Improved Feature Importance Computation for Tree Models Based on the Banzhaf Value

Adam Karczmarz1,2, Tomasz Michalak1,2, Anish Mukherjee1,2, Piotr Sankowski1,2,3, Piotr Wygocki1,3

1Institute of Informatics, University of Warsaw, Poland
2IDEAS NCBR, Warsaw, Poland
3MIM Solutions, Warsaw, Poland

Abstract

The Shapley value – a fundamental game-theoretic solution concept – has recently become one of the main tools used to explain predictions of tree ensemble models. Another well-known game-theoretic solution concept is the Banzhaf value. Although the Banzhaf value is closely related to the Shapley value, its properties w.r.t. feature attribution have not been understood equally well. This paper shows that, for tree ensemble models, the Banzhaf value offers some crucial advantages over the Shapley value while providing similar feature attributions.

In particular, we first give an optimal $O(TL + n)$ time algorithm for computing the Banzhaf value-based attribution of a tree ensemble model’s output. Here, T is the number of trees, L is the maximum number of leaves in a tree, and n is the number of features. In comparison, the state-of-the-art Shapley value-based algorithm runs in $O(TLD^2 + n)$ time, where D denotes the maximum depth of a tree in the ensemble. Next, we experimentally compare the Banzhaf and Shapley values for tree ensemble models. Both methods deliver essentially the same average importance scores for the studied datasets using two different tree ensemble models (the sklearn implementation of Decision Trees or xgboost implementation of Gradient Boosting Decision Trees). However, our results indicate that, on top of being computable faster, the Banzhaf is more numerically robust than the Shapley value.

1 INTRODUCTION

Tree ensembles are one of the most commonly used models for solving practical problems \cite{Friedman2001, Kaggle2017}. Tree ensembles are robust, easy to tune, and fast to train. They need small computational resources and support different types of data and missing values. Given this, tree ensembles are often the first choice model for tabular data.

One of the key research challenges regarding tree ensemble models (see Section 2 for a formal definition) and other machine learning techniques, in general, is explainability. When high-value decisions are taken, e.g., in medical diagnostic, understanding why a model made a specific prediction is often more important than the prediction’s accuracy. Thus we need to develop methods to interpret the model’s results in a transparent way so that humans are willing to follow model recommendations. And indeed, a large body of previous work has been devoted to explaining tree models and their predictions, e.g., \cite{Chen2016, Breiman1984, Breiman2004, Brophy2020, Kuralenok2019, Lundberg2020, Saabas2022}.

Feature attribution is one of the approaches to interpreting model predictions that has been recently subject to a growing interest. In this approach, each feature’s impact, or importance, on the model’s output $f(x)$ is quantified using a numerical value, called the feature’s local attribution (e.g., \cite{Lundberg2017, Sundararajan2017}). Similarly, one can attempt to quantify the individual features’ overall impact on the model using global attributions (e.g., \cite{Covert2020, Lundberg2020}).

One of the most popular approaches to feature attribution uses methods originating from cooperative game theory that are called solution concepts or values. They measure the importance of each player in, or contribution to, a coalitional game. While there exist many ways in which the importance of each player can be evaluated, some solution concepts are considered more fundamental than others due to underlying axiom systems that uniquely determine them. One important game-theoretic solution concept that attracted a lot of attention in the context of explainability is the Shapley value (e.g., \cite{Lundberg2020, Lundberg2017, Strumbelj2014, Sundararajan2017}).
To formally introduce this concept, let us denote by \((g, U)\), a coalition game where \(g : 2^U \to \mathbb{R}, g(\emptyset) = 0\), is the set function that assigns utility to each coalition, and \(U = \{1, \ldots, n\}\) is the set of players (or – in our context – features). Then, the Shapley value of the feature \(i \in U\) is defined as follows [Shapley, 1953]:

\[
\phi_i = \frac{1}{n} \sum_{S \subseteq U \setminus \{i\}} \left(\frac{n-1}{|S|} \right) (g(S \cup \{i\}) - g(S)) \cdot (1)
\]

To operationalize this formula in our context, we further need to define function \(g\) that extends model \(f\) to all subsets of features \(S \subseteq U\), i.e., \(g\) allows us to drop features \(U \setminus S\) of both the input \(x\) and the model \(f\). There are multiple alternatives of how this can be done proposed in the literature [Sundararajan and Najmi, 2020; Janzing et al., 2020]. In this paper, we focus on a popular approach by [Lundberg and Lee, 2017] (see Section \(\alpha\) for more details). Furthermore, it should be noted that, while the Shapley value has certain attractive properties, it is evident from the above formula that, in the general case, it requires the input of exponential size (i.e., function \(g\)). However, in certain structured environments, when \(g\) is of a convenient form or is limited in size, Shapley value can be computed in time polynomial in the number of players (features) [Deng and Papadimitriou, 1994; Greco et al., 2015; Michalak et al., 2013; Maafa et al., 2018], e.g., for tree ensemble models [Lundberg et al., 2020].

