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Abstract

Unsupervised domain adaptation (UDA) aims to
transfer knowledge from a model trained on a la-
beled source domain to an unlabeled target domain.
To this end, we propose in this paper a novel cy-
cle class-consistent model based on optimal trans-
port (OT) and knowledge distillation. The model
consists of two agents, a teacher and a student
cooperatively working in a cycle process under
the guidance of the distributional optimal trans-
port and distillation manner. The OT distance is
designed to bridge the gap between the distribu-
tion of the target data and a distribution over the
source class-conditional distributions. The optimal
probability matrix then provides pseudo labels to
learn a teacher that achieves a good classification
performance on the target domain. Knowledge dis-
tillation is performed in the next step in which
the teacher distills and transfers its knowledge to
the student. And finally, the student produces its
prediction for the optimal transport step. This pro-
cess forms a closed cycle in which the teacher
and student networks are simultaneously trained
to conduct transfer learning from the source to the
target domain. Extensive experiments show that
our proposed method outperforms existing meth-
ods, especially the class-aware and OT-based ones
on benchmark datasets including Office-31, Office-
Home, and ImageCLEF-DA.

1 INTRODUCTION

Unsupervised domain adaptation (UDA) allows us to trans-
fer knowledge from a model trained on a source domain
with labels to a target domain without any labels. To cope
with structural data more efficiently and effectively, deep
domain adaptation (DDA) [Ganin and Lempitsky, [2015]]

has been proposed and widely studied [[Nguyen et al., 2019,
2020, [Phung et al.||2021]]. To tackle the data shift issue and
learn domain-invariant features, DDA aims to bridge the
distribution gap between the source and target domains in a
latent space using a feature extractor. Guided by this princi-
ple, most of the existing works in DDA propose minimizing
a divergence between the source and target distributions
in the latent space. Popular choices of divergence include
the Jensen-Shannon (JS) divergence [Ganin and Lempitsky},
2015| [Tzeng et al.| 2015} [Shu et al.| 2018]], the maximum
mean discrepancy (MMD) distance [Gretton et al., 2007,
Long et al., 2015]], and the Wasserstein (WS) distance [Shen!
et al.,[2018| [Lee et al.L [2019| [Le et al., [2021al].

Recently, Optimal transport (OT) [Villani, 2008| |[Santam/{
brogio, [2015]], a powerful tool in mathematics with rich and
rigorous theories, has been widely applied in deep domain
adaptation [Courty et al., 2017bljal [Damodaran et al., | 2018],
Redko et al.l 2019, [Lee et al., 2019, Xie et al.l 2019] Xu
et al.,[2020,[Nguyen et al., 202 1albl [Le et al.,2021b, Nguyen
et al., 2021c|. From the conceptual perspective, OT-based
methods encourage the target samples to move towards the
source samples by minimizing a transportation cost. How-
ever, since the transportation cost usually engages the pairs
of target and source samples without considering label in-
formation of the source samples, the movement of the target
samples to the source domain seems to be unaware of the
class regions in that domain, hence cannot resolve the la-
bel shift issue [Tachet des Combes et al.,2020]. Although
OT has been initially used for solving this problem [Courty|
et al.| 2017bl|Damodaran et al., 2018]], the performance of
the existing methods is still less satisfactory compared with
the state-of-the-art ones.

In this paper, we propose a novel distributional OT that
enables the incorporation of the source label information
when engaging and matching target and source samples.
Specifically, in the source domain we consider that one
label is associated with a conditional distribution over all
the samples conditioned on that label. Next, we define a
distribution over these conditional distributions of all the
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labels in the source domain. In the target domain wherehis space. Popular choices of divergence include Jensen-
there are no labels, we also consider a distribution oveShannon divergence [Ganin and Lempitsky, 2015, Tzeng
all the target samples. With the two distributions for thelet al|, 2015, Shu et al., 2018]; maximum mean discrepancy
source and target domains respectively, we formulate thdistance|[Gretton et al., 2007, Long et al., 2015]; and WS
DA problem as the computation of the OT distance betweernlistance[[Shen et al., 2018, Lee etfal., 2019, Le gt al., 2021a].
the two distributions. The OT transport plan gives us theSome recent works have exploited different aspects of UDA
information of how a target sample related to the source sanfer improving the performanceé [Kurmi et &l., 2019, Wang
ples by taking into account the source domain labels. Thiet al| | 2019g, Chen etEl., 2019, Hu etlal., 2020]. Typically,
challenge here is how to de ne the cost function, which in-CADA [Kurmi et al},[2019] considered the probabilistic cer-
dicates the transport cost of OT between a target sample antdinty estimate of various regions and used these certainty
a source class-conditional distribution. To tackle this chalestimate weights for improving the classi er performance
lenge, we propose a cycle class consistency framework ion the target dataset. GSDA [Hu et al., 2020] introduced a
which we leverage the advantages of knowledge distillatiomovel method named Hierarchical Gradient Synchronization
(KD) which has recently obtained outstanding achievement$o model the synchronization relationship among the local
[Tian et all] 2020, Zhao et al., 2020, Tejankar et al., 2021dlistribution pieces and global distribution, aiming for more
Feng et al), 2021]. We name our proposed appr@aaite  precise domain-invariant features.

