Monotonicity Regularization: Improved Penalties and Novel Applications to Disentangled Representation Learning and Robust Classification

João Monteiro
Mohamed Osama Ahmed
Hossein Hajimirsadeghi
Greg Mori

1Borealis AI
2Simon Fraser University

Abstract

We study settings where gradient penalties are used alongside risk minimization with the goal of obtaining predictors satisfying different notions of monotonicity. Specifically, we present two sets of contributions. In the first part of the paper, we show that different choices of penalties define the regions of the input space where the property is observed. As such, previous methods result in models that are monotonic only in a small volume of the input space. We thus propose an approach that uses mixtures of training instances and random points to populate the space and enforce the penalty in a much larger region. As a second set of contributions, we introduce regularization strategies that enforce other notions of monotonicity in different settings. In this case, we consider applications, such as image classification and generative modeling, where monotonicity is not a hard constraint but can help improve some aspects of the model. Namely, we show that inducing monotonicity can be beneficial in applications such as: (1) allowing for controllable data generation, (2) defining strategies to detect anomalous data, and (3) generating explanations for predictions. Our proposed approaches do not introduce relevant computational overhead while leading to efficient procedures that provide extra benefits over baseline models.

1 INTRODUCTION

Highly expressive model classes such as neural networks have achieved impressive prediction performance across a broad range of supervised learning tasks [Krizhevsky et al., 2012; Graves and Jaitly, 2014; Bahdanau et al., 2014]. However, finding predictors attaining low risk on unseen data is often not enough to enable the use of such models in practice. In fact, practical applications usually have more requirements other than prediction accuracy. Hence, devising approaches that search risk minimizers satisfying practical needs led to several research threads seeking to enable the use of neural networks in real-life scenarios. Examples of such requirements include: (1) Robustness, where low risk is expected even if the model is evaluated under distribution shifts, (2) Fairness, where the performance of the model is expected to not significantly change across data sub-populations, and (3) Explainability/Interpretability, where models are expected to indicate how the features of the data imply their predictions.

In addition to the requirements mentioned above, a property commonly expected in trained models in certain applications is monotonicity with respect to some subset of the input dimensions. I.e., an increase (or decrease) along some particular dimensions strictly imply the function value will not decrease (or will not increase), provided that all other dimensions are kept fixed. As a result, the behavior of monotonic models will be more aligned with the properties that the data under consideration is believed to satisfy. For example, in the case of models used to accept/reject job applications, we expect acceptance scores to be monotonically non-decreasing with respect to features such as past years of experience of a candidate. Thus, given two applicants with exactly the same features except their years of experience, the more experienced candidate should be assigned an equal or higher chance of getting accepted. For applications where monotonicity is expected, having a predictor failing to satisfy this requirement would damage the user’s confidence. As such, different strategies have been devised in order to enable training monotonic predictors. These approaches can be divided into two main categories:

Monotonicity by construction: In this case, focus lies on defining a model class that guarantees monotonicity in all of its elements [Bakst et al., 2021; Wehenkel and Louppe, 2019; Nguyen and Martínez, 2019; You et al., 2017]. Gar-
Monotonicity via regularization: This approach is based on searching for monotonic candidates within a general class of models [Liu et al., 2020; Sivaraman et al., 2020; Gupta et al., 2019]. Such group of methods is more generally applicable and can be used, for instance, with any neural network architecture. However, they are not guaranteed to yield monotonic predictors unless extra verification/certification steps are performed, which can be computationally costly.

In addition to being a requirement as in the examples discussed above, monotonicity has been also observed to be a useful feature in certain cases. For example, it can define an effective inductive bias and improve generalization in cases where prior knowledge indicates the data generating process satisfies such property [Dugas et al., 2001]. In such cases, however, it is not necessary to satisfy the property everywhere (i.e., in the bulk of the input space), since it is enforced simply as a desirable feature of trained models rather than a design specification.

This work comprises two complementary sets of contributions, and in both cases we tackle the problem of performing empirical risk minimization over rich classes of models such as neural networks, while simultaneously searching for monotonic predictors within the set of risk minimizing solutions.

