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Abstract

In the deep neural network based few-shot learn-
ing, the limited training data may make the neural
network extract ineffective features, which leads
to inaccurate results. By Bayesian graph neural
network (BGNN), the probability distributions on
hidden layers imply useful features, and the few-
shot learning could improved by establishing the
correlation among features. Thus, in this paper, we
incorporate mutual information (MI) into BGNN
to describe the correlation, and propose an innova-
tive framework by adopting the Bayesian network
with continuous variables (BNCV) for effective
calculation of MI. First, we build the BNCV simul-
taneously when calculating the probability distribu-
tions of features from the Dropout in hidden layers
of BGNN. Then, we approximate the MI values
efficiently by probabilistic inferences over BNCV.
Finally, we give the correlation based loss function
and training algorithm of our BGNN model. Ex-
perimental results show that our MI based BGNN
framework is effective for few-shot learning and
outperforms some state-of-the-art competitors by
large margins on accuracy.

1 INTRODUCTION

Few-shot learning aims to learn novel concepts from only
one or a few annotated samples, which is an interesting
problem and has received a lot of attention recently [Ma
et al., 2020]. Different from traditional machine learning
models built on a large amount of training data, few-shot
learning is defined for scenarios with limited supervised
experience [Zheng et al., 2021]. It is challenging to fulfill
efficient few-shot learning, since extracting effective and
representative features often requires large-scale training
datasets [Gairola et al., 2020].

To find more useful features for few-shot learning, sev-
eral methods have been proposed and one popular solution
is Bayesian graph neural network (BGNN) [Jospin et al.,
2020], which is a graph neural network (GNN) to describe
the uncertain relationships among features in datasets. By us-
ing Bayesian approximation over uncertainty, BGNN could
extract more effective features to improve the performance
of few-shot learning tasks [Hasanzadeh et al., 2020]. How-
ever, it is still difficult to achieve a highly accurate few-shot
learning method based on BGNN, since the limited training
data is insufficient for neural networks to catch the most use-
ful features and makes over-smooth and over-fitting much
more intensively.

One advantage of BGNN is that the probability distribu-
tion of the features extracted from hidden layers could be
used to build a larger feature space. If we could eliminate
redundant features and restrain the feature space in terms of
the convergence with limited samples, more useful features
could be extracted. Note that the correlation of probability
distributions among hidden layers implies useful informa-
tion of features. Thus, by scaling the correlation of feature
spaces, we could improve the effectiveness of feature ex-
traction of BGNN for few-shot learning. For example, given
two neighbor hidden layers in a BGNN for face recognition,
the prior layer extracts location and the next layer extracts
shape. Then, based on the correlation between these two
kinds of features, we could make the next layer to extract
both shape and location instead of just shape.

Probability distributions reflect both the features in hidden
layers and corresponding propagation operations like graph
convolution. If the correlation among features could be ex-
tracted and described, it could be used to make hidden layers
of BGNN share with more information and find more useful
features by maximizing the correlation [Kipf and Welling,
2017]. For this purpose, we adopt mutual information (MI)
to describe the correlation quantitatively, and formulate the
process of MI maximization to make BGNN share as much
information as possible by following the forward flow in
BGNN training [Gabrié et al., 2018].
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However, calculating MI is not trivial even if the probabil-
ity distribution functions (PDFs) have been given [Amjad
et al., 2019]. It is known that Bayesian network (BN) is a
famous framework for uncertain knowledge representation
and inference via a directed acyclic graph (DAG) of random
variables with conditional probability parameters [Koller
and Friedman, 2009]. Thus, we use BN with continuous
variables (BNCV) [Li and Mahadevan, 2018] to effectively
approximate MI.