Class Mnsistency witlOptimal Transport andKnowledge
Distillation for Unsupervised Domain Adaptati¢@ OOK).

oo N i 2.2 OPTIMAL TRANSPORT BASED DA
In summary, our contributions in this paper include:

» We propose a novel distributional OT which seeks theo?.t'm‘."1I t(r:ansrt:)orttthleo%zfz bee[r)l appl(;ed to dtorr:alg OaldSap'
optimal matching between the target and source exan’E‘ Igl?olr(]at (I)urz)(gleg'al._[e et, I’a]Z’O 1gm§_ea;?f' Ie 26:)']% X 1
ples taking into account the source label information £ al.|f L. le Al. [2019], Xi al. [2019],/ Xu

for reducing the label and data shift, two challengingelt. al ‘d[%/?IZO]. Patrt|_cuclj§1rlty, Leefet ‘:I' [20.19](;)r0;t)_osed lrJ]smg
problems of UDA. sliced Wasserstein distance for domain adaption, whereas

Xie et al| [2019] proposed SPOT in which the optimal trans-

* We connect KD and OT to further improve the perfor-port plan is approximated by a pushforward of a reference
mance of class-aware UDA methods via proposing a cydistribution, and cast the optimal transport problem into
cle class consistency framework where the teacher ang minimax problem. Recent OT-based DA work (RWOT)
student networks cooperatively work in a distillation [Xu et all,[2020] leveraged spatial prototypical informa-
process and support to reduce the mismatch betweegbn and intra-domain structures of image data to reduce
the target distribution and the source class-conditionathe negative transfer caused by target samples near deci-
distributions. sion boundaries. Moreovér, Courty el al. [201L7b] proposed

« We conduct experiments to compare our proposed” idea to connect the theory of optimal transport and do-
COOK with the existing standard UDA methods espe_main adaptation, which later inspired an OT-based deep DA
cially class-aware UDA methods (e.g., RADA [Wang method (DeepJDOT) [Damodaran et al., 2018]. Another
et al|[2019b] and CAN [Kang et &l., 2019]), and OT- recent work (ETD)|[Li et al], 2020] tackled the bottlenecks

based UDA methods (e.g., DeepJDOT [DamodararPf OT in UDA by developing an attention-aware OT dis-
et all [2018], ETD[[Li et al; 2020], and RWOT [Xu tance to measure the domain discrepancy under the guidance

et al| | 2020]). The experimental results show that out the prediction-feedback. Our proposed approach is to-

proposed method surpasses the baselines on the bend@lly different from existing OT based DA approaches in
mark datasets includingf ce-31, Of ce-Home and which we examine an OT distance discrete distribution over

ImageCLEF-DA source class-conditional distributions and the target data
distribution. By investigating this speci ¢ OT distance and
minimizing it, we can guide target examples moving to an

2 RELATED WORK appropriate source class on the latent space for mitigating
both data and label shifts.

2.1 STANDARD DA

2.3 CLASS-AWARE DA
Deep domain adaptation has been intensively studied and
shown appealing performance in various tasks and applic&ome recent approachés [Wang €t/al., 2019b, Kang et al.,
tions, notably in Ganin and Lempitsky [2015], Long et al.2019] leverage the useful information from the label space
[2015], et al. [201]7, 2018]. The core idea of DDA is to to improve the quality of the alignment between the source
bridge the gap between source and target distributions iand target domains. Wang et al. [2019b] proposed a novel
a joint space by minimizing a divergence between distritrelationship-aware adversarial domain adaptation (RADA)
butions induced from the source and target domains iralgorithm. It rst uses a single multi-class domain discrimi-
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nator to enforce the learning of inter-class dependency struc- x3; yS |N:51 from a source domain and an unlabeled
ture during domain-adversarial training. After that, it aligns Nt