In further detail, our contributions can be summarized as follows:

1. In Section 3, we identify a limitation in previous methods and show they only enforce monotonicity either near the training data or near the boundaries of the input space. Then, we propose an efficient algorithm that tackles this problem. In particular, we modify Mixup [Zhang et al., 2018] and use it to mix data with random noise. We show that doing so helps populate the interior of the input space. With extensive evaluation on synthetic data and benchmarks, we show that the proposed strategy enforces monotonicity in a larger volume relative to previous methods in the literature.

2. In Section 4, we define different notions of monotonicity along with regularization penalties aimed at enforcing them. We show that doing so introduces useful properties in models used for applications such as generative modeling or object recognition, and does not compromise the original performance obtained without the penalties. Contrary to the discussion on the first part of the paper in Section 3, the monotonicity property is not required to be satisfied everywhere and, as such, constraints that focus only on the actual data points are proposed.

2 BACKGROUND AND RELATED WORK

We start by defining the notion of partial monotonicity used throughout the paper. Consider the standard supervised learning setting where data instances are observed in pairs \(x, y \sim \mathcal{X} \times \mathcal{Y}\), where \(\mathcal{X} \subset \mathbb{R}^d\) and \(\mathcal{Y} \subset \mathbb{R}\) correspond to the input and output spaces, respectively. Further, consider the differentiable functions \(f: \mathcal{X} \rightarrow \mathcal{Y}\), and let \(M\) indicate some subset of the input dimensions, i.e., \(M \subset \{1, \ldots, d\}\), such that \(x = \text{concat}(x_M, x_{\overline{M}})\), where \(\overline{M} = \{1, \ldots, d\} \setminus M\).

Definition 1 Partially monotonic functions relative to \(M\): We say \(f\) is monotonically non-decreasing relative to \(M\), denoted \(f_M\), if \(\min_{i \in M} \frac{\partial f(x)}{\partial x_i} \geq 0\), \(\forall x \in \mathcal{X}\).

This definition covers functions that do not decrease in value given increasing changes along a subset of the input dimensions, provided that all other dimensions are kept unchanged. Several approaches were introduced for defining model classes that have such a property. The simplest approach restricts the weights of the network to be non-negative [Archer and Wang, 1993]. However, doing so affects the prediction performance. Another approach corresponds to using lattice models [Garcia and Gupta, 2009; You et al., 2017]. In this case, models are given by interpolations in a grid defined by training data. Such a class of models can be made monotonic via the choice of the interpolation strategy and recently introduced variations [Bakst et al., 2021] scale efficiently with the dimension of the input space, but downstream applications might still require different classes of models to satisfy this type of property. For neural networks, approaches such as [Nguyen and Martinez, 2019] reparameterize fully connected layers such that the gradients with respect to parameters can only be non-negative. Wehenkel and Louppe [2019], on the other hand, consider the class of predictors \(H: \mathcal{X} \rightarrow \mathcal{Y}\) of the form \(H(x) = \int_0^t h(t)dt + H(0)\), where \(h(t)\) is a strictly positive mapping parameterized by a neural network. While such approaches guarantee monotonicity by design, they can be too restrictive or give overly complicated learning procedures. For example, the approach in [Wehenkel and Louppe, 2019] requires backpropagating through the integral. An alternative approach is based on searching over general classes of models while assigning higher importance to predictors observed to be monotonic. Similar to the case of adversarial training [Goodfellow et al., 2014], Sivaraman et al. [2020] proposed an approach to find counterexamples, i.e., pairs of points where the monotonicity constraint is violated, which are included in the training data to enforce monotonicity conditions in the next iterations of the model. However, this approach only supports fully-connected ReLU networks. Moreover, the procedure for finding the counterexamples is costly. Alternatively, Liu et al. [2020], Gupta et al. [2019] introduced point-wise regularization penalties for enforcing monotonicity, where the penalties
are estimated via sampling. While [Liu et al., 2020] use uniform random draws, [Gupta et al., 2019] apply the regularization penalty over the training instances. Both approaches have shortcomings that we seek to address.