In this paper, we propose an innovative framework to es-
tablish the correlation among features in hidden layers
of BGNN to improve the accuracy of few-shot learning
tasks. Specifically, we first build our framework based on a
Bayesian graph convolution neural network with adaptive
connection sampling (BGS) [Hasanzadeh et al., 2020] (an
efficient version of BGNN). We then approximate the prob-
ability distributions of features extracted from hidden layers
by the relaxed Bernoulli distribution in BGS. Thus, the
continuity of the probability distributions in BNCV could
be guaranteed. We then define the nodes of BNCV as the
marginal distributions extracted from features, and establish
the correlation between two neighbor layers and connect
the end of the prior pair with the start of the next pair based
on the forward flow when training BGS. Thus, the DAG
of BNCV could be constituted. Although the distributions
of the nodes in a BNCV cannot be directly obtained, the
Bayesian approximation of the relaxed Bernoulli distribu-
tions based on Dropout has already provided the conditional
probability function (CPF) for BNCV. Consequently, the
approximation of MI could be fulfilled by using CPF and
Monto Carlo integration based on the probabilistic infer-
ences over BNCV. Finally, we provide the correlation based
loss function and training algorithm of our BGNN model.

Our main contributions are summarized as follows:

• We propose an innovative framework to extract effec-
tive features for few-shot learning by establishing the
correlation among features from the probability distri-
butions in BGS.

• We build BNCV efficiently from the Dropout in hidden
layers of BGS and approximate the MI values effec-
tively based on the probabilistic inferences over BNCV
to describe the correlation quantitatively.

• We provide the loss function by incorporating with the
MI-based correlation and propose the training algo-
rithm of our BGNN model.

• We conduct extensive experiments on Cora and Cite-
seer datasets, and the results show that our proposed
framework is effective for few-shot learning and out-
performs some state-of-the-art competitors by large
margins on accuracy.

2 RELATED WORK

Few-shot learning aims to learn novel concepts from only
one or a few examples, which is an interesting and chal-
lenging problem in practical applications [Gao et al., 2021].
Recently, many meta-learning [Zhang et al., 2018] and trans-
fer learning [Wang et al., 2020] methods have been proposed
to solve this problem. Most of these methods are combined
with a variety of deep learning models, where the corre-
lation among features is usefully provided. For example,
the correlation could be obtained by using GNN to propa-
gate structural information [Garcia and Bruna, 2018], and a
similarity metric is established to achieve the correlation be-
tween two similar samples for few-shot image segmentation
[Gairola et al., 2020].

However, describing correlation as the hidden feature for
few-shot learning is still challenging. Thus, several methods
have been proposed to establish the concept of correlation.
[Yan et al., 2019] give the concept of correlation between
global and local features based on the dual attention network.
[Gao et al., 2020] conceptualize the correlation between ex-
isting and new relations via embedding. [Yao et al., 2020]
provide a method to learn the correlation from auxiliary
graphs via knowledge transfer. To evaluate the correlation
explicitly, MI-based methods have been adopted. [Di et al.,
2020] use MI to build a 2-depth adjacent matrix to leverage
the correlation, and [Wan et al., 2020] use MI to enrich
the representation of knowledge extracted from correlation.
Moreover, Graphical Mutual Information (GMI) has been
proposed to measure the correlation between input graphs
and high-level hidden representations [Peng et al., 2020]
based on graph embedding. By these methods, the corre-
lation could be evaluated, but still cannot be calculated
quantitatively even MI is adopted.

Note that MI could not be easily calculated and usually
approximated in practice [Gabrié et al., 2018]. Thus, the
generative adversarial neural network based method is pro-
posed to approximate the CPF of density and marginal dis-
tributions ultimately [Abbasnejad et al., 2019]. However,
these methods are often inefficient [Gabrié et al., 2018]. To
solve this issue, the neural network based conditional MI
was proposed as the approximation of the MI [Mukherjee
et al., 2019], but it does not hold in BGNN for few-shot
learning due to the limited training data.

Integrating the deep learning and Bayesian model is the sub-
ject with much attention to make interpretation for neural
networks or infer the conditional (or even causal) relations
and corresponding uncertainty. For example, [Rohekar et al.,
2018] propose the method for unsupervised structure learn-
ing of deep neural networks by casting the problem of neu-
ral network structure learning as a problem of BN structure
learning. [Krishnan et al., 2017] propose a unified algo-
rithm to efficiently learn a compiled inference network and
the generative model simultaneously for non-linear state
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space models to mimic the posterior distribution. [Wang
and Yeung, 2020] survey the models and applications of
Bayesian deep learning to tightly integrate deep learning
and Bayesian models for establishing a comprehensive arti-
ficial intelligence system with the capabilities of perception
and probabilistic inferences. Different from these methods,
we adopt BN for evaluating the correlation efficiently, and
build BNCV based on the probability distributions of hidden
layers in BGS.

