^2(h)\) is

\[
\bar{\sigma}^2(h) = \text{Var}_{p_G} \left[h(x)\tilde{w}(x) \exp(\zeta^T x) \right]
\]
\[
= \mathbb{E}_{p_G} \left[h(x)\tilde{w}(x) \exp(\zeta^T x)^2 \right] - \mathbb{E}_{p_G} \left[h(x)\tilde{w}(x) \exp(\zeta^T x) \right]^2
\]
\[
= \mathbb{E}_{x \sim p_G} \left[h(x)^2\tilde{w}(x)^2 \mathbb{E}_{\zeta \sim p_{\zeta}} \left[\exp(\zeta^T x)^2 \right] \right] - \mathbb{E}_{x \sim p_G(x)} \left[\frac{h(x)\tilde{w}(x)}{b(x)} \right]^2
\]
\[
= \mathbb{E}_{x \sim p_G} \left[h(x)^2\tilde{w}(x)^2 \mathbb{E}_{\zeta \sim p_{\zeta}} \left[\exp(\zeta^T x) \right] \right] \bar{\var} \left[\mathbb{E}_{x \sim p_{\zeta}} \left[\exp(\zeta^T x) \right] \right] + \mathbb{E}_{x \sim p_{\zeta}} \left[\frac{h(x)\tilde{w}(x)}{b(x)} \right].
\]

Further, \(\bar{\tau}(h)\) is

\[
\bar{\tau}(h) = \text{Cov}_{p_G} \left[h(x)\tilde{w}(x) \exp(\zeta^T x), h(x')\tilde{w}(x') \exp(\zeta^T x') \right]
\]
\[
= \mathbb{E}_{x, x' \sim p_{\zeta}} \left[h(x)\tilde{w}(x) \exp(\zeta^T x) \cdot h(x')\tilde{w}(x') \exp(\zeta^T x') \right]
\]
\[= \mathbb{E}_{x \sim p_G} \left[h(x)\tilde{w}(x) \exp(\zeta^T x) \right] \cdot \mathbb{E}_{x' \sim p_G} \left[h(x')\tilde{w}(x') \exp(\zeta^T x') \right] - \mathbb{E}_{x \sim p_G} \left[h(x)\tilde{w}(x) \exp(\zeta^T x) \right] \cdot \mathbb{E}_{x' \sim p_G} \left[h(x')\tilde{w}(x') \exp(\zeta^T x') \right],
\]

where firstly,

\[
\mathbb{E}_{x \sim p_G} \left[h(x)\tilde{w}(x) \exp(\zeta^T x) \right] \cdot \mathbb{E}_{x' \sim p_G} \left[h(x')\tilde{w}(x') \exp(\zeta^T x') \right] = \mathbb{E}_{x \sim p_{\zeta}} \left[\frac{h(x)\tilde{w}(x)}{b(x)} \right]^2,
\]
and

$$\begin{align*}
\mathbb{E}_{x,x' \sim p_G} &\left[h(x) \hat{w}(x) \exp \left(\zeta^T x \right) \cdot h(x') \hat{w}(x') \exp \left(\zeta^T x' \right) \right] \\
= &\mathbb{E}_{x,x' \sim p_G} \left[h(x) \hat{w}(x) h(x') \hat{w}(x') \mathbb{E}_{\zeta \sim p_\zeta} \left[\exp \left(\zeta^T (x + x') \right) \right] \right] \\
= &\mathbb{E}_{x,x' \sim p_G} \left[h(x) \hat{w}(x) h(x') \hat{w}(x') \frac{1}{b(x + x')} \right] \\
+ &\mathbb{E}_{x,x' \sim p_G} \left[\frac{h(x) \hat{w}(x)}{b(x)} \frac{h(x') \hat{w}(x')}{b(x')} \right] \\
= &\mathbb{E}_{x,x' \sim p_G} \left[h(x) \hat{w}(x) h(x') \hat{w}(x') \left(\frac{1}{b(x + x')} - \frac{1}{b(x)b(x')} \right) \right]
\end{align*}$$

as a result

$$\begin{align*}
\tau(h) &= \mathbb{E}_{x,x' \sim p_G} \left[h(x) \hat{w}(x) h(x') \hat{w}(x') \left(\frac{1}{b(x + x')} - \frac{1}{b(x)b(x')} \right) \right] \\
&= \mathbb{E}_{x,x' \sim p_G} \left[\frac{h(x) \hat{w}(x)}{b(x)} \frac{h(x') \hat{w}(x')}{b(x')} \left(\frac{b(x)b(x')}{b(x + x')} - 1 \right) \right].
\end{align*}$$

Comparisons after debiasing: We can compare the variance of $I_N(h|\overline{w})$ with the previously evaluated variance of $I_N(h|\overline{w'})$ as follows

$$\begin{align*}
\text{Var}_{p_G}[I_N(h|\overline{w})] &= \frac{\sigma^2(h)}{N} + \left(1 - \frac{1}{N} \right) \tau^*(h), \\
\text{Var}_{p_G}[I_N(h|\overline{w'})] &= \frac{\sigma^2(h)}{N} + \left(1 - \frac{1}{N} \right) \tau(h).
\end{align*}$$

with

$$\begin{align*}
\sigma^2(h) &= \mathbb{E}_{x \sim p_G} \left[h(x)^2 \hat{w}(x)^2 \text{Var}_{\zeta \sim p_\zeta} \left[b(x) \exp(\zeta x) \right] \right] + \text{Var}_{x \sim p_G(x)} \left[h(x) \hat{w}(x) \right], \\
\sigma^2(h) &= \mathbb{E}_{x \sim p_G} \left[h(x)^2 \hat{w}(x)^2 \text{Var}_{\zeta \sim p_\zeta} \left[\exp(\zeta^T x) \right] \right] + \text{Var}_{x \sim p_G(x)} \left[\frac{h(x) \hat{w}(x)}{b(x)} \right]
\end{align*}$$

and

$$\begin{align*}
\tau^*(h) &= \mathbb{E}_{x,x' \sim p_G} \left[h(x) \hat{w}(x) h(x') \hat{w}(x') \left(\frac{b(x)b(x')}{b(x + x')} - 1 \right) \right], \\
\tau(h) &= \mathbb{E}_{x,x' \sim p_G} \left[\frac{h(x) \hat{w}(x)}{b(x)} \frac{h(x') \hat{w}(x')}{b(x')} \left(\frac{b(x)b(x')}{b(x + x')} - 1 \right) \right].
\end{align*}$$

Comparison for the introduction of Laplace noise: From Equation 7, under $\zeta_j \sim \mathcal{L}(0, \rho)$ we have that

$$b(x_i) = \prod_{j=1}^p \left(1 - \rho^2 x_{ij}^2 \right), \quad \text{with } |x_{ij}| < 1/\rho \quad \forall j.$$
The condition that $|x_{ij}| < 1/\rho$ ensures that

$$0 \leq (1 - \rho^2 x_{ij}^2) \leq 1, \quad \forall j$$

$$\Rightarrow 0 \leq b(x) = \prod_{j=1}^{p} (1 - \rho^2 x_{j}^2) \leq 1$$

As a result,

$$\text{Var}_{\zeta \sim g} [b(x) \exp(\zeta^T x)] \leq \text{Var}_{\zeta \sim g} [\exp(\zeta^T x)], \quad \forall x$$

and $h(x)\hat{w}(x) \leq \frac{h(x)\hat{w}(x)}{b(x)}$, \quad \forall x

which provides that

$$\sigma^*(h) \leq \sigma^2(h)$$

and $\tau^*(h) \leq \tau(h)$

$$\Rightarrow \text{Var}_{p_G^*} [I_N(h|w^*)] \leq \text{Var}_{p_G^*} [I_N(h|w)]. \quad (8)$$

Not only does debiasing remove bias, it also makes the estimator’s variance smaller.

B.3 Theorem 1: Noisy Importance Sampling

For privacy purposes, we want to be able to noise the importance weights as in

$$\log w^*(x) = \log \hat{w}(x) + \zeta, \quad \text{for} \quad \zeta \sim g \text{ drawn from a noise distribution} \quad (9)$$

but we would like to still preserve the consistency properties of importance sampling estimates.