3 AN EFFICIENT FIX FOR MONOTONICITY PENALTIES

Given the standard supervised learning setting where $\ell : \mathcal{Y}^2 \rightarrow \mathbb{R}^+$ is a loss function indicating the goodness of the predictions relative to ground truth targets, the goal is to find a predictor $h \in \mathcal{H}$ such that its expected loss – or the so-called risk – over the input space is minimized. Such an approach yields the empirical risk minimization framework once a finite sample is used to estimate the risk. However, given the extra monotonicity requirement, we consider an augmented framework where such property is further enforced. We seek the optimal monotonic predictors relative to M, h_M^*:

$$h_M^* \in \arg \min_{h \in \mathcal{H}} \mathbb{E}_{x,y \sim \mathcal{X} \times \mathcal{Y}} [\ell(h(x), y)] + \gamma \Omega(h, M), \quad (1)$$

where γ is a hyperparameter weighing the importance of the penalty $\Omega(h, M)$ which, in turn, is a measure of how monotonic the predictor h is relative to the dimensions indicated by M. $\Omega(h, M)$ can be defined by the following gradient penalty [Gupta et al., 2019; Liu et al., 2020]:

$$\Omega(h, M) = \mathbb{E}_{x \sim \mathcal{D}} \left[\sum_{i \in M} \max \left(0, -\frac{\partial h(x)}{\partial x_i} \right)^2 \right], \quad (2)$$

where $\frac{\partial h(x)}{\partial x_i}$ indicates the gradients of h relative to the input dimensions $i \in M$, which are constrained to be non-negative, rendering h monotonically non-decreasing relative to M. At this point, the only missing ingredient to define algorithms to estimate h_M^* is how to define the distribution \mathcal{D} over which the expectation in Eq. 2 is computed, discussed in the following sections.

3.1 CHOOSING DISTRIBUTIONS OVER WHICH TO COMPUTE THE PENALTY

In the following, we present and discuss two past choices for \mathcal{D}:

1) Define \mathcal{D} as the empirical distribution of the training sample: In [Gupta et al., 2019], given a training dataset of size N, in addition to using the observed data to estimate the risk, the same data is used to compute the monotonicity penalty so that:

$$\Omega_{\text{train}}(h, M) = \frac{1}{N} \sum_{k=1}^{N} \sum_{i \in M} \max \left(0, -\frac{\partial h(x^k)}{\partial x^k_i} \right)^2,$$

where x^k indicates the k-th instance within the training sample. While this choice seems natural and can be easily implemented, it only enforces monotonicity in the region where the training samples lie, which can be problematic. For example, in case of covariate-shift, the test data might lie in parts of the space different from that of the training data so monotonicity cannot be guaranteed. We thus argue that one needs to enforce the monotonicity property in a region larger than what is defined by the training data. In Appendix B, we conduct an evaluation under domain shift and show the issue to become more and more relevant with the increase in the dimension d of the input space \mathcal{X}.

2) Define $\mathcal{D} = \text{Uniform}(\mathcal{X})$: In [Liu et al., 2020], a simple strategy is defined so that Ω is computed over the random points drawn uniformly across the entire input space \mathcal{X}; i.e.:

$$\Omega_{\text{random}}(h, M) = \mathbb{E}_{x \sim \mathcal{U}(\mathcal{X})} \left[\sum_{i \in M} \max \left(0, -\frac{\partial h(x)}{\partial x_i} \right)^2 \right].$$

Despite its simplicity and ease of use, this approach has some flaws. In high-dimensional spaces, random draws from any distribution of bounded variance will likely lie in the boundaries of the space, hence far from the regions where data actually lie. Moreover, it is commonly observed that naturally occurring high-dimensional data is structured in lower-dimensional manifolds (c.f. [Fefferman et al., 2016] for an in-depth discussion on the manifold hypothesis). It is thus likely that random draws from the uniform distribution will lie nowhere near regions of space where training/testing data will be observed. We further illustrate the issue with examples in Appendix A, which can be summarized as follows: consider the cases of uniform distributions over the unit n-sphere. In such a case, the probability of a random draw lying closer to the sphere’s surface than to its center is $P(||x||_2 > \frac{1}{2}) = \frac{2^{n-1}}{\pi n}$, as given by the volume ratio of the two regions of interest. Note that $P(||x||_2 > \frac{1}{2}) \rightarrow 1$ as $n \rightarrow \infty$, which suggests the approach in [Liu et al., 2020] will only enforce monotonicity at the boundaries.

