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Abstract

Unsupervised domain adaptation (UDA) aims to
transfer knowledge from a model trained on a la-
beled source domain to an unlabeled target domain.
To this end, we propose in this paper a novel cy-
cle class-consistent model based on optimal trans-
port (OT) and knowledge distillation. The model
consists of two agents, a teacher and a student
cooperatively working in a cycle process under
the guidance of the distributional optimal trans-
port and distillation manner. The OT distance is
designed to bridge the gap between the distribu-
tion of the target data and a distribution over the
source class-conditional distributions. The optimal
probability matrix then provides pseudo labels to
learn a teacher that achieves a good classification
performance on the target domain. Knowledge dis-
tillation is performed in the next step in which
the teacher distills and transfers its knowledge to
the student. And finally, the student produces its
prediction for the optimal transport step. This pro-
cess forms a closed cycle in which the teacher
and student networks are simultaneously trained
to conduct transfer learning from the source to the
target domain. Extensive experiments show that
our proposed method outperforms existing meth-
ods, especially the class-aware and OT-based ones
on benchmark datasets including Office-31, Office-
Home, and ImageCLEF-DA.

1 INTRODUCTION

Unsupervised domain adaptation (UDA) allows us to trans-
fer knowledge from a model trained on a source domain
with labels to a target domain without any labels. To cope
with structural data more efficiently and effectively, deep
domain adaptation (DDA) [Ganin and Lempitsky, 2015]

has been proposed and widely studied [Nguyen et al., 2019,
2020, Phung et al., 2021]. To tackle the data shift issue and
learn domain-invariant features, DDA aims to bridge the
distribution gap between the source and target domains in a
latent space using a feature extractor. Guided by this princi-
ple, most of the existing works in DDA propose minimizing
a divergence between the source and target distributions
in the latent space. Popular choices of divergence include
the Jensen-Shannon (JS) divergence [Ganin and Lempitsky,
2015, Tzeng et al., 2015, Shu et al., 2018], the maximum
mean discrepancy (MMD) distance [Gretton et al., 2007,
Long et al., 2015], and the Wasserstein (WS) distance [Shen
et al., 2018, Lee et al., 2019, Le et al., 2021a].

Recently, Optimal transport (OT) [Villani, 2008, Santam-
brogio, 2015], a powerful tool in mathematics with rich and
rigorous theories, has been widely applied in deep domain
adaptation [Courty et al., 2017b,a, Damodaran et al., 2018,
Redko et al., 2019, Lee et al., 2019, Xie et al., 2019, Xu
et al., 2020, Nguyen et al., 2021a,b, Le et al., 2021b, Nguyen
et al., 2021c]. From the conceptual perspective, OT-based
methods encourage the target samples to move towards the
source samples by minimizing a transportation cost. How-
ever, since the transportation cost usually engages the pairs
of target and source samples without considering label in-
formation of the source samples, the movement of the target
samples to the source domain seems to be unaware of the
class regions in that domain, hence cannot resolve the la-
bel shift issue [Tachet des Combes et al., 2020]. Although
OT has been initially used for solving this problem [Courty
et al., 2017b, Damodaran et al., 2018], the performance of
the existing methods is still less satisfactory compared with
the state-of-the-art ones.

In this paper, we propose a novel distributional OT that
enables the incorporation of the source label information
when engaging and matching target and source samples.
Specifically, in the source domain we consider that one
label is associated with a conditional distribution over all
the samples conditioned on that label. Next, we define a
distribution over these conditional distributions of all the
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labels in the source domain. In the target domain where
there are no labels, we also consider a distribution over
all the target samples. With the two distributions for the
source and target domains respectively, we formulate the
DA problem as the computation of the OT distance between
the two distributions. The OT transport plan gives us the
information of how a target sample related to the source sam-
ples by taking into account the source domain labels. The
challenge here is how to de�ne the cost function, which in-
dicates the transport cost of OT between a target sample and
a source class-conditional distribution. To tackle this chal-
lenge, we propose a cycle class consistency framework in
which we leverage the advantages of knowledge distillation
(KD) which has recently obtained outstanding achievements
[Tian et al., 2020, Zhao et al., 2020, Tejankar et al., 2021,
Feng et al., 2021]. We name our proposed approachCycle
Class COnsistency withOptimal Transport andKnowledge
Distillation for Unsupervised Domain Adaptation(COOK).
In summary, our contributions in this paper include:

• We propose a novel distributional OT which seeks the
optimal matching between the target and source exam-
ples taking into account the source label information
for reducing the label and data shift, two challenging
problems of UDA.