To achieve this, we expand the original target in importance sampling as follows

$$p_D^*(x, \zeta) = p_D(x) \exp(\zeta) g(\zeta)$$

where $\zeta \in \mathbb{R}$ will correspond to some additive noise on the log weights, and $g(\zeta)$ is a probability density on \mathbb{R} such that by assumption

$$\int \exp(\zeta) g(\zeta) d\zeta = 1,$$

So, in particular, this implies that

$$\int p_D^*(x, \zeta) d\zeta = p_D(x).$$

Now, we can use a proposal density $p_G^*(x, \zeta) = p_G(x) g(\zeta)$ targeting $p_D^*(x, \zeta)$ and the resulting importance weight is indeed

$$w^*(x, \zeta) = \frac{p_D^*(x, \zeta)}{p_G^*(x, \zeta)} = \hat{w}(x) \exp(\zeta),$$

i.e. the importance weight in this extended space is a noisy version of the original weight $\hat{w}(x)$. We thus have

$$\mathbb{E}_{p_D}[h(x)] = \mathbb{E}_{p_G}[h(x)\hat{w}(x)]$$

$$= \mathbb{E}_{p_G^*}[h(x)w^*(x, \zeta)]$$

$$= \mathbb{E}_{p_G^*}[h(x)\hat{w}(x) \exp(\zeta)].$$

It follows that for i.i.d. $(x_i, \zeta_i) \sim p_G$, i.e. $x_i \sim p_G$ and $\zeta_i \sim g$, then

$$I_N(h|w^*) = \frac{1}{N} \sum_{i=1}^{N} h(x_i)\hat{w}(x_i) \exp(\zeta_i),$$
is an unbiased and consistent estimator of $E_{p_D}[h(x)]$. Its variance is

$$\text{Var}[I_{N}(h|w^{*})] = \frac{1}{N} \text{Var}_{p_D}[h(x)\hat{w}(x) \exp(\zeta)] = \frac{\sigma^{*2}(h)}{N}. $$

By the variance decomposition formula, we have

$$\sigma^{*2}(h) = \text{Var}_{p_D}[h(x)\hat{w}(x) \exp(\zeta)] = \mathbb{E}_{\phi}[\exp(\zeta)]^2 \text{Var}_{p_D}[h(x)\hat{w}(x)] + \text{Var}_{\phi}[\exp(\zeta)] \mathbb{E}_{p_D}[(h(x)\hat{w}(x))^2]$$

(variance decomposition formula)

$$= \sigma^2(h) + \text{Var}_{\phi}[\exp(\zeta)] \mathbb{E}_{p_D}[(h(x)\hat{w}(x))^2],$$

as $\mathbb{E}_{\phi}[\exp(\zeta)] = 1$ by assumption and $\text{Var}[I_{N}(h|w)] = \frac{1}{N} \text{Var}_{p_D}[h(x)\hat{w}(x)]$. The variance of our estimator is inflated as expected by the introduction of noise.

B.4 COROLLARY 1 AND 2: DIFFERENTIAL PRIVACY OF LOG-LAPLACE NOISED IMPORTANCE WEIGHTS

Following [Kozubowski and Podgórski 2003], the (symmetric) log-Laplace distribution is the distribution of random variable x such that $y = \log(x)$ has a Laplace density with location parameter μ and scale λ. The density of a log-Laplace(μ, λ) random variable is

$$f_X(x|\mu, \lambda) = \frac{1}{2\lambda x} \exp\left(-\frac{1}{\lambda} |\log x - \mu| \right).$$

Note this is recovered from the asymmetric log-Laplace in [Kozubowski and Podgórski 2003] with $\alpha = \beta = \frac{1}{\lambda}$, Kozubowski and Podgórski 2003 further provide forms for the expectation and variance of the log-Laplace distribution as

$$\mathbb{E}[X] = \frac{\exp(\mu)}{1 - \lambda^2} \text{ for } \lambda < 1,$$

$$\text{Var}[X] = \exp(2\mu) \left(\frac{1}{1 - 4\lambda^2} - \frac{1}{(1 - \lambda^2)^2}\right) \text{ for } \lambda < \frac{1}{2}.$$

Next we wish to investigate the differential privacy provided by using the Laplace mechanism [Dwork et al. 2006] to noise importance weights. Adding Laplace noise to the log-weights, as in Equation (9), is equivalent to multiplying the importance weights by log-Laplace noise. In order for the importance sampling to remain unbiased, the log-Laplace noise must have expectation 1. From Equation (10) this will be the case for all $\lambda < 1$ if we set $\mu = \log (1 - \lambda^2)$.

A binary logistic-regression classifier specifies class probabilities

$$\hat{p}(y = 1|x, \hat{\beta}) = \frac{1}{1 + \exp(-x\hat{\beta})}, \quad \hat{p}(y = 0|x, \hat{\beta}) = \frac{\exp(-x\hat{\beta})}{1 + \exp(-x\hat{\beta})}.$$

We denote by $z_{1:N_G}$ the private data sampled from the DGP, and by $x_{1:N_D}$ the synthetic data sampled from the SDGP. Let $z'_{1:N_G}$ be the neighboring data set of $z_{1:N_G}$. The importance weights estimated by such a classifier become

$$\hat{w}(x_i|x_{1:N_G}, z_{1:N_D}) = \frac{\hat{p}(y_i = 1|x_i, \hat{\beta}(x_{1:N_G}, z_{1:N_D}))}{\hat{p}(y_i = 0|x_i, \hat{\beta}(x_{1:N_G}, z_{1:N_D}))} \frac{N_D}{N_G}$$

For $i = 1, \ldots, N_D$

$$= \frac{1 + \exp\left(-x_i\hat{\beta}(x_{1:N_G}, z_{1:N_D})\right)}{1 + \exp\left(-x_i\hat{\beta}(x_{1:N_G}, z_{1:N_D})\right)} \frac{N_D}{N_G}$$

$$= \exp\left(x_i\hat{\beta}(x_{1:N_G}, z_{1:N_D})\right) \frac{N_D}{N_G}.$$
and as a result
\[
\begin{align*}
\log \hat{w}(x_i|\hat{\theta}_1, z_{1:N_D}) & - \log \hat{w}(x_i|\hat{\theta}_1, z'_{1:N_D}) \\
= & \left| x_i \hat{\beta}(x_{1:N_G}, z_{1:N_D}) + \frac{N_D}{N_G} - \left(x_i \hat{\beta}(x_{1:N_G}, z'_{1:N_D}) + \log \frac{N_D}{N_G} \right) \right| \\
= & \left| x_i \hat{\beta}(x_{1:N_G}, z_{1:N_D}) - x_i \hat{\beta}(x_{1:N_G}, z'_{1:N_D}) \right| \\
= & \sum_{j=1}^p x_{ij} \left(\hat{\beta}(x_{1:N_G}, z_{1:N_D})_j - \hat{\beta}(x_{1:N_G}, z'_{1:N_D})_j \right) \\
\leq & |x_i| \sum_{j=1}^d \left| \hat{\beta}(x_{1:N_G}, z_{1:N_D})_j - \hat{\beta}(x_{1:N_G}, z'_{1:N_D})_j \right| \\
\leq & \frac{2\sqrt{d}}{N_D \lambda} \\
\end{align*}
\]
if the features are minmax scaled using the sensitivity computed by Chaudhuri et al. (2011).

B.5 REMARK 1: THE IMPORTANCE-WEIGHTED LIKELIHOOD AND M-ESTIMATION

Remark 1. Minimisation of the importance weight adjusted log-likelihood, \(-w(x_i) \log f(x_i|\theta)\), can be viewed as an M-estimator with clear relations to the standard MLE.

Remark 1 of the paper points out the connection between the Minimisation of the importance weight adjusted log-likelihood, \(\ell_{IW}(x, \theta) := -w(x_i) \log f(x_i|\theta)\) and the standard maximum likelihood estimator which can be seen through the lens of M-estimation. We exemplify this below.

Following Van der Vaart (2000), the M-estimate of parameter

\[
\beta_h^* := \arg \max_{\beta} \mathbb{E}_{x \sim P_D} [h(\beta, x)]
\]

is given by

\[
\hat{\beta}_h^{(n)} := \arg \max_{\beta} \sum_{i=1}^n h(\beta, x_i).
\]

The estimator \(\hat{\beta}_h^{(n)}\) is consistent and is asymptotically normal, i.e.

\[
\sqrt{n} \left(\hat{\beta}_h^{(n)} - \beta_h^* \right) \overset{D}{\to} \mathcal{N} \left(0, \tilde{V}(\beta_h^*) \right)
\]
where

\[
\tilde{V}(\beta) := \left(\mathbb{E} \left[\nabla^2 h(\beta, x) \right] \right)^{-1} \cdot \text{Var} \left[\nabla h(\beta, x) \right] \cdot \left(\mathbb{E} \left[\nabla^2 h(\beta, x) \right] \right)^{-1}.
\]

M-estimators generalise the case of MLE under model misspecification and the variance calculation collapses to the standard inverse Fisher’s information if the likelihood is correctly specified for the DGP.

The minimiser of the importance weight adjusted log-likelihood can be considered an M-estimate with the following form

\[
\hat{\theta}_{IW}^{(n)} = \arg \max \left\{ -\ell_{IW}(x; \theta) \right\} = \arg \max \left\{ w(x) \log f(x; \theta) \right\}.
\]

