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A MISSING PROOFS IN SECTION 3

Theorem 3.2. EXISTSPOSSIBLYFAIR with regard to weak
SD proportionality can be solved in polynomial time.

Proof. Theorem 7 in|Aziz et al.|[2015] showed that when
agents have strict and deterministic preferences, a weak
SD proportional allocation exists if and only if (1) m =n
and no item is least preferred by all agents, or (2) m > n.
Furthermore, when such allocation exists, it can also be
found in polynomial time.

This result allows us to derive a simple algorithm for EXIST-
SPOSSIBLYFAIR. First, when m > n, we can simply find
an arbitrary set of linear extensions and compute a corre-
sponding weak SD proportional allocation. When m = n,
we need to find a set of linear extensions in which no item
is least preferred by all agents, then compute a weak SD
proportional allocation with regard to this preference pro-
file. To find such a preference profile, we can construct a
bipartite graph between the agents and the items, such that
an edge exists if and only if the item is not least preferred by
the agent in some preference profiles. If there exists a per-
fect matching in this bipartite graph, this perfect matching
corresponds to an allocation that is weak SD proportional
with non-zero probability. If the graph does not have a per-
fect matching, because each agent has at least n — 1 edges,
by Hall’s marriage theorem [[Hall, 2009]], there must exist
one item which is least preferred by all agents in all prefer-
ence profiles. Thus, there is no allocation with non-zero fair
probability. O

Theorem 3.4. EXISTSCERTAINLYFAIR with regard to weak
SD proportionality can be solved in polynomial time when
all agents have identical preferences.

Proof. Firstly, we simplify some notions when agents have
identical preferences: we use K to represent the number of
equivalent classes and use \S; to represent the j-th equivalent
class. Then we re-number all items with indices 1 to n

such that S; = {1,...,|S1|} and S; = {fo;ll |Sk| +
1,...,> 7, |Sk|} foreach 1 < j < K. This means for all
agents, smaller-indexed items are always more preferred.

We consider the following greedy algorithm. For each agent
from 1 to n, we consider the remaining items in increasing
order of indices, and allocate them to this agent one by one,
until the current allocation met the fairness condition for
this agent with probability 1. We repeat this process until
all items are fully allocated or all agents have received their
desired bundles of items.

In the following, we show that if a certainly fair allocation
M exists in a problem instance, the above greedy algorithm
can always return such a certainly fair allocation.

Next, we perform a three-step transformation on the given
certainly fair allocation M:

* For each agent ¢, if removing the item with largest
index in her bundle can still keep her fairness condi-
tion met, we will remove that item from 7’s bundle.
Repeat this process until no items can be removed any-
more. After this step, we denote sta; as the equivalent
class the worst item in 7’s bundle belongs to. Then,
for any agent i, she could not have her fairness condi-
tion met after throwing the present worst item and all
owned items are always least preferred in their respec-
tive equivalent classes in the worst case, so there must
exist Z;t:l_l 95| < ki < 30524 9] such that agent
1 is allocated at least L% + 1] of her top k; items in
the worst case mentioned above.

* Next, we find any agent who has item o that has a larger
index than some thrown away item o', and we replace o
with o’. Again repeat this process until no such changes
can be made. We know M is still certainly fair. After
this step, the present allocation must contain exactly
all the items in [m/] for some m’ < m.

* Finally, if there exists agent ¢ and j such that the worst
item in ¢’s bundle has a larger index than the worst
items in j’s bundle, and agent ¢ also has an item o;
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with a smaller index than some item o; belonging to
agent j, we will be able to swap o; and o; while still
keeping the fairness conditions for both agents. This
obviously holds for agent j. For agent ¢, this claim is
true because o; is still not worse than the worst item
in 7’s bundle and it still holds that agent ¢ is allocated
atleast | % + 1] of her top k; items in the worst case
for that k;. Repeat this until no more exchanges can
be made. After this step, we know the allocation must
still be certainly fair and it is a consecutive partition of
[m/] for some m’ < m.