. , , : dataseD" = x{ .| from atarget domain. We assume

this structure with the inter-class dependencies that are ch%— 2 d .
acterized from training the label predictor on source domain o data exampleg'; x; 2 R® and the categorical labels
9 b yS 2 f1;2;:::;MgwhereM is the number of classes. For

Furthermore, the authors imposed a regularization term ir}! I T
. ; . the sake of notion simpli cation, we overlod® andD

order to penalize the structure discrepancy between the inter- T

. ) C oo T 1o represent the empirical joint distributions of the source

class dependencies estimated from domain discriminator

) e .
and label predictor. With this alignment, RADA makes the a.”d tgrget domains. We dendt® andP as'the data d'TQ’
fributions of the source and target domains respectively.

adversarial domain adaptation aware of the class relation- . S
Moreover, given a class, we further denot®;;, as them-

ships. Kang et al. [2019] proposed a contrastive adaptatlo% class-conditional distribution of the source domain (i.e.,

network (CAN) which optimizes a new metric modeling S . . ) o
the intra-class domain discrepancy and the inter-class d(t)r-]e distribution with the density functigpP (x jy = m)).

main discrepancy. In particular, the authors introduced a
new contrastive domain discrepancy (CDD) objective to eng 2 MOTIVATION
able class-aware UDA. CAN aims to faciliate the optimiza-

tion with CDD (eStab”Shed on maximum mean diSCfepanCM:Or our proposed approach, we consider an OT distance

(MMD) [Long et al., 2015]). of two discrete distributions. The rst one is the dis-
crete distribution whose atoms are the target examples
3 BACKGROUND xT (i.e.,x! = x{ in Eq. (1)), while the second one is

the discrete distribution whose atoms are the source class-

" e y e
In what follows, we present the background of OT for two conditional dT|§tr|Sbut.|onst (e xj = Py inEq. (1))
discrete distributions, which is uged in our work. ConsiderThe costc x; ; Py is de ned as the negative log likeli-

two discrete distributions?* = ~ M 1 . andp? = hood logpy x{ = logp® x[ jy=m .Hence, if
N 2 where 1= 1M and 2= " LN are atarget samplg/ is more likely to be a sample frof, ,
=t | x} _M =1 \ T o= the log likelihoodlogp;, x| is higher, meaning that the

probability masses,x} ,_, and x? = arethe setsof costc x;P5 = logp; X! becomes smaller. As

atoms, and, is the Dirac delta distribution concentrated shown in Figure 1, by examining the OT distance between
at the atonx. Letc xI; sz be a cost function. The OT two aforementioned distributions, we aim to nd the best

distance betweeR® and P? w.r.t. the cost functiorc is ~ Match between a given target sampfeand a source class-
de ned as conditional distributiorPs, .

XX .
min aj C Xj

2 .
A2RM N i @
+ i=1 j=1

|

whereA,= [a;] 2 RW N of non-negative glements sat-
isfying szl aj = 8i2f1:;Mgand i'\il aj =
2,8j 2f1,::Ng.

In addition, a; 2 [0;1] is interpreted as the proba-
bility to match x{ and x? or to transportx{ to x?,
which_suffers the cost xil;xj2 . Therefore, the sum
M, 1L & ¢ x{;x2 can be viewed as the total cost
to matchP! andP? or to transporP? to P2. By solving the
optimization problem in Eqg. (1), we aim to nd the optimal
transportation matrid which minimizes the total cost.

Figure 1: We consider the OT distance between two distribu-
tions: the rst one has atoms as the target examplesind
the second one has atoms as the class-conditional distribu-
tionsP%, . The cost functio(x[ ; P5,) = logps, X =
4 DISTRIBUTIONAL OPTIMAL logp® x[ jy=m .

