
Understanding and Mitigating the Limitations of Prioritized Experience Replay
(Supplementary material)

Yangchen Pan1,3 Jincheng Mei*1 Amir-massoud Farahmand2,4 Martha White1,4

Hengshuai Yao1 Mohsen Rohani3 Jun Luo3

1University of Alberta
2University of Toronto & Vector Institute

3Huawei Noah’s Ark Lab
4CIFAR AI Chair

1 APPENDIX

The appendix includes the following contents:

1. Section 1.1: background in Dyna architecture and two Dyna variants.

2. Section 1.2: background of Langevin dynamics.

3. Section 1.3: the full proof of Theorem 1.

4. Section 1.4: the full proof of Theorem 2 and its simulations.

5. Section 1.5: the theorem characterizing the error bound between the sampling distribution estimated by using a true
model and a learned model. It includes the full proof.

6. Section 1.6: a discussion and some empirical study of using high power objectives.

7. Section 1.7: supplementary experimental results: training error results to check the negative effects of the limitations
of prioritized sampling; results to verify the equivalence between prioritized sampling and cubic power; additional
results on the discrete control domains 1.7.3; results on the autonomous driving application; results on MazeGridWorld
from Pan et al. [2020].

8. Section 1.8: details for reproducible research.

1.1 BACKGROUND IN DYNA

Dyna integrates model-free and model-based policy updates in an online RL setting [Sutton, 1990]. As shown in Algorithm 1,
at each time step, a Dyna agent uses the real experience to learn a model and performs a model-free policy update. During
the planning stage, simulated experiences are acquired from the model to further improve the policy. It should be noted that,
in Dyna, the concept of planning refers to any computational process which leverages a model to improve policy, according
to Sutton and Barto [2018], Chapter 8. The mechanism of generating states or state-action pairs from which to query the
model is called search-control, which is of critical importance to improving sample efficiency. The below algorithm shows a
naive search-control strategy: simply use visited state-action pairs and store them into the search-control queue. During the
planning stage, these pairs are uniformly sampled according to the original paper.

The recent works by Pan et al. [2019, 2020] propose two search-control strategies to generate states. The first one is to
search high-value states actively, and the second one is to search states whose values are difficult to learn.

However, there are several limitations of the two previous works. First, they do not provide any theoretical justification
to use the stochastic gradient ascent trajectories for search-control. Second, HC on gradient norm and Hessian norm of

*Work done while at the University of Alberta. Equal contribution with Yangchen Pan. Correspondence to: Yangchen Pan
<pan6@ualberta.ca> and Jincheng Mei <jmei2@ualberta.ca>.

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

the learned value function [Pan et al., 2020] suffers from great computation cost and zero or explosive gradient due to the
high order differentiation (i.e., ∇s||∇sv(s)||) as suggested by the authors. When using ReLu as activation functions, such
high order differentiation almost results in zero gradients. We empirically verified this phenomenon. And this phenomenon
can also be verified by intuition from the work by Goodfellow et al. [2015], which suggests that ReLU neural networks
are locally almost linear. Then it is not surprising to have zero higher order derivatives. Third, the two methods are prone
to result in sub-optimal policies: consider that the values of states are relatively well-learned and fixed, then value-based
search-control (Dyna-Value) would still find those high-value states even though they might already have low TD error.

Algorithm 1 Tabular Dyna

Initialize Q(s, a); initialize modelM(s, a), ∀(s, a) ∈ S ×A
while true do

observe s, take action a by ε-greedy w.r.t Q(s, ·)
execute a, observe reward R and next State s′

Q-learning update for Q(s, a)
update modelM(s, a) (i.e. by counting)
store (s, a) into search-control queue // this is a naive search-control strategy
for i=1:d do

sample (s̃, ã) from search-control queue
(s̃′, R̃)←M(s̃, ã) // simulated transition
Q-learning update for Q(s̃, ã) // planning updates/steps

1.2 DISCUSSION ON THE LANGEVIN DYNAMICS MONTE CARLO METHOD

Theoretical mechanism. Define a SDE: dW (t) = ∇U(Wt)dt +
√

2dBt, where Bt ∈ Rd is a d-dimensional Brownian
motion and U is a continuous differentiable function. It turns out that the Langevin diffusion (Wt)t≥0 converges to a unique
invariant distribution p(x) ∝ exp (U(x)) [Chiang et al., 1987]. By applying the Euler-Maruyama discretization scheme
to the SDE, we acquire the discretized version Yk+1 = Yk + αk+1∇U(Yk) +

√
2αk+1Zk+1 where (Zk)k≥1 is an i.i.d.

sequence of standard d-dimensional Gaussian random vectors and (αk)k≥1 is a sequence of step sizes. It has been proved
that the limiting distribution of the sequence (Yk)k≥1 converges to the invariant distribution of the underlying SDE [Roberts,
1996, Durmus and Moulines, 2017]. As a result, considering U(·) as log |δ(·)|, Y as s justifies our SGLD sampling method.