As a result, given \(x_{1:n} \sim P_G\) the covariance of the asymptotic Gaussian distribution for \(\hat{\theta}_{IW}^{(n)}\) simplifies to,

\[
\tilde{V}_{IW} \left(\theta_{IW}^{(n)} \right) = \left(\mathbb{E}_{P_G} \left[-\nabla^2 \ell_{IW}(x, \theta_{IW}^{(n)}) \right] \right)^{-1} \cdot \text{Var}_{P_G} \left[-\nabla \ell_{IW}(x, \theta_{IW}^{(n)}) \right] \cdot \left(\mathbb{E}_{P_G} \left[-\nabla^2 \ell_{IW}(x, \theta_{IW}^{(n)}) \right] \right)^{-1}
\]

\[
= \left(\mathbb{E}_{P_D} \left[-\nabla^2 \ell_0(x, \theta_0) \right] \right)^{-1} \cdot \text{Var}_{P_G} \left[-\nabla \ell_{IW}(x, \theta_{IW}^{(n)}) \right] \cdot \left(\mathbb{E}_{P_D} \left[-\nabla^2 \ell_0(x, \theta_0) \right] \right)^{-1}
\]

\[
= \left(\mathbb{E}_{P_D} \left[-\nabla^2 \ell_0(x, \theta_0) \right] \right)^{-1} \cdot \text{Var}_{P_G} \left[\left(\nabla \ell_{IW}(x, \theta_{IW}^{(n)}) \right) \left(\nabla \ell_{IW}(x, \theta_{IW}^{(n)}) \right)^T \right] \cdot \left(\mathbb{E}_{P_D} \left[-\nabla^2 \ell_0(x, \theta_0) \right] \right)^{-1}
\]

where

\[
\text{Var}_{P_G} \left[-\nabla \ell_{IW}(x, \theta_{IW}^{(n)}) \right] = \mathbb{E}_{P_G} \left[\left(\nabla \ell_{IW}(x, \theta_{IW}^{(n)}) \right) \left(\nabla \ell_{IW}(x, \theta_{IW}^{(n)}) \right)^T \right]
\]

because at the maximiser \(\theta_{IW}^{(n)}\),

\[
\mathbb{E}_{P_G} \left[-\nabla \ell_{IW}(x, \theta_{IW}^{(n)}) \right] = 0
\]
Further we can write the variance of the minimiser of the importance weight adjusted log-likelihood in terms of the variance of the standard MLE given the same number of observations $x_{1:n} \sim P_D$ as follows:

$$\frac{\hat{V}_{IW}(\theta_{IW})}{V_0(\theta_0^*)} = \frac{\mathbb{E}_{P_D} \left[(\nabla_\theta \ell_{IW}(x, \theta_{IW})) (\nabla_\theta \ell_{IW}(x, \theta_{IW}^*))^T \right]}{\mathbb{E}_{P_D} \left[(\nabla_\theta \ell_0(x, \theta_0^*)) (\nabla_\theta \ell_0(x, \theta_0^*))^T \right]} = \frac{\mathbb{E}_{P_D} \left[w(x) (\nabla_\theta \ell_0(x, \theta_{IW}^*)) (\nabla_\theta \ell_0(x, \theta_{IW}^*))^T \right]}{\mathbb{E}_{P_D} \left[(\nabla_\theta \ell_0(x, \theta_0^*)) (\nabla_\theta \ell_0(x, \theta_0^*))^T \right]}.$$

We can then use such notions to produce an idea of the effective sample size of synthetic data.

B.5.1 The Effective Sample Size of Synthetic Data

When constructing traditional Importance Sampling estimates it is typical to talk about the ‘effective sample’ size of the sample from the proposal density. The effective sample size is the number of independent samples from the true target that gives an unbiased estimator with the same variance as the importance sampling estimator using N_0 samples from the proposal density. When using importance weights to adjust the likelihood for Bayesian updating we are not directly seeking to estimate an expectation, but minimize an (expected) loss to produce a parameter estimate.

Analogously, in this scenario we define the effective sample size of the synthetic data as the number of samples, $N_G^{(e)}$, from true DGP P_G that would provide an unbiased maximum likelihood estimate (MLE) with the same variance as the Importance-Weighted MLE (IW-MLE), i.e.

$$N_G^{(e)} := \{ n : \mathbb{V} \left[\hat{\theta}_{IW}^{(N_G)} \right] = \mathbb{V} \left[\hat{\theta}_0^{(n)} \right] \},$$

where the function \mathbb{V} corresponds to the asymptotic variance of that estimator, and \mathbb{V} is a norm summary of the matrix values covariance of the estimator. Given the asymptotic analysis presented above for the importance-weighted likelihood we have that

$$N_G^{(e)} = \left(\frac{\sqrt{N_G} \mathbb{V} \left(\hat{\theta}_0^{(n)} \right)}{\mathbb{V} \left(\hat{\theta}_{IW}^{(N_G)} \right)} \right)^2 \quad (11)$$

where

$$\left| \frac{\mathbb{V} \left(\hat{\theta}_0^{(n)} \right)}{\mathbb{V} \left(\hat{\theta}_{IW}^{(N_G)} \right)} \right| = \left| \frac{\mathbb{E}_{P_D} \left[\tilde{w}(x) (\nabla_\theta \ell_0(x, \theta_{IW}^*)) (\nabla_\theta \ell_0(x, \theta_{IW}^*))^T \right]}{\mathbb{E}_{P_D} \left[(\nabla_\theta \ell_0(x, \theta_0^*)) (\nabla_\theta \ell_0(x, \theta_0^*))^T \right]} \right| = \left| \frac{\mathbb{E}_{P_G} \left[(\nabla_\theta \ell_{IW}(x, \theta_{IW}^*)) (\nabla_\theta \ell_{IW}(x, \theta_{IW}^*))^T \right]}{\mathbb{E}_{P_G} \left[(\tilde{w}(x) (\nabla_\theta \ell_0(x, \theta_0^*)) (\nabla_\theta \ell_0(x, \theta_0^*))^T \right]} \right|.$$

We note that for multidimensional parameter vectors the \mathbb{V}‘s are covariance matrices and therefore we need to take a scalar summary using the norm $| \cdot |$ of these matrices in order to provide an integer effective sample size $N_G^{(e)}$. Faced with a similar problem, Lyddon et al. (2018) consider the matrix trace for example.

Lastly, given a sample $x_{1:N_G} \sim P_G$, the effective sample size can be estimated by using empirical expectations

$$\left| \frac{\tilde{V} \left(\hat{\theta}_0^{(n)} \right)}{\tilde{V} \left(\hat{\theta}_{IW}^{(N_G)} \right)} \right| \approx \left| \frac{1}{N_G} \sum_{i=1}^{N_G} \left(\nabla_\theta \ell_{IW}(x_i, \hat{\theta}_{IW}^{(n)}) \right) (\nabla_\theta \ell_{IW}(x_i, \hat{\theta}_{IW}^{(n)}))^T \right| \approx \left| \frac{1}{N_G} \sum_{i=1}^{N_G} \tilde{w}(x_i) \left(\nabla_\theta \ell_0(x_i, \hat{\theta}_{IW}^{(n)}) \right) (\nabla_\theta \ell_0(x_i, \hat{\theta}_{IW}^{(n)}))^T \right|.$$

B.6 THEOREM[1] ASYMPTOTIC POSTERIOR DISTRIBUTION OF IMPORTANCE WEIGHTED BAYESIAN UPDATING

Section 3.1 of the paper considers the importance weighted Bayesian updating as a special case of general Bayesian updating where the loss function is specifically chosen to account for the fact that inference is being done with samples from p_G while trying to approximate p_D. We henceforth write

$$\pi_{IW}(\theta | \{x_i\}_{i \in \{1, \ldots, N_G\}}) \propto \pi(\theta) \exp \left(-\sum_{i=1}^{N_G} \tilde{w}(x_i) \log f(x_i | \theta) \right) \equiv \pi(\theta) \exp \left(-\sum_{i=1}^{N_G} \ell_{IW}(x_i | \theta) \right).$$
for $\ell_{IW}(x; \theta) := -\tilde{w}(x) \log f(x; \theta)$ and $\tilde{w}(x) = p_D(x)/p_G(x)$. The next theorem shows that such a posterior given observations from p_G has the same asymptotic distribution as the standard Bayes posterior given samples from p_D would have, and therefore we consider this posterior to be asymptotically calibrated.

We give here the formal statement of Theorem 1. Below \Rightarrow denotes convergence in distribution.

Theorem 1. Let the regular conditions in [Chernozhukov and Hong, 2003; Lyddon et al., 2018] hold. Consider $	heta_{iW}^* := \arg\min_{\theta \in \Theta} \sum_{i=1}^{N} \ell_{IW}(x_i; \theta)$, $x_i \sim p_G$ and $\theta_{iW}^0 := \arg\min_{\theta \in \Theta} \sum_{i=1}^{N} \ell_0(x_i; \theta)$, $x_i \sim p_D$ where $\ell_0(x; \theta) := - \log f(x; \theta)$. Then both $\theta_{iW}^*(N)$ and $\hat{\theta}_{iW}^*(N)$ are consistent estimates of θ_{iW}^* := $\arg\min_{\theta \in \Theta} \int \ell_0(x; \theta) dP_D(x)$. Moreover there exists a non-singular matrix J^{-1} such that we have under the importance weighted Bayesian posterior $\pi_{IW}(\theta|x_{1:N})$

$$\sqrt{N} \left(\theta - \hat{\theta}_{iW}^*(N) \right) \Rightarrow N(0, J^{-1})$$

almost surely w.r.t. $x_{1:\infty}$ while under the standard Bayesian posterior $\pi(\theta|x_{1:N})$

$$\sqrt{N} \left(\theta - \theta_{iW}^0 \right) \Rightarrow N(0, J^{-1})$$

almost surely w.r.t. $x_{1:\infty}$.

