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1 PROOFS FOR SECTION 4

We begin with some standard background on Bayes optimal classifiers. When then prove the results in Section 4. By default,
expectations are taken over all random variables.

1.1 BACKGROUND ON BAYES-OPTIMAL CLASSIFIERS

These results are all standard, but we include it as background information since different texts use different notations. Let
Z € Z denotes some features (that can be complicated functions of the input x, for example the output of a neural network),
and let Y € ) denote the label. Let P be a distribution over (Z,Y"). The Bayes-optimal classifier predicts the most likely
label y given features z.

Definition 1.1. The Bayes-optimal classifier for P given features z is given by:
y«(2) = argmin P(y | 2). (1.1)
yey

The Bayes-optimal classifier has the minimum misclassification error of all possible classifiers that use z € Z to predict
y € Y. Formally, the error of a classifier ¥ is the probability that it gets the label incorrect.

Definition 1.2. The error of a predictor § : Z — Y on distribution P is given by:

Errp(y) = P(Y # y(2)), (1.2)

Alternatively, we can look at the error for each Z, and then take the average over Z, which gives us:

Lemma 1.1. The error of a predictor y : Z — Y on distribution P can be written as:

Errp(y) =E[1 - P(Y =y(2) | 2)]. (1.3)

Proof. We can write the misclassification probability as an expectation over an indicator and then apply the law of total
expectation.

P(Y #§(2)) = EIY # §(2))] (1.4)
—EELY #5(2)) | Z) 1.5)

And then just write the inner expectation as a probability.

EELY #y(2)) | 2]l =E[P(Y #§(Z) | Z)] (1.6)
=E[l-PY =y(2) | 2)]. (1.7)
O

The Bayes-optimal classifier selects the y with the highest probability given z, so we have:

Lemma 1.2. The error of the Bayes-optimal classifier y. on a distributon P can be written as (wWhere Z ~ P):
Errp(y.) = E[l — max PY =yl 2). (1.8)
ye

Proof. The proof is immediate by substituting the definition of the Bayes-optimal classifier (Definition into the
alternative formula for the error in Lemma [L.T] O

From the above, it is clear that the Bayes-optimal classifier has lower error than any other classifier that uses only z,
formalized below.

Lemma 1.3. The bayes-optimal classifier (for P) has lower error than all classifiers y : Z — Y:

Errp(y«) < Errp(¥). (1.9)



Proof. Beginning from Lemmal(I.T] we have:

Erp(5) = B[1 - P(Y = 5(2) | 2) (110)
ZE[l—glea;(P(Y:m Z)] (1.11)

= Errp(y.). (1.12)

O

As a simple corollary, we note that the accuracy of the Bayes-optimal classifier is at least the frequency of the most common
label.

Corollary 1.1. If y, is bayes-optimal for P then,

Errp(y«) <1 —max P(Y =y) (1.13)
yeY

So for example if P is balanced, then the Bayes-opt classifier will have accuracy at least 1/ K, where K is the number of
classes.

Note that calibrated classifiers are Bayes-optimal given their outputs. Formally, let P be a distribution over (x,y), and
suppose [ is calibrated with respect to P. Let z = f(x) and let P’ be the induced distribution over (z,y). Then f is
Bayes-optimal for P’ given features z. The label distributions P’(y) and P(y) are the same, so Lemma|[1.3|applies to any
calibrated classifier.

1.2 PROOF OF PROPOSITION 4.1

Restatement of Proposition 4.1. Suppose that fsq and f.o, are calibrated with respect to Py, and that Py is class-balanced.
Let h : RE x RE — RX be an arbitrary function that combines the standard and robust model’s predictions, and let fj,
be the resulting classifier: fr(x) = h(fstd(x), frob(2)). The ensemble is better than any such combination classifier f:
Errid(fens) < Errig (fh)

We first show that in the setting of the Proposition, we can write P(y | frob(), frob(x)) in terms of fiop(2) and fsa().

Lemma 1.4. In the setting of Proposition 4.1, let m € R¥ be the log of the marginal probabilities P(y):

my =log P(y), forally € [K]. (1.14)
Then we have:
P(y | fstd(x)7frob(x)) = Soﬁmax(fstd(x) + frob(x) - m)y7 for ally € [K] (115)
In the balanced setting, where P(y) = 1/ K for all y, this simplifies to:
P(y ‘ fstd(x)vfrob(w)) = soﬁmax(fstd(x) + frob(x))w for ally € [K] (116)

Proof. Fixr = fiop(7) and s = fuq(x), where r, s € R We first rewrite the probability of y given the robust and standard
model outputs P(y | r, s) in terms of the probability of y given each of the individual model outputs: P(y | r) and P(y | s).
We do this for discrete random variables for simplicity, but the same result follows by using Bayes rule for general random
variables.