TRANSPORT APPROACH FOR

CLASS-AWARE UDA
4.3 DISTRIBUTIONAL OPTIMAL TRANSPORT

4.1 PROBLEM FORMULATION P

We denePS = = M_ . ps, where is the Dirac
We consider the standard setting of unsupervised domaidelta distribution and the mixing proportion2 y =
adaptation in which we have a labeled dataBét = 2RM Oandk k, =1 with the number of
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classesvl . Obviously,PS is a discrete distribution of dis- 5 CYCLE CLASS CONSISTENCY

tributions whereirP S takesPS, with the probability p,. FRAMEWORK

As mentioned in the motivation section, we now examine

an OT distance betwed? andPS, we aim at matching 51 COST FUNCTION AND KNOWLEDGE

target examples to the source class-conditional distributions b |STILLATION

in which a target example is absolutely guided to match the

source class-conditional distribution corresponding to itsl’o de ne the cost functior G (x;); QS in Eq. (4), we

ground-truth label. build a classi erh® over the latent space, and rely on its out-
In the sequel, we inspect an OT distance betweermnd  put to compute the cost values. This classi er is rst trained

PS in which we de ne the cost x;;P5 to match a using the labeled source dataB§t=  x$;yS IN_Sl by
target sample; to P, as logpy, (Xi). Let us denote  minimizing the empirical loss: )
A =[am]2 RNT M as the transportation matrix wherein
aim represents the probability to match or transpgrto ¥s
P5,- The OT distance betwee® andPS w.r.t. the cost Lse= L7 GE s Gxi) ¥ (5)
functionc and the mixing proportion is de ned as: Ns ., e
Nr W where denotes a softmax function a@E represents a
We. P":PS =min aim C Xi: pa : cross-entropy loss. Recap that given a target example
A sl m=1 ¢ G(xi);Q> captures the matching extent@f(x;) and
W 1 X the class-conditional distributio®3, . Therefore, we can rea-
Qm = ——; @m = m sonably de nec G(xi); Q5 = log m h®(G(xi))
m=1 Nt i=1 (i.e., m hS(G(x;)) is the predicted probability of;

(2)  belonging to clasm by classi erhS).

However, we nd thathS is a well-trained classi er on

Similar to other DA works [Pan et al., 2008, Tzeng et al.,the source domain, and can generalize poorly on the tar-
2015, Long et al., 2017], we employ a feature extraGor g€t domain due to the data and label shifts. Therefore, in-
to map both source and target examples to a latent spag@ead of using only one classi er trained to work well on
We denoteQ®; Q" ; QS , andQS as the corresponding dis- both domains, we leverage knowledge distillation [Hinton
tributions over the latent space inducedFk?y PT: PE] , and etal., 2015, Tian et al., 2020, Tejankar et al., 2021] which
PS via the feature extractds. The OT distance in Eq. (2) includes the two-network architecture, a teadneand a
is rewritten as: studenthS. The teacheh™ aims to be an expert on the
target domain, while the studem®, which classi es accu-
Nt rately on the source domain, is also able to generalize on
We Q";Q° =min amc G(xi);Q5 : the target domain via distilling knowledge from its teacher.
AL ma1 When the generalization ability & is improved, the cost
W 1 N ¢ G(xi);Q> is computed more accurately to solve the
am = — am = m . OP in Eq. (3). Inspired by the work of Hinton et al. [2015],
i=1 we perform knowledge distillation from the teactér to
(38)  the studenh® in the target domain by minimizing a distilla-
tion lossLY w.r.t. a temperature softmax function:

To encourage the target examp&$x;) to move towards

proper class regions of the source domain, we propose solv- Nt s _ T _
ing the following optimization problem (OP): Ld = Ni CE h* (G (xi)) : h™ (G(xi) :
T =1
min W, Q" QS : (4) (6)

where is atemperature parameter. When setting 1, the
teacher and student's predictions become softer, from which
the student can capture “dark knowledge” [Hinton et al.,
2015] from the teacher and effectively mimic the teacher's
behaviour.