Finally, it is easy to see if there exists a consecutive partition
that is certainly fair, the allocation computed by our greedy
algorithm must be also certainly fair. O

Theorem 3.5. EXISTSCERTAINLYFAIR and HIGHESTPROB
with regard to weak SD proportionality can be solved in
polynomial time when the number of agents is constant.

Proof. Let m = gn + r, where q,r are integers and 0 <
r<n.

First, we observe that any agent who gets ¢ + 1 items is
always weak SD proportional with probability one. Thus we
can assume that no agent gets more than ¢ + 1 items in the
allocation with the highest fair probability. This also implies
that every agent gets at least ¢,, = ¢ — (n — 1 — r) items,
because otherwise the total number of allocated items will
belessthang—(n—1—r)+(n—1)(¢g+1) = gn+r =m.

If there exists some agent ¢ such that |[S; 1| < 1 - ¢, We
can choose min{|S; 1|, ¢, } items from S, 1 to be allocated
to agent ¢, which guarantees the fair condition for agent ¢
to be met with probability one. Next, we assign all other
agents g + 1 arbitrary items each and give the remaining
items back to 7. It is easy to check that this allocation is
weak SD proportional with probability one.

Now we consider the case where |.S; 1| > n - ¢,,, holds for
every agent 7 € NN. This means that the total number of
items not in the first equivalent class for any agent is no
more thann(n — 1 —7) + 7.

For each agent i, if there exists an integer 1 < j < |k;|, such
that 1+ Y2771 [Si4| > (¢ — Dnand 3741 [S54] < ¢'n
for some ¢’ < ¢ + 1, then the items in the j-th and (j + 1)-
th equivalent classes can be merged into one equivalent
class without affecting the fair probability of any allocation,
because all items in these two equivalent classes will always
have the ranking in the range between (¢’ — 1)n and ¢'n —
1. We don’t really care about the specific ranking in this
range because we can simplify the definition of weak SD
proportionality to only consider whether there exists k& €
{n—1,2n—1,...,gn—1,m} such that agent 7 is allocated
at least L% + 1] of her top k items. We repeatedly merge
such adjacent equivalent classes until none can be found.

By the end of this procedure, the total number of equivalent
classes in each agent’s preference list is no more than 1 +
2-n=1-r+1)=2(n—-r)+1.

Next, we enumerate the number of items assigned to each
agent ¢ from each equivalent class. More specifically, for
each agent 7, we first enumerate the total number of items in
her bundle and then the number C; ; of items in each S; ;
assigned to agent 7. For each set of numbers {C; ;}, we use
the following perfect matching algorithm to find candidate
allocations.

» We construct the bipartite graph G = (AUB, F) where
Ahas C; ; duplicate vertices representing the positions
for items in S; ; for each agent ¢ € [n] and each equiv-
alent class j € [k;], and B contains m vertices each
representing an item. For each duplicate vertex for .S; ;
in A and each vertex in B corresponding to the item in
S, j, there is an edge between them in F;

« If there exists a perfect matching between A and B
(which also implies |A| = |B|), we pick the alloca-
tion where each item whose corresponding vertex is
matched with one duplicate vertex for one .S; ; is as-
signed to agent ¢ and it meets our requirements.

If such allocation exists, its fair probability can be computed
using the algorithm designed for FAIRPROB. Finally, we
return the allocation with the highest fair probability.

Finally we analyze the time complexity of the above algo-
rithm. The first step takes O(nm) to enumerate each agent
and each item. Merging equivalent classes also takes O(nm)
time. Next, for the enumeration step, because each number
Ci;i <n(n—1-r)+rwhenj > 1 and the total number
of items in any bundle is between ¢ — (n — 1 —7) and ¢ + 1,
the total number of possibilities is O((n(n — 1 —r) +r +
120 (g 1=+ 14+1)") = O(n4”2+”+1). Finally,
deciding the existence of an allocation and calculating its
fair probability takes O(m?) time. Thus, the overall time
complexity of this algorithm is O(n4"" +n+1 . m;3). O

B MISSING PROOFS IN SECTION 4

Theorem 4.1. FAIRPROB with regard to SD proportionality
can be solved in polynomial time.