1.3 PROOF FOR THEOREM 1

Theorem 1. For a constant c determined by θ, T , we have

E
(x,y)∼uniform(T)

[
1

3
· ∂ |fθ(x)− y|3

∂θ

]
= c · E

(x,y)∼q(x,y;θ)

[
1

2
· ∂ (fθ(x)− y)

2

∂θ

]

Proof. For the l.h.s., we have,

E
(x,y)∼uniform(T)

[
1

3
· ∂ |fθ(x)− y|3

∂θ

]
(1)

=
1

3 · n
·
n∑
i=1

∂ |fθ(x(i))− y(i)|3

∂θ
(2)

=
1

3 · n
·
n∑
i=1

∂
(

(fθ(x(i))− y(i))
2
) 3

2

∂θ
(3)

=
1

3 · n
·
n∑
i=1

∂
(

(fθ(x(i))− y(i))
2
) 3

2

∂ (fθ(x)− y)
2 · ∂ (fθ(x(i))− y(i))

2

∂θ
(4)

=
1

2 · n
·
n∑
i=1

|fθ(x(i))− y(i)| · ∂ (fθ(x(i))− y(i))
2

∂θ
. (5)

On the other hand, for the r.h.s., we have,

E
(x,y)∼q(x,y;θ)

[
1

2
· ∂ (fθ(x)− y)

2

∂θ

]
(6)

=
1

2
·
n∑
i=1

q(xi, yi; θ) ·
∂ (fθ(x(i))− y(i))

2

∂θ
(7)

=
n∑n

j=1 |fθ(xj)− yj |
·

[
1

2 · n
·
n∑
i=1

|fθ(x(i))− y(i)| · ∂ (fθ(x(i))− y(i))
2

∂θ

]
(8)

=
n∑n

j=1 |fθ(xj)− yj |
· E
(x,y)∼uniform(T)

[
1

3
· ∂ |fθ(x)− y|3

∂θ

]
. (9)

Setting c =
∑n
i=1 |fθ(xi)−yi|

n completes the proof.

1.4 PROOF FOR THEOREM 2

Theorem 2. (Fast early learning, detailed version) Let n be a positive integer (i.e., the number of training samples). Let
xt, x̃t ∈ Rn be the target estimates of all samples at time t, t ≥ 0, and x(i)(i ∈ [n], [n]

def
= {1, 2, ..., n}) be the ith element

in the vector. We define the objectives:

`2(x, y)
def
=

1

2

n∑
i=1

(x(i)− y(i))
2
, `3(x, y)

def
=

1

3

n∑
i=1

|x(i)− y(i)|3.

Let {xt}t≥0 and {x̃t}t≥0 be generated by using `2, `3 objectives respectively. Then define the total absolute prediction
errors respectively:

δt
def
=

n∑
i=1

δt(i) =

n∑
i=1

|xt(i)− y(i)|, δ̃t
def
=

n∑
i=1

δ̃t(i) =

n∑
i=1

|x̃t(i)− y(i)|,

where y(i) ∈ R is the training target for the ith training sample. That is, ∀i ∈ [n],

dxt(i)

dt
= −η · d`2(xt, y)

dxt(i)
,

dx̃t(i)

dt
= −η′ · d`3(x̃t, y)

dx̃t(i)
.

Assume the same initialization x0 = x̃0. Then:

(i) For all i ∈ [n], define the following hitting time, which is the minimum time that the absolute error takes to be ≤ ε(i),

tε(i)
def
= min

t
{t ≥ 0 : δt(i) ≤ ε(i)}, t̃ε(i)

def
= min

t
{t ≥ 0 : δ̃t(i) ≤ ε(i)}.

Then, ∀i ∈ [n] s.t. δ0(i) > η
η′ , given an absolute error threshold ε(i) ≥ 0, there exists ε0(i) ∈ (0, ηη′), such that for all

ε(i) > ε0(i), tε(i) ≥ t̃ε(i).

(ii) Define the following quantity, for all t ≥ 0,

H−1t
def
=

1

n
·
n∑
i=1

1

δt(i)
=

1

n
·
n∑
i=1

1

|xt(i)− y(i)|
. (10)

Given any 0 < ε ≤ δ0 =
∑n
i=1 δ0(i), define the following hitting time, which is the minimum time that the total absolute

error takes to be ≤ ε,

tε
def
= min

t
{t ≥ 0 : δt ≤ ε}, t̃ε

def
= min

t
{t ≥ 0 : δ̃t ≤ ε}. (11)

If there exists δ0 ∈ R and 0 < ε ≤ δ0 such that the following holds,

H−10 ≤ η

η′
· log (δ0/ε)

δ0
ε − 1

, (12)

then we have, tε ≥ t̃ε, which means gradient descent using the cubic loss function will achieve the total absolute error
threshold ε faster than using the square loss function.

Proof. First part. (i). For the `2 loss function, for all i ∈ [n] and t ≥ 0, we have,

dδt(i)

dt
=

n∑
j=1

dδt(i)

dxt(j)
· dxt(j)

dt
(13)

=
dδt(i)

dxt(i)
· dxt(i)

dt

(
dδt(i)

dxt(j)
= 0 for all i 6= j

)
(14)

= sgn{xt(i)− y(i)} · (−η) · d`2(xt, y)

dxt(i)
(15)

= sgn{xt(i)− y(i)} · (−η) · (xt(i)− y(i)) (16)
= −η |xt(i)− y(i)| (17)
= −η · δt(i), (18)

which implies that,

d{log δt(i)}
dt

=
1

δt(i)
· dδt(i)

dt
= −η. (19)

Taking integral, we have,

log δt(i)− log δ0(i) = −η · t. (20)

Let δt(i) = ε(i). We have,

tε(i)
def
=

1

η
· log

(
δ0(i)

