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Abstract

We propose a new score-based algorithm for learn-
ing the structure of a Bayesian Network (BN). It
is the first algorithm that simultaneously supports
the requirements of (i) learning a BN of bounded
treewidth, (ii) satisfying expert constraints, includ-
ing positive and negative ancestry properties be-
tween nodes, and (iii) scaling up to BNs with sev-
eral thousand nodes. The algorithm operates in
two phases. In Phase 1, we utilize a modified ver-
sion of an existing BN structure learning algorithm,
modified to generate an initial Directed Acyclic
Graph (DAG) that supports a portion of the given
constraints. In Phase 2, we follow the BN-SLIM
framework, introduced by Peruvemba Ramaswamy
and Szeider (AAAI 2021). We improve the initial
DAG by repeatedly running a MaxSAT solver on
selected local parts. The MaxSAT encoding en-
tails local versions of the expert constraints as hard
constraints. We evaluate a prototype implementa-
tion of our algorithm on several standard bench-
mark sets. The encouraging results demonstrate the
power and flexibility of the BN-SLIM framework.
It boosts the score while increasing the number of
satisfied expert constraints.

1 INTRODUCTION

Bayesian network structure learning is the computationally
expensive problem of discovering a Bayesian network (BN)
that optimally represents a given training data set [Chicker-
ing, 1996]. In addition to fitting the data, often measured in
terms of a score function, several other requirements have
been taken into account for the BN structure learning.

A fundamental requirement considered by an extensive vol-
ume of research is to learn BNs that fit the data and have
bounded treewidth [Benjumeda et al., 2019, Berg et al.,

2014, Elidan and Gould, 2009, Nie et al., 2015, Scanagatta
et al., 2016, 2018, Korhonen and Parviainen, 2013, Parvi-
ainen et al., 2014]. Bounded treewidth BNs admit tractable
probabilistic inference [Kwisthout et al., 2010].

Another fundamental requirement receiving a growing
amount of attention is to learn BNs that fit the data and
satisfy additional expert constraints [Chen et al., 2016, Ken-
nett et al., 2001, Li and van Beek, 2018, Corander et al.,
2013]. Such constraints can assert, for instance, direct or
indirect causation between random variables in terms of
whether or not one variable is a parent or an ancestor of the
other in the DAG of the learned BN. See Table 1 for a list
of expert constraints considered in the literature.

Table 1: Various expert or side constraints considered in the
literature. Here, path refers to simple directed paths.

Arc constraints (direct causation)
u→ v the DAG contains the arc (u, v)
u→/ v the DAG does not contain the arc (u, v)
u↔ v the DAG contains either the arc (u, v) or the

arc (v, u)

Ancestry constraints (indirect causation)
u v the DAG contains a path from u to v
u / v the DAG does not contain a path from u to v
u! v the DAG contains either a path from u to v or

one in the other direction

In addition to bounded treewidth and expert constraint re-
quirements, one must address the scalability of methods
for BN structure learning. For instance, learning a BN
of bounded treewidth that optimally fits the data is NP-
hard [Korhonen and Parviainen, 2013]. The consideration
of expert constraints provides an additional source of com-
plexity.

In this paper, we propose Con-BN-SLIM (Constrained BN-
SLIM), the first method for BN structure learning that
addresses all three requirements simultaneously: bounded
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Table 2: Feature Comparison Table. † CaMML allows weighted constraints with the weight of 1 signifying hard constraints.
‡ Negative constraints are treated as hard constraints, while positive constraints can be violated.

Scalability
(# RVs)

Bounded
treewidth

Supported
constraints

Score
optimization

EC Tree [Chen et al., 2016] ≤ 20 no { , / } exact
MINOBSx [Li and van Beek, 2018] ≤ 50 no {→/ , / ,→,↔, } approx.
CaMML [Kennett et al., 2001] unknown no { / ,→,↔, }† exact
k-greedy [Scanagatta et al., 2018] ≤ 10000 yes ∅ approx.
BN-SLIM [PR and Szeider, 2021a] ≤ 10000 yes ∅ approx.
Con-k-greedy (this paper) ≤ 10000 yes {→/ , / ,→,↔, }‡ approx.
Con-BN-SLIM (this paper) ≤ 10000 yes {→/ , / ,→,↔, }‡ approx.

treewidth, expert constraints, and scalability. Table 2 shows
how our new method compares to other BN structure learn-
ing methods from the literature. Since these methods span
decades of research, it was a natural choice to try and reuse
their progress as much as possible so as to stand on the
shoulders of giants. Thus, we arrived at our 2-phase ap-
proach of Con-BN-SLIM, which leverages the scalability of
k-greedy and the localized optimization power of BN-SLIM
(particularly useful for expert constraints).