In summary, the previous approaches are either too focused on enforcing monotonicity where the training data lie, or too loose such that the monotonicity property is uniformly enforced across a large space, and the actual data manifold may be neglected. We thus propose an alternative approach where we can have some control over the volume of the input space where the monotonicity property will be enforced. Our approach uses the idea of data mixup [Zhang et al., 2018; Verma et al., 2019; Chuang and Mroueh, 2021], where auxiliary data is created via interpolations of pairs of data points, to populate areas of the space that are otherwise disregarded. Mixup was introduced by Zhang et al. [2018] with the goal of training classifiers with smooth outputs across trajectories in the input space from instances of different classes. Given a pair of data points (x', y'), (x'', y''), the method augments the training data using interpolations given by $(\lambda x' + (1 - \lambda)x'', \lambda y' + (1 - \lambda)y'')$, where λ is a parameter that controls the degree of interpolation.
where $\lambda \sim \text{Uniform}([0, 1])$. We propose a variation of this approach where data-data and noise-data pairs are mixed to define points where Ω can be estimated. Algorithm 1 describes a procedure used to compute the proposed regularization Ω_{mixup}.

We highlight the following motivations for doing so: (1) **Interpolation** of data points more densely populates the convex hull of the training data. (2) **Extrapolation** cases where mixup is performed between data points and instances obtained at random results in points that lie anywhere between the data manifold and the boundaries of the space. We thus claim that performing mixup enables the computation of Ω on parts of the space that are disregarded if one focus only on either observed data or random draws from uninformed choices of distributions such as the uniform.

Algorithm 1 Procedure to compute Ω_{mixup}.

```
Input mini-batch $X_{[N \times d]}$, model $h$, monotonic dimensions $M$

$X_{\Omega} = \{\}$  # Initialize set of points used to compute regularizer.
$X_{\Omega \sim \text{Uniform}(\mathcal{X}^N)}$  # Sample random mini-batch with size $N$.
$\tilde{X} = \text{concat}(X, X)$  # Concatenate data and random batches.

repeat
  $i, j \sim \text{Uniform}([1, 2, ..., 2N]^2)$  # Sample random pair of points.
  $\lambda \sim \text{Uniform}([0, 1])$
  $x = \lambda \tilde{X}^i + (1 - \lambda) \tilde{X}^j$  # Mix random pair.
  $X_{\Omega \text{add}}(x)$  # Add $x$ to set of regularization points.
until Maximum number of pairs reached

$\Omega_{\text{mixup}}(h, M) = \frac{1}{|X_{\Omega}|} \sum_{x \in X_{\Omega}} \sum_{i \in M} \max(0, -\frac{\partial h(x)}{\partial x_i})^2$

return $\Omega_{\text{mixup}}$
```

3.2 EVALUATION

In order to evaluate the effect of different choices of Ω, we report results on three commonly used datasets covering classification and regression settings with input spaces of different dimensions. Namely, we report results for the following datasets: **Compas**, **Loan Lending Club** and **Blog Feedback**. In Table 1, we list details on the three datasets used to evaluate our proposals as reported in Section 3.2.

Models follow the architecture in [Liu et al., 2020] using dense layers whose weights are kept separate in early layers for the input dimensions with respect to which monotonicity is to be enforced. We set the depth of all networks to 3, and use a bottleneck of size 10 for two datasets (Compas and Loan Lending Club), and 100 for the case of the Blog Feedback dataset and the experiments on generated data reported in appendix [B]. Training is carried out with the Adam optimizer [Kingma and Ba, 2014] with a global learning rate of $5e^{-3}$, and γ is set to 1e4. The training batch size is set to 256 throughout experiments.

For all evaluation cases, we consider the baseline where training is carried out without any monotonicity enforcing penalty. For the regularized cases, the different approaches used for computing Ω are as follows:

1. Ω_{random} [Liu et al., 2020] which uses random points drawn from $\text{Uniform}(\mathcal{X})$. In this case, the sample observed at each training iteration is set to a size of 1024 throughout all experiments.
2. Ω_{train} [Gupta et al., 2019] which uses the actual data observed at each training iteration; i.e., the observed mini-batch itself is used to compute Ω.
3. Ω_{mixup} (ours), in which case the penalty is computed on points generated by mixing-up points from the training data and random points. In details, for each mini-batch of size $N > 1$, we augment it with complementary random data and obtain a final mini-batch of size $2N$. Out of the $2N(2N-1)/2$ possible pairs of points, we take a random subsample of 1024 pairs to compute mixtures of instances. In this case, we use $\lambda \sim \text{Uniform}([0, 1])$ and λ is independently drawn for each pair of points.