The Shapley value is not the only solution concept that has been advocated for interpreting model predictions. The Banzhaf value [Banzhaf, 1965] is the most well-studied alternative for Shapley value coming from the coalitional game theory and some papers indeed suggest using it for the purpose of interpreting model predictions [Datta et al., 2015; Patel et al., 2020; Sliwinski et al., 2019]. This value, also well-known and axiomatized, aggregates contributions of individual features differently:

\[
\beta_i = \frac{1}{2^{n-1}} \sum_{S \subseteq U \setminus \{i\}} (g(S \cup \{i\}) - g(S)) \cdot (2)
\]

Mathematically, while the Shapley value is the weighted average of marginal contributions of players to coalitions, the Banzhaf value is a simple average.

Unfortunately, the difference between these two values when applied to feature attribution has not been understood well in the literature. We note that attributions based on Shapley value have been extensively studied experimentally [Lundberg et al., 2020; Lundberg and Lee, 2017; Strumbelj and Kononenko, 2014; Sundararajan et al., 2017], whereas in the case of Banzhaf value, such studies have been done only on some basic datasets [Datta et al., 2015; Sliwinski et al., 2019; Patel et al., 2020]. Moreover, despite very high similarity of both methods, to the best of our knowledge, no comparison between them has been done on real-world data-sets, e.g., [Patel et al., 2020] compares on a single depth-3 tree, whereas [Patel et al., 2021] uses both methods for vocabulary selection in different NLP tasks without directly comparing these methods. For completeness, we review other explanation methods in the supplementary material.

The primary theoretical property that distinguishes the Shapley value from the Banzhaf value, is that of so-called Efficiency, that the individual importances \(\phi_i\) sum up to precisely \(g(U)\). Several authors (e.g., [Aas et al., 2021; Sundararajan and Najmi, 2020]) find a similar property desirable for attribution methods: that the contributions sum up precisely to the difference between the output of the model and the baseline/mean prediction of the model. However, this does not always seem crucial e.g., if we only want to compare impacts of individual features, and is not guaranteed by other attribution methods used in practice, e.g., LIME [Ribeiro et al., 2016]. Furthermore, it is also possible to consider the normalized Banzhaf value that satisfies Efficiency [Van den Brink and Van der Laan, 1998].

Our contribution. In this paper we partially fill the gap by providing a comprehensive analysis of the Banzhaf value, including its comparison to the Shapley value, when applied to explainability of tree ensemble models. In particular, our contributions can be summarised as follows.

We first show that, for tree ensemble models, when using the same natural set function \(g\) as in [Lundberg and Lee, 2017; Lundberg et al., 2018, 2020], Banzhaf value can be computed in linear time, noticeably faster than the Shapley value. Specifically, we develop an \(O(TL + n)\) time algorithm for computing the Banzhaf value-based attribution of a tree ensemble model’s output. Here, \(T\) is the number of trees, \(L\) is the maximum number of leaves in a tree, and \(n\) is the number of features. In comparison, the state-of-the-art Shapley value-based algorithm by [Lundberg et al., 2018, 2020] runs in \(O(TLD^2 + n)\) time, where \(D\) denotes the maximum depth of a tree in the ensemble. We note that recent papers [Arenas et al., 2021; den Broeck et al., 2021] do not improve this complexity but extend the method to more complex models instead. We stress that our algorithm is asymptotically optimal, since even the description of a tree ensemble has size \(\Theta(TL)\), and the output size is \(\Theta(n)\).
On the technical level, the algorithm of Lundberg et al. [2018, 2020], reduces computing $(\phi_i)_{i=1}^n$ to finding individual leaf contributions to the attribution, one per each leaf/feature pair (l, i) such that i is used as a split feature in some ancestor of l. This goal is achieved using a top-down recursive algorithm whose running time is inherently $\Omega(TLD)$ (i.e., super-linear in the input size) simply because there can be $\Theta(TLD)$ such leaf/feature pairs. This bound still holds even when this approach is applied to computing a Banzhaf-value attribution. In our approach, leaf contributions are aggregated using a more efficient bottom-up dynamic programming approach, which requires only a linear number of auxiliary values to be computed.

In the experiments, our algorithm visibly outperforms all other algorithms, and can lead to considerable time savings when computing feature importances for decision tree-based models in practice. Moreover, we analytically prove that for trees of depths that commonly occur in practice, our algorithm for the Banzhaf value delivers numerically correct results. Similar arguments do not seem to be applicable to the most efficient algorithms computing Shapley value based attribution even for constant depth trees.

We also perform an experimental comparison of the Banzhaf and Shapley values for tree ensemble models. For four studied real-world datasets and using two different approaches to training tree models, we verify experimentally that both methods deliver essentially the same average feature importance scores (called global impacts in Lundberg et al. [2020]) and very close attributions of individual predictions to the attribution, one per each feature/variable pair (x_i, i).

Tree models. Let $f : \mathbb{R}^U \rightarrow \mathbb{R}$ be the output function of the model to be explained. We focus on tree ensemble models $(T)^L_{i=1}$, where the output $f(x)$ of the model is simply the average output $f_{T_i}(x)$ of its T_i individual trees. Following Lundberg et al. [2020], we assume the individual trees to have the number of leaves bounded by L and depth bounded by D.

Let us denote by ρ_i the root of the tree T_i.