Proof. Firstly, define

$$\theta_{iW}^* := \arg\min_{\theta \in \Theta} \int \ell_{IW}(x; \theta) dP_G(x), \quad J_{IW}(\theta) := \int \nabla^2_\theta \ell_{IW}(x; \theta) dP_G(x).$$

Then [Chernozhukov and Hong, 2003; Lyddon et al., 2018] show that under regularity conditions the following asymptotic result holds

$$\sqrt{N} \left(\theta - \hat{\theta}_{iW}^*(N) \right) \Rightarrow N(0, J_{IW}(\theta_{iW}^*)^{-1})$$

as $N \to \infty$ when θ is distributed according to the general Bayesian posterior almost surely w.r.t. $x_{1:\infty}$. Similarly, if we define

$$J_0(\theta) := \int \nabla^2_\theta \ell_0(x; \theta) dP_D(x),$$

then we have that under the standard Bayesian posterior [Chernozhukov and Hong, 2003; Kleijn et al., 2012; Lyddon et al., 2018]

$$\sqrt{N} \left(\theta - \theta_{iW}^0 \right) \Rightarrow N(0, J_0(\theta_{iW}^0)^{-1})$$

almost surely w.r.t. $x_{1:\infty}$. Now it follows from the importance sampling identity that

$$\theta_{iW}^* = \arg\min_{\theta \in \Theta} \int \ell_{IW}(x; \theta) dP_G(x) = \arg\min_{\theta \in \Theta} \int \ell_0(x; \theta) dP_D(x) = \theta_{iW}^0,$$

$$J_{IW}(\theta) = \int \nabla^2_\theta \ell_{IW}(x; \theta) dP_G(x) = \int \tilde{w}(x) \nabla^2_\theta \ell_0(x; \theta) dP_G(x) = \int \nabla^2_\theta \ell_0(x; \theta) dP_D(x) = J_0(\theta)$$

Moreover $\hat{\theta}_0^*(N)$ and $\hat{\theta}_{iW}^*(N)$ are also consistent estimates of θ_{iW}^* under the same regularity conditions. This establishes the result.

B.6.1 Finite Sample Importance-Weighted Bayesian posterior

To complement the asymptotic results connecting the importance weighted general Bayesian posterior given data from p_G and the standard Bayesian p_D we can consider the difference between these two for finite $n = m$. This is formulated in the following proposition.

Proposition 1. The expected KLD between standard Bayesian posterior $\pi(\theta|x_{1,n})$ and its importance weighted approximation $\pi_{IW}(\theta|x_{1,m})$ in expectation over the generating distributions for $x_{1:n} \sim P_D$ and $x_{1:m} \sim P_G$, for $n = m$ is

$$E_{x \sim P_D} [E_{x \sim P_G} [KLD(\pi(\theta|x_{1:n})||\pi_{IW}(\theta|x_{1:m})]]] = nE_{x \sim P_D} [E_{x' \sim P_D} [(\log f(x; \theta) - E_{x \sim P_D} [\log f(x'; \theta)]])]$$

1 $\pi_{IW}(\theta|x_{1:N})$ and $\pi(\theta|x_{1:N})$ are here interpreted as random probability measures, and functions of the random observations $x_{1:N}$.
Proof. We have
\[E_{x \sim p_D} \left[E_{z \sim p_G} \left[KLD(\pi(\theta|x_{1:n}) || \pi_{IW}(\theta|z_{1:m})) \right] \right] \]
\[= E_{x \sim p_D} \left[E_{z \sim p_G} \left[\int \pi(\theta|x_{1:n}) \log \frac{\pi(\theta|x_{1:n})}{\pi_{IW}(\theta|z_{1:m})} d\theta \right] \right] \]
\[= E_{x \sim p_D} \left[E_{z \sim p_G} \left[E_{\pi(\theta|x_{1:n})} \left[\sum_{i=1}^{n} \log f(x_i; \theta) - \sum_{j=1}^{m} \tilde{w}(z_i) \log f(z_i; \theta) \right] \right] \right] . \]

Now by Fubini we can reorder these integrals assuming that they all exist
\[= E_{x \sim p_D} \left[E_{\theta \sim \pi(\cdot|x_{1:n})} \left[\left(\sum_{i=1}^{n} \log f(x_i; \theta) - \sum_{j=1}^{m} E_{z \sim p_G} \left[\tilde{w}(z_i) \log f(z_i; \theta) \right] \right) \right] \right] \]
\[= E_{x \sim p_D} \left[E_{\theta \sim \pi(\cdot|x_{1:n})} \left[\left(\sum_{i=1}^{n} \log f(x_i; \theta) - m E_{x' \sim p_D} \left[\log f(x'; \theta) \right] \right) \right] \right] . \]

Now assuming \(n = m \), we have
\[= E_{x \sim p_D} \left[E_{\theta \sim \pi(\cdot|x_{1:n})} \left[\sum_{i=1}^{n} \left(\log f(x_i; \theta) - E_{x' \sim p_D} \left[\log f(x'; \theta) \right] \right) \right] \right] \]
\[= n E_{x \sim p_D} \left[E_{\theta \sim \pi(\cdot|x_{1:n})} \left[\left(\log f(x; \theta) - E_{x' \sim p_D} \left[\log f(x'; \theta) \right] \right) \right] \right] . \]

C EXPERIMENTS

C.1 EXPERIMENTAL DETAILS

Please refer to Table 1 for an overview of the data sets used. We considered a random 80/20 train test split for all data sets except for MNIST for which the default split was used.

<table>
<thead>
<tr>
<th>Data</th>
<th># training observations</th>
<th># features</th>
<th>prediction problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris</td>
<td>150</td>
<td>4</td>
<td>3-class classification</td>
</tr>
<tr>
<td>tgfb</td>
<td>262</td>
<td>7</td>
<td>regression</td>
</tr>
<tr>
<td>Boston</td>
<td>506</td>
<td>10</td>
<td>regression</td>
</tr>
<tr>
<td>Breast</td>
<td>569</td>
<td>30</td>
<td>binary classification</td>
</tr>
<tr>
<td>Banknote</td>
<td>1372</td>
<td>4</td>
<td>binary classification</td>
</tr>
<tr>
<td>MNIST</td>
<td>60000</td>
<td>784</td>
<td>10-class classification</td>
</tr>
</tbody>
</table>

Table 1: Characteristics of the analysed data sets

We obtained the code for PrivBayes from https://github.com/DataResponsibly/DataSynthesizer and the code for DPCGAN from https://github.com/ricardocarvalhods/dpcgan. This code was used and changed to write the code for DPCGAN. For the logistic regression alternatives we use an adaption of the sklearn implementation. DPCGAN was trained on labelled data by concatenating the features with the one hot encoding of the labels. Our implementation will be made available online. We train different downstream tasks on the synthetic data and test them on test data to ensure their utility for the setting of supervised learning. The downstream algorithms were trained using sklearn with default parameters.

Hyperparameter tuning is a non-private operation as it queries private data to evaluate the model at validation time. To ensure that we do not undermine the performance of the baselines we tuned them for \(\epsilon = 1.0 \), and chose default parameters for our method. PrivBayes is trained in correlated attribute mode, and with optimal bandwidth computation. For the GAN alternatives, we tuned the norm clip (1.0, 0.5), the batch size (32, 64), and number of epochs (50, 100) with grid search on a validation set (10% split of training). The noise multiplier was chosen such that the desired privacy budget was reached. The models were then retrained on the full training data set. Note that these hyperparameters are chosen smaller than in a non-private setting as the noise to be added would otherwise explode. The optimal hyperparameters can be found in the GitHub repository. Further we chose learning rate of the discriminator and generator as 0.15, and the
number of hidden dimensions as d following [Jordon et al., 2019]. For the MNIST experiment, we chose to use the hyperparameters found by [Torkzadehmahani et al., 2019]. The regularisation parameter of the logistic regression for weight estimation was chosen from $0.1, 1, 2$.

The MLP for likelihood ratio estimation was computed based on the tensorflow and tensorflow_privacy package. To ensure the privacy of the MLP, we started with a configuration of one epoch, a batch size of 1, an L2 norm clip of 1, a noise multiplier of 5.2, 20 microbatches and a learning rate of 0.1. We computed the ϵ using built-in functions and increased/decreased the noise multiplier and the number of epochs until the desired privacy level was reached. We chose $N_S = N_D$ unless otherwise mentioned. To compute the output-noised weights we computed the largest N_S such that the scale restriction was satisfied and conducted the downstream analysis on this smaller dataset.

C.2 COMPUTATIONAL TIME OF IMPORTANCE WEIGHT ESTIMATION

Please refer to Table 2 for an overview of the additional time needed to compute the importance weights. All experimental results were computed by training on a single Tesla V100 GPU. We observe that the estimation of the importance weights comes with negligible computational overhead.

<table>
<thead>
<tr>
<th>weighting</th>
<th>Iris</th>
<th>Banknote</th>
<th>Housing</th>
<th>Breast</th>
<th>MNIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>BetaNoised</td>
<td>0.0064</td>
<td>0.008</td>
<td>0.0133</td>
<td>0.0824</td>
<td>51.5609</td>
</tr>
<tr>
<td>BetaDebiased</td>
<td>0.0237</td>
<td>0.0112</td>
<td>0.0742</td>
<td>0.1856</td>
<td>59.0723</td>
</tr>
<tr>
<td>DP-MLP</td>
<td>0.8338</td>
<td>5.4649</td>
<td>1.7303</td>
<td>2.9363</td>
<td>87.2693</td>
</tr>
<tr>
<td>Discriminator</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>LogReg</td>
<td>0.0071</td>
<td>0.0099</td>
<td>0.0133</td>
<td>0.0910</td>
<td>52.0315</td>
</tr>
<tr>
<td>MLP</td>
<td>0.7741</td>
<td>1.5899</td>
<td>1.7491</td>
<td>1.4480</td>
<td>30.1968</td>
</tr>
</tbody>
</table>

Table 2: Additional computational time in seconds needed for the computation of importance weights averaged over 10 seeds and SDGP for $\epsilon = 1$.