• We connect KD and OT to further improve the perfor-
mance of class-aware UDA methods via proposing a cy-
cle class consistency framework where the teacher and
student networks cooperatively work in a distillation
process and support to reduce the mismatch between
the target distribution and the source class-conditional
distributions.

• We conduct experiments to compare our proposed
COOK with the existing standard UDA methods, espe-
cially class-aware UDA methods (e.g., RADA [Wang
et al., 2019b] and CAN [Kang et al., 2019]), and OT-
based UDA methods (e.g., DeepJDOT [Damodaran
et al., 2018], ETD [Li et al., 2020], and RWOT [Xu
et al., 2020]). The experimental results show that our
proposed method surpasses the baselines on the bench-
mark datasets includingOf�ce-31, Of�ce-Home, and
ImageCLEF-DA.

2 RELATED WORK

2.1 STANDARD DA

Deep domain adaptation has been intensively studied and
shown appealing performance in various tasks and applica-
tions, notably in Ganin and Lempitsky [2015], Long et al.
[2015], et al. [2017, 2018]. The core idea of DDA is to
bridge the gap between source and target distributions in
a joint space by minimizing a divergence between distri-
butions induced from the source and target domains in

this space. Popular choices of divergence include Jensen-
Shannon divergence [Ganin and Lempitsky, 2015, Tzeng
et al., 2015, Shu et al., 2018]; maximum mean discrepancy
distance [Gretton et al., 2007, Long et al., 2015]; and WS
distance [Shen et al., 2018, Lee et al., 2019, Le et al., 2021a].
Some recent works have exploited different aspects of UDA
for improving the performance [Kurmi et al., 2019, Wang
et al., 2019a, Chen et al., 2019, Hu et al., 2020]. Typically,
CADA [Kurmi et al., 2019] considered the probabilistic cer-
tainty estimate of various regions and used these certainty
estimate weights for improving the classi�er performance
on the target dataset. GSDA [Hu et al., 2020] introduced a
novel method named Hierarchical Gradient Synchronization
to model the synchronization relationship among the local
distribution pieces and global distribution, aiming for more
precise domain-invariant features.

2.2 OPTIMAL TRANSPORT BASED DA

Optimal transport theory has been applied to domain adap-
tation in Courty et al. [2017b,a], Damodaran et al. [2018],
Redko et al. [2019], Lee et al. [2019], Xie et al. [2019], Xu
et al. [2020]. Particularly, Lee et al. [2019] proposed using
sliced Wasserstein distance for domain adaption, whereas
Xie et al. [2019] proposed SPOT in which the optimal trans-
port plan is approximated by a pushforward of a reference
distribution, and cast the optimal transport problem into
a minimax problem. Recent OT-based DA work (RWOT)
[Xu et al., 2020] leveraged spatial prototypical informa-
tion and intra-domain structures of image data to reduce
the negative transfer caused by target samples near deci-
sion boundaries. Moreover, Courty et al. [2017b] proposed
an idea to connect the theory of optimal transport and do-
main adaptation, which later inspired an OT-based deep DA
method (DeepJDOT) [Damodaran et al., 2018]. Another
recent work (ETD) [Li et al., 2020] tackled the bottlenecks
of OT in UDA by developing an attention-aware OT dis-
tance to measure the domain discrepancy under the guidance
of the prediction-feedback. Our proposed approach is to-
tally different from existing OT based DA approaches in
which we examine an OT distance discrete distribution over
source class-conditional distributions and the target data
distribution. By investigating this speci�c OT distance and
minimizing it, we can guide target examples moving to an
appropriate source class on the latent space for mitigating
both data and label shifts.