Results are reported in terms of both prediction performance and level of monotonicity. The latter is assessed via the probability ρ of a model to not satisfy definition 1, which we estimate via the fraction $\hat{\rho}$ of points within a sample where the monotonicity constraint is violated; i.e., given a set of N data points, we compute:

$$\hat{\rho} = \frac{\sum_{k=1}^N \mathbb{1}[\min_{i \in M} \frac{\partial h(x)}{\partial x_i} < 0]}{N},$$

such that $\hat{\rho} = 0$ corresponds to monotonic models over the considered points. Moreover, in order to quantify the degree of monotonicity in different parts of the space, we estimate ρ for 3 different sets of points: (1) $\hat{\rho}_{\text{random}}$, computed on a sample drawn according to $\text{Uniform}(\mathcal{X})$. We used a sample of 10,000 points throughout the experiments. (2) $\hat{\rho}_{\text{train}}$, computed on the training data. And (3) $\hat{\rho}_{\text{test}}$, computed on the test data. Results are summarized in Table 2 in terms of both prediction performance along with the metric $\hat{\rho}$ indicating the degree of monotonicity of the predictor for each regularization strategy. Prediction performance is measured in terms of accuracy for classification tasks, and
4 APPLICATIONS OF MONOTONICITY PENALTIES

In Section 3, we presented an efficient approach to enforce monotonicity when it is a requirement. We now consider a different perspective and show that adding monotonicity constraints during training can yield extra benefits to trained models. In these cases, monotonicity is not a requirement, and hence it is not necessary for it to be satisfied everywhere. As such, the penalties we discuss from now on are computed considering only data points, and no random draws are utilized. In the following sections, we introduce notions of monotonicity that will be enforced in our models, and discuss advantages of using monotonicity for different applications such as controllable generative modelling and for the detection of anomalous data. In Appendix E, we consider a further application for cases where one’s interest is to obtain explanations from observed predictions.

4.1 DISENTANGLED REPRESENTATION LEARNING UNDER MONOTONICITY

We first consider the case of disentangled representation learning. In this case, generative approaches often assume that the latent variables are independent, and hence control over generative factors can be achieved. E.g., one can modify a specific aspect of the data by modifying the value of a specific latent variable. However, we argue that disentanglement is necessary but not sufficient to enable controllable data generation. That is, one needs latent variables that satisfy some notion of monotonicity to be able to decide their values resulting in desired properties.

For example, assume we are interested in generating images of simple geometric forms, and desire to control factors such as shape and size. In this example, even if a disentangled set of latent variables is available, we cannot decide how to change the value of the latent variable to get a bigger or a smaller object if there is no monotonic relationship between the size and the value of the corresponding latent variable. We address this issue and build upon the weakly supervised framework introduced by Locatello et al. [2020]. This work extends the popular β-VAE setting [Higgins et al., 2016] by introducing weak supervision such that the training instances are presented to the model in pairs \((x^1, x^2)\) where only one or a few generative factors are changing between each pair.

Here, we propose to apply a notion of monotonocity over the activations of the corresponding latent variables to have more controllable factors. In the VAE setting, data is assumed to be generated according to \(p(x|z)p(z)\) given the latent variables \(z\). Approximation is then performed by introducing \(p_\theta(x|z)\) and \(q_\phi(z|x)\), both parameterized by neural networks. Our goal is to have \(z\) fully factorizable in its dimensions, i.e.:

\[
p(z) = \prod_{i=1}^{\text{Dim}[z]} p(z_i),
\]

which needs to be captured by the approximate posterior distribution \(q_\phi(z|x)\). Training is performed by maximization of the following lower-bound on the data likelihood:

\[
\mathcal{L}_{ELBO} = \mathbb{E}_{x^1, x^2} \sum_{i \in \{1, 2\}} \mathbb{E}_{q_\phi(z|x^i)} \log(p_\theta(x^i|\hat{z})) - \beta D_{KL}(q_\phi(\hat{z}|x^i), p(\hat{z}))
\]
While the above objective enforces disentanglement, controllable generation requires some regularity in z so that users can decide values of z resulting in desired properties in the generated samples.