P(r,s | y)P(y)

P(y|rs) = =L [Bayes rule] (1.17)
_ bl yzjl?fﬂ’ssl)y)P(y) I Ls|yl (1.18)
= [P<y;(>yf;<r;f(’:f,'§)>;j<s> P(y) [Bayes rule] (1.19)
_ Pl |;)(]; )(y ) [~ ](f(lp 8()5)} [Algebra] (1.20)

(1.21)



Since , s are fixed, we can denote the terms that do not depend on y by a constant ¢,

P(r)P(s)
= 1.22
“ T P -
So then we can write:
P P
Ply|rs) = Wch for all y € [K]. (1.23)

(
Now, we assumed P(Y =y | r) = softmax(r), and P(Y =y | s) = softmax(s), for all y € [K]. For some constants
c2,c3 € R, we can write this as: P(Y =y | r) = exp(ry)/co and P(Y =y | s) = exp(s,)/cs for all y € [K]. Substituting
this into Equation[T.23] we get:

exp(ry + sy) ¢

P =
(vl r5) = SEpES

forall y € [K]. (1.24)

C1
Cc2C3

Writing 1/P(y) as exp(— log P(y)), and setting ¢, = , this gives us:
P(y|rs)=csexp(ry +s, —log P(y)), forally e [K]. (1.25)

Since the LHS is a probability, these must sum to 1 and so c, must be a normalizing constant, that is, ¢4 =
1/ (X2, eprg exp(ry + sy — log P(y))). This gives us:

P(y | r,s) =softmax(r + s —m),, forally e K], (1.26)

which is precisely Equation In the balanced setting, we have P(Y) = 1/K so we simply fold P(Y") into the constant
¢4, and get:

P(y | r,s) = softmax(r +s),, forally e [K], 1.27)

which is precisely Equation[I.16] O
Now we are ready to prove Proposition 4.1.

Proof of Proposition 4.1. We assumed the “balanced” setting where P(y) = 1/K for all y. From Lemma [[.4] letting
fens(2) = fsta(z) + frob(z), we have:

Py | fstd (), frob(2)) = softmax( fens(2))y, (1.28)

So this means that the ensemble prediction is the Bayes optimal given (fstd(), frob(2)):

pred(fens(x)) = arg myax fens(x)y = arg myax softmax ( fens())y = arg m;ix P(y | fstd(z), fron()). (1.29)

But then from Lemma any other predictor which uses only (frob(), fsta (2)) must have higher error. This completes the
proof.

Note that the inequality in the above proof is a strict inequality except in degenerate cases: as long as fsq and f,op Sometimes
disagree in their predictions, and in some of these cases fqq assigns a higher probability to its predictions, and in some cases
frob assigns a higher probability to its prediction, the inequalities will be strict inequalities. O

1.3 PROOF OF PROPOSITION 4.2

Restatement of Proposition 4.2. If the OOD contains a mixture of suppressed features and missing spurious features
i.e., Pooy = aP; + (1 — )Py, and P, and Py are class-balanced, then we have Errood(fens) < Errood(frob) and
Errood(fens) < Errood(fstd)-



Proof. We first note that errors are additive. That is, letting:
Err(P, f) = E[pred(f(z)) # y], where z,y ~ P, (1.30)

we have:
Err(aP; + (1 — )Py, f) = aErr(Pr, f) + (1 — «)Err(Py, f) (1.31)

So it suffices to prove that the ensemble is better than the standard and robust models for P, and P, separately.

Suppressed features. Let f,op(2) = 7 frob(7) and fod(z) = 7 fta () be scaled versions of the standard and robust models.
Definition 4.2 implies that f,o, and fsq are calibrated. Since we assumed P is balanced, by Proposition 4.1, fe,s given
by fens(z) = Tfrob(x) + T fstd(x) has optimal error on P;. But for all z, the predictions of fens and fens are the same
(multiplying the outputs of a model by a constant does not change the predicted output, which is the arg max). So fens also
has optimal error on P;:

EI‘I'(P.,-, fens) < EIT(PT7 fstd)s and EI‘I'(PT, fens) < EIT(PT7 frob) (1.32)

Note that these inequalities are strict inequalities except in degenerate cases: as long as fgq and f,o, sometimes disagree
in their predictions, and in some of these cases fq assigns a higher probability to its predictions, and in some cases frop
assigns a higher probability to its prediction, the inequalities will be strict inequalities.