2.3 CLASS-AWARE DA

Some recent approaches [Wang et al., 2019b, Kang et al.,
2019] leverage the useful information from the label space
to improve the quality of the alignment between the source
and target domains. Wang et al. [2019b] proposed a novel
relationship-aware adversarial domain adaptation (RADA)
algorithm. It �rst uses a single multi-class domain discrimi-
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nator to enforce the learning of inter-class dependency struc-
ture during domain-adversarial training. After that, it aligns
this structure with the inter-class dependencies that are char-
acterized from training the label predictor on source domain.
Furthermore, the authors imposed a regularization term in
order to penalize the structure discrepancy between the inter-
class dependencies estimated from domain discriminator
and label predictor. With this alignment, RADA makes the
adversarial domain adaptation aware of the class relation-
ships. Kang et al. [2019] proposed a contrastive adaptation
network (CAN) which optimizes a new metric modeling
the intra-class domain discrepancy and the inter-class do-
main discrepancy. In particular, the authors introduced a
new contrastive domain discrepancy (CDD) objective to en-
able class-aware UDA. CAN aims to faciliate the optimiza-
tion with CDD (established on maximum mean discrepancy
(MMD) [Long et al., 2015]).

3 BACKGROUND

In what follows, we present the background of OT for two
discrete distributions, which is used in our work. Consider
two discrete distributions:P1 =

P M
i =1 � 1

i � x 1
i

andP2 =
P N

j =1 � 2
j � x 2

j
where� 1 =

�
� 1

i

� M
i =1 and� 2 =

�
� 2

j

� N

j =1
are

probability masses,
�

x1
i

	 M
i =1 and

�
x2

j

	 N

j =1
are the sets of

atoms, and� x is the Dirac delta distribution concentrated
at the atomx. Let c

�
x1

i ; x2
j

�
be a cost function. The OT

distance betweenP1 and P2 w.r.t. the cost functionc is
de�ned as

min
A 2 RM � N

+

MX

i =1

NX

j =1

aij c
�
x1

i ; x2
j

�
; (1)

whereA = [ aij ] 2 RM � N
+ of non-negative elements sat-

isfying
P N

j =1 aij = � 1
i ; 8i 2 f 1; :::; M g and

P M
i =1 aij =

� 2
j ; 8j 2 f 1; :::; N g.

In addition, aij 2 [0; 1] is interpreted as the proba-
bility to match x1

i and x2
j or to transportx1

i to x2
j ,

which suffers the costc
�
x1

i ; x2
j

�
. Therefore, the sum

P M
i =1

P N
j =1 aij c

�
x1

i ; x2
j

�
can be viewed as the total cost

to matchP1 andP2 or to transportP1 to P2. By solving the
optimization problem in Eq. (1), we aim to �nd the optimal
transportation matrixA � which minimizes the total cost.

4 DISTRIBUTIONAL OPTIMAL
TRANSPORT APPROACH FOR
CLASS-AWARE UDA

4.1 PROBLEM FORMULATION

We consider the standard setting of unsupervised domain
adaptation in which we have a labeled datasetDS =

��
xS

i ; yS
i

�	 N S

i =1 from a source domain and an unlabeled

datasetDT =
�

xT
i

	 N T

i =1 from a target domain. We assume
that data examplesxS

i ; xT
i 2 Rd and the categorical labels

yS
i 2 f 1; 2; :::; M g whereM is the number of classes. For

the sake of notion simpli�cation, we overloadDS andDT

to represent the empirical joint distributions of the source
and target domains. We denotePS andPT as the data dis-
tributions of the source and target domains respectively.
Moreover, given a classm, we further denotePS

m as them-
th class-conditional distribution of the source domain (i.e.,
the distribution with the density functionpS (x j y = m)).