Proof. Similar to the case of FAIRPROB with regard to weak
SD proportionality, we can compute the fair probability
of an allocation by calculating the probability that each
agent meets the fair condition independently. We again use
dynamic programming to calculate the probability of each
1 € N satisfying the fair condition.

Fix one specific agent ¢ € N, we know there are K := k;
equivalent classes and the j-th equivalent class has s; :=
|:S;i,;| items. We first calculate the number of items owned



by ¢ in the j-th equivalent class of ¢ and we denote it by
Tj S Sj.

When calculating the fair probability of one agent, we care
only about the number of items owned by this agent ¢ among
her top s items for each integer s € [m], but not the spe-
cific ranking of any single item. Thus, we use Pyym tot,dis 10
represent the probability that there are tot items owned by
agent ¢ arranged in the top num items with a fair verifica-
tion parameter dis defined as (tot — [™™]). The purpose
of defining dis as such is to evaluate how much agent i is
ahead of her fair condition. Note that dis should never be
negative because otherwise fair condition won’t be met.

Algorithm 1 FAIRPROB Algorithm

Require:
m: number of items
n: number of agents
K: number of equivalent classes of agent ¢
s1,..., i number of items in each equivalent classes
r1,... k. number of items owned by agent ¢ in each
equivalent classes

11 Puum,tot,dis <= 0 VO < num, tot, dis < m

2: Po)oﬁo +—1

3: for num < 0tom — 1 do

4:  for tot <+ 0 to num do

5: for dis < 0 to tot do

6: if Pnum,tot,dis 7é 0 then

7: Let sta be the minimum integer such that
D jefsta) S5 = num + 1.
PrevP Pnum,tot,dis

. 2 je(sta) Ti—toOt

% P j€lsta] SjNUM

10: Let id be 1 if num is a multiple of n and
0 otherwise.

11: Pnum+1,tot+1,dis+17id += PrevP - p

12: if dis — id > 0 then

13: Prum-+1 tot dis—id += PrevP - (1 - p)

14: end if

15: end if

16: end for

17:  end for

18: end for

> jelk] i
19: return > 7<) MY e xe) 7 s

The complete algorithm is shown in Algorithm[I] The key
steps are the state transfers in Steps [Bl{I8] We define sta as
the equivalent class that the item with ranking (num + 1)
belongs to and p corresponding to the probability of the item
with ranking (num + 1) owned by 4 under the present state
in Steps We also use id to record the change of the term
[T ] in the above definition of dis when considering the

next item in Step

We consider our transfer based on the situation of whether
the next item is owned by agent . Specifically, if the next

item is owned by agent i (corresponding to Step [IT)), there
are tot + 1 items owned by ¢ arranged in the top num + 1
items and the dis’ is equal to dis+ 1 — id. On the other hand,
if the next item is not owned by ¢ (corresponding to Steps
[T2}{T4), only tot items in i’s bundle are arranged in the top
num + 1 items, and we need to keep dis nonnegative, so we
only transfer the state to P,um+1,tot,dis—id When dis —id > 0.

Finally, considering all possible amounts ahead of the fair
condition, Step [T9)returns the probability that agent ¢ meets
her fairness condition with all of her owned items. O

Theorem 4.2. EXISTSPOSSIBLYFAIR with regard to SD
proportionality can be solved in polynomial time.

Proof. |Aziz et al.|[2015]] showed how to find a fair alloca-
tion when agents have strict and deterministic preferences
with ties. We can solve this problem using a similar method.
In particular, we can use the result in |Aziz et al.| [2015]] to
show that if m mod n # 0, there does not exist a possibly
fair allocation in our setting. Therefore, we assume m = gn
for some integer g in the following. We will reduce EXIST-
SPOSSIBLYFAIR to a max-flow problem in a flow network
G. The construction is as follows.

