
Neural Ensemble Search via Bayesian Sampling (Supplementary Material)

Yao Shu1 Yizhou Chen1 Zhongxiang Dai1 Bryan Kian Hsiang Low1

1Department of Computer Science, National University of Singapore, Singapore

A PROOFS

Proposition. (Training fairness in the supernet.) Let T and
TA denote the number of steps applied to train the supernet
and candidate architecture A in the search space of size N ,
by uniformly randomly sampling a single architecture from
this search space for the model training in each step, we
have

Pr(lim
T→∞

TAi/T = lim
T→∞

TAj/T) = 1 ∀i, j ∈ {1, · · · , N} .

Proof. Let random variable Xt
i ∈ {0, 1} denote the selec-

tion of candidate architecture Ai at training step t under our
sampling scheme in the proposition above. For any t > 0
and i, j ∈ [N], random variable Xt

i −Xt
j can achieve fol-

lowing possible assignments and probabilities (denoted by
p):

Xt
i −Xt

j =

 +1, p = 1/N
0, p = (N − 2)/N
−1, p = 1/N

. (S1)

Consequently, E[Xt
i − Xt

j] = 0. According to the strong
law of large numbers, we further have

Pr(lim
T→∞

T−1
T∑

t=1

Xt
i −Xt

j = 0) = 1 . (S2)

Note that

T−1(TAi − TAj) = T−1
T∑

t=1

Xt
i −Xt

j . (S3)

We thus can complete this proof by

Pr(lim
T→∞

T−1(TAi
− TAj

) = 0) = 1 . (S4)

Proof of Proposition 1. As particles {xi}ni=1 of size n
are applied to approximate the density q in our SVGD-RD,
the second term (i.e., the controllable diversity term) in our
(10) can then be approximated using these particles as

nδEx,x′∼q [k(x,x
′)] ≈ δ/n

n∑
i=1

n∑
j=1

k(xi,xj) ≜
n∑

i=1

h(xi) ,

(S5)
where h(x) ≜ δ/n

∑n
j=1 k(x,xj). We take xj in k(x,xj)

as a constant for the approximation above. Consequently,
we have

∇xk

n∑
i=1

h(xi) = ∇xk
h(xk) . (S6)

Let x+
i ≜ xi + ϵϕ∗(xi) (∀i ∈ {1, · · · , n}) denote the

functional gradient decent in the RKHSH to minimize the
KL divergence term in our (10). Based on (S6) above, given
proximal operator proxh(x

+) = argminy h(y)+1/2∥y−
x+∥22, by using proximal gradient method Parikh and Boyd
[2014], our (10) can then be optimized via the following
update to each particle xi:

xi ← proxh(x
+
i) = argmin

y
h(y)+1/2∥y−x+

i ∥
2
2 . (S7)

According to the Karush-Kuhn-Tucker (KKT) conditions,
the local optimum y∗ of this proximal operator satisfies

proxh(x
+
i) = y∗ = x+

i −∇y∗h(y∗) . (S8)

When h(·) is convex, this local optimum is also a global
optimum. As (16) is intractable to solve given a complex
h(·), we approximate h(y∗) with its first-order Taylor ex-
pansion, i.e., h(y∗) ≈ h(xi) + ∇xi

h(xi)(y
∗ − xi) and

achieve following approximation:

proxh(x
+
i) ≈ x+

i −∇xi
h(x)

≈ xi + ϵϕ∗(xi)−∇xi
h(xi)

≈ xi + ϵϕ∗(xi)− δ/n
∑n

j ∇xi
k(xi,xj) .