3 PROBLEM FORMULATION

First, we formulate some concepts as the basis of later dis-
cussion.

A dataset with limited training data is represented as
D(G,F, Y ), where G is the undirected graph, F is the set
of original features, and Y is the set of labels.

Taking as input the training dataset D, a BGS contains I ,
O, L, and B, where I (i.e., I = D for the convenience of
expression) and O is the input and output respectively, L is
the set of graph convolution operations and B is the set of
relaxed Bernoulli distributions of all hidden layers, where

• La(G) is the function of passing structural informa-
tion, such as Laplace decomposition [Kipf and Welling,
2017] for a given undirected graph G, given the activa-
tion function σ(·).

• L = {L1, . . . , Ln}, B = {B1, . . . , Bn}, L0 = I ,
Li = σ(La(G)Li−1)Bi(1 ≤ i ≤ n).

• O = Softmax(Ln) , and n is the depth (i.e., number
of layers) of BGS.

A BNCV contains V and E, where V is the set of nodes
(i.e., random variables),E is the set of directed edges, where
there is a set of conditional probabilities to quantify the
dependencies among the nodes in V . The DAG of BNCV is
represented as Gd(V,E). To build a BNCV from BGS, we
consider generating V based on B and E from the forward
flow between neighbor layers in L.

MI can be formulated by entropy [Di et al., 2020] w.r.t. the
probability distribution of (Li−1, Li) as follows

MI(P (Li−1), P (Li)) = H(P (Li))−H(P (Li|Li−1))
(1)

where P (·) is the PDF of random variables and H(·) is the
entropy of P (·).

The correlation between a pair of neighbor layers is
defined as (Li−1, Li) and obtained by the approxima-
tion of MI, denoted as M̃(Li−1, Li). Correspondingly,
the correlation of the whole framework is defined as
M{(L1, L2), . . . , (Ln−1, Ln)}, abbreviated asM(L).

We cast our problem of correlation evaluation as the prob-
lem of calculating MI-based correlation, which could be

efficiently implemented by the probabilistic inferences over
BNCV. Meanwhile, we include correlation into the loss
function for training our model, which also makes BGS to
possibly make use of the correlation among hidden layers.

4 METHODOLOGY

4.1 FRAMEWORK

First, we propose the innovative framework, BGS based on
MI (BGSMI), which consists of a BGS and a BNCV, shown
as Figure 1. Then, we describe the ideas of BGS, BNCV,
MI approximation and training of BNCV, respectively.

4.1.1 BGS

To represent the correlation based on limited training data,
(Li−1, Li) could be established directly by following the
forward flow between two neighbor layers of BGS.

To establish {(L1, L2), . . . , (Ln−1, Ln)}, we limit the prop-
agation scope of correlation, stated in Theorem 1, since only
the prior layer influences the result of the current layer
according to the formulation of the graph convolution oper-
ation Li = σ(La(G)Li−1)Bi.

Theorem 1. The correlation w.r.t. BGS is between every
pair of neighbor layers Li−1 and Li (1 < i ≤ n).

By the graph convolution operation, the Dropout in B could
be used to approximate the CPF between every pair of neigh-
bor layers, denoted as P (Li|Li−1, La(G)Wi−1), where
Wi−1 is the set of parameters of Li−1. O = Softmax(Ln)

is adopted as eZj/
∑|Ln|

j=1 e
Zj to generate the output, where

Zj is the jth feature generated by Ln.

4.1.2 BNCV

In a BNCV, the DAG represents the correlation between
two neighbor layers in BGS and CPF is the conditional
probability functions for each node in BNCV. To build a
BNCV, we consider the following two aspects.

First, the marginal distribution MP (Bi) w.r.t. Li is equal
to P (Bi), which is extracted from Li and regarded as the
node in BNCV. Thus, we generate V of BNCV w.r.t. B of
BGS. Following the forward flow in BGS, Vi w.r.t. Bi has
the relationship with Vi−1 w.r.t. Bi−1, since the correlation
reflects the dependence relationship in BNCV by a directed
edge. E can be generated and further Gd(V,E) can be built
by following the forward flow between neighbor layers.