In Phase 1, a heuristic algorithm greedily computes a candi-
date BN from data, thereby trying to satisfy as many expert
constraints as possible. The heuristic algorithm is a version
of the k-greedy algorithm by Scanagatta et al. [2018] that
we modified to consider expert constraints. This method
scales very well. However, considering expert constraints
significantly deteriorates the algorithm’s capability of fitting
the BN to the data. This even prevails when we consider
the expert constraints as soft constraints, which allows the
algorithm to violate some constraints.

We, therefore, add a Phase 2 that takes the candidate BN
from the first phase and repeatedly tries to improve the
score by optimizing local parts of the BN. The second
phase is an extension of the BN-SLIM approach by Peru-
vemba Ramaswamy and Szeider [2021a]. BN-SLIM utilizes
a MaxSAT solver to locally improve the BN. Crucial for
our extension is to express suitable local versions of the
desired expert constraints in terms of hard constraints for
the MaxSAT solver. This way, the solver may improve the
fitting of the BN while maintaining the satisfaction of all
the expert constraints satisfied by the first phase solution.

Due to our novel contributions in Section 4, like localization
of global constraints and the scaffolding of auxiliary vari-
ables required to express and incorporate expert constraints
into BN-SLIM, the proposed approach is more than just
gluing together existing methods.

We evaluated a prototype implementation of Con-BN-SLIM
on all discrete sample data from the bnlearn BN repository,
sampling expert constraints from the ground truth networks.
After the first phase of running the modified heuristic algo-

rithm for about 30 minutes, the rate of improvement deteri-
orates. Phase 2 begins, and Con-BN-SLIM takes over the
candidate network and shows a remarkably high improve-
ment rate. The final network shows a significantly higher
score than the one produced by Phase 1, which displays
favorably in the ∆BIC metric.

The empirical findings on our prototype implementation
are highly encouraging, providing the ground for several
avenues of further investigation.

2 PRELIMINARIES

In this section, we provide a brief overview of the required
background. Throughout this section, we closely follow
the general notation and methodology of Peruvemba Ra-
maswamy and Szeider [2021a] From this point on, we use
the shorthand heuristic to refer to heuristic algorithms, i.e.,
algorithms that do not guarantee their solution’s optimality.

2.1 STRUCTURE LEARNING

We consider the problem of learning the structure (i.e.,
the DAG) of a BN from complete data set of N instances
D1, . . . , DN over a set of n categorical random variables
X1, . . . , Xn. The goal is to find a DAG D = (V,E)
where V is the set of nodes (one for each random vari-
able) and E is the set of arcs (directed edges) as 2-tuples.
The value of a score function determines how well a DAGD
fits the data; the DAG D, together with local parameters
(i.e., conditional probabilities), forms the BN Koller and
Friedman [2009].

We assume that the score is decomposable, i.e., being consti-
tuted by the sum of the individual random variables’ scores.
Hence, we can assume that the score is given in terms of
a score function f that assigns each node v ∈ V and each
subset P ⊆ V \ {v} a real number f(v, P ), the score
of P for v. The score of the entire DAG D = (V,E) is
then f(D) :=

∑
v∈V f(v, PD(v)) where PD(v) = {u ∈

V : (u, v) ∈ E } denotes the parent set of v in D. This set-
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ting accommodates several popular scores like AIC, BDeu,
and BIC Akaike [1974], Heckerman et al. [1995], Schwarz
[1978]. If P and P ′ are two potential parent sets of a ran-
dom variable v such that P ( P ′ and f(v, P ′) ≤ f(v, P ),
then we can safely disregard the potential parent set P ′ of v.
Consequently, we can disregard all nonempty potential par-
ent sets of v with a score ≤ f(v, ∅). Such a restricted score
function is a score function cache.

2.2 TREEWIDTH

A tree decomposition T of a graph G is a pair (T, χ), where
T is a tree and χ is a function that assigns each tree node t a
set χ(t) of vertices of G such that the following conditions
hold:

T1 For every edge (u, v) of G there is a tree node t such
that both u, v ∈ χ(t).