(S9)

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

Given the approximation ϕ∗(xi) ≈ ϕ̂∗(xi) and the defini-
tion of ϕ̂∗(xi) in (5), we complete our proof by

xi ← xi + 1/n
∑n

j=1 k(xj ,xi)∇xj
log p(xj)

+∇xj
k(xj ,xi)− δ∇xi

k(xj ,xi) .
(S10)

Proof of Proposition 2. Notably, since k(x,x′) = c when
x = x′, we will achieve a constant k(x,x) for any particle
x in the case of n = 1, which can be ignored in our SVGD-
RD for any δ ∈ R. In light of this, our SVGD-RD in the case
of n = 1 degenerates into standard SVGD. Consequently,
to prove Proposition 2, we only need to consider SVGD in
the case of n = 1.

Considering SVGD in the case of n = 1, we can frame the
density q represented by a single particle x′ as

q(x) =

{
1 x = x′

0 x ̸= x′ . (S11)

The KL divergence between q(x) and the target density
p(x) can then be simplified as

KL(q∥p) = Eq(x)[log(q(x)/p(x))] = − log p(x′) .
(S12)

Finally, standard SVGD in the case of n = 1 obtain its
optimal particle by optimizing the following problem:

q∗ = argmin
q

KL(q∥p)

= argmin
x′

{− log p(x′)}

= argmax
x′

p(x′) ,

(S13)

which finally concludes the proof.

Remark. In practice, this k(x,x) = c can be well satisfied,
such as the radial basis function (RBF) kernel that we have
applied in our experiments.

B EXPERIMENTAL SETTINGS

B.1 THE DARTS SEARCH SPACE

In the DARTS [Liu et al., 2019] search space, each candidate
architecture consists of a stack of L cells, which can be
represented as a directed acyclic graph (DAG) of N nodes
denoted by {z0, z1, . . . , zN−1}. Among these N nodes in
a cell, z0 and z1 denote the input nodes produced by two
preceding cells, and zN denotes the output of a cell, which
is the concatenation of all intermediate nodes, i.e., from
z2 to zN−1. As in the work of Liu et al. [2019], to select
the best-performing architectures, we need to select their
corresponding cells, including the normal and reduction cell.
We refer to the DARTS paper for more details. In practice,
this search space is conventionally represented as a supernet
stacked by 8 cells (6 normal cells and 2 reduction cells) with
initial channels of 16.

B.2 MODEL TRAINING OF SUPERNET

Following [Xu et al., 2020], we apply a partial channel con-
nection with K = 2 in the model training of the supernet,
which allows us to accelerate and reduce the GPU mem-
ory consumption during this model training. We split the
standard training dataset of CIFAR-10 into two piles in our
ensemble search: 70% randomly sampled data is used in the
model training of the supernet, and the rest is used to obtain
the posterior distribution of neural architectures in Sec. 3.2
and also the final selected ensembles in Sec. 3.3. To achieve
not only a fair but also a sufficient model training for every
candidate architecture, we apply stochastic gradient descent
(SGD) with epoch 50, learning rate cosine scheduled from
0.1 to 0, momentum 0.9, weight decay 3× 10−4 and batch
size 128 in the model training of the supernet, where only a
single candidate architecture is uniformly randomly sampled
from this supernet in every training step.

B.3 POSTERIOR DISTRIBUTION

Variational posterior distribution. Following [Xie et al.,
2019], the variational posterior distribution of architectures
is represented as pα(A) parameterized by α. Specifically,
within the search space demonstrated in our Appendix B.1,
each intermediate nodes zi is the output of one selected
operation o ∼ pαi

(o) using the inputs from its proceeding
nodes or cells, where O is a predefined operation set for our
search. Specifically, given αi = (αo1

i · · ·α
o|O|
i), pαi(o) can

be represented as

pαi
(o) =

exp(αo
i /τ)∑

o∈O exp(αo
i /τ)

, (S14)

where τ denotes the softmax temperature, which is usually
set to be 1 in practice. Based on this defined probability for
each intermediate node zi, our variational posterior distribu-
tion can be framed as

pα(A) =

N−2∏
i=2

pαi
(o) . (S15)

More precisely, this representation is applied for single-
path architecture with identical cells. We use it to ease our
representation. For double-path architectures consisting of
two different cells (i.e., normal and reduction cell), e.g., the
candidate architecture in the DARTS search space, a similar
representation can be obtained.