To account for that, we then introduce $\Omega_{V AE}$ to enforce such a regularity. In this case, a monotonic relationship is enforced for the distance between data pairs where only a particular generative factor vary and a corresponding latent variable. In other words, an increasing trend in the value of each dimension of z should yield a greater change in the output along a generative factor. Formally, $\Omega_{V AE}$ is defined as the following symmetric cross-entropy estimate:

$$
\Omega_{V AE} = -\frac{1}{2m} \sum_{i=1}^{m} \log e^{L(x^{i}, y^{i})} + \log \sum_{k=1}^{K} e^{L(x^{i}, y^{i}, z^{i}, k)}, \tag{7}
$$

where L is given by the gradient of the mean squared error (MSE) between images that are 1-factor away along the dimension y of z, assigned to the changing factor, i.e., for the pair x^{i} and x^{j} varying only across factor y, we have:

$$
L(x^{i}, x^{j}, y) = \frac{\partial \text{MSE}(x^{i}, x^{j})}{\partial \hat{z}_{y}}. \tag{8}
$$

In this case, \hat{x} indicates the reconstruction of x^{i}. We evaluate such an approach by training the same 4-layered convolutional VAEs described in [Higgins et al., 2016] using the 3d-shapes dataset. The dataset is composed of images containing shapes generated from 6 independent generative factors: floor color, wall color, object color, scale, shape and orientation. All combinations of these factors are present exactly once, resulting in $m = 480000$. We compared VAEs trained with and without the inclusion of the monotonicity penalty given by $\Omega_{V AE}$. We highlight that the goal of the proposed framework is not to improve over current approaches in terms of how disentangled the learned representations are. Rather, we seek to achieve similar results in that sense, but impose extra regularity and structure in the

Table 2: Evaluation results in terms of 95% confidence intervals resulting from 20 independent training runs. Results correspond to the checkpoint that obtained the best prediction performance on validation data throughout training. The lower the values of \hat{p} the better.

<table>
<thead>
<tr>
<th>Non-mon.</th>
<th>Ω_{random}</th>
<th>Ω_{train}</th>
<th>Ω_{mixup}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validation accuracy</td>
<td>69.1%±0.2%</td>
<td>68.5%±0.1%</td>
<td>68.5%±0.1%</td>
</tr>
<tr>
<td>Test accuracy</td>
<td>68.5%±0.2%</td>
<td>68.1%±0.2%</td>
<td>68.0%±0.2%</td>
</tr>
<tr>
<td>\hat{p}_{random}</td>
<td>55.45%±12.26%</td>
<td>0.01%±0.01%</td>
<td>6.41%±4.54%</td>
</tr>
<tr>
<td>\hat{p}_{train}</td>
<td>92.98%±2.70%</td>
<td>2.08%±2.21%</td>
<td>0.00%±0.00%</td>
</tr>
<tr>
<td>\hat{p}_{test}</td>
<td>92.84%±2.75%</td>
<td>2.16%±2.35%</td>
<td>0.00%±0.00%</td>
</tr>
</tbody>
</table>

The outer expectation is estimated by sampling pairs of data instances (x^{1}, x^{2}) where only a number of generative factors vary. In our experiments, we consider the case where exactly one generative factor changes across inputs. Moreover, we follow [Locatello et al., 2020] and assign the changing factor, denoted by y, to the dimension j of z such that:

$$
y = \arg \max_{j \in \text{Dim}[z]} D_{KL}(z_{j}^{1}, z_{j}^{2}). \tag{6}
$$

While the above objective enforces disentanglement, controllable generation requires some regularity in z so that users can decide values of z resulting in desired properties in the generated samples.

References:

[Locatello et al., 2020]
Figure 1: Comparisons between data generated by standard and monotonic models. On the two panels on the left, we compare generations from a linear combination of the latent code of 2 images which only differs in the object color. On the two panels vertically stacked on the right, we start from the same image but change one latent dimension at a time.

As for the results per factor, the monotonic model provides more structure in the latent space compared to the base model. This can be observed in the shape factor. The monotonic model provides a certain order: sphere, cylinder, and then cube. Visually inspecting many samples, the monotonic model is following this order for the generated shapes. This pattern is even more pronounced in the color factors. We have found that the colors generated by the monotonic model follow the order of the colours in the HUE cycle, i.e., for a given model \(h \), \(h(x) \) will yield likelihoods for each class indexed in \(\mathcal{Y} \). Under this setting, we introduce the notion of Group Monotonicity: we aim to find the models \(h \) such that the outputs corresponding to each class satisfy a monotonic relationship with a specific subset of high-level representations, given by some inner convolutional layer. Intuitively, our goal is to “reserve” groups of high-level features to activate more intensely than the remainder depending on the underlying class. Imposing such a structure can benefit the learned models via, for instance, more accurate anomaly detection.