T2 For every vertex v of G, the set of tree nodes t with
v ∈ χ(t) induces a non-empty subtree of T .

The sets χ(t) are called bags of the decomposition T , and
χ(t) is the bag associated with the tree node t. The width
of a tree decomposition (T, χ) is the size of a largest bag
minus 1. The treewidth of G, denoted by tw(G), is the
minimum width over all tree decompositions of G.

The treewidth-bounded BN structure learning problem takes
as input a set V of nodes, a decomposable score function
f on V , and an integer W , and it asks to compute a DAG
D = (V,E) whose moral graph has treewidth ≤ W , such
that f(D) is maximal. The moral graph of a DAG D is
obtained by treating all arcs as undirected and inserting arcs
between two nodes if they share a common child.

2.3 EXPERT CONSTRAINTS

In our work, we consider only arc and ancestry constraints.
The requirements for satisfaction of the constraints is de-
scribed in Table 1. We use the term constraint set to refer
to a set of such constraints and a DAG D is said to satisfy
a constraint set if it satisfies all constituent constraints. We
refer to→ and as positive constraints and→/ and / as
negative constraints. Note that, u / v is denoted as v > u
by Li and van Beek [2018]. Also note that, some other vari-
ants of constraints like !/ can be expressed as boolean
combinations of the elementary constraints from Table 1.

Given a DAG over a set V of vertices, a path P is a se-
quence v1, . . . , v` of vertices such that there exists an arc
from vi to vi+1 for all 1 ≤ i < `. Since the graph is acyclic,
all involved vi are distinct. The path P avoids a set S ⊆ V
if vi /∈ S for all 1 ≤ i < `.

Finally, we also use the concept of partial orders in our
modification of k-greedy (Section 3). A partial order is a

set of pairwise ordering requirements u . v. A linear or-
der u1, . . . , un is said to obey a partial order if, for every
ui . uj in the partial order, i < j.

3 K-GREEDY WITH CONSTRAINTS

In this section, we describe the modifications made to
k-greedy to obtain a heuristic algorithm to solve the Con-
strained BN structure learning problem. We would like to
point out that we chose to modify k-greedy as a proof of
concept because of its simplicity. However, theoretically
similar modifications are also possible for the more aggres-
sive k-MAX heuristic [Scanagatta et al., 2018].

3.1 OVERVIEW OF K-GREEDY

First, we briefly overview the basic k-greedy heuristic
by Scanagatta et al. [2016]. The algorithm takes as input
a set X of RVs and a score function cache and returns a
DAG D along with a corresponding (rooted) tree decompo-
sition T . The algorithm repeatedly performs the following
steps:

Step 1. Randomly sample a linear ordering σ over the vari-
ables X

Step 2. Construct the root bag of T from the first k + 1
variables of σ. Also, compute a DAG over these
variables maximizing the score (either exactly or
approximately).

Step 3. Then insert the remaining variables from σ one by
one into the DAG, selecting the best parent set for
it from the already inserted variables.

After each step, if the newly computed DAG has a higher
score than the previous best DAG, it is called an improve-
ment.

3.2 MODIFIED K-GREEDY

To upgrade this algorithm to work with expert constraints,
we modify each of the steps above to obtain Con-k-greedy
(Constrained k-greedy). Algorithm 2 shows the pseudocode
for Con-k-greedy. In Step 1, instead of randomly sampling
an order, we first ‘compile’ the supplied constraints C into a
partial order P . Meaning, we add a partial order pair u . v
to P for every positive constraint u ./ v, i.e., ./ ∈ {→, }.
This is because it can be easily shown that all topological
orderings of all networks that satisfy constraints C also
obey the partial order P . We then randomly sample linear
orderings that obey this partial order, which serve as both
elimination orderings and topological orderings for the DAG
being constructed.

In Step 2, we now search for a best DAG that does not violate
any negative constraint by brute force or using any other
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Input :Set C of expert constraints
Output :Set P of partial order pairs
begin
P ←− ∅
foreach u ./ v ∈ C do

if ./ ∈ {→, } then
P ←− P ∪ {u . v}

end
end
return P

end
Algorithm 1: Pseudocode for Compile

local solver (Line 1). In Step 3, we select the best parent
set from among the parent sets that violates none of the
negative constraints and satisfies all the positive constraints
involving the currently inserted variable. If there are no such
parent sets, we simply select the empty parent set for the
current variable (see Line 2); this ensures that no negative
constraints are violated.