Missing spurious. If fiq(z) = 0 almost surely, then fens(z) = fron() + fotd(z) = frob(x) almost surely. Furthermore,
if fsa(x) = 0 then its error is lower bounded by 1 — max, Py(y). On the other hand, f,o(z) is calibrated and therefore
Bayes-optimal given z = f,op(x) so from Lemma (e.g., see the the discussion below the Lemma for more details) has
error at most 1 — max, Py(y). So we have:

EI’I‘(P(), fens) = EI‘]‘(PQ, frob) S El’I‘(Po, fstd) (133)

Note that the inequality is a strict inequality except in a degenerate case (where the probability that f,.p, predicts for the most
common class arg max,, Py(y) is the same for all inputs). O

1.4 PROOF OF PROPOSITION 4.3

Restatement of Proposition 4.3. If spurious features are anticorrelated OOD so that Pooq = Pady, then even if Paq, is
class-balanced, Erryoq (frob) < Errood (fens) < Errood (fstd)-

Proof. Let X, Y ~ Pyod, and let Z = (fd(X), frob(X)) be the predictions of the standard and robust models. Fix
z = (fstd(T), fron(x)), and let s = foa(x) and 7 = frop(x). We will analyze the errors for fixed Z = z (showing that the
robust model is better than the ensemble, which is better than the standard model). Since this is true for all z, we then use
Lemma I.1] (which is basically the law of total expectation), to get the desired result.

Bayes-opt classifier. Recall that for some ¢, 8 > 0, we have Paqy (Y = y| fsta(z)) = softmax(—/5 fsta(2)), for all x (note
the minus sign), while Paay (Y =y | frob(2)) = softmax (e frop())y. Then, applying Lemma|[1.4} we have:

Padv(y | (fstd (l‘), frob(x))) = SOftmax(O‘frob(m) - ﬁfstd (x))y (1.34)
Rewriting this in terms of z, r, s, we have:

P.av(y | z) = softmax(ar — 8s),. (1.35)

Ensemble vs. robust classifier. Let j.,, = arg max, r,, be the robust model’s prediction, and jens = arg max, (r + s), be
the ensemble model’s prediction. Because j,op, is the arg max of r, we have:

Tiuab = T ens” (1.36)
Because jens is the arg max of r + s, we have:

r.jens + Sjens > rjrob + Sjrob' (1'37)



Taking the negation of this, we get:

o = Sjrob Z " Tens — Sjens (1.38)
Adding $3 times Inequality [I.38]to (o + 3) times Inequality [1.36] we get:
arj., — B8j. = arj.. — Bsj.. (1.39)
Since softmax is monotonic, we have:
softmax(ar — 8s),,, > softmax(ar — 3s),,.. (1.40)

But from Equation[I.35]the LHS is the same as the robust model’s probability of getting the label correct, and the RHS is
the same as the ensemble’s probability of getting the label correct:

Padv(y = Jrob | Z = Z) > Padv(Y = Jens | Z = Z) (1.41)

Taking negations (to get the error), and then the expectation over Z = z, we get (note that below we write the error, which is
why the sign is now flipped):
Errood (fens) Z Errood (frob) . (1 42)

Which is what we wanted to show.

Ensemble vs. standard classifier. The argument is fairly analogous to the previous case, with some minor differences in the
algebra in the first part. Let jsq = argmax, s, be the standard model’s prediction. Because jsq is the arg max of s, we
have:

Sjud 2 Sens (1.43)
Taking the negation of this, we get:
_S.jens Z _S.jstd' (] .44)
Because jens is the arg max of r + s, we have:
rjens + Sjens Z rjstd + Sjstd ° (1'45)
Adding « times Inequality with (a + ) times Inequality .44} we get:
arjens - ﬂsjens Z arjstd - ﬁsjstd' (146)

The rest of this step is the same as in the comparison between the ensemble and the robust model. Since softmax is
monotonic, we have:

softmax(ar — Bs);,.. > softmax(ar — £s);,,-

(1.47)
But from Equation the LHS is the same as the robust model’s probability of getting the label correct, and the RHS is
the same as the ensemble’s probability of getting the label correct:

Padv(Y = Jens | Z = Z) > Padv(Y = Jstd | Z = Z) (1.48)

Taking negations (to get the error), and then the expectation over Z = z, we get (note that below we write the error, which is
why the sign is now flipped):
Errood(fstd) > Errood(fens)~ (149)

Which is what we wanted to show.

O

Dealing with class imbalance. Lemma[I.4] Equation[I.14]shows how to combine models in general, if the class-balanced
assumption does not hold. Note the additional “—m” term. Here, the (marginal) probability of each class is defined in

Equation[I.T4]
(ID Analysis) Then, the “Proof of Proposition 4.1” is identical for the general case, we just need to set fens(z) =
fstd (%) + frob(x) — m on the first line. Equation then follows from Lemmal|1.4] and the rest of the proof is identical.

(OOD Analysis) The OOD results, Proposition 4.2 and 4.3, follow if the class marginal distributions match up between
ID and OOD, so Py4(Y = y) = Pood(Y = y). If the distribution over classes changes substantially, then ensembles can
possibly do worse than the robust model.