Table 3

<table>
<thead>
<tr>
<th>Model</th>
<th>HUE structured rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base model</td>
<td>0.00%</td>
</tr>
<tr>
<td>Mon. model</td>
<td>89.44%</td>
</tr>
</tbody>
</table>

Table 3: rate of examples where colors are sorted according to hue. A large amount of the sequences generated by monotonic VAEs result in interpretable ordering.
We start our evaluation by verifying whether the group where

We then partition such a set of representations into disjoint subsets, or slices, of uniform sizes. Each subset is then paired with a particular output or class, and hence denoted by \(S_k \), \(k \in \mathcal{Y} \). An illustration is provided in Figure 2 where a generic convolutional model has the outputs of a specific layer partitioned into slices \(S_k \), which are then used to define output units over \(\mathcal{Y} \).

Definition 2 Group monotonic classifiers: We say \(h \) is group monotonic for input \(x \) and class label \(y \) if \(h(x)_y \) is partially monotonic relative to all elements in \(S_y \).

For training, we perform monotonic risk minimization as described in Eq. 1 and the risk is given by the negative log-likelihood over training points. Moreover, we design a penalty \(\Omega \) that focuses only on observed data points during training and penalizes the slices of the Jacobian corresponding to a given class, i.e., a cross-entropy criterion enforces larger gradients on the specific class slice. We highlight that in this case, unlike the discussion in Section 3, monotonicity is *not* an application requirement, and it does not need to be satisfied everywhere.

In order to formally introduce such a penalty, denoted by \(\Omega_{\text{group}} \), we first define the total gradient \(O_k \), \(k \in \mathcal{Y} \), of a slice \(S_k \) as follows:

\[
O_k(x) = \sum_{a_w \in S_k} \sum_{i,j} \frac{\partial h(x)}{\partial a_w(i,j)},
\]

where the inner sum accounts for spatial dimensions of \(a_w \). Given the set of total gradients, a batch of size \(m \), and inverse temperature \(\mu \), \(\Omega_{\text{group}} \) will be:

\[
\Omega_{\text{group}} = -\frac{1}{m} \sum_{i=1}^{m} \log \left(\frac{\sum_{k=1}^{K} e^{-\frac{O_k(x)}{\mu}}}{\sum_{k=1}^{K} e^{-\frac{O_k(x)}{\mu}}} \right).
\]

4.2.1 Assessing performance of group monotonic classifiers

We start our evaluation by verifying whether the group monotonicity property can be effectively enforced into classifiers trained on standard object recognition benchmarks. In order to do so, we verify the performance of the total activation classifier, as defined by: \(\arg \max_{k \in \mathcal{Y}} T_k(x) \), where \(T_k \) indicates the total activation on slice \(S_k \): \(T_k(x) = \sum_{a_w \in S_k} \sum_{i,j} a_w(i,j)(x) \). A good prediction performance of such a classifier serves as evidence that the group monotonicity property is satisfied by the model over the test data under consideration since it indicates the slice relative to the underlying class of test instances has the highest total activation. We thus run evaluations for both CIFAR-10 and ImageNet, and classifiers in each case correspond to WideResNets [Zagoruyko and Komodakis 2016] and ResNet-50 [He et al. 2016], respectively. Training details are presented in Appendix C.

Results are reported in Table 4 in terms of the top-1 prediction accuracy measured on the test data. We use standard classifiers as the baselines where no monotonicity penalty is applied in order to isolate the effect of the penalty. In both datasets, the total activation classifiers for group monotonic models (indicated by the prefix *mono*) are able to approximate the performance of the classifier defined at the output layer, \(\arg \max_{k \in \mathcal{Y}} h(x)_k \). This suggests that the higher total activation generally matches the predicted class for group monotonic models, which indicates the property is successfully enforced.