4.2 MOTIVATION

For our proposed approach, we consider an OT distance
of two discrete distributions. The �rst one is the dis-
crete distribution whose atoms are the target examples
xT (i.e., x1

i = xT
i in Eq. (1)), while the second one is

the discrete distribution whose atoms are the source class-
conditional distributionsPS

m (i.e., x2
j = PS

m in Eq. (1)).
The costc

�
xT

i ; PS
m

�
is de�ned as the negative log likeli-

hood� logpS
m

�
xT

i

�
= � logpS

�
xT

i j y = m
�
. Hence, if

a target samplexT
i is more likely to be a sample fromPS

m ,
the log likelihoodlogpS

m

�
xT

i

�
is higher, meaning that the

cost c
�
xT

i ; PS
m

�
= � logpS

m

�
xT

i

�
becomes smaller. As

shown in Figure 1, by examining the OT distance between
two aforementioned distributions, we aim to �nd the best
match between a given target samplexT

i and a source class-
conditional distributionPS

m .

Figure 1: We consider the OT distance between two distribu-
tions: the �rst one has atoms as the target examplesxT and
the second one has atoms as the class-conditional distribu-
tionsPS

m . The cost functionc(xT
i ; PS

m ) = � logpS
m

�
xT

i

�
=

� logpS
�
xT

i j y = m
�
.

4.3 DISTRIBUTIONAL OPTIMAL TRANSPORT

We de�ne PS =
P M

m =1 � m � PS
m

, where � is the Dirac
delta distribution and the mixing proportion� 2 � M :=�

� 2 RM : � � 0 andk� k1 = 1
	

with the number of
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classesM . Obviously,PS is a discrete distribution of dis-
tributions whereinPS takesPS

m with the probability� m .
As mentioned in the motivation section, we now examine
an OT distance betweenPT andPS , we aim at matching
target examples to the source class-conditional distributions
in which a target example is absolutely guided to match the
source class-conditional distribution corresponding to its
ground-truth label.

In the sequel, we inspect an OT distance betweenPT and
PS in which we de�ne the costc

�
x i ; PS

m

�
to match a

target samplex i to PS
m as � logpS

m (x i ). Let us denote
A = [ aim ] 2 RN T � M as the transportation matrix wherein
aim represents the probability to match or transportx i to
PS

m . The OT distance betweenPT andPS w.r.t. the cost
functionc and the mixing proportion� is de�ned as:

Wc;�
�
PT ; PS �

= min
A

� N TX

i =1

MX

m =1

aim c
�
x i ; PS

m

�
:

MX

m =1

aim =
1

NT
;

N TX

i =1

aim = � m

�
:

(2)

Similar to other DA works [Pan et al., 2008, Tzeng et al.,
2015, Long et al., 2017], we employ a feature extractorG
to map both source and target examples to a latent space.
We denoteQS ; QT ; QS

m , andQS as the corresponding dis-
tributions over the latent space induced byPS ; PT ; PS

m , and
PS via the feature extractorG. The OT distance in Eq. (2)
is rewritten as:

Wc;�
�
QT ; QS �

= min
A

� N TX

i =1

MX

m =1

aim c
�
G (x i ) ; QS

m

�
:

MX

m =1

aim =
1

NT
;

N TX

i =1

aim = � m

�
:

(3)

To encourage the target examplesG (x i ) to move towards
proper class regions of the source domain, we propose solv-
ing the following optimization problem (OP):

min
G; �

Wc;�
�
QT ; QS �

: (4)

With c
�
G (x i ) ; QS

m

�
= � logpS

m (x i ), minimizing the OT
distance in Eq. (4) encourages the target exampleG (x i ) to
move towards aQS

k (1 � k � M ) with a high likelihood
andai = [ aim ]m inspired to be close to the corresponding
scaled one-hot vector1N T

1k . Here we denote1k as the
one-hot vector with thek-th element being one.