δt(i)

)
=

1

η
· log

(
δ0(i)

ε(i)

)
. (21)

On the other hand, for the `3 loss function, we have,

d{δ̃t(i)−1}
dt

=

n∑
j=1

dδ̃t(i)
−1

dx̃t(j)
· dx̃t(j)

dt
(22)

=
dδ̃t(i)

−1

dx̃t(i)
· dx̃t(i)

dt
(23)

= − 1

δ̃t(i)2
· dδ̃t(i)
dx̃t(i)

· dx̃t(i)
dt

(24)

= − 1

(x̃t(i)− y(i))
2 · sgn{x̃t(i)− y(i)} · (−η′) · d`3(x̃t, y)

dx̃t(i)
(25)

= − sgn{x̃t(i)− y(i)}
(x̃t(i)− y(i))

2 · (−η′) · (x̃t(i)− y(i))
2 · sgn{x̃t(i)− y(i)} (26)

= η′. (27)

Taking integral, we have,

1

δ̃t(i)
− 1

δ̃0(i)
= η′ · t. (28)

Let δ̃t(i) = ε(i). We have,

t̃ε(i)
def
=

1

η′
·
(

1

δ̃t(i)
− 1

δ̃0(i)

)
=

1

η′
·
(

1

ε(i)
− 1

δ̃0(i)

)
. (29)

Then we have,

tε(i)− t̃ε(i) =
1

η
· log

(
δ0(i)

ε(i)

)
− 1

η′
·
(

1

ε(i)
− 1

δ̃0(i)

)
(30)

=
1

η
·
[(

log
1

ε(i)
− η

η′
· 1

ε(i)

)
−
(

log
1

δ0(i)
− η

η′
· 1

δ̃0(i)

)]
. (31)

According to x0(i) = x̃0(i), we have

δ0(i) = |xt(i)− y(i)| (32)
= |x̃t(i)− y(i)| (33)

= δ̃0(i). (34)

Define the following function, for all x > 0,

f(x) = log
1

x
− η

η′
· 1

x
. (35)

We have, the continuous function f is monotonically increasing for x ∈ (0, ηη′] and monotonically decreasing for x ∈
(ηη′ ,∞). Also, note that, maxx>0 f(x) = f(ηη′) = log η′

η − 1, limx→0 f(x) = limx→∞ f(x) = −∞.

Given δ0(i) = δ̃0(i) > η
η′ , we have f(δ0(i)) < f(ηη′) = log η′

η − 1. According to the intermediate value theorem, there
exists ε0(i) ∈ (0, ηη′), such that f(ε0(i)) = f(δ0(i)). Since f(·) is monotonically increasing on (0, ηη′] and monotonically
decreasing on (ηη′ ,∞), for all ε(i) ∈ [ε0(i), δ0(i)], we have f(ε(i)) ≥ f(δ0(i))1. Therefore, we have,

tε(i)− t̃ε(i) =
1

η
· (f(ε(i))− f(δ0(i))) ≥ 0. (36)

1Note that ε(i) < δ0(i) by the design of using gradient descent updating rule. If the two are equal, tε(i) = t̃ε(i) = 0 holds trivially.

Second part. (ii). For the square loss function, we have, for all t ≥ 0,

dδt
dt

=

n∑
i=1

dδt(i)

dt
(37)

= −η ·
n∑
i=1

δt(i) (by eq. (13)) (38)

= −η · δt, (39)

which implies that,

d{log δt}
dt

=
1

δt
· dδt
dt

= −η. (40)

Taking integral, we have,

log δt − log δ0 = −η · t. (41)

Let δt = ε. We have,

tε
def
=

1

η
· log

(
δ0
δt

)
=

1

η
· log

(
δ0
ε

)
. (42)

After tε time, for all i ∈ [n], we have,

δtε(i) = δ0(i) · exp{−η · tε}. (43)

On the other hand, for the cubic loss function, we have, for all t ≥ 0,

dH−1t
dt

=
1

n
·
n∑
i=1

d{δ̃t(i)−1}
dt

(44)

= η′. (by eq. (22)) (45)

Taking integral, we have,

H−1t −H−10 = η′ · t, (46)

which means given a H−1t value, we can calculate the hitting time as,

t =
1

η′
·
(
H−1t −H−10

)
. (47)

Now consider after tε time, using gradient descent with the square loss function we have δtε(i) = δ0(i) · exp{−η · tε} for
all i ∈ [n], which corresponds to,

H−1tε =
1

n
·
n∑
i=1

1

δtε(i)
(48)

=
1

n
·
n∑
i=1

1

δ0(i) · exp{−η · tε}
. (by eq. (43)) (49)

Therefore, the hitting time of using gradient descent with the cubic loss function to achieve the H−1tε value is,

t̃ε =
1

η′
·
(
H−1tε −H

−1
0

)
(50)

=
1

η′
·

(
1

n
·
n∑
i=1

1

δ0(i) · exp{−η · tε}
− 1

n
·
n∑
i=1

1

δ0(i)

)
(51)

=
1

η′
· (exp{η · tε} − 1) ·H−10 (52)

≤ 1

η
· (exp{η · tε} − 1) · log (δ0/ε)

δ0
ε − 1

(by eq. (12)) (53)

=
1

η
·
(
δ0
ε
− 1

)
· log (δ0/ε)

δ0
ε − 1

(54)

=
1

η
· log

(
δ0
ε

)
(55)

= tε, (by eq. (42)) (56)

finishing the proof.