2 MORE INFORMATION ON EXPERIMENTS

2.1 ADDITIONAL DETAILS ON DATASETS

Here we describe the robustness interventions and datasets in more detail.

Robustness interventions:

1.

In-N-Out [Xie et al.,[2021]]. Many datasets contain a core input z (image or time series data), and metadata z (e.g., loca-
tion or climate data). Xie et al.| [2021]] show that using the metadata (in addition to x) improves accuracy in-distribution
(ID), but hurts accuracy out-of-distribution. Xie et al.| [2021] consider a standard model that takes in both the core
inputs and metadata to predict the target, and a robust model that only takes in the core inputs and does some additional
pretraining. We use official checkpoints from their Codalab worksheet https://worksheets.codalab.org/
worksheets/0x2613c72d4f3f4fbb94e0a32cl7ce5£b0, and compare to the results tagged as “In-N-Out”
on each dataset. They also show results after doing additional self-training on (unlabeled) OOD data, but we do not
compare to this because 1. OOD data is assumed to be unavailable in our setting, and 2. if OOD unlabeled data is
available, we can also start from ID-calibrated ensembles and do additional self-training.

Lightweight fine-tuning [[Kumar et al.| [2022]]: When adapting a pretrained model to an ID dataset, typically all the
model parameters are fine-tuned. Recent works show that tuning only parts of the model can often do better OOD even
though the ID performance is worse [Li and Liang, 2021| [Houlsby et al., [2019]]. On four distribution shift datasets,
we take checkpoints from [Kumar et al.|[2022] where the standard model starts from a pretrained initialization and
fine-tunes all parameters on an ID dataset, and the robust model only learns the top linear ‘head’ layer.

. Zero-shot language prompting: Radford et al.| [2021]] pretrain a model on a large multi-modal language and vision

dataset. The model can then predict the label of an image by comparing the image embedding, with the language
embedding for prompts such as ‘photo of an apple’ or ‘photo of a banana’. They show that this zero-shot language
prompting approach (robust model) can be much more accurate OOD than the traditional method of fine-tuning the
entire model (standard model), although ID accuracy of the robust model is worse. We use model checkpoints and
datasets from Radford et al.|[2021]].

Group distributionally robust optimization (DRO) [Sagawa et al.| [2020]: Standard ERM models often latch on to
spurious correlations in a dataset, such as image background color, or the occurrence of certain words in a sentence.
Group DRO essentially upweights examples where this spurious correlation is not present. The original formulation
in[Sagawa et al.|[2020] assumes the spurious correlations are annotated, but newer variants [Liu et al.,[2021]] can work
even without these annotations.

CORAL [Sun and Saenko| 2016] aims to align feature representations across different domains, by penalizing
differences in the means and covariances of the feature distributions. The hope is that this generalizes better to OOD
domains.

We consider three types of natural shifts (geography shifts, subpopulation shifts, style shifts), and we also consider adversarial
spurious shifts.

Geography shifts. In geography shifts the ID data comes from some locations, and the OOD data comes from a different
set of locations. One motivation is that in many developing areas training data may be unavailable because of monetary
constraints [Jean et al., 2016]].

1.

LandCover [Rulwurm et al.,2020]: The goal is to classify a satellite images into one of 6 land types (e.g., "grassland",
"savannas"). The ID data contains images from outside Africa, and the OOD data consists of images from Africa. We
take model checkpoints from [Xie et al.[[2021]] where they use the In-N-Out intervention—the core feature x is time
series data measured by Nasa’s MODIS satellite, and the spurious metadata z consists of climate data (e.g., temperature)
at that location. We use the ID and OOD dataset splits defined by Xie et al.|[2021]].

Cropland [Wang et al.l 2020]: The goal is to predict whether a satellite image is of a cropland or not. The ID dataset
contains images from Iowa, Missouri, and Illinois, and the OOD dataset contains images from Indiana and Kentucky.
We take model checkpoints from Xie et al. [2021]] where they use the In-N-Out intervention—the core feature x is an
RGB satellite image, and the spurious metadata z consists of location coordinates and vegetation bands. We use the ID
and OOD dataset splits defined by [Xie et al.| [2021]].

iWildCam [Beery et al.l 2020l [Koh et al 2021]: The goal is to classify the species of an animal given a photo
taken by a camera placed in the wild (e.g., in a forest). The ID dataset consists of photos taken by over 200 cameras,


https://worksheets.codalab.org/worksheets/0x2613c72d4f3f4fbb94e0a32c17ce5fb0
https://worksheets.codalab.org/worksheets/0x2613c72d4f3f4fbb94e0a32c17ce5fb0

and the OOD dataset consists of photos taken by held-out cameras. We use the splits by |[Koh et al.| [2021]. We
take model checkpoints from |[Koh et al.|[2021]], where the standard model is trained via standard empirical risk
minimization (ERM), and the robust model is trained via CORAL. The model checkpoints were taken from https :
//worksheets.codalab.org/worksheets/0x036017edb3c74b0692831fadfe8cbflb.