Optimization details. To optimize (9), we firstly relax
our variational posterior distribution to be differentiable
using the Straight-Through (ST) Gumbel-Softmax [Mad-
dison et al., 2017, Jang et al., 2017] with the reparame-
terization trick. More precisely, we propose a variant of
ST Gumbel-Softmax outputting the double-path architec-
tures in the DARTS search space. Then, we use stochastic

gradient-based algorithms to optimize (9) efficiently. In each
optimization step, we sample one neural architecture from
the distribution pα(A) to estimate EA∼pα(A) [log p(D|A)]
(i.e., the commonly used Cross-Entropy loss). In practice,
we use Adam [Kingma and Ba, 2015] with learning rate
0.01, β1 = 0.9, β2 = 0.999 and weight decay 3× 10−4 to
update our variational posterior distribution pα(A) for 20
epochs.

B.4 SVGD OF REGULARIZED DIVERSITY

Continuous relaxation of variational posterior distribu-
tion. Notably, SVGD [Liu and Wang, 2016] and also our
SVGD-RD is applied for continuous distribution. Unfortu-
nately, the variational posterior distribution pα(A) is dis-
crete due to a discrete search space. To apply SVGD-RD, we
firstly relax this discrete posterior into its continuous coun-
terpart using a mixture of Gaussian distribution. Specifically,
we represent each operation o ∈ O in (S14) into a one-hot
vector ho. By introducing the random variable oi ∈ R|O|

and multi-variate normal distribution N (oi|ho,Σ) into our
relaxation, our relaxed posterior distribution of neural archi-
tectures can be framed as

p̂α(A) =
N−2∏
i=2

1/Zi

∑
o∈O

pαi(o)N (oi|ho,Σ) , (S16)

where Zi denotes the normalization constant. Given the
sampled particle x∗ = (· · ·o∗

i · · ·) in SVGD-RD, the final
selected architecture can then be derived using the determi-
nation of each selected operation o∗i , i.e.,

o∗i = argmin
o∈O

∥o∗
i − ho∥2 . (S17)

Optimization details. Since Liu and Wang [2016] have
demonstrated that SVGD is able to handle unnormalized
target distributions, the normalization constant in (S16) can
then be ignored in our SVGD-RD algorithm. In practice,
the covariance matrix Σ in (S16) is set to an identity matrix
scaled by |O|. Besides, the parameter δ is optimized as a
hyper-parameter via grid search or Bayesian Optimization
[Snoek et al., 2012] within the range of [−2, 1] in practice.
To obtain well-performing particles in our SVGD-RD algo-
rithms efficiently, we apply SGD using the gradient provided
in Sec. 3.3.2 with a radial basis function (RBF) kernel on
randomly initialized particles for L=1000 iterations under
a learning rate of 0.1 and a momentum of 0.9.

B.5 EVALUATION ON BENCHMARK DATASETS

Evaluation on CIFAR-10/100. We apply the same con-
structions in DARTS [Liu et al., 2019] for our final per-
formance evaluation on CIFAR-10/100: The final selected
architectures consist of 20 cells, and 18 of them are identi-
cal normal cells, with the rest being the identical reduction

cell. An auxiliary tower with a weight of 4 is located at the
13-th cell of the final selected architectures. The final se-
lected architecture is then trained using stochastic gradient
descent (SGD) for 600 epochs with a learning rate cosine
scheduled from 0.025 to 0, momentum 0.9, weight decay
3 × 10−4, batch size 96 and initial channels 36. Cutout
[Devries and Taylor, 2017], and a scheduled DropPath, i.e.,
linearly decayed from 0.2 to 0, are employed to achieve
SOTA generalization performance.