Remark. Figure 1 shows the function f(x) = ln 1
x −

1
x , x > 0. Fix arbitrary x′ > 1, there will be another root ε0 < 1 s.t.

f(ε0) = f(x′). However, there is no real-valued solution for ε0. The solution in C is ε0 = − 1
W (log 1/δ0−1/δ0−πi) , where

W (·) is a Wright Omega function. Hence, finding the exact value of ε0 would require a definition of ordering on complex
plane. Our current theorem statement is sufficient for the purpose of characterizing convergence rate. The theorem states that
there always exists some desired low error level < 1, minimizing the square loss converges slower than the cubic loss.

0 1 2 3 4 55

4

3

2

1

0

f(x) = ln1
x

1
x

Figure 1: The function f(x) = ln 1
x −

1
x , x > 0. The function reaches maximum at x = 1.

Simulations. The theorem says that if we want to minimize our loss function to certain small nonzero error level, the cubic
loss function offers faster convergence rate. Intuitively, cubic loss provides sharper gradient information when the loss is
large as shown in Figure 2(a)(b). Here we provides a simulation. Consider the following minimization problems: minx≥0 x

2

and minx≥0 x
3. For implementation and visualization convenience, we use the hitting time formulae tε = 1

η · ln
{
δ0
ε

}
, t̃ε =

1
η ·
(

1
ε −

1
δ0

)
derived in the proof, to compute the hitting time ratio tε

t̃ε
under different initial values x0 and final error value

ε. In Figure 2(c)(d), we can see that it usually takes a significantly shorter time for the cubic loss to reach a certain xt with
various initial x0 values.

1.5 ERROR BOUND BETWEEN SAMPLING DISTRIBUTIONS

We now provide the error bound between the sampling distribution estimated by using a true model and a learned model. We
denote the transition probability distribution under policy π and the true model as Pπ(r, s′|s), and the learned model as
P̂π(r, s′|s). Let p(s) and p̂(s) be the convergent distributions described in the above sampling method by using the true and
learned models respectively. Let dtv(·, ·) be the total variation distance between the two probability distributions. Define
u(s)

def
= |δ(s, y(s))|, û(s)

def
= |δ(s, ŷ(s))|, Z def

=
∫
s∈S u(s)ds, Ẑ

def
=
∫
s∈S û(s)ds. Then we have the following bound.

Figure 2: (a) show cubic v.s. square function. (b) shows their absolute derivatives. (c) shows the hitting time ratio v.s. initial value x0
under different target value xt. (d) shows the ratio v.s. the target xt to reach under different x0. Note that a ratio larger than 1 indicates a
longer time to reach the given xt for the square loss.

Theorem 1. Assume: 1) the reward magnitude is bounded |r| ≤ Rmax and define Vmax
def
= Rmax

1−γ ; 2) the largest model

error for a single state is εs
def
= maxs dtv(Pπ(·|s), P̂π(·|s)) and the total model error is bounded, i.e. ε def

=
∫
s∈S εsds <∞.

Then ∀s ∈ S, |p(s)− p̂(s)| ≤ min(Vmax(p(s)ε+εs)
Ẑ

, Vmax(p̂(s)ε+εs)Z).

Proof. First, we bound the estimated temporal difference error. Fix an arbitrary state s ∈ S , it is sufficient the consider the
case u(s) > û(s), then

|u(s)− û(s)| = u(s)− û(s)

=E(r,s′)∼Pπ [r + γvπ(s′)]− E(r,s′)∼P̂π [r + γvπ(s′)]

=

∫
s,r

(r + γvπ(s))(Pπ(s′, r|s)− P̂π(s′, r|s))ds′dr

≤(Rmax + γ
Rmax
1− γ

)

∫
s,r

(Pπ(s′, r|s)− P̂π(s′, r|s))ds′dr

≤Vmaxdtv(Pπ(·|s), P̂π(·|s)) ≤ Vmaxεs

Now, we show that |Z − Ẑ| ≤ Vmaxε.

|Z − Ẑ| = |
∫
s∈S

u(s)ds−
∫
s∈S

û(s)ds| = |
∫
s∈S

(u(s)− û(s))ds|

≤
∫
s∈S
|u(s)− û(s)|ds ≤ Vmax

∫
s∈S

εsds = Vmaxε

Consider the case p(s) > p̂(s) first.

p(s)− p̂(s) =
u(s)

Z
− û(s)

Ẑ

≤ u(s)

Z
− u(s)− Vmaxεs

Ẑ
=
u(s)Ẑ − u(s)Z + ZVmaxεs

ZẐ

≤ u(s)Vmaxε+ ZVmaxεs

ZẐ
=
Vmax(p(s)ε+ εs)

Ẑ

Meanwhile, below inequality should also hold:

p(s)− p̂(s) =
u(s)

Z
− û(s)

Ẑ
≤ û(s) + Vmaxεs

Z
− û(s)

Ẑ

=
û(s)Ẑ − û(s)Z + ẐVmaxεs

ZẐ
≤ Vmax(p̂(s)ε+ εs)

Z

0.00 0.25 0.50 0.75 1.00
1e5

0.1

0.2

0.3

0.4

0.5

(a) σ = 0.1

0.00 0.25 0.50 0.75 1.00
1e5

0.1

0.2

0.3

0.4

0.5

L2
Cubic
Power4

(b) σ = 0.5

Figure 3: Figure(a)(b) show the testing RMSE as a function of number of mini-batch updates with increasing noise standard
deviation σ added to the training targets. We compare the performances of Power4(magenta), L2 (black), Cubic (forest
green). The results are averaged over 50 random seeds. The shade indicates standard error. Note that the testing set is not
noise-contaminated.