This results in an algorithm that can keep generating better
and better scoring DAGs with the condition that all gener-
ated DAGs respect the negative constraints from C as hard
constraints and the positive constraints as soft constraints.

3.3 PRACTICAL CONSIDERATIONS

Theoretically, it is possible to modify k-greedy similarly so
that the resultant algorithm treats all constraints as hard con-
straints. However, in practice, we noticed that this severely
limits the number of improvements and, in many cases, fails
to find any networks. We, thus, slightly alter Step 3 to only
reject choices of parent sets that violate the negative con-
straints, i.e., { / ,→/ }. As a result, the heuristic provides
solutions which satisfy all the negative constraints but not
necessarily all the positive and undirected constraints. In
other words, all positive and undirected constraints, i.e.,
{→,↔, }, are treated as soft constraints.

3.4 EXPERIMENTS

We experimentally evaluated the heuristic proposed above
and found the results unsatisfactory. We noticed that the rate
of improvement diminishes quite quickly and essentially
reaches saturation by 30 mins (see Figure 1). However, the
output of the heuristic could serve as a starting point for
further improvement. The SAT-based Local Improvement
Method (SLIM) framework was introduced by Lodha et al.
[2016, 2019] and later used by Fichte et al. [2017], Peru-
vemba Ramaswamy and Szeider [2020, 2021a,b], Schidler
and Szeider [2021] could potentially turbocharge and im-
prove the score of such an intermediate saturated solution.
In the next sections, we develop a solution using the SLIM

Input :Score function f , set C of expert
constraints, treewidth bound k

Output :DAG D satisfying all negative constraints
necessarily and positive constraints
optionally

begin
P ←− Compile(C)
loop

Sample linear order σ obeying P
Construct root bag B0 ←− {σ0, . . . , σk+1}

1: Construct a DAG D over B0 maximizing
score and not violating any negative
constraints

for v in σk+2, . . . , σn do
R←− set of parent sets of v not
violating any negative constraints and
satisfying all positive constraints of the
form u ./ v for some u

if R is nonempty then
PD(v)←− maximum score parent
set from R

else
2: PD(v)←− ∅

end
end
if algorithm terminated then

return D
end

end
end

Algorithm 2: Pseudocode for Con-k-greedy

framework for the Constrained BN structure learning prob-
lem.

4 BN-SLIM WITH CONSTRAINTS

4.1 THEORY

In this section, we lay the theoretical foundation for solving
the Constrained BN structure learning problem using the
SLIM framework. The SLIM framework has been previ-
ously used by Peruvemba Ramaswamy and Szeider [2021a]
to solve the BN structure learning problem. We refer to this
method as BN-SLIM. We directly extend BN-SLIM to solve
the Constrained BN structure learning problem; as a result
we reuse the same notation.

The problem input consists of a set V of random variables,
a score function f , a treewidth bound W and a set of expert
constraints C. We allow C to contain constraints of type {→,
→/ ,↔, , / }.

The goal is to compute a DAG D? over V with maximum
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Figure 1: Activity plot showing the rate of improvements
of Con-k-greedy against time. Note that the y-axis is in
logscale.

score such that the treewidth of the moralized graph M(D?)
is bounded by W and D? satisfies all the constraints in C.
We assume to have an initial heuristic solution D, a corre-
sponding tree decomposition T = (T, χ) of width ≤ W
of the moralized graph M(D) and that D satisfies the con-
straint set C. Our aim now, is to compute a DAG Dnew

over V with score at least as much as D while still having
bounded treewidth and satisfying constraint set C. Applying
this process repeatedly, we can improve the score of the
resultant DAG while still satisfying all the requirements.

We select a subtree S ⊆ T such that the total number of
vertices in VS :=

⋃
t∈S χ(t) is at most some budget B (a

fixed constant limiting the size of the local instances such
that instances of this size can be solved reasonably quickly
by the local solver). The value of B is decided by means of
experimenting and educated guesses. We define Dnew

S as the
DAG induced by Dnew on VS , where E(Dnew

S ) = { (u, v) ∈
E(Dnew) : {u, v} ⊆ VS } and Snew = (Snew, χnew) as a
tree decomposition of Dnew

S . For convenience, we use the
shorthand Enew

S to denote E(Dnew
S ).