5 CYCLE CLASS CONSISTENCY
FRAMEWORK

5.1 COST FUNCTION AND KNOWLEDGE
DISTILLATION

To de�ne the cost functionc
�
G (x i ) ; QS

m

�
in Eq. (4), we

build a classi�erhS over the latent space, and rely on its out-
put to compute the cost values. This classi�er is �rst trained
using the labeled source datasetDS =

��
xS

i ; yS
i

�	 N S

i =1 by
minimizing the empirical loss:

L src =
1

NS

N SX

i =1

CE
�
�

�
hS (G (x i ))

�
; yS

i

�
; (5)

where� denotes a softmax function andCE represents a
cross-entropy loss. Recap that given a target examplex i ,
c

�
G (x i ) ; QS

m

�
captures the matching extent ofG (x i ) and

the class-conditional distributionQS
m . Therefore, we can rea-

sonably de�nec
�
G (x i ) ; QS

m

�
= � log � m

�
hS (G (x i ))

�

(i.e., � m
�
hS (G (x i ))

�
is the predicted probability ofx i

belonging to classm by classi�erhS ).

However, we �nd thathS is a well-trained classi�er on
the source domain, and can generalize poorly on the tar-
get domain due to the data and label shifts. Therefore, in-
stead of using only one classi�er trained to work well on
both domains, we leverage knowledge distillation [Hinton
et al., 2015, Tian et al., 2020, Tejankar et al., 2021] which
includes the two-network architecture, a teacherhT and a
studenthS . The teacherhT aims to be an expert on the
target domain, while the studenthS , which classi�es accu-
rately on the source domain, is also able to generalize on
the target domain via distilling knowledge from its teacher.
When the generalization ability ofhS is improved, the cost
c

�
G (x i ) ; QS

m

�
is computed more accurately to solve the

OP in Eq. (3). Inspired by the work of Hinton et al. [2015],
we perform knowledge distillation from the teacherhT to
the studenthS in the target domain by minimizing a distilla-
tion lossL dl w.r.t. a temperature softmax function:

L dl =
1

NT

N TX

i =1

CE
�

�
�

hS (G (x i ))
�

�
; �

�
hT (G (x i ))

�

��
;

(6)

where� is a temperature parameter. When setting� > 1, the
teacher and student's predictions become softer, from which
the student can capture “dark knowledge” [Hinton et al.,
2015] from the teacher and effectively mimic the teacher's
behaviour.

The studenthS is now trained well in the source domain via
Eq. (5), and is possible to generalize on the target domain
via Eq. (6). To achieve this good generalization capability,
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Figure 2: The proposed cycle class consistency framework.

we need to produce a teacherhT that is with good clas-
si�cation performance on the target domain. To this end,
we propose minimizing a cross-entropy loss between the
teacher's prediction and pseudo labels computed via the
optimal transportation matrixA � after solving Eq. (3):

L pl =
1

nT

n TX

i =1

CE
�
�

�
hT (G (x i ))

�
; ŷT

i

�
; (7)

whereŷT are pseudo labels for unlabeled target samples.
It is worth noting that only a subset of target samples with
high-con�dence pseudo labels is selected (i.e.,nT < N T ).
In the next section, we discuss on how to compute these
pseudo labels and our framework.

5.2 PSEUDO-LABEL SELECTION AND OUR
FRAMEWORK

We now introduce the strategy to produce pseudo labels
for unlabeled target samples. Let us return to the Eq. (3)
where directly solving this OP is computationally expensive.
Hence, we instead use an entropic regularized version to
minimize:

W �
c;�

�
QT ; QS �

= min
A

� N TX

i =1

MX

m =1

aim c
�
G (x i ) ; QS

m

�

� �H (A) :
MX

m =1

aim =
1

NT
;

N TX

i =1

aim = � m

�
; (8)

whereH (A) := �
P N T

i =1

P M
m =1 aim logaim denotes an

entropy of the transportation matrixA, and� is the reg-
ularization rate. During the training, we use Sinkhorn al-
gorithm [Cuturi, 2013] to solve this OP and achieveA �

at every mini-batch. Interestingly, the solution of Eq. (8)
also provides us

P M
m =1 a�

im = 1
N T

or in other words,

NT
P M

m =1 a�
im = 1 . Hence, we can de�ne the pseudo label

ŷT
i := NT a�

i for a given target samplex i and it satis�es
P M

m =1 ŷT
im = NT

P M
m =1 a�

im = 1 . The de�nition of ŷT
i is

then used for minimizingL pl in Eq. (7).