Subpopulation shifts. In subpopulation shifts, the ID data contains a few sub-categories (e.g., black bear and sloth bear),
and the OOD data contains different sub-categories (e.g., brown bears and polar bears) or the same parent category (e.g.,
bears). For both datasets below, we take model checkpoints from [Kumar et al.[[2022] where they use the lightweight
fine-tuning intervention, starting from a MoCo-v2 ResNet-50 model pretrained on unlabeled ImageNet images. The datasets
are from |Santurkar et al.|[2020].

1. Living-17 [Santurkar et al., [2020]]: the goal is to classify an image as one of 17 animal categories such as “bear” - the
ID dataset contains images of black bears and sloth bears and the OOD dataset has images of brown bears and polar
bears.

2. Entity-30 [Santurkar et al., |2020]: similar to Living-17, except the goal is to classify an image as one of 30 entity
categories such as “food”, “motor vehicle”, and “index”.

Style shifts. In style shifts, the ID data contains data in a certain style (e.g., sketches), and the OOD data contains data in a
different style (e.g., real photos, renditions).

1. DomainNet [Peng et al.,[2019]]: a standard domain adaptation dataset. Here, our ID dataset contains “sketch” images
(e.g., drawings of apples, elephants, etc), and the OOD dataset contains “real” photos of the same categories. We take
model checkpoints from Kumar et al.| [2022] where they use the lightweight fine-tuning intervention, starting from a
CLIP ResNet-50 model.

2. CelebA [Liu et al.,2015]: the goal is to classify a portrait of a face as “male” or “female” - the ID dataset contains
images of people without hats, and the OOD dataset contains images of people wearing hats (some facial features
might be “suppressed” or “missing” with hats). We take model checkpoints from [Xie et al.|[[2021]] where they use the
In-N-Out intervention—the core feature x is the RGB image, and the spurious metadata z consists of 7 attribute tags
annotated in the dataset (e.g., presence of makeup, beard).

3. CIFAR->STL: standard domain adaptation dataset [French et al., 2018]], where the ID is CIFAR-10 [Krizhevsky,2009],
and the OOD is STL [|Coates et al.,[2011]]. The task is to classify an image into one of 10 categories such as “dog”,
“cat”, or “airplane”. We take model checkpoints from Kumar et al.|[2022] where they use the lightweight fine-tuning
intervention, starting from a MoCo-v2 ResNet-50 model pretrained on unlabeled ImageNet images.

4. ImageNet [Russakovsky et al.,|2015]: a large scale dataset where the goal is to classify an image into one of 1000
categories. We use the zero-shot language prompting intervention using a CLIP ViT-B/16 vision transformer model.
We evaluate on 3 standard OOD datasets: ImageNetV2 [Recht et al.,2019],ImageNet-R [Hendrycks et al., | 2020], and
ImageNet-Sketch [Wang et al., 2019].

Adversarial spurious shifts. In adversarial spurious shifts, the ID dataset contains a feature that is correlated with a label,
but this correlation is flipped OOD.

1. Waterbirds [Sagawa et al., [2020]]: The goal is to classify an image as a “waterbird” or “landbird”. The dataset is
synthetically constructed to have adversarially spurious features: “water”” backgrounds are correlated with “waterbird”
labels in the ID, but anticorrelated OOD. We use checkpoints from Jones et al.| [[2021]] where they use the group DRO
intervention.

2. MINLI [Williams et al.,|2018]]: The goal is to predict whether a hypothesis is entailed, contradicted by, or neutral to
an associated premise. We use the splits in [Sagawa et al.| [2020]—they partition the dataset so that in-distribution
“negation” words “nobody”, “no”, “never”, and “nothing” are correlated with the contradiction label, however in the
OOD dataset these words are anticorrelated with the contradiction label. We use checkpoints from Jones et al.| [2021]]

where they use the group DRO intervention.

3. CivilComments [Borkan et al., 2019]: The goal is to predict whether a comment is toxic or not. We use the splits
in|Sagawa et al.| [2020]—they partition the dataset where in the ID split mentions of a Christian identity are correlated
with non-toxic comments, but in the OOD split mentions of a Christian identity are correlated with a toxic comment.
We use checkpoints from Jones et al.|[2021] where they use the group DRO intervention. CivilComments is also used
in |Koh et al.|[2021]].


https://worksheets.codalab.org/worksheets/0x036017edb3c74b0692831fadfe8cbf1b
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Table 1: ID accuracies: The in-distribution accuracies of calibrated ensembles, tuned ensembles, and vanilla ensembles are
very close (within confidence intervals), so any of these methods are acceptable if we are looking at in-distribution accuracy.
However, they perform quite differently when it comes to OOD accuracy (Table 2).