When talking about an input decision tree T, we adopt the notation of Lundberg et al. [2020]. T is a binary tree based on single-variable splits: each non-leaf node $v \in T$ is assigned a feature d_v and a threshold t_v, whereas each leaf l is assigned a real value $f(l)$. Let a_v, b_v denote the left and right children of a non-leaf node $v \in T$. The output $f_T(x)$ of the tree T is computed by following a root-leaf path in T: at a non-leaf node $v \in T$, we descend to a_v if $x_{d_v} < t_v$, or to b_v otherwise. When a leaf is reached, its value is returned. Denote by $L(T)$ the set of leaves of T. Denote by $T[v]$ the subtree of T rooted at v.

Set functions. Write $f(x_S, X_{\bar{S}})$ when referring to a random variable being the value of f if the values for features in S are fixed to the respective values of x, and the values $X_{\bar{S}}$ are random variables. Let X_U be distributed as in the training set of the model f. Recall that a set function $g : 2^U \rightarrow \mathbb{R}$ with $g(\emptyset) = 0$, has to be fixed to talk about the Shapley or Banzhaf value-based attributions $(\phi_i)_{i \in U}$ and $(\beta_i)_{i \in U}$ as defined in Equations (1) and (2), resp. Lundberg et al. [2020] and Janzing et al. [2020] suggest using the following idealizer\footnote{This is merely for clarity of the obtained time bounds. See discussion after Theorem 1} set function g^* for feature attribution:

$$g^*(S) := E[f(x_S, X_{\bar{S}})] - E[f(X_U)].$$

(3)

Note the term $E[f(x_U)]$ in (3) serves the purpose of having $g(\emptyset) = 0$ and cancels out when computing the Shapley value from Equation (1). Thus, for simplicity in the following we can redefine $g^*(S) := E[f(x_S, X_{\bar{S}})]$.

Using the idealized set function g^* would be computationally too costly. Consequently, Lundberg et al. [2020] in their TREESHAP\footnote{In fact, here we can use any other distribution, possibly over some different validation data, such that the expectations $E[f(x_S, X_{\bar{S}})]$ can be estimated using Algorithm 1. This allows us to produce attributions that are contrastive to other baselines than the mean prediction over the training data.} algorithm considers the set function g whose purpose is to “approximate” g^*. Namely, $g(S) \approx g^*(S)$ is computed as shown in Algorithm 1. This method dates back to the classical work of Friedman [2001] and is also implemented as a way to compute partial dependence plots in the scikit-learn package [Pedregosa et al., 2011]. Its one advantage is that it does not require access to the training data, but merely to the “coverages” r_v of all the subtrees $T[v]$ (for all trees T in the ensemble), i.e., the

2 PRELIMINARIES

Let $U := \{1, \ldots, n\}$ be a set of features. Let x be the input to the model to be explained. For $i \in U$, we write x_i to refer to the value of the i-th feature in x. More generally, for any subset $S \subseteq U$ we write x_S when referring to the vector $(x_i)_{i \in S}$. We sometimes talk about random feature vectors, or consider the values of individual features to be random variables. We then write X or X_i respectively. We write X_S to denote the vector of random variables $(X_i)_{i \in S}$. Let \bar{S} denote the complement $U \setminus S$.

Tree models. Let $f : \mathbb{R}^U \rightarrow \mathbb{R}$ be the output function of the model to be explained. We focus on tree ensemble models $(T)^L_{i=1}$, where the output $f(x)$ of the model is simply the average output $f_{T_i}(x)$ of its T_i individual trees. Following
Algorithms 1: Estimating \(\mathbb{E}[f(x_S, X_S)] \)

1: function DESC(S, v)
2: if v is a leaf then
3: return \(f(v) \)
4: if \(d_v \in S \) then
5: if \(x_{d_v} < t_v \) then
6: return DESC(S, \(a_v \))
7: else
8: return DESC(S, \(b_v \))
9: else
10: return \(\frac{r_v}{r_v} \cdot \text{DESC}(S, a_v) + \frac{r_v}{r_v} \cdot \text{DESC}(S, b_v) \)
11: function \(g(S) \)
12: return \(\frac{1}{T} \cdot \sum_{i=1}^T \text{DESC}(S, \rho_i) \)

Then, the algorithm outputs

\[
\sum_{l \in \mathcal{L}(T)} P[l, S] \cdot f(l) = g(S) \approx g^*(S). \tag{4}
\]

In our approach, each of the desired attributions \(\beta_i \) is obtained by summing the contributions of each individual leaf \(l \in \mathcal{L}(T) \) to the sum (2) with \(g \) defined as in (4). More precisely:

\[
\beta_i = \sum_{l \in \mathcal{L}(T)} \left(\frac{f(l)}{2^{n-1}} \sum_{S \subseteq \mathcal{L}(T)} (P[l, S \cup \{i\}] - P[l, S]) \right).
\]

We now introduce the following crucial intermediate values that will enable us to evaluate the above formula efficiently. For any \(v \in \mathcal{T} \) and subset \(G \subseteq U \), let

\[
\beta(v, G) := \frac{1}{2^{|G|}} \sum_{S \subseteq \mathcal{L}(G)} P[v, S]. \tag{5}
\]

Lemma 1. For any \(i \in U \), we have:

\[
\beta_i = \sum_{l \in \mathcal{L}(T)} \frac{f(l)}{2^{n-1}} \cdot (\beta(l, F_i) - \beta(l, F_i \setminus \{i\})).
\]

Lemma 1 reduces computing the Banzhaf value to computing \(O(L) \) values of the form \(\beta(l, F_i) \), and \(O(L \cdot D) \) values of the form \(\beta(l, F_i \setminus \{i\}) \), for all \(l \) such that \(l \in \mathcal{L}(T) \) and \(i \in F_l \). The \(O(L \cdot D) \) bound follows since each leaf has no more than \(D \) ancestors, which implies \(|F_l| \leq D \).