C.3 CHOICE OF PRIVACY SPLIT

In Figure 1 we plot the change in evaluation metrics for different values of privacy budget splits. We notice that the impact of the split parameter decreases the larger ϵ is. Similarly, the variability in the metrics for different δ splits decreases, the larger ϵ_{IW} is, where ϵ_{IW} denotes the privacy budget dedicated to the importance weight estimation. While a larger δ split of 30-50% seems beneficial for DP-MLP, the fraction of ϵ dedicated to the importance weighting model should be chosen relatively small, i.e. 10%. Note that we chose these default values based on their performance on the Adult, Credit and Spam data set. Tuning them to the underlying data and task characteristics will be able to improve their results. As hyperparameter tuning is an unsolved problem in DP, we leave the procedure for choosing the optimal privacy split per data set for future work. We note that an additional intricacy appears in DP because of the noise injection which increases the variability of the model’s performances.

C.4 MSE OF IMPORTANCE WEIGHT ESTIMATION

For each of our experiments, we compute the mean squared error between the privatised parameters of the logistic regression for importance weight estimation and the parameters of an unperturbed logistic regression trained on the private data. Please refer to Table 3 for the results. We observe that debiasing almost always decreases the MSE in the low-privacy regimes. For large privacy budgets, the scale of the perturbations can be negligible for low-dimensional data sets which is why both approaches perform similarly on Iris and Banknote, but debiasing still helps with larger data sets such as Breast.

C.5 BAYESIAN UPDATING EXPERIMENTAL DETAILS

In addition to the logistic regression ROC-AUC score distributions presented in the main body of the paper, we applied importance weighted posteriors to updating and learning the parameters of linear regression and multinomial logistic regression models applied to the TGFB and Iris datasets respectively, see Figures 2a and 2b. It can be seen that in the case of linear regression, the DP-MLP and MLP IW methods are again very effective, with the performance improving across all SDGP. Other methods again tend to reduce variance in the results whilst not damaging performance and so can be seen to be effective in at least ensuring greater robustness and consistency when learning under synthetic data. In the case of the Iris data, we calculated 1 vs all ROC-AUC scores for each class separately, then averaged these per-class ROC-AUCs to get a single multi-class average ROC-AUC. Again, MLP and DP-MLP are stand-out in their
Figure 1: Multiple metrics measured across a range of privacy splits on Breast and Boston averaged over 10 seeds, and displayed with standard errors. The maximum mean discrepancy (MMD) was included as a measure of divergence between the weighted SDGP and the test distribution.
We then took all 10,000 samples and calculated our evaluation metrics on the test set for each sample, storing all of these. We then present weight estimators for private and non-private synthetic data generative models for All of these models were implemented in the Turing.jl PPL.

Table 3: Mean squared error of the privatised log importance weights \(\log \bar{w} \) resp. \(\log \bar{w}^* \) averaged over 10 runs with standard errors reported in brackets for \((\epsilon = 1, \delta = 10^{-5}) \) and \((\epsilon = 6, \delta = 10^{-5}) \) where \(\epsilon_{IW} = 0.1\epsilon \).

All of these models were implemented in the Turing.jl PPL Ge et al. (2018). We then ran an experiment for each model and dataset on a defined grid across all seeds, synthetic generators and \(\epsilon \) values. For each combination, we generated 10,000 samples across 4 chains (not counting 1,000 discarded warm-up samples per chain) for each of the importance weighting methods, as well as once for a model fit on the synthetic data with its standard non-weighted posterior, and once for the real data. We used Turing’s implementation of the NUTS sampling algorithm with a target acceptance ratio of 0.65 for sampling the linear regression models’ parameters, and for the logistic and multinomial logistic regression models we used HMC with a leapfrog step size of 0.05 and 10 leapfrog steps per iteration. The logistic and multinomial logistic regression models’ coefficients (including intercepts) were given centred Normal priors with \(\sigma = 1 \). The linear regression models’ coefficient priors were given the same centred Normal priors with \(\sigma = 1 \); its variance was given a non-informative prior via a truncated Normal distribution ensuring positivity with \(\sigma = 10 \).

We then took all 10,000 samples and calculated our evaluation metrics on the test set for each sample, storing all of these. We then present the distributions of metric scores that arise in the included box-plot figures.

C.6 ILLUSTRATIVE EXAMPLE OF THE IMPLICATIONS OF BIAS MITIGATION

In Figure 3 we visualise the benefit of debiasing: We fitted a logistic regression as a downstream classifier on the private data to get the true \(\beta \) coefficients. The predicted \(\beta \) coefficients are estimated by training the logistic classifier on the importance weighted synthetic data. Each dot in the figure plots one dimension of the predicted \(\beta \) coefficients against its true counterpart for one training run (out of ten). An optimal classifier would reconstruct the true coefficients. In this case all lines would be on the diagonal. An unbiased estimator would on average reconstruct the true coefficients: For each true \(\beta \) coefficient, the predicted coefficients would be centred around the true value. We observe that coefficients learned without importance weighting exhibit the largest distance to the diagonal line, while the importance weighting alternatives push the dots closer to the diagonal line. Our method, DP-MLP, is particularly successful in decreasing the bias in the \(\beta \) coefficients.

Figure 3: Illustrative example of debiasing with IW on PrivBayes synthesised Banknote data.

C.7 COMPLETE UCI RESULTS

The complete experimental results on the UCI data sets can be found in Tables 4 to 7. Each table displays the performance of the different weight estimators for private and non-private synthetic data generative models for \(\epsilon \in \{1, 6\} \). \(\epsilon_{IW} = 0.1\epsilon \) and \(\delta_{IW} = 0.3\delta \). We observe that importance weighting brings significant gains especially in low privacy regimes. For high privacy regimes this effect is reduced as the SDGP gets closer to the DGP.
(a) Test set prediction MSE distributions calculated via chains of parameters sampled from a Bayesian linear regression model fit on synthesised TGFB data across 10 seeds.