Ent30 DomNet CIFARI10 Livl7 Land Crop CelebA
Logits 93.7(0.1) 89.3(0.6) 97.3(0.1) 97.1(0.2) 77.4(0.1) 955(0.1) 93.4(0.6)
Probs 93.7(0.1) 89.1(04) 97.3(0.1) 97.1(0.2) 77.4(0.2) 955(0.1) 93.4(0.6)

Tuned Logits 93.8(0.0) 91.3(0.2) 974(0.1) 97.1(0.1) 77.3(04) 95.6(0.1) 94.8(0.2)
Tuned Probs 93.8(0.1) 90.6(0.7) 974(0.1) 97.2(0.1) 77.1(0.3) 955(0.1) 95.0(0.2)
Calibrated Logits 93.7 (0.1) 91.1(0.4) 97.2(0.1) 97.2(0.2) 77.2(0.2) 95.6(0.1) 94.5(0.5)
Calibrated Probs  93.7 (0.1) 91.2(0.7) 97.2(0.1) 97.2(0.2) 77.2(0.2) 95.6(0.1) 94.5(0.5)

ImageNet iWildCam MNLI  Waterbirds Comments

Logits 82.1(-)  842() 829() 90.1(-) 90.4 (-)
Probs 82.1()  839() 829() 90.1() 90.4 (-)
Tuned Logits 827(-) 841() 83.0() 932() 92.7 (-)
Tuned Probs 823()  839() 83.0() 932() 92.6 (-)
Calibrated Logits ~ 82.0(-)  843(-) 828() 92.9() 91.4 ()
Calibrated Probs ~ 82.0(-)  84.0(-) 828()  92.9() 91.4 ()

2.2 PER-DATASET RESULTS ON ENSEMBLING ABLATIONS

In Section 6 we ablated calibrated ensembles with “tuned” ensembles where the ensemble weights are tuned on in-distribution
validation data, and with vanilla ensembles. Here, we show per-dataset results both ID (Table[T)) and OOD (Table [2)).

In Section 6, We also compared calibrated ensembles (of one standard and one robust model) with ensembles of two standard
models, and ensembles of two robust models, where for a fair comparison all models are calibrated. We ran this ablation
on 6 of the 14 datasets (Entity-30, DomainNet, CIFAR—STL, Living-17, Landcover, Cropland, and CelebA) because it
requires multiple standard and multiple robust models, which were not available or very expensive to run on large datasets
like ImageNet. Calibrated ensembles get an average ID accuracy of 91.8% (vs. 89.7% for a robust-robust ensemble and
90.7% for a standard-standard ensemble), and an average OOD accuracy of 76.5% (vs. 76.2% for a robust-robust ensemble
and 68.8% for a standard-standard ensemble). We show per-dataset results in Table (ID) and Table E] (OOD). We show
per-dataset results both ID (Table[3) and OOD (Table [4).

2.3 PER-DATASET RESULTS ON CALIBRATION AND CONFIDENCE

Relative confidence can be incorrect. We measure the confidence of a model f on a distribution P as conf(f, P) =
E.~p[max; f(z);]. Even if the models are not calibrated OOD, one intuitive intuition for why calibrated ensembles work is
that that robust model has higher confidence OOD, so that the ensemble primarily uses the (more accurate) robust model’s
predictions OOD. However, on the remote sensing dataset Landcover we find that the robust model is 6% less confident
on OOD data than the standard model even though the robust model is 5% more accurate OOD than the standard model.
Interestingly, calibrated ensembles are able to combine the models in a more fine-grained way to get the best of both worlds,
which is captured in our stylized setting in Section 4. We show the average confidence of the standard and robust models for
each dataset ID (Table[7) and OOD (Table [g).

Per-dataset results for ECE. In Section 6.2, we talked about the ECE of the standard and robust models after calibrating on
ID data. Here we show the results for each dataset ID (Table[5)) and OOD (Table[6)). We also show the ECE of the standard
and robust models before calibrating on ID data, on ID (Table[9) and on OOD (Table[I0).
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Table 2: OOD accuracies: calibrated ensembles outperform vanilla ensembles and even tuned ensembles where the
combination weights are tuned to maximize in-distribution accuracy. Averaged across the datasets, calibrated ensembles get
an OOD accuracy of 74.7%, while tuned ensembles get an accuracy of 72.1%. The in-distribution accuracies of the methods
are very close (within 0.2% of each other).