In the following part of the section, we first give a recursive formula for computing the values \(\beta(v, G) \) efficiently using dynamic programming. Next, we show a simpler \(O(LD) \) time algorithm computing all the values \(\beta(\cdot, \cdot) \) required by Lemma 1.

As a final step, we show how to improve the worst-case running time of the algorithm to optimal \(O(L) \).

Recurrence. To proceed, we will need the auxiliary values \(\Delta_{v,y} \) for \(v \in \mathcal{T} \) and \(y \in U \), defined inductively as follows:

\[
\Delta_{v,y} = \begin{cases}
1 & \text{if } v = \rho, \\
\Delta_{p_v,y} & \text{if } d_{p_v} \neq y \text{ and } v \neq \rho, \\
\Delta_{p_v,y} \cdot |x_{d_{p_v}} < t_{p_v}| \cdot \frac{r_v}{r_v} & \text{if } d_{p_v} = y \text{ and } \alpha_{p_v} = v \neq \rho, \\
\Delta_{p_v,y} \cdot |x_{d_{p_v}} \geq t_{p_v}| \cdot \frac{r_v}{r_v} & \text{if } d_{p_v} = y \text{ and } b_{p_v} = v \neq \rho.
\end{cases}
\]

The above auxiliary values can be in turn used to recursively compute the values \(P[\cdot, \cdot] \).

Lemma 2. Let \(v \in \mathcal{T} \) and \(Q \subseteq U \) and \(y \in U \setminus Q \). Then:

\[
P[v, Q \cup \{y\}] = P[v, Q] \cdot \Delta_{v,y}.
\]
Lemma 2 applied to (5) allows computing the values \(\beta(v, G) \) recursively, as stated in the below lemmas.

Lemma 3. Let \(v \in \mathcal{T} \) and \(G \subseteq U \). Let \(y \in U \setminus G \). Then:

\[
\beta(v, G \cup \{ y \}) = \frac{1}{2} (1 + \Delta_{v,y} \beta(v, G)).
\]

Lemma 4. Let \(v \in \mathcal{T}, v \neq \rho \). Then, for any \(Q \subseteq U \setminus \{ d_{p_v} \} \),

\[
\beta(v, Q) = \beta(p_v, Q) \cdot \frac{r_v}{r_{p_v}}.
\]

3.1 Basic Algorithm

Equipped with Lemmas 3 and 4, one can easily move between “nearby” values \(\beta(G, v) \). Namely, for any \(i \in U \), given \(\beta(v, G) \) and \(\Delta_{v,i} \), each of the values \(\beta(a_v, G), \beta(b_v, G), \beta(v, G \cup \{ i \}) \) can be computed in \(O(1) \) time.

Moreover, the values \(\beta(p_v, G), \beta(v, G \setminus \{ i \}) \) can also be obtained in \(O(1) \) time by applying the respective “inverse” forms of these lemmas. We now stress that being able to compute \(\beta(v, G \setminus \{ i \}) \) out of a value of the form \(\beta(v, G) \), i.e., removing elements from the feature set \(G \), is crucial for two reasons. First, recall that we need to obtain values of the form \(\beta(l, F_i \setminus \{ i \}) \) for all leaves \(l \) and all \(i \) in \(F_i \). For all such \(i \), this value can be obtained using a single inverse application of Lemma 5. Moreover, applying Lemma 4 to obtain \(\beta(v, F_v) \) out of the parent value \(\beta(p_v, F_p) \) requires \(d_{p_v} \notin F_p \). This may be violated if \(F_v = F_p \), i.e., \(d_{p_v} \) is a feature in some other ancestors of \(v \) in the tree (which does happen in practical models). In such a case, the inverse Lemma 3 can be used to first compute \(\beta(p_v, F_v \setminus \{ d_{p_v} \}) \), and then we apply Lemma 4 to obtain \(\beta(v, F_v \setminus \{ d_{p_v} \}) \), and finally we again use Lemma 3 to get \(\beta(v, F_v) \).

The basic algorithm (which is similar in its essence to TREESHAPE_PATH), computes all the values \(\beta(v, F_v) \) for \(v \in \mathcal{T} \) as explained above – using a simple recursive tree traversal in \(O(L) \) time. In particular, this also gives all the values \(\beta(l, F_l) \) that we need when invoking Lemma 4. Afterwards, for each leaf \(l \in \mathcal{T} \), the remaining (again, required by the formula in Lemma 1) \(|F_l| \) values of the form \(\beta(l, F_l \setminus \{ i \}) \) for \(i \in F_l \) can be computed in \(O(1) \) extra time each using Lemma 3. As a result, through all pairs \((l, i)\), this takes \(O \left(\sum_{i \in \mathcal{L}(T)} |F_l| \right) = O(LD) \) time.