Evaluation on ImageNet. Following [Liu et al., 2019],
the architectures evaluated on ImageNet consist of 14 cells
(12 identical normal cells and 2 identical reduction cells).
To meet the requirement of evaluation under the mobile set-
ting (less than 600M multiply-add operations), the number
of initial channels for final selected architectures are con-
ventionally set to 44. We adopt the training enhancements
in Liu et al. [2019], Chen et al. [2019], Chen and Hsieh
[2020], including an auxiliary tower of weight 0.4 and la-
bel smoothing. Following P-DARTS Chen et al. [2019] and
SDARTS-ADV Chen and Hsieh [2020], we train the se-
lected architectures from scratch for 250 epochs using a
batch size of 1024 on 8 GPUs, SGD optimizer with a mo-
mentum of 0.9 and a weight decay of 3×10−5. The learning
rate applied in this training is warmed up to 0.5 for the first
5 epochs and then decreased to zero linearly.

B.6 ADVERSARIAL DEFENSE

Adversarial attack intends to find a small change for each in-
put such that this input with its corresponding small change
will be misclassified by a model. As ensemble is known
to be a possible defense against such adversarial attacks
[Strauss et al., 2017], we also examine the effectiveness
of our NESBS algorithm by comparing the model robust-
NESBS achieved by our algorithms to other ensemble and
ensemble search algorithms under various benchmark adver-
sarial attacks. To the best of our knowledge, we are the first
to examine the advantages of ensemble search algorithms
in defending against adversarial attacks.

In this experiment, two processes are required, i.e., attack
and defense. The attack process is a typical white-box attack
scenario: Only a single model (randomly sampled from an
ensemble) is attacked by an attacker, and this process will be
repeated for n rounds given an ensemble of size n in order
to accurately measure the improvement of model robust-
NESBS induced by an ensemble. In each round, a different
model from this ensemble is selected to be attacked. The
defense process is then applied using neural network ensem-
bles, i.e., neural network ensembles will make predictions
based on those perturbed images produced by the aforemen-
tioned attacker. Corresponding to the attack process, we
also need to repeat this defense process for n rounds. In fact,
such an adversarial defense setting is reasonably practical

Metric n = 1 n = 3 n = 5 n = 7

Spearman 0.65 0.33 0.40 −0.12
Pearson 0.82 0.45 0.45 −0.16
Agreement-30% 33% 20% 31% 25%

Table S1: The correlation between the estimated and true
performances of candidate architectures and their ensembles
in the DARTS search space on CIFAR-10.

when only a single model from an ensemble is required to
be publicly available for model producers.

We apply the following attacks in our experiment: The Fast
Gradient Signed Method (FGSM) attack Goodfellow et al.
[2015], the Projected Gradient Descent (PGD) attack Madry
et al. [2018], the Carlini Wagner (CW) attack Carlini and
Wagner [2017] and the AutoAttack [Croce and Hein, 2020].
In both the FGSM attack and the PGD attack, we impose a
L∞ norm constrain of 0.01. The step size and the number of
iterations in the PGD attack are set to 0.008 and 40, respec-
tively. We adopt the same configurations of the CW attack
under a L2 norm constrain in [Carlini and Wagner, 2017]:
We set the confidence constant, the range of constant c, the
number of binary search steps, and the maximum number of
optimization steps to 0, [0.001, 10], 3, and 50, respectively;
we then adopt Adam [Kingma and Ba, 2015] optimizer
with learning rate 0.01 and β1 = 0.9, β2 = 0.999 in its
search process. Besides, we adopt the same configuration of
AutoAttack from [Croce and Hein, 2020].