We distinguish between different kinds of vertices:

• v ∈ VS a boundary vertex if there exists a tree node t ∈
V (T ) \ V (S) such that v ∈ χ(t);

• v ∈ VS is an internal vertex if v is not a boundary
vertex;

• v ∈ V \ VS is an external vertex.

Two boundary vertices v, v′ are adjacent if both occur to-
gether in some bag outside S. In that case we call {v, v′} a
virtual edge. We let Evirt be the set of all virtual edges. The
extended moral graph Mext is obtained from M(Dnew

S ) by
adding all virtual edges. If v, v′ are two adjacent boundary
vertices such that Dnew contains a directed path from v′ to
v, where all the vertices on the path, except for v′ and v, are

external, then (v′, v) is a virtual arc. E→
virt denotes the set of

all virtual arcs.

We can now reiterate the conditions from Peruvemba Ra-
maswamy and Szeider [2021a] needed to state the main
theorem.

C1 Dnew
S is acyclic.

C2 The moral graph M(Dnew
S ) has treewidth ≤W .

C3 Snew is a tree decomposition of the extended moral
graph Mext.

C4 For each v ∈ VS , if PDnew(v) contains external ver-
tices, then there is some t ∈ V (T ) \ V (S) such that
PDnew(v) ∪ {v} ⊆ χ(t).

C5 The digraph (VS , E
new
S ∪ E→

virt) is acyclic.

Theorem 1 ([Peruvemba Ramaswamy and Szeider, 2021a]).
If all the conditions C1–C5 are satisfied, then Dnew is
acyclic, the treewidth of M(Dnew) is at most W , and the
score of Dnew is at least the score of D.

We now discuss how the different types of constraints can
be transformed into their respective local versions along
with the correctness for the same. We note that the input
constraint set can only consist of elementary arc and ances-
try constraints (listed in Table 1); however, the translation
into their respective local versions additionally allows dis-
junctions over elementary constraints. This is because the
local versions of the constraints are directly handed off to
the MaxSAT solver which is capable of handling such dis-
junctions.

To discuss the behavior of the ancestry constraints, we use
the concept of first-hit descendants and first-hit ancestors.
Given a DAG F over vertices W , subset Y ( W and
vertex r ∈ W , a node s ∈ Y is said to be a first-hit de-
scendant of r in Y if there exists a directed path from r
to s avoiding all the other vertices in Y \ {r, s}. We denote
by descrY ⊆ Y , the set of all first-hit descendants of r in Y .
Similarly, a node s ∈ Y is said to be a first-hit ancestor of r
in Y if there exists a directed path from s to r avoiding all
the other vertices in Y \ {r, s}. We denote by ancrY ⊆ Y ,
the set of all first-hit ancestors of r in Y . We denote by >,
the always-true trivial constraint that is always satisfied.

Arc constraints (→,→/ ,↔) Let c be a constraint u ./ v,
where ./ ∈ {→,→/ ,↔}. If either of u, v /∈ S, then the con-
straint remains satisfied, since the presence or absence of the
arc between u, v is not affected by Dnew. The local version
of such a constraint is thus>. Alternatively, if both u, v ∈ S,
it suffices to ensure that the constraint c holds in Dnew

S . The
local version of such a constraint is c itself.

Positive ancestry constraints ( ) Consider a constraint
of the form u v. Since the constraint is satisfied in D, we
know that there exists a u− v path in D.
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Case 1 There is at least one u − v path avoiding VS . The
constraint remains satisfied independent of Dnew

S . The
local version of such a constraint is >.

Case 2 All u − v paths pass through VS . It suffices to en-
sure that there exists at least one path in Dnew

S from
some du ∈ descuVS

to some av ∈ ancvVS
. The local

version of such a constraint is
∨

du,av
du  av .

Negative ancestry constraints ( / ) Consider a constraint
of the form u / v. Since the constraint is satisfied in D, we
know that there are no u − v paths in D. Any u − v path
passing through VS must be of the form u− du − av − v,
for some du ∈ descuVS

, av ∈ ancvVS
.

Case 1 descuVS
= ∅ or ancvVS

= ∅. The constraint remains
satisfied independent of Dnew

S . The local version of
such a constraint is >.

Case 2 Both sets are non-empty. It suffices to ensure that
there is no path in Dnew

S from any du ∈ descuVS
to

any av ∈ ancvVS
. The local version of such a constraint

is
∧

du,av
du  / av .