The above analysis silently assumed that all the needed auxiliary values \(\Delta_{v,y} \) can be accessed in \(O(1) \) time. We now justify this assumption. During the tree traversal we store a global array \(\delta \) indexed with the features \(U \). We maintain an invariant that \(\delta[y] \) equals \(\Delta_{v,y} \) when the processing of a vertex \(v \) starts and also when it finishes. By Lemma 3, to guarantee the invariant is satisfied upon the recursive traversals of the subtrees rooted at \(a_v \) or \(b_v \), we may possibly need to update only the value \(\delta[d_v] \) according to Lemma 5, because \(\Delta_{v,y} \neq \Delta_{a_v,y} \) or \(\Delta_{v,y} \neq \Delta_{b_v,y} \) may only happen when \(y = d_v \). When a recursive traversal returns, we revert that change to \(\delta[d_v] \).

The pseudocode of a recursive procedure \textsc{Traverse} computing all the values \(\beta(l, F_l) \), which we also require in our optimal algorithm, is given as Algorithm 2. In this procedure, each of the computed values \(\beta(v, F_v) \) is recorded in a global array as \(\beta[v] \). The auxiliary global variable \(F \) stores the set \(F_v \) when node \(v \) is processed; \(F \) can be implemented using a bitmap of size \(n \).

3.2 The Optimal Algorithm

The high-level idea behind our improved algorithm is to avoid computing all the leaf contributions to the individual components \(\beta_i \) of the Banzhaf value separately. Instead, for every node \(v \in \mathcal{T}, v \neq \rho \), such that \(d_{p_v} = i \), we compute the total contribution to \(\beta \) of all the leaves \(\mathcal{L}_v \subseteq \mathcal{T}[v] \), defined to be the subset of leaves for which \(v \) constitutes the nearest weak ancestor (i.e., a node is considered its own ancestor) with \(d_{p_v} = i \), at once.

Note that for a given \(i \in U \), the sets \(\mathcal{L}_v \) for \(v \in \mathcal{T} \) satisfying \(d_{p_v} = i \), are pairwise disjoint, and in fact form a partition of the set \(\{ l \in \mathcal{L}(T) : i \in F_l \} \) through which summation in Lemma 1 is performed. Additionally, observe that the values \(\Delta_{l,d_{p_v}} \) are equal to \(\Delta_{v,d_{p_v}} \) for all leaves \(l \) in \(\mathcal{L}_v \).
Algorithm 3 Computing the values $B(v)$ for all $v \in T$.

1: procedure FAST(v)
2: $H[d_{pv}]$.Push(v)
3: if $v \in L(T)$ then
4: $S[v] := f(v) \cdot \beta[v]$
5: else
6: FAST(a_v)
7: FAST(b_v)
8: $S[v] := S[a_v] + S[b_v]$
9: $z := 0$ \triangleright z stores the sum $\sum_{w \in Q_v} S(w)$
10: while $H[d_{pv}]$.Top() $\neq v$ do
11: $z := z + S[H[d_{pv}]$.Top()]
12: $H[d_{pv}]$.Pop()
14: if $|H[d_{pv}]| = 1$ then \triangleright empty $H[d_{pv}]$ if $g_v = \perp$
15: $H[d_{pv}]$.Pop()

Consider the following values for all $v \in T, v \neq \rho$:

$$B(v) = \sum_{i \in L_v} f(l) \cdot \beta(l, F_i).$$

The below lemma shows that computing the Banzhaf value β can be reduced, in linear time, to computing all the values $B(v), v \in T \setminus \{\rho\}$: indeed, each $B(v)$ appears in the sum below for precisely one $i \in U$.

Lemma 5. For any $i \in U$, we have:

$$\beta_i = \sum_{v \in T \setminus \{\rho\}} \frac{2(\Delta_{v,i} - 1)}{1 + \Delta_{v,i}} \cdot B(v).$$

We have previously showed that the values $\beta(l, F_i)$ can be computed in linear time. We now describe a recursive procedure FAST(u), where $u \neq \rho$, computing $B(v)$ for all $v \in T[u]$ in a bottom-up manner. Let

$$S(v) = \sum_{w \in L(T[v])} f(l) \cdot \beta(l, F_i),$$

that is, $S(v)$ sums the values $f(l) \cdot \beta(l, F_i)$ in $T[v]$. Clearly, for each $l \in L(T)$, we have $S(l) = f(l) \cdot \beta(l, F_i)$, and for a non-leaf $v \in T, S(v) = S(a_v) + S(b_v)$ holds. As a result, all the values $S(v)$ can be computed in linear time using a bottom-up computation over the tree.

Given the sums $S(v)$, we proceed as follows. For $v \in T$, let Q_v be the set of non-leaf nodes $w \in T[v]$ with $d_{pw} = d_{pw}$ and v is the nearest ancestor of w with $d_{pw} = d_{pw}$. We have:

$$L_v = L(T[v]) \setminus \left(\bigcup_{w \in Q_v} L(T[w]) \right),$$

and thus

$$B(v) = S(v) - \sum_{w \in Q_v} S(w).$$

Algorithm 4 Computing the attributions $\beta_i^n_{i=1}$ of the tree ensemble model's $(T_j)_{j=1}^T$ prediction $f(x)$.