Because both the two inequalities must hold, when p(s)− p̂(s) > 0, we have:

p(s)− p̂(s) ≤ min(
Vmax(p(s)ε+ εs)

Ẑ
,
Vmax(p̂(s)ε+ εs)

Z
)

It turns out that the bound is the same when p(s) ≤ p̂(s). This completes the proof.

1.6 HIGH POWER LOSS FUNCTIONS

We would like to point out that directly using a high power objective in general problems is unlikely to have an advantage.

First, notice that our convergence rate is characterized w.r.t. to the expected updating rule, not stochastic gradient updating
rule. When using a stochastic sample to estimate the gradient, high power objectives are sensitive to the outliers as they
augment the effect of noise. Robustness to outliers is also the motivation behind the Huber loss [Huber, 1964] which, in fact,
uses low power error in most places so it can be less sensitive to outliers.

We conduct experiments to examine the effect of noise on using high power objectives. We use the same dataset as described
in Section 3.3. We use a training set with 4k training examples. The naming rules are as follows. Cubic is minimizing the
cubic objective (i.e. minθ

1
n

∑n
i=1 |fθ(xi)− yi|3) by uniformly sampling, and Power4 is minθ

1
n

∑n
i=1(fθ(xi)− yi)4 by

uniformly sampling.

Figure 3 (a)(b) shows the learning curves of uniformly sampling for Cubic and for Power4 trained by adding noises with
standard deviation σ = 0.1, 0.5 respectively to the training targets. It is not surprising that all algorithms learn slower
when we increase the noise variance added to the target variables. However, one can see that high power objectives is more
sensitive to noise variance added to the targets than the regular L2: when σ = 0.1, the higher power objectives perform
better than the regular L2; after increasing σ to 0.5, Cubic becomes almost the same as L2, while Power4 becomes worse
than L2.

Second, it should be noted that in our theorem, we do not characterize the convergence rate to the minimum; instead, we
show the convergence rate to a certain low error solution, corresponding to early learning performance. In optimization
literature, it is known that cubic power would converge slower to the minimizer as it has a relatively flat bottom. However,
it may be an interesting future direction to study how to combine objectives with different powers so that optimizing the
hybrid objective leads to a faster convergence rate to the optimum and is robust to outliers.

1.7 ADDITIONAL EXPERIMENTS

In this section, we include the following additional experimental results:

1. As a supplementary to Figure 1 from Section 3.3, we show the learning performance measured by training errors to
show the negative effects of the two limitations.

0.00 0.25 0.50 0.75 1.00
1e5

0.45

0.50

0.55

0.60

0.65

0.70

(a) |T | = 4000

0.00 0.25 0.50 0.75 1.00
1e5

0.45

0.70
Root
mean

squared
error

averaged
over

50runs

L2
PrioritizedL2
Full-PrioritizedL2

(b) |T | = 400

Figure 4: Figure (a)(b) show the training RMSE as a function of number of mini-batch updates with a training set containing
4k examples and another containing 400 examples respectively. We compare the performances of Full-PrioritizedL2 (blue),
L2 (black), and PrioritizedL2 (red). The results are averaged over 50 random seeds. The shade indicates standard error.

2. Empirical verification of Theorem 1 (prioritized sampling and uniform sampling on cubic power equivalence).

3. Additional results on discrete domains 1.7.3.

4. Results on an autonomous driving application 1.7.4.

5. Results on MazeGridWorld from Pan et al. [2020].

1.7.1 Training Error Corresponding to Figure 1 from Section 3.3

Note that our Theorem 1 and 2 characterize the expected gradient calculated on the training set; hence it is sufficient to
examine the learning performances measured by training errors. However, the testing error is usually the primary concern,
so we put the testing error in the main body. As a sanity check, we also investigate the learning performances measured
by training error and find that those algorithms behave similarly as shown in Figure 4 where the algorithms are trained by
using training sets with decreasing training examples from (a) to (b). As we reduce the training set size, Full-PrioritizedL2 is
closer to L2. Furthermore, PrioritizedL2 is always worse than Full-PrioritizedL2. These observations show the negative
effects resulting from the issues of outdated priorities and insufficient sample space coverage.

1.7.2 Empirical verification of Theorem 1

Theorem 1 states that the expected gradient of doing prioritized sampling on mean squared error is equal to the gradient
of doing uniformly sampling on cubic power loss. As a result, we expect that the learning performance on the training set
(note that we calculate gradient by using training examples) should be similar when we use a large mini-batch update as the
estimate of the expectation terms become close.

We use the same dataset as described in Section 3.3 and keep using training size 4k. Figure 5(a)(b) shows that when we
increase the mini-batch size, the two algorithms Full-PrioritizedL2 and Cubic are becoming very close to each other,
verifying our theorem.