From this discussion, we can assert the following lemma.

Lemma 1. If Dnew
S satisfies the local versions of each of the

constraint in C, then Dnew satisfies the constraint set C.

From Theorem 1 and Lemma 1, we obtain the following
corollary.

Corollary 1. If conditions C1–C5 are satisfied and Dnew
S

satisfies the local versions of the constraints in C, then Dnew

is acyclic, the treewidth ofM(Dnew) is at mostW , the score
ofDnew is at least that ofD andDnew satisfies the constraint
set C.

4.2 ENCODING

In this section, we describe the MaxSAT encoding to com-
pute Dnew

S . We build on top of the encoding by Peru-
vemba Ramaswamy and Szeider [2021a]. Briefly, the basic
variables in the encoding are the parPv variables, which are
true if and only if P is the parent set of v. These variables
appear in the encoding as soft clauses weighted by f(v, P ).
In addition to that, there are several hard clauses involv-
ing arcu,v, acycu,v and ordu,v variables, which encode the
edges of the moralized graph, the acyclicity of the DAG and
the elimination ordering corresponding to the tree decompo-
sition respectively. The soft and hard clauses of the encoding
are passed to the MaxSAT solver to optimize the network’s
score. The MaxSAT solver then finds solutions satisfying
all the hard clauses while also maximizing the weight of
the satisfied soft clauses. Eventually, this encoding finds a
network with maximum score that satisfies the conditions
C1–C5. For the sake of brevity, we skip repeating the entire
encoding and only describe the additions.

Now, having Corollary 1, we describe the addition to the
encoding that ensures that Dnew

S satisfies the local versions
of the constraints.

Arc constraints (→,→/ ,↔) We filter out the infeasible
parent sets based on the arc constraints. More specifically,
for the constraint u→ v, we discard all parent sets of v that
do not contain u, and conversely, for the constraint u→/ v,
we discard all parent sets that contain u.

Ancestry constraints ( , / ) We address the ancestry
constraints by introducing the following variables to keep
track of the paths within the network:

1. dagarcu,v represents an arc in the DAG from u to v
(does not include the moralized and fill-in edges unlike
arcu,v),

2. tarcu,v captures the transitive closure of the dagarcu,v
variables.

3. pathu,v implies the existence of a path in the DAG
from u to v,

4. pathqu,v,z is a helper variable for pathu,v and implies
the existence of a path in the DAG from u to v with z
as the penultimate vertex,

5. virtarcu,v represents the short-circuited directed paths
through nodes outside the local instance.

We then introduce hard clauses over these variables to cap-
ture their semantics and to allow expressing expert con-
straints. This implies that these constraints are treated as
hard constraints. At times, we write the clauses using the
friendlier implication notation. However, all of these clauses
can be converted into the standard Conjunctive Normal
Form (CNF) required by the MaxSAT solver. For this reason,
the encoding accepts as input all the elementary constraints
as well as disjunctions over elementary constraints.

Phase 2 only considers the set of constraints satisfied by the
initial heuristic solution as hard constraints. This ensures
that all the constraints satisfied by the Phase 1 solution
remain satisfied at the end of Phase 2. Further, there might
be some constraints that were previously violated in the
heuristic solution but end up being coincidentally satisfied
by Phase 2. Thus, the set of satisfied constraints by the
Phase 2 solutions is a (not necessarily strict) superset of the
set of constraints satisfied by the Phase 1 solution.

To disallow simultaneous arcs in opposite directions in the
DAG, we add the clauses

¬dagarcu,v ∨ ¬dagarcv,u for all u 6= v ∈ S.

We then add the following clauses to ensure that dagarcu,v
is true if and only if u is in the parent set of v.

parPv ⇒
∧
u∈P

dagarcu,v for all v ∈ S, P ∈ Pv, and

1597



dagarcu,v ⇒
∨

P∈Pv s.t. u∈P

parPv for all u 6= v ∈ S.

And finally, we propagate the DAG arcs to the arcs of the
moralized graph using the clauses

dagarcu,v ⇒ arcu,v for all u 6= v ∈ S.

For the tarcu,v variables, we initialize the transitivity using
the dagarcu,v and virtarcu,v variables as follows

dagarcu,v ⇒ tarcu,v
virtarcu,v ⇒ tarcu,v

}
for all u 6= v ∈ S,

and then encode the transitivity using the following clauses

tarcu,v ∧ tarcv,w ⇒ tarcu,w for all distinct u, v, w ∈ S.