1: function BANZHAFAtributio(n, $(T_j)_{j=1}^T$)
2: for $i \in U$ do \triangleright initialize global data
3: $\beta_i := \beta[i] := 0$ \triangleright $(\beta_i^n)_{i=1}^T$ stores the result
4: $\delta[i] := 1$
5: $H[i] = \text{empty stack}$
6: $F := \emptyset$
7: for $j = 1, \ldots, T$ do
8: $\rho := \text{the root node of } T_j$
9: for $v \in \{d_p, b_p\}$ do
10: TRAVERSE(v)
11: FAST(v)
12: for $v \in T_j \setminus \{\rho\}$ do
13: $\beta_{dv} := \beta_{dv} + \frac{(d^*[v] - 1)}{1 + d^*[v]} \cdot B[v]$ \triangleright Lemma 5
14: return $(\beta_i)_{i=1}^n$ \triangleright average through the T trees

Observe that the total size of sets Q_v (over all $v \in T$) is $O(L)$, so if we are allowed to iterate through Q_v whenever we wish to compute $B(v)$, the computation of $B(v)$ takes $O(L)$ time as well. We now explain how to accomplish this. Let g_w denote the nearest ancestor of $w \in T$ with $d_{pw} = d_{pw}$. One way to enable iterating through Q_v when v is processed bottom-up, is to maintain, for each feature $j \in U$, a global stack $H[j]$ containing all the nodes w such that $d_{pw} = j$ and that the computation for w (i.e., the call FAST(w)) has already been started or completed, but the computation for g_w has not yet completed. The stack elements are sorted using the pre-order of the nodes of v, so that the node w with the highest pre-order is at the top of $H[d_{pw}]$. The stack can be updated in $O(1)$ time whenever a recursive call starts. Observe that $v \in H[d_{pv}]$ when FAST(v) has started but has not yet finished. Now, given $H[d_{pv}]$, it is enough to note that Q_v equals precisely the set of elements of $H[d_{pv}]$ closer to the top of the stack than v. Thus, one can indeed iterate through Q_v in $O(|Q_v|)$ time as desired. Moreover, Q_v constitutes precisely the set of elements that have to be popped from $H[d_{pv}]$ when FAST(v) returns. The asymptotic cost of popping stack elements can charged to the corresponding pushes and thus can be neglected.

A pseudocode of the procedure FAST computing all the values $B(v)$ given the values $\beta(l, F_i)$ is given in Algorithm 3.

In Algorithm 4 we give a pseudocode of the full algorithm computing the Banzhaf value-based attributions for a tree ensemble model $(T_j)_{j=1}^T$. Since the value of such a model is defined to be the average prediction over all the individual tree predictions, the final attribution is simply the average of the individual attributions. We have thus proved:

Theorem 1. Let $n = |U|$. The Banzhaf value-based attribution $\beta_i^n_{i=1}$ of a prediction of a tree ensemble model consisting of T trees with at most L leaves each, can be computed in optimal $O(TL + n)$ time.
We remark that if the ensemble contains T trees of very different sizes, the time can be more precisely bounded by $O\left(\sum_{i=1}^T |T_i| + n\right)$, i.e., remains optimal in the input size.

Finally, it is worth noting that the above approach to speeding-up the basic algorithm can be also successfully applied to reduce the time complexity of the TREESHAP_PATH attribution algorithm of Lundberg et al. [2020] from $O(TLD^2+n)$ to $O(TLD+n)$. This is described in detail in the supplementary material.

4 EXPERIMENTAL ANALYSIS

The goals of our experiments are threefold:

- **Time performance** — first, we test the performance of the BANZHAF algorithm proposed in the previous section and compare it to the performance of the TREESHAP_PATH algorithm by Lundberg et al. [2020] — the state-of-the-art algorithm for the Shapley value attributions for tree models.

- **Qualitative differences** — next, we investigate whether the Banzhaf value returns qualitatively different results than the Shapley value for tree models.

- **Numerical accuracy** — finally, we compare numerical accuracy of both algorithms.

4.1 EXPERIMENTAL SETUP AND DATASETS

In our experiment we use both the sklearn implementation of Decision Trees (DT) or xgboost implementation of Gradient Boosting Decision Trees (GBDT). These are some of the most popular algorithms for generating decision trees and are quite often used for large depths of trees. Using large-depth trees is particularly beneficial for datasets with many features and complex relationship between them (see e.g., [Bordag et al., 2021, Pham et al., 2019] for a usage of trees of depth 100). Let us emphasize that large depth of a tree, e.g. depth 100, does not mean the size of the tree is 2^{100}, because trees might be (and usually are) unbalanced. To simplify the experiments and reduce the their running times, we trained the DT algorithm to generate only one tree. We trained the DT algorithm to generate only one tree. We will refer to the above datasets by adding “DT” and “GB” suffixes (for DT and GBDT algorithms, resp.) to the ordinal name of the prediction dataset. Note that the parameters were not extensively tuned since our main goal here centers around interpreting models and not optimizing them.