Second, according to Theorem 1, the CPF of each node is
defined as

P (Li|Li−1) = P (Li|Li−1, La(G)Wi−1) (2)
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Figure 1: The framework of BGSMI. The network structure of BGS is shown at the bottom. Built from BGS, the BNCV
with DAG and CPFs are shown at the top. Blue arrows among Sampling, CPF, MI approximation and DAG show the
approximation of P (Li|Li−1) by probabilistic inferences over BNCV. Black arrows show the direction of forward flow
between neighbor hidden layers in BGS.

Note that Equation (2) describes the conditional distribution
between two nodes in BNCV and P (Li|Li−1) is analogous
to the conditional probability table (CPT) in BN with dis-
crete variables. In terms of the structure of the BGSMI,
P (Li|Li−1) could be calculated as

P (Li|Li−1) ≈ Bernoulli(πi) ≈ Bi(ai, bi) (3)

where Bernoulli(πi) is the Bernoulli distribution with pa-
rameter πi, and Bi(ai, bi) is the relaxed Bernoulli distribu-
tion w.r.t. Li with parameters ai and bi.

Thus, we could calculate P (Li|Li−1) for each pair
(Li−1, Li) (1 < i ≤ n) over BNCV.

4.2 BNCV BASED MI APPROXIMATION

We use MI to describe the correlation between Li−1 and Li,
denoted as M̃(Li−1, Li) and approximated as follows

M̃(Li−1, Li) = H(P (Li)) +H(P (Li−1))

−H(P (Li−1, Li))
(4)

Note that P (Li−1, Li) could be calculated by the probabilis-
tic inferences over BNCV, and thus the correlation of the
whole framework is denoted asM(L) and defined as

M(L) =
1

n

n∑
i=2

M̃(Li−1, Li) (5)

Equation (5) could be approximated during one epoch of
BGS training by probabilistic inferences over BNCV. Adopt-
ing the lower bound of H(P (Li−1, Li)), we make the fol-
lowing transformation

H(P (Li−1, Li)) ≈ max{H(P (Li−1)), H(P (Li))}.
(6)

Thus, M̃(Li−1, Li) in Equation (4) could be formulated as

M̃(Li−1, Li) = H(P (Li−1)) +H(P (Li))−max{·},
(7)

wheremax{·} denotesmax{H(P (Li−1)), H(P (Li))} for
the convenience of expression, and the entropy is calculated
by

H(P (Li)) = −
∫
P (Li) log2 P (Li) dx. (8)

By the Monto Carlo integration [Jospin et al., 2020], Equa-
tion (8) could be transformed as

H(P (Li)) ≈ −t
∑

Sp(Li)

log2 P (Li), (9)

where Sp(·) denotes the sample space of variables, t =
1

Ns(Sp(Li))
, and Ns(·) denotes the number of possible vari-

ables in Sp(·).

Importantly, the sample space is equal to the number of
samples during the process of sampling [Jospin et al.,
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2020]. Based on the independent relationships represented
in BNCV, P (Li) could be formulated as

P (Li) =

∫
P (Li, Li−1, . . . , L1) d(Sp(Li−1, . . . , L1)).

(10)
By Monto Carlo integration, we have

P (Li) ≈
1

Ns(sl)

∑
sl

P (Li, Li−1, . . . , L1)

P (Li−1, . . . , L1)
, (11)

where sl denotes Sp(Li−1, . . . , L1), and∑
sl

P (Li,Li−1,...,L1)
P (Li−1,...,L1)

denotes the fraction for all
possible combinations of P (Li, Li−1, . . . , L1) and
P (Li−1, . . . , L1) in Sp(Li−1, . . . , L1) for the convenience
of expression.