Note that our theorem characterizes the expected gradient calculated on the training set; hence it is sufficient to examine
the learning performances measured by training errors. However, usually, the testing error is the primary concern. For
completeness, we also investigate the learning performances measured by testing error and find that the tested algorithms
behave similarly as shown in Figure 5(c)(d).

1.7.3 Additional Results on Discrete Benchmark Domains

Figure 6 shows the empirical results of our algorithm on the discrete domains with plan steps = 5.

0.00 0.25 0.50 0.75 1.00
1e5

0.50

0.55

0.60

0.65

0.70

(a) b=128, σ = 0.5

0.00 0.25 0.50 0.75 1.00
1e5

0.5

0.7
Root
mean

squared
error

averaged
over

(50runs)

Cubic
Full-PrioritizedL2

(b) b=512, σ = 0.5

0.00 0.25 0.50 0.75 1.00
1e5

0.15
0.20

0.30

0.40

0.50

(c) b=128, σ = 0.5

0.00 0.25 0.50 0.75 1.00
1e5

0.05

0.50
Root
mean

squared
error

averaged
over

(50runs)

Cubic
Full-PrioritizedL2

(d) b=512, σ = 0.5

Figure 5: Figure(a)(b) show the training RMSE as a function of number of mini-batch updates with increasing mini-batch
size b. Figure (c)(d) show the testing RMSE. We compare the performances of Full-PrioritizedL2 (blue), Cubic (forest
green). As we increase the mini-batch size, the two performs more similar to each other. The results are averaged over 50
random seeds. The shade indicates standard error.

1 2 3 4 5
time steps 1e4

2000

1500

1000

500

(a) MountainCar

1 2 3 4 5
time steps 1e4

400

50

Average
Return

per
Episode
(20runs)

PrioritizedER
ER
Dyna-Frequency
Dyna-Value
Dyna-TD

(b) Acrobot

1 2 3 4 5
time steps 1e4

2000

1500

1000

500

0

(c) GridWorld

1 2 3 4 5
time steps 1e4

0

100

200

300

400

(d) CartPole

Figure 6: Episodic return v.s. environment time steps. We show evaluation learning curves of Dyna-TD (black), Dyna-Frequency (red),
Dyna-Value (blue), PrioritizedER (forest green), and ER(magenta) with planning updates n = 5.

1.7.4 Autonomous Driving Application

We study the practical utility of our method in a relatively large autonomous driving application [Leurent, 2018] with an
online learned model. We use the roundabout-v0 domain (Figure 7 (a)). The agent learns to go through a roundabout by lane
change and longitude control. The reward is designed such that the car should go through the roundabout as fast as possible
without collision. We observe that all algorithms perform similarly when evaluating algorithms by episodic return (Figure 7
(d)). In contrast, there is a significantly lower number of car crashes with the policy learned by our algorithm, as shown in
Figure 7(b). Figure 7 (c) suggests that ER and PrioritizedER gain reward mainly due to fast speed which potentially incur
more car crashes. The conventional prioritized ER method still incurs many crashes, which may indicate its prioritized
sampling distribution does not provide enough crash experiences to learn.

(a) roundabout

0.0 0.5 1.0 1.5
Driving time steps 1e3

0

10

13

Cumulative
Number

of
Car

Crashes
(50runs)

ER
PrioritizedER
Dyna-TD

(b) Num of car crashes

0.0 0.2 0.4 0.6 0.8 1.0
time steps 1e4

2

6

8

Average
speed

per
Episode
(50runs)

(c) Avg. speed

0.0 0.2 0.4 0.6 0.8 1.0
time steps 1e4

8.6

8.8

9.0

9.2

9.4

ER
PrioritizedER
Dyna-TD

(d) Episodic return

Figure 7: (a) shows the roundabout domain with S ⊂ R90. (b) shows crashes v.s. total driving time steps during policy
evaluation. (c) shows the average speed per evaluation episode v.s. environment time steps. (d) shows the episodic return v.s.
trained environment time steps. We show Dyna-TD (black) with an online learned model, PrioritizedER (forest green),
and ER (magenta). Results are averaged over 50 random seeds after smoothing over a window of size 30. The shade
indicates standard error.

S

G

(a) MazeGridWorld

1 2 3 4 5
time steps 1e4

2000
1750

500

100

Average
Return

per
Episode
(20runs) Dyna-Frequency

Dyna-Value
Dyna-TD

(b) MazeGW, n = 30

Figure 8: Figure(a) shows MazeGridWorld(GW) taken from Pan et al. [2020] and the learning curves are in (b). We show
evaluation learning curves of Dyna-TD (black), Dyna-Frequency (red), and Dyna-Value (blue). The dashed line indicates
Dyna-TD trained with an online learned model. All results are averaged over 20 random seeds after smoothing over a
window of size 30. The shade indicates standard error.

1.7.5 Results on MazeGridWorld Domain

In Figure 8, we demonstrate that our algorithm can work better than Dyna-Frequency on a MazeGridWorld domain Pan
et al. [2020], where Dyna-Frequency was shown to be superior to Dyna-Value and model-free baselines. This result further
confirms the usefulness of our sampling approach.

1.8 REPRODUCIBLE RESEARCH

Our implementations are based on tensorflow with version 1.13.0 Abadi et al. [2015]. We use Adam optimizer Kingma and Ba
[2014] for all experiments. The code is available at https://github.com/yannickycpan/reproduceRL.git.