All our experiments were performed using Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz with 512 Gb of RAM using only one thread for computation. The operating system was Ubuntu 18.04.2 LTS. Our linear-time BANZHAF algorithm was implemented in C++, whereas for TREESHAP_PATH, we used to original C language implementation from the SHAP package [SHAP]. The binaries were compiled using clang version 6.0.0-1ubuntu2 with -O3 optimization.

<table>
<thead>
<tr>
<th>name</th>
<th>rows</th>
<th>cols</th>
<th>tree depth</th>
<th>iter.</th>
<th>max depth</th>
<th>learning rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOSTON</td>
<td>506</td>
<td>13</td>
<td>10</td>
<td>100</td>
<td>6</td>
<td>0.01</td>
</tr>
<tr>
<td>NHANES</td>
<td>8023</td>
<td>79</td>
<td>40</td>
<td>250</td>
<td>4</td>
<td>0.2</td>
</tr>
<tr>
<td>VEH.INS.</td>
<td>304887</td>
<td>14</td>
<td>60</td>
<td>250</td>
<td>4</td>
<td>0.2</td>
</tr>
<tr>
<td>FLIGHTS</td>
<td>1543718</td>
<td>647</td>
<td>100</td>
<td>250</td>
<td>10</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Table 1: The sizes of datasets and parametrisation of the experiments. The “tree depth” column reports tree_depth of the decision tree (DT) with all the other parameters set to default values. The “iterations”, “max depth” and “learning rate” columns are the parameters used for training xgboost.

<table>
<thead>
<tr>
<th>BANZHAF</th>
<th>TREESHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS_GB</td>
<td>0.48 s</td>
</tr>
<tr>
<td>VI_GB</td>
<td>23.63 s</td>
</tr>
<tr>
<td>NH_GB</td>
<td>50.20 s</td>
</tr>
<tr>
<td>FL_GB</td>
<td>13 m 18 s</td>
</tr>
</tbody>
</table>

Table 2: Running times of the two attribution algorithms on the entire dataset. We observe that BANZHAF is substantially faster than TREESHAP_PATH on each instance.

3. VEHICLE_INSURANCE (VI). [VI]. A medium size dataset for predicting who might be interested in vehicle insurance based on health insurance data.

4. FLIGHTS (FL). [FL]. A large dataset for predicting the flights’ delays. A large number of columns was caused by one-hot encoding ‘UniqueCarrier’, ‘Origin’, ‘Dest’, ‘CancellationCode’ in a standard way, i.e., for each possible value v of a given column c we created additional categorical column c_v ($v \in \{0, 1\}$) indicating that the value of c equals v iff the value of c_v equals 1.

We will refer to the above datasets by adding “DT” and “GB” suffixes (for DT and GBDT algorithms, resp.) to the ordinal name of the prediction dataset. Note that the parameters were not extensively tuned since our main goal here centers around interpreting models and not optimizing them.

4.2 COMPARISON OF RUNNING TIMES

In this section, we compare the running times of the algorithms. For each of the instances, the task was to compute the attributions of all individual data points. In Table 2 we show
the running times for different examples. We conclude that BANZHAF is consistently faster than TREESHAP_PATH, and using it can lead to considerable time savings for larger data-sets. As anticipated by the theoretical worst-case time complexity analysis, the observed speed-up increases with the depth of trees in the model.

4.3 COMPARISON OF FEATURE SCORES

We test whether the Banzhaf value assigns qualitatively different importance to features than the Shapley value. The comparison is performed from two viewpoints.

Global importance. First, we compare the global importances of individual features for the model. To this end, we apply the same measure of global impact of a feature as in [Lundberg et al., 2020]. Let \mathcal{D} be some dataset. Suppose for each $i \in U$ we have some feature attribution function $\gamma_i : \mathcal{D} \to \mathbb{R}$. Let us consider the global impact of the feature over dataset \mathcal{D} measured as $\Gamma_i = \sum_{x \in \mathcal{D}} |\gamma_i(x)|$. For example, we can set $\gamma_i = \phi_i$ to get a Shapley global impact Φ_i, or $\gamma_i = \beta_i$ to get a Banzhaf global impact B_i.

For each of the datasets and algorithms we computed and plotted the Shapley and Banzhaf global impacts. The obtained plots can be found in the supplementary material.

For NHANES, BOSTON, and VEHICLE_INSURANCE datasets, the obtained plots of Banzhaf/Shapley global impacts, computed using BANZHAF and TREESHAP_PATH respectively, are virtually indistinguishable. For the larger instance based on the dataset FLIGHTS, only very small differences in the ordering of features by importance can be observed for both FLIGHTS_GB and FLIGHTS_DT.

Specific data points. We now turn to describing how much the obtained Banzhaf and Shapley attributions deviate from each other for specific data points. To measure the difference between the feature orderings produced by both methods, we computed the modified Cayley distance between the respective orderings of $n \in \{3, 10, 20\}$ most important features for each data point, and took the average over all data points. The Cayley distance measures the number of swaps needed to switch from one permutation to another. In our modified version, we also support the case where the sets of considered most important features in the respective permutations are different. For a missing feature, we add it at the end of the permutation. The results are presented in Table 3. They confirm that the differences are on average small; in particular for the instances BOSTON_GB, NHANES_GB, and VEHICLE_INSURANCE_GB, for 98% of the data points, the respective 3 top features and their order matched. The orderings deviation was generally larger for DT instances where larger tree depths were allowed.