By sampling over the relaxed Bernoulli distributions B in
BGSMI, we could obtain P (Li|Li−1) efficiently by Equa-
tion (3). It is worth noting that the parameters ai and bi of
Bi have already been calculated during the training of BGS.
Then, using the chain rule, the joint probability distribution
of {Li, Li−1, . . . , L1} could be obtained as

P (Li, Li−1, . . . , L1) ≈
i∏

j=2

P (Lj |Lj−1)

= P (Li|Li−1)

i−1∏
j=2

P (Lj |Lj−1)

≈ P (Li|Li−1)P (Li−1, . . . , L1).
(12)

By Equation (11) and Equation (12), we have

H(P (Li)) ≈
−1

Ns(Sp(Li))

∑
Sp(Li)

log2 P (Li|Li−1). (13)

Finally, by Equation (7) and Equation (13), M̃(Li−1, Li)
in BGSMI could be appropriated as

M̃(Li−1, Li) = −
1

Ns(Sp(Li))

∑
Sp(Li)

log2 P (Li|Li−1)

− 1

Ns(Sp(Li−1))

∑
Sp(Li−1)

log2 P (Li−1|Li−2)−max{·}.

(14)

Thus, M̃(Li−1, Li) could be approximated by the CPFs
in BNCV directly. The procedure of the approximation of
Equation (5) is given in Algorithm 1, whose complexity is
O(n|WB |).

4.3 TRAINING ALGORITHM

Following (L1, L2), . . . , (Ln−1, Ln), the correlation be-
tween neighbor layers is incorporated into BGS by calculat-
ing the correlation of the whole framework. To intensify the

Algorithm 1 Approximation of MI-based Correlation
Input: I
Parameters: WB , the weights in B
Output:M(L)

1: Let t be an empty list with equal size to WB

2: i← 1
3: while i ≤ |t| do
4: Sample P (Li|Li−1) by Equation (3)
5: Calculate M̃(Li−1, Li) by Equation (14)
6: t[i]← M̃(Li−1, Li))
7: i← i+ 1
8: end while
9: return M(L)← 1

|t|
∑n

i=2 M̃(Li−1, Li) //
Approximation of Equation (5)

correlation between neighbor layers in BGS, we maximize
Equation (5) in the loss function of BGSMI, since the larger
the correlation, the less the uncertainty between neighbor
layers. Thus, the loss function of BGSMI is formulated as

L = LB + lnM(L), (15)

where LB is the loss function of BGS [Hasanzadeh et al.,
2020], formulated as

LB = Eq(L,B)lnP (Y |F,L,B)

−KL(q(L,B)||p(L,B)) + ξ

|F |∑
i

I2i ,
(16)

where q(·) and p(·) are the distributions of random variables,
KL(·) is the Kullback-Leibler (KL) divergence [Jospin
et al., 2020], Ii ∈ I , and ξ is a constant.

To avoid under-fitting, we remove ξ
∑|F |

i I2i from Equa-
tion (16), and thus rebuild the loss function as

L = Eq(L,B)lnP (Y |F,L,B)

−KL(q(L,B)||p(L,B)) + lnM(L).
(17)

Therefore, BGSMI could be trained by minimizing the loss
function in Equation (17) via gradient descent. The above
idea of BGSMI training is summarized in Algorithm 2,
whose complexity is O(n|WB |+ |WL|T ).

5 EXPERIMENTS

We evaluate BGSMI to answer the following questions:

Q1: How does BGSMI perform in terms of the accuracy
compared with other state-of-the-art models on limited train-
ing data?

Q2: How does the MI-based correlation in BGSMI alleviate
the over-fitting and over-smooth in few-shot learning?

Q3: How does noise impact the accuracy of BGSMI based
few-shot learning?
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Algorithm 2 Training BGSMI
Input: I
Parameters: T , the number of epochs; lr, the learning

rate
Output: WL, the weights in L; WB , the weights in B

1: i← 0
2: Randomly initialize W i

L and W i
B

3: while i < T do
4: Generate V and E from BGS to build Gd(V,E)
5: Calculate P c based on Gd(V,E), W i

L and W i
B

6: Calculate L by W i
L, W i

B and P c// By Equation (17)
7: (∇LL,∇LB)← ∇L
8: W i+1

L ← (W i
L − lr ∗ ∇LL)

9: W i+1
B ← (W i

B − lr ∗ ∇LB)
10: i← i+ 1
11: end while
12: return WT

L , WT
B

5.1 EXPERIMENT SETTINGS

Datasets. We used two benchmarks of citation networks for
graph node classification [Kipf and Welling, 2017], shown
in Table 1. Cora records the citation network publication
1 and Citeseer records the citation information of papers
released by Citeseer 2.