One problem when choosinĝyT
i := NT a�

i is that the per-
formance of the teacherhT can be reduced if some pseudo

labels are incorrect, especially at the beginning of the train-
ing due to the data and label shifts between the source and
target domains. This issue also in�uences the distillation
process since we aim to build a well-classi�ed teacherhT

on the target domain to transfer some of its aspects (e.g, its
“dark knowledge”) to the studenthS . To avoid this problem,
inspired by Yang et al. [2021], we propose only selecting
highly con�dent pseudo labels (i.e., pseudo labels whose
entropies are less than a threshold) using an entropy-based
selection method. The OP in Eq. (7) is now minimized w.r.t.
the weightswi :

L pl
w =

1
nT

n TX

i =1

wi CE
�
�

�
hT (G (x i ))

�
; ŷT

i

�
; (9)

wherewi = I f H ( ŷT
i )<H � g with IC representing the indi-

cator function for a statementC (i.e., IC returns 1 iffC is
true),H

�
ŷT

i

�
:= �

P M
m =1 aim logaim is the entropy of a

pseudo label̂yT
i w.r.t. a target examplex i , and the threshold

H � denotes the� -th percentile ofH
�
ŷT

i

�
.

Additionally, when training our COOK, at each iteration,
we sample a mini-batch of target examples and considerQT

as the distribution of latent representations corresponding to
this mini-batch. Therefore,NT in Eq. (8) is replaced by the
batch size and the thresholdH � denotes the� -th percentile
of H

�
ŷT

i

�
in the mini-batch.

Finally, we present our framework in Figure 2 which in-
cludes three main steps: (i) the teacher is encouraged to
be an expert on the target domain using the pseudo label-
ing technique; (ii) the teacher transfers its knowledge to
the student via a distillation process to support the student
to generalize well on the target domain; and (iii) the pre-
dicted probabilities of the student classi�er are utilized for
minimizing W �

c;�

�
QT ; QS

�
using Sinkhorn algorithm, and

offering the optimal transportation matrixA � to compute
pseudo labels. The pseudo labels with low entropies are
selected to train the teacher at the �rst step. This process
forms a closed cycle in which target samples are con�dently
moved towards corresponding source class-conditional dis-
tributionsQS

m under the consistently cyclic guidance of the
key factors including the distributional optimal transport
and knowledge distillation, which motivates us to propose
our COOK.

5.3 TRAINING PROCEDURE OF COOK

To strengthenhS for providing better predictions and ac-
celerating matching target samplesxT to source class-
conditional distributionsQS

m , we enforce the clustering
assumption tohS . Inspired by applying clustering assump-
tion in domain adaptation works [Shu et al., 2018, Kumar
et al., 2018], we employ Virtual Adversarial Training (VAT)
[Miyato et al., 2019] in conjunction with minimizing en-
tropy [Grandvalet and Bengio, 2005] of the prediction of
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Figure 3: The overall architecture of our proposed method whereG is a weight-sharing generator for mapping the source
and target data into the latent space. The teacherhT and the studenthS act in a cyclic process as described in Figure 2
where we apply pseudo labelling, knowledge distillation and enforce clustering assumption: (a) when minimizing pseudo
labelling lossL pl

w , target samples are encouraged to move towards the corresponding source class-conditional distributions;
(b) minimizing distillation lossL dl pushes the target samples closer to the source samples due to the distillation process
between predictions of the teacher and student classi�ers. While minimizingL clus accelerates transporting target samples,
achieves a strong clustering, improves local smoothness and achieves the good generalization ability ofhS on the target
domain, from which the pseudo labels are selected with the high con�dence.

hS
�
G

�
xT

��
. VAT is an effective technique to improve the

local distribution robustness [Nguyen-Duc et al., 2022, Phan
et al., 2022]. At �rst, given a target samplex, a perturbation
of x, which isx0 that makes the student classi�erhS give
a different prediction fromx is chosen. And thenhS is en-
forced to predict the same label forx andx0. As a result,
the decision boundary ofhS is pushed away from the target
samplex, which achieves a better generalization ability for
hS on the target domain.