To encode the path variables, we first encode the condition
that the path can either be a single arc in the DAG, a single
external virtual arc or a path through at least one other
variable z. For this we add the following clauses for all
u 6= v ∈ S,

pathu,v ⇒ dagarcu,v ∨ virtarcu,v ∨
∨

z 6=u,v

pathqu,v,z.

Then, we encode the condition for the existence of a path
from u to v with z in the penultimate position, by asserting
a path from u to z and either a direct arc or a virtual arc
from z to v. For this we add the following clauses for all
distinct u, v, z ∈ S,

pathqu,v,z ⇒ pathu,z ∧ (dagarcz,v ∨ virtarcz,v).

Finally, we encode the constraints using the predicates de-
scribed so far. For the arc constraints, we use the dagarcu,v
variables as follows

for u→ v, we use dagarcu,v,

for u→/ v, we use ¬dagarcu,v,

for u↔ v, we use dagarcu,v ∨ dagarcv,u.

For the ancestry constraints, we use the pathu,v and tarcu,v
variables as follows

for u v, we use pathu,v,

for u / v, we use ¬tarcu,v,

It is subtle but worth noting nonetheless, that the clause
¬pathu,v does not ensure the absence of a path from u to v
in the DAG, i.e., the pathu,v variables can only be used
to assert the existence of paths ( constraints), not their
absence ( / constraints). Which is why we use the tarcu,v
variables to be able to assert the absence of paths.

5 EXPERIMENTS

5.1 SETUP

We tested the two proposed heuristics on a 4-core Intel Xeon
E5540 2.53 GHz CPU cluster, with each process having ac-
cess to 8 GB RAM. The k-greedy algorithm is available as
a part of the BLIP package [Scanagatta, 2015] implemented
in Java. We provide the relevant source code as a public
GitHub repository1. We implemented Con-BN-SLIM by
extending the publicly available BN-SLIM software [Peru-
vemba Ramaswamy and Szeider, 2021c], which uses the
Python NetworkX library [Hagberg et al., 2008], and the
UWrMaxSat2 as the MaxSAT solver.

We ran the heuristics on score function caches and con-
straints sets generated from all the discrete networks avail-
able as a part of the bnlearn BN repository.3 This repository
is commonly used for benchmarking Bayesian Networks [Li
and van Beek, 2018, Chen et al., 2016, Scanagatta et al.,
2018, 2016]. We split up the networks into three groups—
small, medium, and large—based on the number of random
variables. We then synthesized expert constraints by ran-
domly sampling a fixed number η of constraints of each of
the 5 types from the ground truth networks (see Table 3).
Note that this repository consists of the networks themselves,
not the instances or samples drawn from the BNs. Addition-
ally, we also precomputed the treewidths of all the ground
truth networks (ranging between 3 and 15) and used those
values as the bounds for all the heuristics.

Table 3: Input Datasets

Group Variables η

Small up to 50 {5, 10}
Medium 50 to 500 {10, 25, 50}
Large above 500 {25, 50, 75}

5.2 METHOD

We now explain the format of the experiments used to com-
pare the proposed heuristics, which is similar to that of Pe-
ruvemba Ramaswamy and Szeider [2021a]. We precompute
the score function caches using the available functional-
ity from the BLIP package. All the evaluated methods are
supplied with the same score function caches. We then ran-
domly synthesized different constraints using three random
seed values. The score function caches along with a corre-
sponding constraint set are together considered to be one

1https://github.com/aditya95sriram/
bn-slim

2https://maxsat-evaluations.github.io/
2019/descriptions.html

3https://www.bnlearn.com/bnrepository/
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Figure 2: Activity plot showing rate of improvement of
Con-BN-SLIM and Con-k-greedy against time. Note that
the y-axis is in logscale.

input instance. This results in a total of 183 input instances.

We then ran the original k-greedy algorithm and the
Con-k-greedy algorithm on these inputs for 60 minutes.
For each input, we ran the heuristics with three different
random seed values. For evaluating Con-BN-SLIM, we used
the intermediate solution produced by Con-k-greedy at the
30-minute mark as the starting heuristic. After which, we
run Con-BN-SLIM for another 30 minutes, thereby fixing
the total runtime of each method to 60 minutes. For each
input, we ran Con-BN-SLIM with 8 different configurations
(random seed, timeout, encoding type). For all the experi-
ments, we record the final score, the final satisfied constraint
count, and the rate of improvement.