4.2.2 Using group monotonicity to detect anomalies

After showing that group monotonicity can be enforced successfully without significantly affecting the prediction performance, we discuss approaches to leverage it and introduce applications of the models satisfying such a property. In particular, we consider the application of detecting anomalous data instances, i.e., those where the model may have made a mistake. For example, consider the case where a classifier is deployed to production and, due to some problem external to the model, it is queried to do prediction for an input consisting of white noise. Standard classifiers would provide a prediction even for such a clearly anomalous
lous input. However, a more desirable behavior is to some-
how indicate that the instance is problematic. We claim that
imposing structure in the features, e.g., by enforcing group
monotonicity, can help in deciding when not to predict.

To evaluate the proposed method, we implement anom-
alous test instances using adversarial perturbations. Namely,
we create L_∞ PGD attackers [Madry et al., 2017] and de-
tect anomalies based on simple statistics of the features. In
details, for a given input x, we compute the normalized
entropy $H^*(x)$ of the categorical distribution defined by
the application of the softmax operator over the set of total
activations $T_Y(x)$:

$$H^*(x) = \frac{\sum_{k \in Y} p_k(x) \log p_k}{\log K},$$

where $K = |Y|$ and the set $p_Y(x)$ corresponds to the param-
eters of a categorical distribution defined by:

$$p_Y(x) = \text{softmax}(T_Y(x)).$$

Decisions can then be made by comparing $H^*(x)$ with a
threshold $\tau \in [0, 1]$, defining the detector $\mathbb{1}_{\{H^* > \tau\}}$.

We evaluate the detection performance of this approach on
both MNIST and CIFAR-10. Training for the case of CIFAR-
10 follows the same setup discussed in Section 4.2.1. For
MNIST on the other hand, we modify the standard LeNet
architecture by increasing the width of the second convolu-
tional layer from 64 to 150. This layer is then used to enforce
the group monotonicity property. The resulting model is re-
ferred to as WideLeNet. Moreover, γ and μ are set to 1e10
and 1, respectively. Adversarial attacks are created under
the white-box setting, i.e., by exposing the full model to the
attacker. The perturbation budget in terms of L_∞ distance
is set to 0.3 and $\frac{8}{255}$ for the cases of MNIST and CIFAR-
10, respectively. Detection performance is reported in Table
5 for the considered cases in terms of the area under the op-
erating curve (AUC-ROC).

The baselines are the models for which the monotonicity
penalty is not enforced. They are trained under the same
conditions and the same computation budget as the models
where the penalty is enforced. The results are as expected,
i.e., for monotonic models, test examples for which the
total activations are not structured very often correspond to
anomalous inputs.

Finally, due to space constraints, we discuss the appli-
cation of group monotonicity to explainability in appendix E.

<table>
<thead>
<tr>
<th>Model</th>
<th>AUC-ROC</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIST</td>
<td></td>
</tr>
<tr>
<td>WideLeNet</td>
<td>54.47%</td>
</tr>
<tr>
<td>MonoWideLeNet</td>
<td>100.00%</td>
</tr>
<tr>
<td>CIFAR-10</td>
<td></td>
</tr>
<tr>
<td>WideResNet</td>
<td>67.35%</td>
</tr>
<tr>
<td>MonoWideResNet</td>
<td>79.33%</td>
</tr>
</tbody>
</table>

Table 5: AUC-ROC (the higher the better) for the detection of
adversarially perturbed data instances.

Figure 2: Group monotonic convolutional model splits rep-
resentations into disjoint subsets.

5 CONCLUSION

We proposed approaches that enable learning algorithms
based on risk minimization to find solutions that satisfy
some notion of monotonicity. First, we discussed the case
where monotonicity is a design requirement that needs to be
satisfied everywhere. In this case, we identified limitations
in prior work that resulted in models satisfying the property
only in very specific parts of the space.

We then introduced an efficient procedure that was observed
to significantly improve the solutions in terms of the vol-
ume of the space where the monotonicity requirement is
achieved. In addition, we further argued that, even when
not required, models satisfying monotonicity present use-
ful properties. We studied the case of image classifiers and
generative models and showed that imposing structure in
learned representations via group monotonicity is beneficial
and can be done efficiently. In particular, monotonic vari-
aitional autoencoders were shown to yield latent spaces that
are easier to navigate since those present more regular tran-
sitions when compared to the standard generative models
under the same setting.

Acknowledgements

We would like to thank Amir Abdi and Gavin W. Ding for
their help and insightful discussions. We also thank Masoud
Hashemi for his support in preparing our code for open-
source release.
References