Withc G(x;);Q5, = logps (Xi), minimizing the OT
distance in Eq. (4) encourages the target exarGag;) to
move towards &7 (1 kM) with a high likelihood
anda; = [am ],,, inspired to be close to the corresponding The studenh® is now trained well in the source domain via

scaled one-hot vect%%lk. Here we denotdy as the Eq. (5), and is possible to generalize on the target domain
one-hot vector with th&-th element being one. via Eqg. (6). To achieve this good generalization capability,

1522



labels are incorrect, especially at the beginning of the train-
ing due to the data and label shifts between the source and
target domains. This issue also in uences the distillation
process since we aim to build a well-classi ed teadhkr

on the target domain to transfer some of its aspects (e.qg, its
“dark knowledge”) to the studem. To avoid this problem,
inspired by Yang et al. [2021], we propose only selecting
highly con dent pseudo labels (i.e., pseudo labels whose
entropies are less than a threshold) using an entropy-based

Figure 2: The proposed cycle class consistency frameworkselection method. The OP in Eg. (7) is now minimized w.r.t.

the weightsw; :
we need to produce a teacHetr that is with good clas- e
si cation performance on the target domain. To this end pl - 1 T U
: ’ Lv = — WCE h' (G(xi)) ;% ; (9
we propose minimizing a cross-entropy loss between the nr .,

teacher's prediction and pseudo labels computed via thﬁ/herewi

optimal transportation matri& after solving Eq. (3):

Xr
CE

i=1

LPl= © hT(Gx) 9 (@)

wherey' are pseudo labels for unlabeled target sample
It is worth noting that only a subset of target samples with

high-con dence pseudo labels is selected (ing.,< N 7).

In the next section, we discuss on how to compute thesBatch size and the threshdtt

pseudo labels and our framework.

5.2 PSEUDO-LABEL SELECTION AND OUR
FRAMEWORK

We now introduce the strategy to produce pseudo label
for unlabeled target samples. Let us return to the Eq. (
where directly solving this OP is computationally expensive
Hence, we instead use an entropic regularized version tQ

minimize:
Nt WM

W QT:Q° =min amc G(x); Q5

b4 N
H(A): !

m=1

P N P M
whereH (A) = i1 m=1 am logan denotes an
entropy of the transportation matrix, and is the reg-

3

= ley (¢T)<H g with I ¢ representing the indi-
cator function for gstatemef (i.e., Ic returns 1iffC is
true),H ¢ = M_| am logapm is the entropy of a
pseudo labep w.r.t. a target example;, and the threshold
H denotes the-th percentile oH ¢ .

Additionally, when training our COOK, at each iteration,

e sample a mini-batch of target examples and conger

as the distribution of latent representations corresponding to
this mini-batch. Thereforé\1 in Eq. (8) is replaced by the
denotes the-th percentile

of H ¢ inthe mini-batch.

Finally, we present our framework in Figure 2 which in-
cludes three main steps: (i) the teacher is encouraged to
be an expert on the target domain using the pseudo label-
ing technique; (ii) the teacher transfers its knowledge to
?—\e student via a distillation process to support the student
0 generalize well on the target domain; and (iii) the pre-
dicted probabilities of the student classi er are utilized for
minimizingW,..  QT; Q% using Sinkhorn algorithm, and
offering the optimal transportation matrx to compute
pseudo labels. The pseudo labels with low entropies are
selected to train the teacher at the rst step. This process
forms a closed cycle in which target samples are con dently
moved towards corresponding source class-conditional dis-
tributionsQ3, under the consistently cyclic guidance of the
key factors including the distributional optimal transport
and knowledge distillation, which motivates us to propose
our COOK.

ularization rate. During the training, we use Sinkhorn al-

gorithm [Cuturi, 2013] to solve this OP and achieke

at every mini—ba}gh. Interestingly, the solution of Eq. (8)

1

also_provides us mzl a, = or in other words,

Nt

Nt mzl a,, =1.Hence, we can de ne the pseudo label

\&T = Ntg for abgiven target sampbe; and it satis es
M9 =Nt M. a, =1.Thede nition of 9T is
then used for minimizing. P in Eq. (7).