We also studied per-feature average differences between the values of Banzhaf and Shapley attributions for each of the datasets. We consider both MAD (Mean Average Difference) and RMSD (Root Mean Square Difference). The relevant plots can be found in the supplementary material. Formally, for each dataset \mathcal{D} out of those and each feature i used therein, these are defined as: $\text{MAD}_i = \frac{1}{|\mathcal{D}|} \sum_{x \in \mathcal{D}} |\phi_i(x) - \beta_i(x)|$ and $\text{RMSD}_i = \sqrt{\frac{1}{|\mathcal{D}|} \sum_{x \in \mathcal{D}} (\phi_i(x) - \beta_i(x))^2}$. Here, $\phi_i(x)$ denotes the Shapley attribution of $f(x)$ for data point $x \in \mathcal{D}$, as computed by TREESHAP_PATH. Similarly, $\beta_i(x)$ denotes the Banzhaf attribution as computed by BANZHAF.

For the “smaller” instances BOSTON_GB, NHANES_GB, and VEHICLE_INSURANCE_GB and all features, the observed MAD and RMSD differences did not exceed 5% of the corresponding global impacts. For the remaining larger models, the MAD difference did not exceed 20% for the top features. On the other hand, for the large-depth FLIGHTS_DT model, the RMSD difference reached around 50% even for the top features, which suggests there were data points with very big absolute differences in the produced attributions. These differences indicate that when looking at specific data points one should expect only small differences in the ordering of features and only for features with similar scores. The differences are expected to be larger for larger models.

The average error statistics also show an interesting phenomenon that, for the studied datasets and models, the per-feature Banzhaf and Shapley attributions are very close to each other even though the Banzhaf value does not satisfy the Efficiency axiom (in contrast to the Shapley value) and thus the sum of the produced feature scores does not typically sum up to the difference between the prediction and the “baseline” mean prediction $E[f(X_U)]$.

4.4 NUMERICAL ACCURACY

The fact that the more significant differences between the obtained importances arises for large models suggested that the compared attribution algorithms might suffer numerical problems. To investigate this possibility and compare numerical stability of BANZHAF and TREESHAP_PATH, we considered a simple artificially prepared instance SYNTHETIC_SPARSE for which we know the answer for both the Shapley value and the Banzhaf value.
We have observed that for trees of depth \(d \) we can easily obtain (see the suppl. material for a proof):

\[
\text{inductively defined} \quad \text{subtree has depth } i \text{.}
\]

This bound is quite pessimistic and at the same time not especially tight when we compare it to the relevant relative error at most \((1 + \epsilon)O(1) \) for \(\beta(l,F) \). This is because for Shapley-based attributions, if one considers the Shapley value attributions, if one wants to retain the \(O(LD^2) \) time bound of the Treeshap_PATH algorithm \[\text{Lundberg et al.}[2020]\], then it seems that subtractions of intermediate values are inherent. Roughly speaking, this is because for Shapley-based attributions, if one applies an analogous dynamic programming approach, then the Shapley-analogue of Lemma 5 involves a recursive formula that is a sum of two “earlier” dynamic programming cells.\(^8\) Recall, however, that our (and also Lundberg et al.’s) approach also required inverse applications of Lemma 5 especially when a single feature may appear multiple times on a root-leaf path. For Shapley value such an inverse application involves subtraction of equally-signed numbers.\(^9\)

It is unclear if a similar (to Lemma 6) relative error bound can be proven in presence of such subtractions, which in general may lead to so-called catastrophic cancellations.

5 CONCLUSIONS

The contribution of this paper is twofold. First, we have developed an efficient algorithm for computing feature importance measures for tree ensemble models that is based on the Banzhaf value. This result improves the running time of previous state of the art. Second, we have presented the first extensive comparison between the Shapley and Banzhaf values in this context. We observe that both methods deliver attributions of essentially the same strength by returning almost the same ordering of features. However, these experimental results indicate that the Banzhaf value has an important advantage over the Shapley value, i.e., it allows for faster algorithms as well as these algorithms make much lower numerical errors.

We stress that this work identifies some computational/practical advantages of using the Banzhaf value compared to the Shapley value for feature attribution in tree ensemble models (in particular, the algorithm by Lundberg et al. [2020] that is commonly used by the practitioners). It would be also very interesting to compare the Shapley-based and Banzhaf-based attributions qualitatively. We believe that such a comparison requires a much more exhaustive study and is beyond the scope of this paper. However, it is, in our opinion, a very a compelling direction for future research.

Acknowledgements

This work has been partially supported by the ERC CoG grant TUgBOAT no 772346 and NCN project no 2020/37/B/ST6/04179.

We thank the anonymous reviewers for useful comments.

\(^8\)See the supplementary material for details.

\(^9\)In the original Treeshap algorithm subtractions of this kind manifest in line 31 of [Lundberg et al. [2019] Algorithm 2].
References

Scott M. Lundberg, Gabriel G. Erion, Hugh Chen, Alex J. DeGrave, Jordan M. Prutkin, Bala Nair, Ronit Katz, 978.