L clus = L ent + L vat ; (10)

where withH to be the entropy, we have de�ned:

L ent = EPT

�
H

�
�

�
hS (G (x))

���
;

L vat = EPT

�
maxx 0:kx 0� x k<� DKL

�
�

�
hS (G (x))

�
;

�
�
hS (G (x0))

�
��

; where DKL denotes the Kullback-

Leibler divergence and� is a hyperparameter set to a very
small positive number.

The �nal optimization problem of our COOK for �nding
hS ; hT andG is as follows:

min
hS ;h T ;G

�
L src + � L dl + � L pl

w + 
 L clus 	
; (11)

where�; �; 
 > 0 are trade-off parameters. Conveniently,
the cyclic process in Figure 2 is operated synchronously by
simultaneously updatinghS ; hT andG during the training.
Finally, we present the key steps of our COOK in Algorithm

1 and the overall architecture and motivation of component
losses are depicted in Figure 3.

Algorithm 1 Pseudocode for training our proposed COOK.

Input: A source batchBS =
��

xS
i ; yS

i

�	 b
i =1 , a target

batchBT =
�

xT
j

	 b

j =1
(bdenotes the batch size).

Output: Classi�ershS� ; hT � , generatorG� .
1: for number of training iterationsdo
2: Solve the OP in Eq. (8) using Sinkhorn algorithm to

�nd A � .
3: Computeŷi

T in Eq. (9) based onA � .
4: Computewi in Eq. (9) based onH � .
5: UpdatehS ; hT andG according to Eq. (11).
6: end for

6 EXPERIMENTS

In this section, we conduct experiments on benchmark
datasets includingOf�ce-31, Of�ce-Home, andImageCLEF-
DA to compare with existing baselines, especially OT-based
and class-aware UDA methods.

6.1 DATASETS

Of�ce-31 [Saenko et al., 2010] is a well-known public
dataset used for UDA. It consists of three domains including
Amazon (A), Webcam (W) and Dslr (D) with 31 common
classes and 4,110 images in total.

Of�ce-Home [Venkateswara et al., 2017] is another and
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more challenging dataset for UDA which contains images
from four different domains, namely Artistic (Ar ), Clip Art
(Cl), Product (Pr) and Real-world images (Re). This dataset
consists of around 15,588 images in total with 65 object
categories in of�ce and home scenes.

ImageCLEF-DA [Caputo et al., 2014] includes three do-
mains including Caltech-256 (C), ImageNet ILSVRC 2012
(I ), and Pascal VOC 2012 (P), each of which has 12 classes
with 50 images per class.

6.2 IMPLEMENTATION DETAILS

In the experiments on theOf�ce-31, Of�ce-Home and
ImageCLEF-DAdatasets, we use the extracted features
(2048dimensions) from ResNet-50 [He et al., 2016]. The
generator includes a fully connected layer that outputs256
dimensions. We use the same architecture for the student
and teacher networks which consists of a fully connected
layer for each network.

Some hyperparameters substantially contributes to model
performance, namely the temperature� in Eq. (6), and the
percentile� in Eq. (9). As suggested in the ablation study,
we choose� = 10:0 to effectively activate the knowledge
distillation process from the teacher to the student. The
percentile� is important to measure how well the student
hS can generalize on the target domain. We empirically �nd
that� = 20 or in other words, choosing the20-th percentile
of H

�
ŷT

i

�
is appropriate to select high-con�dence pseudo

labels. Additionally, setting� less than or equal to0:1 can
achieve better performance and we set� to 0:1. We also
select the trade-off parameters� = � = 1 :0 and
 = 0 :1 in
our experiments as suggested in the ablation studies.

We apply Adam optimizer [Kingma and Ba, 2015] (� 1 =
0:5; � 2 = 0 :999) with Polyak averaging [Polyak and Judit-
sky, 1992], and the learning rate is set to10� 4 for Of�ce-31
andOf�ce-Home, and5 � 10� 5 for ImageCLEF-DA. For
the baselines, we report the experimental results mentioned
in the original papers. It is noticeable that in all experiments,
we only train the feature extractor, and the performance
of COOK can be further improved when �ne-tuning the
backbone ResNet-50 is conducted.