(b) Multi-class averaged ROC-AUC distributions calculated via chains of parameters sampled from a Bayesian multinomial logistic regression model fit on synthesised Iris data across 10 seeds.
<table>
<thead>
<tr>
<th>SDGP</th>
<th>CGAN</th>
<th>DPCGAN</th>
<th>DPGAN</th>
<th>PrivBayes</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0.4619±0.1010</td>
<td>0.4717±0.1103</td>
<td>0.5357±0.0752</td>
<td>0.5243±0.1299</td>
</tr>
<tr>
<td>BetaNoised</td>
<td>0.5824±0.0931</td>
<td>0.5841±0.0831</td>
<td>0.5487±0.0803</td>
<td>0.6651±0.0884</td>
</tr>
<tr>
<td>BetaDebiased</td>
<td>0.5669±0.1237</td>
<td>0.5913±0.1136</td>
<td>0.5998±0.1141</td>
<td>0.5005±0.0793</td>
</tr>
<tr>
<td>DP-MLP</td>
<td>0.6299±0.0984</td>
<td>0.5725±0.0859</td>
<td>0.5448±0.0912</td>
<td>0.6143±0.0374</td>
</tr>
<tr>
<td>Discriminator</td>
<td>0.5809±0.0840</td>
<td>0.5995±0.0982</td>
<td>0.6475±0.0701</td>
<td></td>
</tr>
<tr>
<td>LogReg</td>
<td>0.4980±0.0780</td>
<td>0.4905±0.0950</td>
<td>0.4806±0.0806</td>
<td>0.6245±0.1235</td>
</tr>
<tr>
<td>MLP</td>
<td>0.7230±0.0791</td>
<td>0.6273±0.0988</td>
<td>0.5770±0.1199</td>
<td>0.6778±0.0923</td>
</tr>
<tr>
<td>WST</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>1.3594±0.3789</td>
<td>1.0465±0.4257</td>
<td>3.8955±0.9764</td>
<td>0.3511±0.0753</td>
</tr>
<tr>
<td>BetaNoised</td>
<td>1.4944±0.3221</td>
<td>1.1133±0.1911</td>
<td>4.1965±1.0469</td>
<td>0.4739±0.0469</td>
</tr>
<tr>
<td>BetaDebiased</td>
<td>1.3683±0.0980</td>
<td>1.3347±0.2830</td>
<td>4.1694±0.9226</td>
<td>0.8147±0.1690</td>
</tr>
<tr>
<td>DP-MLP</td>
<td>0.6109±0.0411</td>
<td>1.0663±0.1141</td>
<td>4.4986±1.2881</td>
<td>0.1962±0.0413</td>
</tr>
<tr>
<td>Discriminator</td>
<td>1.0454±0.3012</td>
<td>0.9404±0.1024</td>
<td>3.9049±0.5010</td>
<td></td>
</tr>
<tr>
<td>LogReg</td>
<td>1.3345±0.3725</td>
<td>0.9557±0.1356</td>
<td>4.1971±1.0305</td>
<td>0.3659±0.0680</td>
</tr>
<tr>
<td>MLP</td>
<td>0.6091±0.0546</td>
<td>0.8316±0.1630</td>
<td>4.5109±1.3057</td>
<td>0.1551±0.0162</td>
</tr>
<tr>
<td>MLP-ROC-AUC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>0.4622±0.1039</td>
<td>0.5202±0.0928</td>
<td>0.3252±0.0844</td>
<td>0.4875±0.1139</td>
</tr>
<tr>
<td>BetaNoised</td>
<td>0.5842±0.0900</td>
<td>0.5351±0.1093</td>
<td>0.5603±0.0980</td>
<td>0.6218±0.1304</td>
</tr>
<tr>
<td>BetaDebiased</td>
<td>0.6029±0.1100</td>
<td>0.6992±0.0801</td>
<td>0.6445±0.0906</td>
<td>0.5388±0.1258</td>
</tr>
<tr>
<td>DP-MLP</td>
<td>0.6007±0.1060</td>
<td>0.6054±0.0951</td>
<td>0.5181±0.0957</td>
<td>0.5639±0.0483</td>
</tr>
<tr>
<td>Discriminator</td>
<td>0.5894±0.0829</td>
<td>0.5806±0.1014</td>
<td>0.5909±0.0903</td>
<td></td>
</tr>
<tr>
<td>LogReg</td>
<td>0.5073±0.0852</td>
<td>0.5353±0.0793</td>
<td>0.4934±0.1051</td>
<td>0.7088±0.0843</td>
</tr>
<tr>
<td>MLP</td>
<td>0.7206±0.0774</td>
<td>0.7115±0.0774</td>
<td>0.5923±0.1130</td>
<td>0.6734±0.0881</td>
</tr>
<tr>
<td>WST</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>1.4111±0.3882</td>
<td>1.0262±0.1866</td>
<td>2.0710±0.3284</td>
<td>0.2650±0.0610</td>
</tr>
<tr>
<td>BetaNoised</td>
<td>1.2894±0.2726</td>
<td>0.9507±0.3017</td>
<td>2.8284±0.1195</td>
<td>0.3338±0.0701</td>
</tr>
<tr>
<td>BetaDebiased</td>
<td>1.2679±0.2854</td>
<td>0.9511±0.3113</td>
<td>2.8256±0.1039</td>
<td>0.3492±0.0719</td>
</tr>
<tr>
<td>DP-MLP</td>
<td>0.5928±0.0682</td>
<td>0.7773±0.2286</td>
<td>4.1112±1.1372</td>
<td>0.2559±0.0527</td>
</tr>
<tr>
<td>Discriminator</td>
<td>1.0434±0.3014</td>
<td>0.9449±0.2838</td>
<td>2.1203±0.5427</td>
<td></td>
</tr>
<tr>
<td>LogReg</td>
<td>1.2606±0.2771</td>
<td>0.9604±0.3155</td>
<td>2.8489±1.0311</td>
<td>0.3603±0.0806</td>
</tr>
<tr>
<td>MLP</td>
<td>0.6174±0.0523</td>
<td>0.5102±0.1630</td>
<td>3.940±1.1462</td>
<td>0.1283±0.0252</td>
</tr>
<tr>
<td>MLP-ROC-AUC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>0.7399±0.0445</td>
<td>0.6598±0.1077</td>
<td>0.6770±0.0379</td>
<td>0.4255±0.0208</td>
</tr>
<tr>
<td>BetaNoised</td>
<td>0.2703±0.0492</td>
<td>0.3032±0.0697</td>
<td>0.2622±0.0229</td>
<td>0.4467±0.0200</td>
</tr>
<tr>
<td>BetaDebiased</td>
<td>0.3035±0.0601</td>
<td>0.3171±0.0746</td>
<td>0.2770±0.0332</td>
<td>0.3383±0.0070</td>
</tr>
<tr>
<td>DP-MLP</td>
<td>0.4507±0.0722</td>
<td>0.5374±0.0654</td>
<td>0.4445±0.0635</td>
<td>0.4850±0.0160</td>
</tr>
<tr>
<td>Discriminator</td>
<td>0.2134±0.0419</td>
<td>0.2168±0.0032</td>
<td>0.2178±0.0037</td>
<td>-</td>
</tr>
<tr>
<td>LogReg</td>
<td>0.3090±0.0612</td>
<td>0.2836±0.0742</td>
<td>0.2601±0.0262</td>
<td>0.4591±0.0121</td>
</tr>
<tr>
<td>MLP</td>
<td>0.2064±0.0819</td>
<td>0.1343±0.0299</td>
<td>0.2711±0.0235</td>
<td>0.1981±0.0192</td>
</tr>
</tbody>
</table>

Table 4: Results on Iris averaged over 10 seeds.
<table>
<thead>
<tr>
<th>SDGP</th>
<th>CGAN</th>
<th>DPCGAN</th>
<th>DPGAN</th>
<th>PrivBayes</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0.7408 ±0.0522</td>
<td>0.8546 ±0.0213</td>
<td>0.6863 ±0.0436</td>
<td>0.7630 ±0.0495</td>
</tr>
<tr>
<td>BetaNoised</td>
<td>0.7469 ±0.0522</td>
<td>0.8495 ±0.0574</td>
<td>0.6063 ±0.0510</td>
<td>0.8943 ±0.0173</td>
</tr>
<tr>
<td>BetaDebiased</td>
<td>0.7864 ±0.0088</td>
<td>0.8729 ±0.0310</td>
<td>0.5868 ±0.1005</td>
<td>0.7632 ±0.0217</td>
</tr>
<tr>
<td>DP-MLP</td>
<td>0.7313 ±0.0113</td>
<td>0.7967 ±0.0419</td>
<td>0.5657 ±0.0570</td>
<td>-</td>
</tr>
<tr>
<td>Discriminator</td>
<td>0.7511 ±0.0523</td>
<td>0.8695 ±0.0167</td>
<td>0.7114 ±0.0424</td>
<td>-</td>
</tr>
<tr>
<td>LogReg</td>
<td>0.7986 ±0.0391</td>
<td>0.8172 ±0.0327</td>
<td>0.6034 ±0.0534</td>
<td>0.9102 ±0.0129</td>
</tr>
<tr>
<td>MLP</td>
<td>0.7253 ±0.0521</td>
<td>0.8291 ±0.0331</td>
<td>0.5974 ±0.0627</td>
<td>0.8594 ±0.0231</td>
</tr>
<tr>
<td>MLP-ROC-AUC</td>
<td>11.7777 ±2.0000</td>
<td>8.4769 ±0.1046</td>
<td>35.2904 ±0.0396</td>
<td>5.6752 ±0.1785</td>
</tr>
<tr>
<td>None</td>
<td>15.3278 ±2.5238</td>
<td>11.0215 ±1.8377</td>
<td>39.3243 ±3.7708</td>
<td>8.1724 ±0.3987</td>
</tr>
<tr>
<td>BetaNoised</td>
<td>11.7630 ±2.1960</td>
<td>8.4298 ±1.0383</td>
<td>35.2862 ±4.0365</td>
<td>5.7001 ±0.1885</td>
</tr>
<tr>
<td>BetaDebiased</td>
<td>8.4946 ±1.7858</td>
<td>8.3508 ±2.3127</td>
<td>32.9909 ±5.9024</td>
<td>6.6862 ±0.1458</td>
</tr>
<tr>
<td>DP-MLP</td>
<td>14.6644 ±2.9599</td>
<td>17.1597 ±2.5448</td>
<td>36.4618 ±4.1011</td>
<td>3.5519 ±0.2895</td>
</tr>
<tr>
<td>Discriminator</td>
<td>14.9537 ±2.5553</td>
<td>12.5471 ±2.3124</td>
<td>30.9282 ±5.4283</td>
<td>-</td>
</tr>
<tr>
<td>LogReg</td>
<td>0.6702 ±0.0282</td>
<td>0.4746 ±0.0214</td>
<td>0.7442 ±0.0333</td>
<td>0.3237 ±0.0162</td>
</tr>
<tr>
<td>BetaNoised</td>
<td>0.3106 ±0.0475</td>
<td>0.2509 ±0.0436</td>
<td>0.4355 ±0.0456</td>
<td>0.2318 ±0.0035</td>
</tr>
<tr>
<td>BetaDebiased</td>
<td>0.3837 ±0.0990</td>
<td>0.4015 ±0.0766</td>
<td>0.4618 ±0.0832</td>
<td>0.2369 ±0.0061</td>
</tr>
<tr>
<td>DP-MLP</td>
<td>0.1418 ±0.0283</td>
<td>0.2035 ±0.0427</td>
<td>0.4298 ±0.0433</td>
<td>0.0456 ±0.0061</td>
</tr>
<tr>
<td>Discriminator</td>
<td>0.6366 ±0.0273</td>
<td>0.3382 ±0.0399</td>
<td>0.1087 ±0.0415</td>
<td>-</td>
</tr>
<tr>
<td>LogReg</td>
<td>0.3092 ±0.0470</td>
<td>0.2508 ±0.0432</td>
<td>0.4348 ±0.0460</td>
<td>0.2348 ±0.0034</td>
</tr>
<tr>
<td>MLP</td>
<td>0.0494 ±0.0141</td>
<td>0.0913 ±0.0259</td>
<td>0.3860 ±0.0452</td>
<td>0.0023 ±0.0004</td>
</tr>
<tr>
<td>WST-↓</td>
<td>0.7212 ±0.0491</td>
<td>0.8958 ±0.0179</td>
<td>0.8323 ±0.0301</td>
<td>0.8357 ±0.0354</td>
</tr>
<tr>
<td>None</td>
<td>0.7811 ±0.0423</td>
<td>0.8771 ±0.0227</td>
<td>0.8216 ±0.0320</td>
<td>0.8588 ±0.0295</td>
</tr>
<tr>
<td>BetaNoised</td>
<td>0.6951 ±0.0958</td>
<td>0.8992 ±0.0334</td>
<td>0.7061 ±0.1083</td>
<td>0.8130 ±0.0648</td>
</tr>
<tr>
<td>BetaDebiased</td>
<td>0.6879 ±0.0547</td>
<td>0.8582 ±0.0330</td>
<td>0.7445 ±0.0511</td>
<td>0.8899 ±0.0148</td>
</tr>
<tr>
<td>DP-MLP</td>
<td>0.7332 ±0.0529</td>
<td>0.8976 ±0.0148</td>
<td>0.8071 ±0.0362</td>
<td>-</td>
</tr>
<tr>
<td>Discriminator</td>
<td>0.7953 ±0.0421</td>
<td>0.8867 ±0.0207</td>
<td>0.7871 ±0.0351</td>
<td>0.8662 ±0.0336</td>
</tr>
<tr>
<td>LogReg</td>
<td>0.6960 ±0.0456</td>
<td>0.8599 ±0.0291</td>
<td>0.8025 ±0.0212</td>
<td>0.8404 ±0.0400</td>
</tr>
<tr>
<td>MLP</td>
<td>0.6642 ±0.0270</td>
<td>0.4723 ±0.0294</td>
<td>0.5645 ±0.0219</td>
<td>0.2928 ±0.0118</td>
</tr>
<tr>
<td>BetaNoised</td>
<td>0.2507 ±0.0384</td>
<td>0.3078 ±0.0321</td>
<td>0.2608 ±0.0370</td>
<td>0.2269 ±0.0036</td>
</tr>
<tr>
<td>BetaDebiased</td>
<td>0.2316 ±0.0670</td>
<td>0.2892 ±0.0442</td>
<td>0.3029 ±0.0883</td>
<td>0.2170 ±0.0076</td>
</tr>
<tr>
<td>DP-MLP</td>
<td>0.1395 ±0.0262</td>
<td>0.0957 ±0.0183</td>
<td>0.1730 ±0.0413</td>
<td>0.1142 ±0.0017</td>
</tr>
<tr>
<td>Discriminator</td>
<td>0.6303 ±0.0278</td>
<td>0.3590 ±0.0470</td>
<td>0.0436 ±0.0100</td>
<td>-</td>
</tr>
<tr>
<td>LogReg</td>
<td>0.2504 ±0.0384</td>
<td>0.3803 ±0.0231</td>
<td>0.2607 ±0.0370</td>
<td>0.2272 ±0.0035</td>
</tr>
<tr>
<td>MLP</td>
<td>0.0658 ±0.0208</td>
<td>0.0409 ±0.0104</td>
<td>0.0787 ±0.0325</td>
<td>0.2023 ±0.0004</td>
</tr>
</tbody>
</table>