Assume a flow network G = (V, E') with a capacity function
¢: E — RT.V consists of a source vertex s, a sink vertex
t, a vertex set Aof },c(, ki vertices representing each
equivalent class of each agent denoted by A;c(n),je[x,]> and
a vertex set B of m vertices representing each item denoted
by Bjcm]. For each A; ; € A, we create an edge (s, 4; ;)
S 1Sigl] [Zi: [Si ;] . which
n n

with capacity ¢ =
represents the quantity required to satisfy the fair condition
that: if for agent i and > 7_}|Si ;| < k < S0, Sl
agent ¢ is allocated at least [%] of her top k items. For each
vertex B; € B, we create an edge (B;,t) with capacity
¢ = 1. Next, for each 4; ; € A and each B, € B, we
construct an edge (4, ;, Bi) with capacity ¢ = 1 if and
only if the item corresponding to By, is in the first j-th
equivalent class of agent i.

If there exists a maximum flow with strength m in this flow
network GG, we can construct an allocation by assigning each
item k to the agent ¢ such that there exists one blocking edge
(A; ;, By) forone j € [k;]. In this allocation, by placing the
items owned by each agent as more preferred as possible,
we can show that it must satisfy SD proportionality.

On the other hand, if there exists a possibly fair allocation,
it must meet all capacity conditions in the flow newtork G
by successively blocking the edges pointing from .S; ; to
the items in ¢’s bundle in the increasing order of j for each
agent 4. O

Theorem 4.2. EXISTSCERTAINLYFAIR and HIGHESTPROB
with regard to SD proportionality are NP-hard.



Proof. We only prove the NP-hardness for EXISTSCER-
TAINLYFAIR and it directly implies NP-hardness for HIGH-
ESTPROB.

In order to prove the NP-hardness of EXISTSCERTAINLY-
FAIR, we reduce from the NP-hard problem denoted as
X3C|[Johnson and Garey,|1979].

X3C: Given a collection T of subsets of a set of 3s
elements S, where each subset in 7" has exactly 3 elements
in S, decide whether exists s subsets in 7" such that each
elements in S appears exactly once.

We reduce from X3C to this problem. Considering a X3C
problem instance F’ with 3s elements S = {S1,..., S35}
and t 3-sized sets T = {T7, ..., T;} where each T; contains
exactly three elements T 1, T; 2, T; 5 in S. Without loss of
generality, we suppose ¢ > 3s and s > 3. Based on F' we
construct a problem instance of EXISTSCERTAINLYFAIR
with ¢ agents and 4¢ items. Each agent ¢ € [t] corresponds
to the 3-sized set T; € T'.

The 4t items are divided into the following five sets:

¢ A set of 3s items corresponding to each element in S,
where we still denote this set as S = {S1,..., 53}
for simplifying the notations;

o Asetoftitems A = {Ay,..., A}, which is denoted
to meet the fair condition when considering only the
most preferred item of each agent;

o Three sets of size (t — s): B={DBy,...,Bi_s},C =
{C1,...,C—s}and D = {D4,...,D;_,}, which are
used to compensate the agents whose corresponding
3-sized sets are not selected.

To simplify the descriptions of the preference lists, for set
A and each agent ¢ € [t], we partition the set A — {A4;}
into 4 disjoint subsets A; |, A} 5, A} 5, A , where |A] || =
s—1,|AL | =5 —3,|A} 4| = s,|Al 4| =t — 35+ 3. The
intuition for this partition is to properly fill the items in the
end of every ¢ items.

Next, we can construct the preference lists for agents. The
preference list of agent ¢ € [¢] is:

Ai = (A1, B) = (T;) = (C, A 5) = (D, A} 3) > (others).

Here, the items in the previous term (others) contain the
items in A; ; and the items in S — T;.

We can observe that A;, (A; ;, B) form the first ¢ items, and
(T3), (C, Aj ) form the second ¢ items, while (D, A; ;) and
(others) form the third and the fourth ¢ items respectively.

If the X3C instance has a satisfying assignment, we con-
struct an allocation as following:

* For each chosen set T;, the corresponding agent ¢ picks
the items Ai, ,-Ti.,la ,_Tl"g, ﬂ73.

 For each of the remaining unselected sets 7;, items
Ai7 Bd(i)7
Co(iys Do (i) are assigned to agent 4. Here, o is a bijec-
tion from the remaining unselected sets to {1, ...,t —s}.