One problem when choosing = Nta is that the per-

5.3 TRAINING PROCEDURE OF COOK

To strengtherh® for providing better predictions and ac-
celerating matching target samplg$ to source class-
conditional distributionsQS,, we enforce the clustering
assumption t&S. Inspired by applying clustering assump-
tion in domain adaptation works [Shu et al., 2018, Kumar
et al., 2018], we employ Virtual Adversarial Training (VAT)
[Miyato et al., 2019] in conjunction with minimizing en-

formance of the teaché™ can be reduced if some pseudo tropy [Grandvalet and Bengio, 2005] of the prediction of
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Figure 3: The overall architecture of our proposed method wBegea weight-sharing generator for mapping the source

and target data into the latent space. The teatheand the studerft® act in a cyclic process as described in Figure 2
where we apply pseudo labelling, knowledge distillation and enforce clustering assumption: (a) when minimizing pseudo
labelling lossL P!, target samples are encouraged to move towards the corresponding source class-conditional distributions;
(b) minimizing distillation losd. pushes the target samples closer to the source samples due to the distillation process
between predictions of the teacher and student classi ers. While minimiZitiy accelerates transporting target samples,
achieves a strong clustering, improves local smoothness and achieves the good generalizationtabititythe target
domain, from which the pseudo labels are selected with the high con dence.

hS G xT .VAT is an effective technique to improve the 1 and the overall architecture and motivation of component
local distribution robustness [Nguyen-Duc et al., 2022, Phanosses are depicted in Figure 3.

etal., 2022]. At rst, given a target sampke a perturbation

of x, which isx°that makes the student classib? give  Algorithm 1 Pseudocode for training our proposed COOK.
a different prediction fronx is chosen. And thehS is en-

. S — S.yS
forced to predict the same label ferandx®. As a result, Input: A source batbch = XY atarget
the decision boundary &f is pushed away from the target batchBT = x[ _ (bdenotes the batch size).
samplex, which achieves a better generalization ability for Output: Classi ersh® ;h" |, generatoG .
hS on the target domain. 1: for number of training iterationdo
2:  Solve the OP in Eq. (8) using Sinkhorn algorithm to
nd A .

lus — .
Lebs = e+ LYy (10) 3:  Computep ' in Eq. (9) based oA .
. ) 4:  Computew; in Eq. (9) based onl .
where withH to be the entropy, we have de ned: 5. UpdatehS: hT andG according to Eq. (11).
6

Le"® = Epr H hS(G(x)) ; . end for
LV = Epr mMaXyoyyo xke DKL hS (G (x)) ;
6 EXPERIMENTS
hS (G(xY%) ; whereDg. denotes the Kullback-

In this section, we conduct experiments on benchmark
datasets includin®f ce-31, Of ce-Home andimageCLEF-

DA to compare with existing baselines, especially OT-based
The nal optimization problem of our COOK for nding and class-aware UDA methods.

hS;h™ andG is as follows:

Leibler divergence andis a hyperparameter set to a very
small positive number.

6.1 DATASETS
min LS + Ldl + Lall + Lclus : (11) . .
hS:hT .G Of ce-31 [Saenko et al., 2010] is a well-known public
dataset used for UDA. It consists of three domains including
Amazon @A), Webcam V) and Dslr D) with 31 common
Ylasses and 4,110 images in total.

where; ; > 0 are trade-off parameters. Conveniently,
the cyclic process in Figure 2 is operated synchronously b
simultaneously updating®; h™ andG during the training.

Finally, we present the key steps of our COOK in Algorithm Of ce-Home [Venkateswara et al., 2017] is another and
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more challenging dataset for UDA which contains imagesTable 1: Mean accuracy (%) on Of ce-31 for unsupervised
from four different domains, namely Artistié\¢), Clip At~ domain adaptation (ResNet-50).
(CI), Product Pr) and Real-world image$g). This dataset

. . N . . Method AW AlD DIW W D DA W A Aug
consists of. around 15,588 images in total with 65 object—r.Neiso 682 639 967 993 625 607 64
categories in of ce and home scenes. DAN 805 786 971 996 636 628 804
DANN 82.0 79.7 96.9 99.1 68.2 67.4 822
ImageCLEF-DA [Caputo et al., 2014] includes three do- .gm 98;1-55 gg-f 32-88 10%964 7262-2 6963-8 878;-6
mains including Caltech-25&), ImageN.et ILSVRC 2012 CDAN-E 941 920 986 1000 710 €93 877
(1, and Pascal VOC 2012J, each of which has 12 classes cDAN-BSP 933 930 982 1000 736 726 885
; ; CDAN-T 957 940 987 1000 734 742 89.3
with 50 Images per class. TPN 91.2 89.9 97.7 99.5 70.5 735 871
rRevGrad+CAT  94.4 90.8 98.0 100.0 72.2 70.2 87.6
SymNets 908 939 988 1000 746 725 884
6.2 IMPLEMENTATION DETAILS DeepJDOT 889 882 985 996 721 701 86.2
ETD 921 880 1000 1000 710 693 862
RWOT 95.1 94.5 995 100.0 775 77.9 90.8
In the experiments on th®f ce-31, Of ce-Home and RADA 915 907 989 1000 715 713 87.3
ImageCLEF-DAdatasets, we use the extracted features— AN 945 950 991 998 780 77.0 906