Ent30 DomNet  CIFARI10 Livl7 Land Crop CelebA
Logits 64.9 (0.3) 75.7(1.2) 87.3(0.2) 81.8(0.4) 60.5(0.8) 90.9(0.2) 76.9 (0.9
Probs 64.6 (0.4) 78.7(1.3) 87.2(0.2) 81.8(0.4) 59.5(1.0) 90.9(0.2) 76.9(0.9)

Tuned Logits 64.6 (0.6) 86.3(0.6) 85.7(0.9) 80.8(0.7) 58.7(1.2) 873(5.7) 77.5@1.3)
Tuned Probs 62.8(0.7) 86.9(0.2) 85.0(1.3) 81.6(0.5) 58.7(22) 86.8(5.5 77.6(1.7)
Calibrated Logits 65.0 (0.4) 84.4(0.3) 87.5(0.2) 82.0(04) 61.2(0.8) 91.3(0.8) 77.6(1.2)
Calibrated Probs  64.7 (0.5) 86.1(0.2) 87.3(0.2) 82.2(0.6) 60.8(0.8) 91.3(0.8) 77.6(1.2)

ImNet-R  ImNet-V2 ImNet-Sk iWildCam MNLI  Waterbirds Comments

Logits 731(¢) 737G 521()  662() T3.1() 669() 76.0 (-)
Probs 775()  T34()  520()  653() T24() 669() 76.0 (-)
Tuned Logits ~ 64.7(-)  73.6(-)  479()  66.0() 68.0(-) 88.1(-) 60.3 ()
Tuned Probs 64.0(-)  726()  455()  653() 69.4() 88.1(-) 61.5 ()
Calibrated Logits ~ 73.7(-)  73.6(-)  523()  661() 73.6() 81.1() 71.8 ()
Calibrated Probs ~ 77.9(-)  732()  523()  663() 732() 8L1() 71.8 ()

Table 3: ID accuracies: Calibrated ensembles (one standard and one robust model) achieve comparable or better performance
to Standard ensembles (ensemble of two calibrated standard models) and Robust ensembles (ensemble of two calibrated
robust models).

Ent30 DomNet CIFARI10 Livl7 Land CelebA

Std Ensemble  94.0 (0.0) 863 (0.4) 97.7(0.1) 97.0(0.3) 77.9(0.1) 91.7 (0.4)
Rob Ensemble  90.9 (0.2) 89.3(0.3) 92.0(0.0) 97.1(0.1) 73.4(0.2) 95.2(0.4)
Calensemble  93.7(0.1) 91.2(0.7) 97.2(0.1) 97.2(0.2) 77.2(0.2) 94.5(0.5)

Table 4: OOD accuracies: Calibrated ensembles (one standard and one robust model) achieve comparable or better
performance to Standard ensembles (ensemble of two calibrated standard models) and Robust ensembles (ensemble of two
calibrated robust models).

Ent30 DomNet CIFAR10 Livl7 Land CelebA

Std Ensemble  61.7(0.2) 57.9(0.2) 83.5(0.2) 78.6(0.4) 57.5(0.7) 73.7(1.1)
Rob Ensemble  63.8 (0.4) 87.5(0.1) 85.1(0.1) 82.4(0.1) 60.5(1.4) 78.0(0.6)
Cal ensemble  64.7 (0.5) 86.1(0.2) 87.3(0.2) 82.2(0.6) 60.8(0.8) 77.6(1.2)




Table 5: ID ECE: The expected calibration error (ECE) of the standard and robust models on ID test data, after post-
calibration in ID validation data. The ID calibration errors are low—note that we only use 500 examples to temperature scale,
so for ImageNet we have fewer examples than classes for post-calibration, but the models are still fairly well calibrated.

Ent30  DomNet CIFARIO  Livl7 Land Crop CelebA

Cal. Standard 0.7 (0.1) 2.0(0.3) 0.8(02) 1.3(0.2) 1.1(0.5 1.4(03) 2.7(0.4)
Cal. Robust 1.1 (0.4) 22(02) 13(02) 1.8(0.0) 1.7(03) 35(02) 1.2(0.3)

ImageNet iWildCam MNLI
Cal. Standard 1.2 (-) 3.6 (-)
Cal. Robust 23 () 1.3 ()

Waterbirds Comments

22 () 1.2 (-) 1.2 (-)
25() 0.5(¢) 8.1()

Table 6: OOD ECE: The expected calibration error (ECE) of the standard and robust models on OOD test data, after
calibrating on ID validation data. The calibration errors here are high, especially compared to the ID calibration errors in
Table E}

Ent30 DomNet CIFARI10 Livl7
Cal. Standard 15.4 (0.8) 13.6 (1.5)
Cal. Robust  14.3(1.5) 5.5(0.5)