C COMPLEMENTARY RESULTS

C.1 ENSEMBLE PERFORMANCE ESTIMATION

As shown in Sec. 3.1, we apply the model parameters in-
herited from a trained supernet to estimate the performance
of candidate architectures as well as their ensembles in our
NESBS algorithm. We therefore use the following three met-
rics to measure the effectiveness of such estimation in the
DARTS search space: the Spearman’s rank order coefficient
between the estimated and true performances, the Pearson
correlation coefficient between the estimated and true perfor-
mances, and the percentage of architectures achieving both
Top-k estimated performance and Top-k true performances
(named the Agreement-k). Since the evaluation of the true
performances is prohibitively costly, we randomly sample
10 architectures of diverse estimated performances from the
DARTS search space for this experiment. Notably, based
on these 10 architectures, there are hundreds of possible
ensembles under the ensemble size of 3, 5, 7, which we be-
lieve is sufficiently large to validate the effectiveness of our
performance estimations. To obtain the true performance of
candidate architectures as well as their ensembles, we train
these architectures independently for 100 epochs following

25

30

35

40

45

Te
st

Er
ro

r (
%

)

Best-response Post-training

Δ = 22.52

Δ = 5.38

Min-Error 
Max-Prob 

Figure S1: The comparison of performance discrepancy with
the post-training and best-response posterior distribution on
CIFAR-10. This performance discrepancy is measured by
the gap of test error between the best-performing architec-
ture (i.e., the architecture with the smallest test error) and
the maximal-probability architecture (i.e., the architecture
with the largest probability in the corresponding posterior
distribution) in the DARTS search space.

the settings in Appendix B.5.

Table S1 summarizes the results. Notably, the estimated and
true performances are shown to be positively correlated in
the case of n=1, 3, 5 by achieving relatively high Spear-
man and Pearson coefficients as well as a high agreement
in these cases. Although the coefficients are low when the
ensemble size is larger (i.e., n=7), the estimated and true
performances are still capable of achieving a reasonably
good agreement in this case. Based on these results, we ar-
gue that our estimated ensemble performance is informative
and effective for our ensemble search. This effectiveness can
also be supported by the competitive search results achieved
by our NESBS in Sec. 4.2.

C.2 POST-TRAINING VS. BEST-RESPONSE
POSTERIOR DISTRIBUTION

To examine the advantages of our post-training posterior
distribution, we compare it with its best-response counter-
part applied in [Dong and Yang, 2019a, Xie et al., 2019].
While our post-training posterior distribution is obtained
after the model training of the supernet, the best-response
posterior distribution is updated during the model training of
the supernet. We refer to [Dong and Yang, 2019a, Xie et al.,
2019] for more details about this best-response posterior
distribution. We follow the optimization details in Appendix
B.2 and B.3 to obtain these two posterior distributions.

More accurate characterization of single-model perfor-
mances using post-training posterior distribution. We
firstly compare the characterization of single-mode perfor-
mance using these two posterior distributions by examining
the performance discrepancy between their best-performing
architecture (i.e., the architecture achieving the smallest

Method Best-response Post-training

NESBS (MC Sampling) 4.74 4.54∆=0.20

NESBS (SVGD-RD) 4.81 4.48∆=0.33

Table S2: The comparison of true ensemble test error (%)
on CIFAR-10 achieved by our NESBS algorithm using the
post-training posterior distribution and its best-response
counterpart with an ensemble size of n=3. We use ∆ to
denote the improved generalization performance achieved
by our post-training posterior distribution.

test error) and maximal-probability architecture (i.e., the
architecture achieving the largest probability in the corre-
sponding posterior distribution) in the search space. In this
experiment, the performance discrepancy is measured by
the gap of test error achieved by the best-performing archi-
tecture and the maximal-probability architecture using the
model parameters inherited from the supernet.

Figure S1 illustrates the comparison. The results show that
our post-training posterior distribution enjoys a smaller per-
formance discrepancy, suggesting that our post-training
posterior distribution is able to provide a more accurate
characterization of the single-model performances. Inter-
estingly, the best-response counterpart contributes to the
best-performing architecture with a lower test error than
our post-training posterior distribution, which should result
from the Matthew Effect as justified in [Hong et al., 2020].
Specifically, well-performing architectures contribute to the
frequent selections of these architectures for their model
training during the optimization of the best-response pos-
terior distribution. This will finally result in unfair model
training in the search space and therefore the inaccurate
characterization of single-model performances. Notably, we
need a more accurate characterization of single-mode per-
formance in this paper, as shown in Sec. 3.2. Therefore, our
post-training posterior distribution should be more suitable
than its best-response counterpart in our ensemble search.