1.8.1 Reproduce experiments before Section 5

Supervised learning experiment. For the supervised learning experiment shown in section 3, we use 32× 32 tanh units
neural network, with learning rate swept from {0.01, 0.001, 0.0001, 0.00001} for all algorithms. We compute the constant
c as specified in the Theorem 1 at each time step for Cubic loss. We compute the testing error every 500 iterations/mini-
batch updates and our evaluation learning curves are plotted by averaging 50 random seeds. For each random seed, we
randomly split the dataset to testing set and training set and the testing set has 1k data points. Note that the testing set is not
noise-contaminated.

Reinforcement Learning experiments in Section 3. We use a particularly small neural network 16× 16 to highlight the
issue of incomplete priority updating. Intuitively, a large neural network may be able to memorize each state’s value and
thus updating one state’s value is less likely to affect others. We choose a small neural network, in which case a complete
priority updating for all states should be very important. We set the maximum ER buffer size as 10k and mini-batch size as
32. The learning rate is chosen from {0.0001, 0.001} and the target network is updated every 1k steps.

Distribution distance computation in Section 4. We now introduce the implementation details for Figure 3. The distance
is estimated by the following steps. First, in order to compute the desired sampling distribution, we discretize the domain
into 50× 50 grids and calculate the absolute TD error of each grid (represented by the left bottom vertex coordinates) by
using the true environment model and the current learned Q function. We then normalize these priorities to get probability
distribution p∗. Note that this distribution is considered as the desired one since we have access to all states across the state
space with priorities computed by current Q-function at each time step. Second, we estimate our sampling distribution by
randomly sampling 3k states from search-control queue and count the number of states falling into each discretized grid
and normalize these counts to get p1. Third, for comparison, we estimate the sampling distribution of the conventional
prioritized ER Schaul et al. [2016] by sampling 3k states from the prioritized ER buffer and count the states falling into each
grid and compute its corresponding distribution p2 by normalizing the counts. Then we compute the distances of p1, p2 to p∗

by two weighting schemes: 1) on-policy weighting:
∑2500
j=1 d

π(sj)|pi(sj)− p∗(sj)|, i ∈ {1, 2}, where dπ is approximated

https://github.com/yannickycpan/reproduceRL.git

by uniformly sample 3k states from a recency buffer and normalizing their visitation counts on the discretized GridWorld;
2) uniform weighting: 1

2500

∑2500
j=1 |pi(sj)− p∗(sj)|, i ∈ {1, 2}. We examine the two weighting schemes because of two

considerations: for the on-policy weighting, we concern about the asymptotic convergent behavior and want to down-weight
those states with relatively high TD error but get rarely visited as the policy gets close to optimal; uniform weighting makes
more sense during early learning stage, where we consider all states are equally important and want the agents to sufficiently
explore the whole state space.

Computational cost v.s. performance in Section 4. The setting is the same as we used for Section 5. We use plan
step/updates=10 to generate that learning curve.

1.8.2 Reproduce experiments in Section 5

For our algorithm, the pseudo-code with concrete parameter settings is presented in Algorithm 3.

Common settings. For all discrete control domains other than roundabout-v0, we use 32× 32 neural network with ReLu
hidden units except the Dyna-Frequency which uses tanh units as suggested by the author Pan et al. [2020]. This is one
of its disadvantages: the search-control of Dyna-Frequency requires the computation of Hessian-gradient product and
it is empirically observed that the Hessian is frequently zero when using ReLu as hidden units. Except the output layer
parameters which were initialized from a uniform distribution [−0.003, 0.003], all other parameters are initialized using
Xavier initialization Glorot and Bengio [2010]. We use mini-batch size b = 32 and maximum ER buffer size 50k. All
algorithms use target network moving frequency 1000 and we sweep learning rate from {0.001, 0.0001}. We use warm up
steps = 5000 (i.e. random action is taken in the first 5k time steps) to populate the ER buffer before learning starts. We keep
exploration noise as 0.1 without decaying.

Hyper-parameter settings. Across RL experiments including both discrete and continuous control tasks, we are able to fix
the same parameters for our hill climbing updating rule 3 s← s+ αh∇s log |ŷ(s)−maxaQ(s, a; θt)|+X , where we fix
αh = 0.1, X ∼ N(0, 0.01).

For our algorithm Dyna-TD, we are able to keep the same parameter setting across all discrete domains: c = 20 and learning
rate 0.001. For all Dyna variants, we fetch the same number of states (m = 20) from hill climbing (i.e. search-control
process) as Dyna-TD does, and use εaccept = 0.1 and set the maximum number of gradient step as k = 100 unless otherwise
specified.

Our Prioritized ER is implemented as the proportional version with sum tree data structure. To ensure fair comparison, since
all model-based methods are using mixed mini-batch of samples, we use prioritized ER without importance ratio but half
of mini-batch samples are uniformly sampled from the ER buffer as a strategy for bias correction. For Dyna-Value and
Dyna-Frequency, we use the setting as described by the original papers.

For the purpose of learning an environment model on those discrete control domains, we use a 64× 64 ReLu units neural
network to predict s′ − s and reward given a state-action pair s, a; and we use mini-batch size 128 and learning rate 0.0001
to minimize the mean squared error objective for training the environment model.