6.3 RESULT AND DISCUSSION

We compare our COOK with the standard baseline ResNet-
50 [He et al., 2016] and existing works including DAN
[Long et al., 2015], DANN [Ganin and Lempitsky, 2015],
RTN [Long et al., 2016], iCAN [Zhang et al., 2018], CDAN-
E [Long et al., 2018], CDAN-BSP [Chen et al., 2019],
CDAN-T [Wang et al., 2019a], TPN [Pan et al., 2019],
rRevGrad+CAT [Deng et al., 2019], CADA-P [Kurmi et al.,
2019], SymNets [Zhang et al., 2019], especially class-aware
DA and OT-based methods, namely RADA [Wang et al.,

Table 1: Mean accuracy (%) on Of�ce-31 for unsupervised
domain adaptation (ResNet-50).

Method A! W A! D D! W W! D D! A W! A Avg
ResNet-50 68.4 68.9 96.7 99.3 62.5 60.7 76.1

DAN 80.5 78.6 97.1 99.6 63.6 62.8 80.4
DANN 82.0 79.7 96.9 99.1 68.2 67.4 82.2
RTN 84.5 77.5 96.8 99.4 66.2 64.8 81.6
iCAN 92.5 90.1 98.8 100.0 72.1 69.9 87.2

CDAN-E 94.1 92.9 98.6 100.0 71.0 69.3 87.7
CDAN-BSP 93.3 93.0 98.2 100.0 73.6 72.6 88.5

CDAN-T 95.7 94.0 98.7 100.0 73.4 74.2 89.3
TPN 91.2 89.9 97.7 99.5 70.5 73.5 87.1

rRevGrad+CAT 94.4 90.8 98.0 100.0 72.2 70.2 87.6
SymNets 90.8 93.9 98.8 100.0 74.6 72.5 88.4

DeepJDOT 88.9 88.2 98.5 99.6 72.1 70.1 86.2
ETD 92.1 88.0 100.0 100.0 71.0 69.3 86.2

RWOT 95.1 94.5 99.5 100.0 77.5 77.9 90.8
RADA 91.5 90.7 98.9 100.0 71.5 71.3 87.3
CAN 94.5 95.0 99.1 99.8 78.0 77.0 90.6

COOK 95.1 96.2 98.3 99.9 88.7 86.2 94.1

2019b], CAN [Kang et al., 2019], DeepJDOT [Damodaran
et al., 2018], ETD [Li et al., 2020], and RWOT [Xu et al.,
2020].

The results trained onOf�ce-31 are reported in Table 1. In
general, our proposed method achieves high results with four
transfer tasks greater than95%. Except for the transfer tasks
D! W andW! D, our model signi�cantly outperforms oth-
ers on almost adaptation tasks, and obtain94:1%on average,
which is a3:5% increase compared to the runner-up result.
It is worth noting that our COOK outperforms the baselines
by a large margin on challenging tasks, e.g., a10:7% in-
crease onD! A andW! A with a 9:2% improvement, in
which the background of the training images between the
two domains are totally dissimilar.

We present the results trained onOf�ce-Homein Table 2.
In this dataset, our COOK surpasses7 over 12 transfer
tasks compared with the baselines and achieves the best per-
formance, making a2:8% improvement on average. More
speci�cally, our model sees a remarkable improvement on
more challenging adaptation tasks, namelyAr ! Pr (3:6%),
Cl! Pr (7:6%), Cl! Re (4:1%).

We further evaluate our COOK onImageCLEF-DAand
report the classi�cation accuracy in Table 3. Our COOK
outperforms4 over6 transfer tasks with an average accuracy
of 90:7%, compared to ETD and RWOT with89:7% and
90:3%, respectively.

6.4 ANALYSIS

6.4.1 Hyperparameter Sensitivity and Quantitative
Evaluation

We conduct experiments to evaluate hyperparameter sen-
sitivity and quantitative result for our proposed COOK in
Figure 4. Figure 4a experiences a decrease of the model per-
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