Table 5: Results on Banknote averaged over 10 seeds.
Table 6: Results on Boston averaged over 10 seeds.

<table>
<thead>
<tr>
<th>SDGP</th>
<th>GAN</th>
<th>DPGAN</th>
<th>PrivBayes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\epsilon = 1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLP MSE</td>
<td>None</td>
<td>1.4464±0.1591</td>
<td>1.8851±0.5262</td>
</tr>
<tr>
<td></td>
<td>BetaNoised</td>
<td>0.6455±0.0942</td>
<td>1.0057±0.1973</td>
</tr>
<tr>
<td></td>
<td>BetaDebiased</td>
<td>0.6421±0.1290</td>
<td>0.9024±0.1244</td>
</tr>
<tr>
<td></td>
<td>DP-MLP</td>
<td>0.8279±0.0974</td>
<td>0.9462±0.1702</td>
</tr>
<tr>
<td></td>
<td>Discriminator</td>
<td>1.5126±0.1639</td>
<td>1.6256±0.2394</td>
</tr>
<tr>
<td></td>
<td>LogReg</td>
<td>0.6292±0.0909</td>
<td>1.0606±0.2648</td>
</tr>
<tr>
<td></td>
<td>MLP</td>
<td>0.626±0.1273</td>
<td>1.0979±0.2225</td>
</tr>
<tr>
<td></td>
<td>β MSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLP MSE</td>
<td>None</td>
<td>0.1017±0.0118</td>
<td>0.1867±0.0434</td>
</tr>
<tr>
<td></td>
<td>BetaNoised</td>
<td>0.0601±0.0172</td>
<td>0.1761±0.0948</td>
</tr>
<tr>
<td></td>
<td>BetaDebiased</td>
<td>0.0608±0.0190</td>
<td>0.0667±0.0188</td>
</tr>
<tr>
<td></td>
<td>DP-MLP</td>
<td>0.0363±0.0192</td>
<td>0.1530±0.0812</td>
</tr>
<tr>
<td></td>
<td>Discriminator</td>
<td>0.0940±0.0100</td>
<td>0.1567±0.1825</td>
</tr>
<tr>
<td></td>
<td>LogReg</td>
<td>0.0707±0.0194</td>
<td>0.0749±0.0279</td>
</tr>
<tr>
<td></td>
<td>MLP</td>
<td>0.0058±0.0007</td>
<td>0.1476±0.0804</td>
</tr>
<tr>
<td></td>
<td>$\epsilon = 6$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLP MSE</td>
<td>None</td>
<td>1.3060±0.0319</td>
<td>2.2013±0.0945</td>
</tr>
<tr>
<td></td>
<td>BetaNoised</td>
<td>1.0060±0.0023</td>
<td>2.0922±0.0419</td>
</tr>
<tr>
<td></td>
<td>BetaDebiased</td>
<td>1.0023±0.0009</td>
<td>2.0930±0.0393</td>
</tr>
<tr>
<td></td>
<td>DP-MLP</td>
<td>1.0036±0.0015</td>
<td>2.0542±0.0184</td>
</tr>
<tr>
<td></td>
<td>Discriminator</td>
<td>0.9472±0.0764</td>
<td>2.0145±0.0141</td>
</tr>
<tr>
<td></td>
<td>LogReg</td>
<td>1.0070±0.0042</td>
<td>2.2051±0.0819</td>
</tr>
<tr>
<td></td>
<td>MLP</td>
<td>1.0091±0.0001</td>
<td>2.0350±0.0158</td>
</tr>
<tr>
<td></td>
<td>β MSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLP MSE</td>
<td>None</td>
<td>1.8218±0.1514</td>
<td>1.8016±0.1771</td>
</tr>
<tr>
<td></td>
<td>BetaNoised</td>
<td>0.5318±0.0806</td>
<td>0.6529±0.0814</td>
</tr>
<tr>
<td></td>
<td>BetaDebiased</td>
<td>0.5647±0.1065</td>
<td>0.9025±0.1462</td>
</tr>
<tr>
<td></td>
<td>DP-MLP</td>
<td>0.9737±0.1178</td>
<td>1.0902±0.1486</td>
</tr>
<tr>
<td></td>
<td>Discriminator</td>
<td>1.8398±0.1446</td>
<td>1.8631±0.1986</td>
</tr>
<tr>
<td></td>
<td>LogReg</td>
<td>0.5501±0.0540</td>
<td>0.9050±0.1553</td>
</tr>
<tr>
<td></td>
<td>MLP</td>
<td>0.4725±0.0736</td>
<td>0.7464±0.1185</td>
</tr>
<tr>
<td></td>
<td>$\epsilon = 6$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLP MSE</td>
<td>None</td>
<td>0.1230±0.0110</td>
<td>0.1450±0.0174</td>
</tr>
<tr>
<td></td>
<td>BetaNoised</td>
<td>0.0695±0.0203</td>
<td>0.0608±0.0231</td>
</tr>
<tr>
<td></td>
<td>BetaDebiased</td>
<td>0.0693±0.0207</td>
<td>0.0613±0.0240</td>
</tr>
<tr>
<td></td>
<td>DP-MLP</td>
<td>0.0030±0.0006</td>
<td>0.0354±0.0112</td>
</tr>
<tr>
<td></td>
<td>Discriminator</td>
<td>0.1135±0.0098</td>
<td>0.2274±0.0375</td>
</tr>
<tr>
<td></td>
<td>LogReg</td>
<td>0.0607±0.0207</td>
<td>0.0606±0.0237</td>
</tr>
<tr>
<td></td>
<td>MLP</td>
<td>0.0063±0.0011</td>
<td>0.0212±0.0060</td>
</tr>
<tr>
<td></td>
<td>β MSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLP MSE</td>
<td>None</td>
<td>1.3727±0.0249</td>
<td>1.5681±0.0368</td>
</tr>
<tr>
<td></td>
<td>BetaNoised</td>
<td>1.0031±0.0012</td>
<td>1.0615±0.0304</td>
</tr>
<tr>
<td></td>
<td>BetaDebiased</td>
<td>1.0031±0.0012</td>
<td>1.0598±0.0286</td>
</tr>
<tr>
<td></td>
<td>DP-MLP</td>
<td>1.0140±0.0032</td>
<td>1.0338±0.0126</td>
</tr>
<tr>
<td></td>
<td>Discriminator</td>
<td>1.0481±0.0572</td>
<td>1.3844±0.0654</td>
</tr>
<tr>
<td></td>
<td>LogReg</td>
<td>1.0031±0.0012</td>
<td>1.0623±0.0298</td>
</tr>
<tr>
<td></td>
<td>MLP</td>
<td>1.0001±0.0000</td>
<td>1.0081±0.0045</td>
</tr>
<tr>
<td>SDGP</td>
<td>CGAN</td>
<td>DPCGAN</td>
<td>DPGAN</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>None</td>
<td>0.6801±0.0655</td>
<td>0.6374±0.0421</td>
<td>0.6791±0.0966</td>
</tr>
<tr>
<td>BetaNoised</td>
<td>0.7732±0.0589</td>
<td>0.6110±0.0477</td>
<td>0.6546±0.0727</td>
</tr>
<tr>
<td>BetaDebiased</td>
<td>0.7151±0.1146</td>
<td>0.6820±0.0510</td>
<td>0.7173±0.0842</td>
</tr>
<tr>
<td>DP-MLP</td>
<td>0.7166±0.1038</td>
<td>0.7942±0.0404</td>
<td>0.5686±0.0823</td>
</tr>
<tr>
<td>Discriminator</td>
<td>0.8607±0.0485</td>
<td>0.6992±0.0839</td>
<td>0.7290±0.0720</td>
</tr>
<tr>
<td>LogReg</td>
<td>0.7141±0.0755</td>
<td>0.6631±0.0469</td>
<td>0.6441±0.1018</td>
</tr>
<tr>
<td>MLP</td>
<td>0.6942±0.1262</td>
<td>0.7730±0.0412</td>
<td>0.7358±0.1017</td>
</tr>
<tr>
<td>None</td>
<td>2.3461±0.2983</td>