Land Crop CelebA

56(1.1) 11.4(03) 164(0.8) 7.4(4.8) 11.5(1.0)
82(0.0) 8702 65(1.1) 50(03) 14.0(1.4)

ImNet-R  ImNet-V2 ImNet-Sk  iWildCam MNLI  Waterbirds Comments
Cal. Standard 5.4 () 4.0 (-) 10.1 (-) 3.2(-) 13.2 (-) 17.7 (-) 233 (-)
Cal. Robust 4.0 (-) 4.9 (-) 5.1(-) 2.4 (-) 4.2 (-) 5.5() 6.3 (-)

Table 7: ID Confidences: The confidence of the standard and robust models on ID test data (after calibrating on ID data).
The standard model is typically more confidence than the robust model, which is reasonable since the standard model is also
typically more accurate. There are a few exceptions such as DomainNet, CelebA, and WaterBirds where the standard model
is less confident than the robust model, but the standard model is also less accurate in these cases, so this is also reasonable.

Ent30 DomNet  CIFARI10 Livl7
Cal. Standard  93.1 (0.3) 83.7 (0.4)
Cal. Robust  89.9(0.4) 89.6(0.1)

Land Crop CelebA
96.9 (0.6) 97.0(0.2) 76.5(0.9) 955(0.4) 91.7(0.6)
91.0(0.1) 96.0(0.1) 71.3(0.5) 94.9(0.5) 94.7(0.2)

ImageNet iWildCam MNLI
Cal. Standard 82.1 (-) 82.1 ()
Cal. Robust 68.1 (-) 82.3(-)

Waterbirds Comments

82.6 (-) 87.9 () 93.6 (-)
81.9 (-) 93.2(-) 87.0 (-)




Table 8: OOD Confidences. The confidence of the standard and robust models on OOD test data (after calibrating on ID
data). The robust model is usually more confident than the standard model, which is reasonable since the robust model is

also typically more accurate. However, Landcover is a noticable exception: the robust model is less confident OOD, even
though it is more accurate (see Table 3).

Ent30 DomNet CIFAR10 Livl7 Land

Cal. Standard  76.1 (0.8) 68.9 (1.5) 87.8(1.2) 89.2(0.5) 72.0(1.9)
Cal. Robust  77.5(0.4) 92.6(0.4) 93.3(0.1) 90.8(0.2) 66.0(0.6)

Crop CelebA

92.8 (1.0) 85.5(1.5)
94.1 (0.4) 90.1(0.1)

ImNet-R  ImNet-V2 ImNet-Sk  iWildCam  MNLI

Cal. Standard ~ 57.8 (-) 75.5 (-) 50.6 (-) 59.1 (-) 77.0 (-)
Cal. Robust 74.0 (-) 64.2 (-) 53.2(-) 65.1 (-) 79.7 ()

Waterbirds Comments

78.1 () 80.1 ()
92.5 () 80.4 ()

Table 9: ID ECE. The expected calibration error (ECE) of the standard and robust models on ID test data, before calibration

(the key difference from Table []is that this is before calibration). We can see that calibration on ID substantially reduces the
ECE on ID data (see Table EI)

Ent30 DomNet CIFARIO  Livl7 Land Crop CelebA

Standard 1.0(0.1) 85(0.7) 12(0.1) 12(0.1) 67(1.2) 1.5(0.3)

5.9(0.5)
Robust  1.1(0.3) 5.8(1.3) 1.1(0.2) 3404 130.1) 35(.1) 1.8(0.2)
ImageNet iWildCam MNLI Waterbirds Comments
Standard 22(-) 109(¢)  9.0() 82 () 37(¢)
Robust 2.4(-) 2.8(-) 82(-) 14.8 (-) 10.2 (-)

Table 10: OOD ECE: The expected calibration error (ECE) of the standard and robust models on OOD test data, before
calibration (the key difference from Table|[6]is that this is before calibration). The calibration errors here are higher than the

ID calibration errors in Table[9] Comparing with Table [6](which is after calibration on ID data), we see that calibrating ID
does help OOD calibration a little, although the models still remain miscalibrated OOD.

Ent30 DomNet CIFARI10 Livl7 Land Crop CelebA

Standard 19.1(0.3) 29.5(0.5) 10.1(0.3) 11.7(0.4) 247(15) 83(4.3) 17.6(0.5)
Robust 14.3(1.6) 1.8(0.8) 84(03) 68(02) 7.1(1.3) 84(0.7) 12.7(0.7)

ImNet-R  ImNet-V2 ImNet-Sk iWildCam MNLI  Waterbirds Comments

Standard 7.9 () 6.1 () 133() 195() 227() 318() 30.0 (-)
Robust 3.9 () 52() 52() 53() 103() 104() 9.9 ()
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