Improved performance of selected ensembles using post–
training posterior distribution. We then compare the
final ensemble test performance achieved by our NESBS al-
gorithm using the post-training posterior distribution and its
best-response counterpart on CIFAR-10 with the ensemble
size of n = 3. To obtain the final ensemble performance, we
train each architecture in an ensemble for 100 epochs follow-
ing the settings in Appendix B.5. Table S2 summarizes the
results. Notably, our post-training posterior distribution is
shown to be capable of contributing to an improved ensem-
ble performance than its best-response counterpart, which
further demonstrates the advantages of applying the post-
training posterior distribution in our ensemble search.

10 20
26.4

27.9

33.9

Te
st

Er
ro

r (
%

)

n = 3

10 20
Evaluation Budget (×n)

26.1

26.9

29.9
n = 5

10 20

26.1

26.9

29.9
n = 10

Single Best URS NES-RS NESBS (MC Sampling) NESBS (SVGD-RD)

Figure S2: The comparison of search effectiveness (test error
of ensembles in the y-axis) and efficiency (evaluation bud-
get in the x-axis) for different ensemble search algorithms
under varying ensemble size n. The single best baseline
refers to the single best architecture achieving the lowest
test error in the search space. The y-axis is shown in log-
scale to ease visualization. Note that the test error for each
algorithm is reported with the mean and standard error of
five independent trials.

C.3 EFFECTIVENESS AND EFFICIENCY

As justified in Sec 3.3, both our MC Sampling and SVGD-
RD algorithms can sample neural architectures with compet-
itive single-model performances and diverse model predic-
tions, which are known to be the criteria for well-performing
ensembles [Zhou, 2012]. To further demonstrate that our
algorithms are capable of selecting well-performing ensem-
bles effectively and efficiently based on this sampling prop-
erty, we compare our NESBS algorithm, including NESBS
(MC Sampling) and NESBS (SVGD-RD), with the follow-
ing ensemble search baselines on CIFAR-10 [Krizhevsky,
2009] in the DARTS [Liu et al., 2019] search space: (a)
Uniform random sampling which we refer to as URS, and
(b) NES-RS [Zaidi et al., 2021]. That is, we only replace the
Bayesian sampling in our NESBS algorithm with these two
different sampling/selection algorithms in this experiment
and we keep using the model parameters inherited from
a supernet to estimate the single-model and ensemble per-
formances of architectures (including the test errors). The
detailed experimental settings are in Appendix B.

Figure S2 illustrates the search results. Note that both NES-
RS and our NESBS are able to achieve lower test errors than
the single best-performing architecture in the search space.
These results therefore demonstrate that these two ensemble
search algorithms are indeed capable of achieving improved
performance over conventional NAS algorithms that select
only one single architecture from the search space. More
importantly, given the same evaluation budgets, our NESBS
algorithm consistently achieves lower test errors than URS
and NES-RS, indicating the superior search effectiveness
achieved by our NESBS algorithm. Meanwhile, our NESBS
algorithm requires fewer evaluation budgets than URS and
NES-RS to achieve comparable test errors, which also sug-
gests that our algorithm is more efficient than URS and NES-
RS. Interestingly, compared with MC Sampling, SVGD-RD

5 10 15 20
26

28

30

Te
st

Er
ro

r (
%

)
τ = 0.1

5 10 15 20
Evaluation Budget (×n)

26

28

30
τ = 1.0

5 10 15 20
26

28

30
τ = 10.0

Single Best NESBS (MC Sampling) NESBS (SVGD-RD)

Figure S3: The comparison of search effectiveness (test
error of ensembles in the y-axis) and efficiency (evaluation
budget in the x-axis) between our NESBS (MC Sampling)
and NESBS (SVGD-RD) algorithm under varying softmax
temperature τ . The single best baseline refers to the single
best architecture achieving the lowest test error in the search
space. Each test error is reported with the mean and standard
error of five independent trials.