Environment-specific settings. All of the environments are from OpenAI [Brockman et al., 2016] except that: 1) the
GridWorld envirnoment is taken from Pan et al. [2019] and the MazeGridWorld is from Pan et al. [2020]; 2) Roundabout-v0
is from Leurent et al. [2019]. For all OpenAI environments, we use the default setting except on Mountain Car where
we set the episodic length limit to 2k. The GridWorld has state space S = [0, 1]2 and each episode starts from the left
bottom and the goal area is at the top right [0.95, 1.0]2. There is a wall in the middle with a hole to allow the agent to pass.
MazeGridWorld is a more complicated version where the state and action spaces are the same as GridWorld, but there are
two walls in the middle and it takes a long time for model-free methods to be successful. On the this domain, we use the
same setting as the original paper for all Dyna variants. We use exactly the same setting as described above except that
we change the Q− network size to 64× 64 ReLu units, and number of search-control samples is m = 50 as used by the
original paper. We refer readers to the original paper Pan et al. [2020] for more details.

On roundabout-v0 domain, we use 64× 64 ReLu units for all algorithms and set mini-batch size as 64. The environment
model is learned by using a 200× 200 ReLu neural network trained by the same way mentioned above. For Dyna-TD, we
start using the model after 5k steps and set m = 100, k = 500 and we do search-control every 50 environment time steps to
reduce computational cost. To alleviate the effect of model error, we use only 16 out of 64 samples from the search-control
queue in a mini-batch.

Algorithm 2 Dyna-TD

Input: m: number of states to fetch through search-control; Bsc: empty search-control queue; Ber: ER buffer; εaccept:
threshold for accepting a state; initialize Q-network Qθ
for t = 1, 2, . . . do

Observe (st, at, st+1, rt+1) and add it to Ber
// Hill climbing on absolute TD error
Sample s from Ber, c← 0, s̃← s
while c < m do
ŷ ← Es′,r∼P̂(·|s,a)[r + γmaxaQθ(s

′, a)]
Update s by rule (3)
if s is out of the state space then

Sample s from Ber, s̃← s // restart
continue

if ||s̃− s||2/
√
d ≥ εaccept then

// d is the number of state variables, i.e. S ⊂ Rd
Add s into Bsc, s̃← s, c← c+ 1

//n planning updates
for n times do

Sample a mixed mini-batch with half samples from Bsc and half from Ber
Update Q-network parameters by using the mixed mini-batch

On Mujoco domains Hopper and Walker2d, we use 200 × 100 ReLu units for all algorithms and set mini-batch size as
64. The environment model is learned by using a 200 × 200 ReLu neural network trained by the same way mentioned
above. For Dyna-TD, we start using the model after 10k steps and set m = 100, k = 500 and we do search-control every
50 environment time steps to reduce computational cost. To alleviate the effect of model error, we use only 16 out of 64
samples from the search-control queue in a mini-batch.

Algorithm 3 Dyna-TD with implementation details

Input or notations: k = 20: number search-control states to acquire by hill climbing, kb = 100: the budget of
maximum number of hill climbing steps; ρ = 0.5: percentage of samples from search-control queue, d : S ⊂ Rd; empty
search-control queue Bsc and ER buffer Ber
empirical covariance matrix: Σ̂s ← I
µss ← 0 ∈ Rd×d, µs ← 0 ∈ Rd (auxiliary variables for computing empirical covariance matrix, sample average will
be maintained for µss, µs)
nτ ← 0: count for parameter updating times, τ ← 1000 target network updating frequency
εaccept ← 0: threshold for accepting a state
Initialize Q network Qθ and target Q network Qθ′
for t = 1, 2, . . . do

Observe (s, a, s′, r) and add it to Ber
µss ← µss(t−1)+ss>

t , µs ← µs(t−1)+s
t

Σ̂s ← µss − µsµ>s
εaccept ← (1− β)εaccept + β||s′ − s||2 for β = 0.001
// Hill climbing on absolute TD error
Sample s from Ber, c← 0, s̃← s, i← 0
while c < k and i < kb do

// since environment is deterministic, the environment model becomes a Dirac-delta distribution and we denote it as
a deterministic functionM : S ×A 7→ S × R
s′, r ←M(s, a)
ŷ ← r + γmaxaQθ(s

′, a)
// add a smooth constant 10−5 inside the logarithm
s← s+ αh∇s log(|ŷ −maxaQ(s, a; θt)|+ 10−5) +X,X ∼ N(0, 0.01Σ̂s)
if s is out of the state space then

// restart hill climbing
Sample s from Ber, s̃← s
continue

if ||s̃− s||2/
√
d ≥ εaccept then

Add s into Bsc, s̃← s, c← c+ 1
i← i+ 1

for n times do
Sample a mixed mini-batch b, with proportion ρ from Bsc and 1− ρ from Ber
Update parameters θ (i.e. DQN update) with b
nτ ← nτ + 1
if mod(nτ , τ) == 0 then
Qθ′ ← Qθ

	Appendix
	Background in Dyna
	Discussion on the Langevin Dynamics Monte Carlo Method
	Proof for Theorem 1
	Proof for Theorem 2
	Error Bound between Sampling Distributions
	High Power Loss Functions
	Additional Experiments
	Training Error Corresponding to Figure 1 from Section 3.3
	Empirical verification of Theorem 1
	Additional Results on Discrete Benchmark Domains
	Autonomous Driving Application
	Results on MazeGridWorld Domain

	Reproducible Research
	Reproduce experiments before Section 5
	Reproduce experiments in Section 5