5.3 RESULTS

As a continuation to Figure 1, we first visualize the ac-
tivity of Con-BN-SLIM compared to Con-k-greedy. Note
that, Con-BN-SLIM only starts running at the 30-minute
mark (after being handed the heuristic solution from
Con-k-greedy) and hence does not record any improvements
till that point. As is evident from Figure 2, despite the rate
of improvements of Con-k-greedy slowing down drastically,
when Con-BN-SLIM takes over, it is still able to find many
improvements over the exact same networks. This demon-
strates the notion of turbocharging quite well.

Next, we compare the scores of the networks produced by
Con-k-greedy and Con-BN-SLIM at the 60-minute mark.
We use the ∆BIC metric to make this comparison. The
difference in BIC scores of two networks approximates
the ratio of their marginal likelihoods, which is the Bayes
Factor [Raftery, 1995, Scanagatta et al., 2018]. The ∆BIC
score of a pair of networks is mapped to a categorical scale,
with positive scores signifying positive evidence towards the

first network and vice versa. As can be seen from Table 4,
Con-BN-SLIM severely outperforms Con-k-greedy.

Table 4: ∆BIC values comparing Con-BN-SLIM against
Con-k-greedy

Category ∆ BIC Count

extremely positive (10,∞) 127
strongly positive (6, 10) 0
positive (2, 6) 0
neutral (-2, 2) 14
negative (-6, -2) 1
strongly negative (-10, -6) 0
extremely negative (−∞, -10) 7

Finally, we compare the constraint satisfaction by the so-
lutions of k-greedy, Con-k-greedy, and Con-BN-SLIM in
Table 5. We measure and tabulate the percentage of total
constraints satisfied. There are several noteworthy points
here.

Table 5: Comparison of Constraint Satisfaction as a Percent-
age of Total Constraints

Avg. % satisfied constraints

Group k-greedy Con-k-greedy Con-BN-SLIM

Small 77.74% 84.52% 90.24%
Medium 63.80% 74.43% 81.73%
Large 59.44% 88.91% 89.44%

All 67.54% 81.73% 86.53%

k-greedy We see that k-greedy, despite having no knowl-
edge of the constraints, manages to satisfy more than half
of them. This could be attributed to the fact that k-greedy
still has access to the score function caches whose job is
to quantify and reflect the closeness of any network to the
ground truth network (just like the expert constraints).

Con-k-greedy We see a clear improvement in the con-
straint satisfaction by Con-k-greedy compared to k-greedy.
This is to be expected as we modified the heuristic to con-
sider the expert constraints.

Con-BN-SLIM We see that Con-BN-SLIM ends up sat-
isfying slightly more constraints than Con-k-greedy even
though it was not intentionally designed to do so. This, how-
ever, is a favorable side effect. Con-BN-SLIM never violates
a constraint that was satisfied by the initial heuristic solution.
Thus, by random chance, the number of satisfied constraints
can only increase.
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6 CONCLUSION

We have proposed the first method for BN structure learning
that scales to large instances while respecting treewidth
bounds and soft expert constraints. At the heart of our
method is utilizing a MaxSAT encoding, applied locally,
which demonstrates the flexibility of the SLIM framework.

We see several possibilities for improving the portion of
satisfied expert constraints. An easy target is improving the
Phase 1 heuristics to better handle the root bag construction,
which a MaxSAT encoding could provide. Even more poten-
tial might be to adapt other heuristics like k-MAX [Scana-
gatta et al., 2018] or Elimination Trees [Benjumeda et al.,
2019] for Phase 1.

The current implementation does not actively try to increase
the satisfied constraints in Phase 2. Despite that, it was some-
what surprising for us to still see a significant increase in the
number of satisfied constraints (see Table 5). This suggests
a learning approach where we continuously check during
Phase 2 whether any previously violated expert constraint is
satisfied and if so, add it as a hard constraint to the Phase 2
engine. This way, Phase 2 could yield a monotonic increase
in both the score and the number of satisfied constraints.

The local solver is essentially a CNF formula, and we have
not exhausted its whole range of expressiveness with the con-
straints explored in this paper. Thus, another viable future
direction could be to explore more sophisticated constraint
types. Similarly, one can look into incorporating expert
constraints into the heuristic learning algorithms for other
probabilistic graphical models.
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