COOK 95.1 96.2 98.3 99.9 887 86.2 94.1

(2048dimensions) from ResNet-50 [He et al., 2016]. The
generator includes a fully connected layer that outR66

dimensions. We use the same architecture for the studenpp19b], CAN [Kang et al., 2019], DeepJDOT [Damodaran

and teacher networks which consists of a fully connectegt al., 2018], ETD [Li et al., 2020], and RWOT [Xu et al.,
layer for each network. 2020].

Some hyperparameters substantially contributes to modeihe results trained 0®f ce-31 are reported in Table 1. In
performance, namely the temperaturia Eqg. (6), and the  general, our proposed method achieves high results with four
percentile in Eq. (9). As suggested in the ablation study,transfer tasks greater th@6% Except for the transfer tasks
we choose = 10:0 to effectively activate the knowledge DI W andW! D, our model signi cantly outperforms oth-
distillation process from the teacher to the student. Thexrs on almost adaptation tasks, and ob®iri % on average,
percentile is important to measure how well the studentwhich is a3:5% increase compared to the runner-up result.
hS can generalize on the target domain. We empirically nd |t is worth noting that our COOK outperforms the baselines
that = 20 or in other words, choosing tt#)-th percentile by a large margin on challenging tasks, e.gL0&% in-
of H 9T is appropriate to select high-con dence pseudocrease o>! A andW! A with a9:2% improvement, in
labels. Additionally, setting less than or equal &1 can  which the background of the training images between the
achieve better performance and we séb 0:1. We also  two domains are totally dissimilar.
select the trade-off parameterss =1:0and =0:1in . )
our experiments as suggested in the ablation studies. Ve Present the results trained i ce-Homein Table 2.
In this dataset, our COOK surpassésver 12 transfer
We apply Adam optimizer [Kingma and Ba, 2015h(=  tasks compared with the baselines and achieves the best per-
0:5; 2 =0:999 with Polyak averaging [Polyak and Judit- formance, making &:8% improvement on average. More
sky, 1992], and the learning rate is sefl® * for Of ce-31  speci cally, our model sees a remarkable improvement on
andOf ce-Home and5 10 ° for ImageCLEF-DAFor  more challenging adaptation tasks, namaly Pr (3:6%),
the baselines, we report the experimental results mentioned|! Pr (7:6%), Cl! Re (4:1%).
in the original papers. It is noticeable that in all experiments
we only train the feature extractor, and the performancéNe further evaluate our COOK omageCLEF-DAand
of COOK can be further improved when ne-tuning the report the classi cation accuracy in Table 3. Our COOK
backbone ResNet-50 is conducted. outperformst over6 transfer tasks with an average accuracy
of 90:7%, compared to ETD and RWOT witBQ:7% and
90:3%, respectively.
6.3 RESULT AND DISCUSSION

We compare our COOK with the standard baseline ResNet-

50 [He et al., 2016] and existing works including DAN 6.4 ANALYSIS

[Long et al., 2015], DANN [Ganin and Lempitsky, 2015],

RTN [Long et al., 2016], iCAN [Zhang et al., 2018], CDAN- 6.4.1 Hyperparameter Sensitivity and Quantitative

E [Long et al., 2018], CDAN-BSP [Chen et al., 2019], Evaluation

CDAN-T [Wang et al., 2019a], TPN [Pan et al., 2019],

rRevGrad+CAT [Deng et al., 2019], CADA-P [Kurmi et al., We conduct experiments to evaluate hyperparameter sen-
2019], SymNets [Zhang et al., 2019], especially class-awarsitivity and quantitative result for our proposed COOK in
DA and OT-based methods, namely RADA [Wang et al. Figure 4. Figure 4a experiences a decrease of the model per-
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