We can easily check the above allocation is always SD
proportional.

On the other hand, assume there is an allocation that is SD
proportional with probability one, we can also construct a
satisfying assignment for the X3C instance. First, to meet
the fair conditions, each item A; must be assigned to agent 3.
Then, among the first ¢ items, only ¢ — s items in B have not
been assigned now, which means that at leastt — (t —s) = s
agents cannot pick any item other than her corresponding
item in set A among the first ¢ items. Thus, every agent ¢ of
these s agents should pick all 3 items in their corresponding
T; to meet the fair condition certainly where agent i is
allocated at least [£] of her top k items when k = t + 1.
Further, because | S| = 3s, these s agents exactly cover all
elements in S. To summarize, the satisfying assignment for
the corresponding X3 C instance is to choose the 3-sized sets
whose corresponding agents didn’t pick any B; € B. [

C BASELINE ALGORITHMS

We explain in details about the four algorithms we test in
the experiment section.

1. BASELINE (B): We assign each item to a random agent
to get a random allocation. We repeat this process B
times to get B random allocations and choose the one
with the largest fair probability. We set B = 4m in
the experiment. We also tested our algorithm with B
increased to 8m, and did not observe any noticeable
improvement on the algorithm’s performance.

2. LOCALSEARCH (LS): Two allocations are called
neighbors if one allocation can be derived from the
other by moving one item from some agent to another
agent. In this Local Search algorithm, we start from
a random allocation and iteratively move to a neigh-
bor allocation that has a higher fair probability, until
a locally optimal allocation is reached. We repeat the
above process L times, each time with a new random
initial allocation, and choose the final allocation with
the highest fair probability. We set L = n in the experi-
ment. We also tested our algorithm with L increased to
2n, and did not observe any noticeable improvement
on the performance.

3. MATCHING (M): Since in a weak SD proportional
allocation, every agent needs to receive | - | + 1 items
with ranking not worse than r for some . We set the
value of an agent getting an item with ranking r as
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R;) -avg(i, 0). In addition, we remove all edges whose binatorial auctions with decreasing marginal utilities.
values are less than a certain threshold L. Then we find Games and Economic Behavior, 55(2):270-296, 2006.

a maximum weight matching between agents and items
and assign the item to the matched agent. Finally, we
update R; for each agent and remove all agents who
receive a total value larger than another threshold U
from consideration in future rounds. After finishing
“t + 1 rounds, we allocate the remaining items to the
agents with less than “ + 1 items arbitrarily.

In our experiment we enumerate 5 different lower
bound L from =51 j 1 o =+ J +7 + 0.1 equidistant and
11 different upper bound U from 1 down to 0.7 equidis-
tant. We run the algorithm for each pair of L and U, and
choose the allocation with the largest fair probability
among all solutions We also test the algorithm with L
higher than =5 j +7 +0.1 or with U lower than 0.7 and
do not observe significant performance improvement.

4. GREEDY (G): For each agent ¢ and item o, we adopt
notion avg(i, o) from the previous MATCHING algo-
rithm to be the average value of ¢ getting o. Then for
each agent ¢ and a set S of items, when calculating
the R; in the above MATCHING algorithm, we can
find that it’s always equal to 1 — J] (1 — avg(i, 0))
no matter in what order the items in .S are adding to
agent ¢’s bundle. Thus, we let f;(S) = min(U, 1 —
[I,cs(1 —avg(i,0))) denote the value of this agent
receiving S, where U is a threshold parameter. One
can check that f; is a submodular function, and our
question becomes a general submodular welfare max-
imization problem. We then use a greedy algorithm
from [Lehmann et al.| [2006] which always outputs a
2-approximation solution for the submodular welfare
maximization problem.

In the experiment, we run this algorithm with 11 dif-
ferent values of U from 1 down to 0.7, and choose
the allocation with the largest fair probability. We also
tested our algorithm with the value of U less than 0.7,
and found it did not improve the algorithm’s perfor-
mance.
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