<td>2.0643±0.2012</td>
<td>4.9828±1.5701</td>
</tr>
<tr>
<td>BetaNoised</td>
<td>1.4900±0.1807</td>
<td>2.7532±0.2650</td>
<td>5.0255±1.3763</td>
</tr>
<tr>
<td>BetaDebiased</td>
<td>1.5413±0.2378</td>
<td>2.8337±0.3842</td>
<td>2.2324±0.4464</td>
</tr>
<tr>
<td>DP-MLP</td>
<td>1.0649±0.1012</td>
<td>2.3965±0.2083</td>
<td>3.8685±0.6043</td>
</tr>
<tr>
<td>Discriminator</td>
<td>1.8554±0.3263</td>
<td>1.4591±0.1837</td>
<td>4.0612±0.9523</td>
</tr>
<tr>
<td>LogReg</td>
<td>1.1940±0.1610</td>
<td>2.6934±0.2667</td>
<td>2.2150±0.3366</td>
</tr>
<tr>
<td>MLP</td>
<td>1.0120±0.1383</td>
<td>2.3999±0.2040</td>
<td>3.8343±0.7032</td>
</tr>
<tr>
<td>None</td>
<td>1.8426±0.1329</td>
<td>2.3665±0.0982</td>
<td>1.5853±0.1333</td>
</tr>
<tr>
<td>BetaNoised</td>
<td>1.3109±0.0507</td>
<td>1.4337±0.1114</td>
<td>2.2232±0.1235</td>
</tr>
<tr>
<td>BetaDebiased</td>
<td>1.0649±0.1012</td>
<td>1.8922±0.1237</td>
<td>1.9913±0.3507</td>
</tr>
<tr>
<td>DP-MLP</td>
<td>1.4737±0.1027</td>
<td>1.4570±0.1492</td>
<td>1.0315±0.1415</td>
</tr>
<tr>
<td>Discriminator</td>
<td>1.8814±0.1682</td>
<td>1.0000±0.0004</td>
<td>1.0000±0.0001</td>
</tr>
<tr>
<td>LogReg</td>
<td>1.4374±0.0467</td>
<td>1.6451±0.1168</td>
<td>2.2953±0.2121</td>
</tr>
<tr>
<td>MLP</td>
<td>1.3056±0.0524</td>
<td>1.6129±0.1404</td>
<td>1.0709±0.1579</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SDGP</th>
<th>CGAN</th>
<th>DPCGAN</th>
<th>DPGAN</th>
<th>PrivBayes</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0.6177±0.0737</td>
<td>0.9790±0.0058</td>
<td>0.9756±0.0042</td>
<td>0.9435±0.0152</td>
</tr>
<tr>
<td>BetaNoised</td>
<td>0.7185±0.0898</td>
<td>0.9715±0.0031</td>
<td>0.9710±0.0065</td>
<td>0.9699±0.0121</td>
</tr>
<tr>
<td>BetaDebiased</td>
<td>0.9070±0.0434</td>
<td>0.9723±0.0033</td>
<td>0.9724±0.0066</td>
<td>0.9820±0.0064</td>
</tr>
<tr>
<td>DP-MLP</td>
<td>0.7203±0.1028</td>
<td>0.9703±0.0040</td>
<td>0.9728±0.0059</td>
<td>0.9754±0.0063</td>
</tr>
<tr>
<td>Discriminator</td>
<td>0.8712±0.0471</td>
<td>0.9765±0.0071</td>
<td>0.9737±0.0065</td>
<td>-</td>
</tr>
<tr>
<td>LogReg</td>
<td>0.6860±0.0760</td>
<td>0.9707±0.0033</td>
<td>0.9719±0.0049</td>
<td>0.9825±0.0061</td>
</tr>
<tr>
<td>MLP</td>
<td>0.6899±0.1290</td>
<td>0.9584±0.0080</td>
<td>0.9767±0.0043</td>
<td>0.9506±0.0250</td>
</tr>
<tr>
<td>None</td>
<td>2.3602±0.4035</td>
<td>0.9886±0.2287</td>
<td>1.0653±0.1229</td>
<td>0.9142±0.1575</td>
</tr>
<tr>
<td>BetaNoised</td>
<td>1.2400±0.1637</td>
<td>1.0329±0.0732</td>
<td>1.1586±0.1312</td>
<td>1.0465±0.1358</td>
</tr>
<tr>
<td>BetaDebiased</td>
<td>0.9388±0.0802</td>
<td>1.0150±0.0783</td>
<td>1.1617±0.1936</td>
<td>0.9843±0.1766</td>
</tr>
<tr>
<td>DP-MLP</td>
<td>0.9949±0.1486</td>
<td>1.0119±0.0698</td>
<td>0.8969±0.0837</td>
<td>1.3442±0.0900</td>
</tr>
<tr>
<td>Discriminator</td>
<td>1.7588±0.3421</td>
<td>0.8539±0.2323</td>
<td>0.5423±0.0457</td>
<td>-</td>
</tr>
<tr>
<td>LogReg</td>
<td>1.2221±0.1598</td>
<td>1.0310±0.0719</td>
<td>1.1484±0.1276</td>
<td>1.0234±0.1274</td>
</tr>
<tr>
<td>MLP</td>
<td>1.0845±0.1210</td>
<td>1.0953±0.0844</td>
<td>0.9275±0.0938</td>
<td>1.5354±0.1343</td>
</tr>
<tr>
<td>None</td>
<td>1.8436±0.1257</td>
<td>1.3378±0.0282</td>
<td>1.6449±0.0849</td>
<td>2.0437±0.2188</td>
</tr>
<tr>
<td>BetaNoised</td>
<td>1.4164±0.0483</td>
<td>0.6526±0.0463</td>
<td>1.5485±0.0635</td>
<td>1.4808±0.0943</td>
</tr>
<tr>
<td>BetaDebiased</td>
<td>1.3314±0.0459</td>
<td>0.6641±0.0482</td>
<td>1.5150±0.0935</td>
<td>1.4133±0.1346</td>
</tr>
<tr>
<td>DP-MLP</td>
<td>1.7176±0.1206</td>
<td>0.7931±0.0380</td>
<td>1.5515±0.0826</td>
<td>1.4923±0.0685</td>
</tr>
<tr>
<td>Discriminator</td>
<td>1.8523±0.1553</td>
<td>0.2363±0.0425</td>
<td>1.1020±0.0158</td>
<td>-</td>
</tr>
<tr>
<td>LogReg</td>
<td>1.4140±0.0493</td>
<td>0.6597±0.0470</td>
<td>1.5281±0.0622</td>
<td>1.4824±0.0952</td>
</tr>
<tr>
<td>MLP</td>
<td>1.3487±0.0591</td>
<td>0.3762±0.0383</td>
<td>1.2309±0.0387</td>
<td>1.3406±0.0792</td>
</tr>
</tbody>
</table>

Table 7: Results on Breast averaged over 10 seeds.
C.8 COMPARISON TO EXPERIMENTAL RESULTS REPORTED BY RELATED WORK

We compare our results to PATE-GAN and DPGAN as DP synthetic data generators \cite{Jordan2019,Xie2018}. The PATEGAN implementation is taken from \url{https://github.com/vanderschaarlab/mlforhealthlabpub}. For DPGAN we chose the code from the DataSynthesizer package. In the implementation of the PATE-GAN method, \cite{Jordan2019} generate 50 independent synthetic data sets for each function call, returning the best synthetic data set as defined by a comparison with non-private validation data. The relative level of privacy violation in these situations is unknown, making interpretation of results and comparison between methods in tables and figures challenging. On re-implementing the methods to generate DP synthetic data, we find a substantial and significant drop in performance, which nonetheless is improved through bias mitigation. Please see the GitHub repository for further results and an illustration why PATE GAN underperforms.

References