−2 0
26

27

28

29

Te
st

Er
ro

r (
%

)

δ * = 0.4

τ = 0.1

−2 0
Parameter δ

26

27

28

29

δ * = − 1.4

τ = 1.0

−2 0
26

28

30

32

δ * = − 2.0

τ = 10.0

Figure S4: The comparison of ensemble test error achieved
by our NESBS (SVGD-RD) algorithm with varying δ under
different softmax temperature τ given an ensemble size of
n = 5. We use δ∗ to denote the optimal δ we obtained in our
SVGD-RD algorithm under different temperature τ . The
test error for each δ is reported with the mean and standard
error of five independent trials.

can consistently produce improved search effectiveness and
efficiency, which likely results from its controllable trade-
off between the single-model performances and the diverse
model predictions as justified in Sec. 3.3. Overall, these
results have well justified the effectiveness and efficiency of
our NESBS algorithm.

C.4 THE ADVANTAGES OF CONTROLLABLE
DIVERSITY IN SVGD-RD

To examine the advantages of controllable diversity in our
SVGD-RD, we firstly compare the search effectiveness and
efficiency achieved by our NESBS (MC Sampling) and
NESBS (SVGD-RD) algorithm with varying softmax tem-
perature τ (appeared in (S14)). A larger temperature τ will
lead to a flatter posterior distribution and hence degenerate
its capability of characterizing single-model performances
of neural architectures as indicated in (S14). We use these
posterior distributions with varying temperature τ to sim-
ulate the possible posterior distributions we may obtain in
practice. Figure S3 illustrates the comparison on CIFAR-
10 in the DARTS search space with an ensemble size of

n = 5. Notably, our NESBS (SVGD-RD) with controllable
diversity can consistently achieve improved search effec-
tiveness and efficiency than our NESBS (MC Sampling).
Interestingly, this improvement becomes larger in the case
of τ = 0.1, 10.0, which should be the consequences of a bad
exploration and exploitation achieved by our NESBS (MC
Sampling), respectively. These results therefore suggest that
the controllable diversity in our SVGD-RD generally can
lead to improved search effectiveness and efficiency than
our NESBS (MC Sampling).

We further provide the comparison of ensemble test error
achieved by our SVGD-RD with varying δ under different
softmax temperature τ in Figure S4. Notably, when the pos-
terior distribution tends to be flatter (i.e., τ = 10), a smaller
δ is preferred by our SVGD-RD in order to sample architec-
tures with better single-model performances while maintain-
ing the compelling diverse model predictions. Meanwhile,
when this posterior distribution tends to be sharper (i.e.,
τ = 0.1), a larger δ is preferred by our SVGD-RD in order
to sample architectures with a larger diverse model predic-
tions while preserving the competitive single-model per-
formances. Based on this controllable diversity and hence
the controllable trade-off between the single-model perfor-
mances and the diverse model predictions, our SVGD-RD is
thus capable of achieving comparable performances under
varying τ , which usually improve over our NESBS (MC
Sampling) by comparing them with the results in Figure S3.
These results further validate the advantages of the control-
lable diversity in our SVGD-RD.

	Proofs
	Experimental Settings
	The DARTS Search Space
	Model Training of Supernet
	Posterior Distribution
	SVGD of Regularized Diversity
	Evaluation on Benchmark Datasets
	Adversarial Defense

	Complementary Results
	Ensemble Performance Estimation
	Post-training vs. Best-response Posterior Distribution
	Effectiveness and Efficiency
	The Advantages of Controllable Diversity in SVGD-RD