Table 1: Statistics of datasets.

Dataset Nodes Edges Features per node Classes

Cora 2,078 5,429 1,433 7
Citeseer 3,327 4,732 3,073 6

Comparison methods. We carefully chose six state-of-the-
art methods as competitors for BGSMI:

• GCN (graph convolutional network) [Kipf and
Welling, 2017] uses the graph convolution layer with
Laplace transform to handle the graphical structure.

• GAT (graph attention network) [Velic̆ković et al.,
2018] uses attention to simulate Laplace transform and
operates on graph-structured data, leveraging masked
self-attentional layers based on graph convolutions or
their approximations.

• CHEB [Defferrard et al., 2016] is a convolutional neu-
ral network on graphs with fast localized spectral fil-
tering and applies the fast localized spectral filtering to
improve the GCN without concerning the entire graph.

• GMI (graphical mutual information with standard
structure) [Peng et al., 2020] measures the correlation

1https://linqs-data.soe.ucsc.edu/public/
lbc/cora.tgz

2https://csxstatic.ist.psu.edu/downloads/
data

between input graphs and high-level hidden representa-
tions, and generalizes conventional mutual information
computations, concerning node features and graphical
structure.

• BGS (Bayesian GCN with adaptive connection sam-
pling) [Hasanzadeh et al., 2020] is an efficient version
of BGNN.

• MAML (model-agnostic meta-learning) [Finn et al.,
2017] is a classic meta-learning algorithm to learn the
network parameters in deep learning models using a
two-step strategy.

• RALE (relative and absolute location embedding) [Liu
et al., 2021] aligns different tasks toward learning a
transferable prior by using the relative and absolute
location embedding to solve over-fitting in few-shot
node classification on graphs.

Implementations. We considered the following two experi-
mental variables: depth of the layers (2, 4, and 6 layers), and
inclusion of noise (adding noise in the training set satisfying
normal Gaussian distribution). For the Cora dataset, we used
140 nodes, 500 nodes and 1000 nodes as the training set, val-
idation set and test set, respectively. For the Citeseer dataset,
we used 120 nodes as the training set, 500 nodes and 1000
nodes as the validation set and test set, respectively. Models
of GCN, GAT and CHEB use the pre-training strategy.

Metric. We used accuracy to evaluate the effectiveness of
BGSMI based few-shot learning, defined as the ratio of the
number of correct predictions by the neural network to the
number of samples.

Hyperparameters. We concerned four hyperparameters
and fixed the learning rate to 0.001 for GMI and 0.005
for the other models, the decay rate of L2 regularization to
5e− 3, and the number of epochs to 400. The kernel sizes
of graph convolutions in the comparison methods are the
number of features per node multiplied by that of features
per node, 128 times of the number of features per node,
512 times of the number of features per node, 512 × 512
and 128 × 128. The kernel sizes of graph convolutions in
BGSMI are 256 times of the number of features per node,
256× 256, 256× 128, 128× 64 and 64× 64.

Environment. Our experiments were run on a machine with
an Intel i9 3.6GHz CPU, 128GB RAM and RTX3090 GPUs.
All codes were written in PyTorch.

5.2 EXPERIMENTAL RESULTS

Accuracy of BGSMI based few-shot learning. With var-
ious sizes of samples in the support and query sets, the
accuracy of BGSMI based few-shot learning is compared
with that of the comparison methods, reported in Table 2,
where ’n-way k-shot’ means n samples, included in the
support set and query set in each batch, respectively.
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Table 2: Accuracy with different sized training sets.

Method Cora Citeseer
1-way 3-shot 1-way 5-shot 3-way 5-shot 1-way 3-shot 1-way 5-shot 3-way 5-shot

GCN 0.542 0.673 0.797 0.543 0.634 0.732
GAT 0.541 0.592 0.762 0.385 0.672 0.823

CHEB 0.651 0.753 0.801 0.563 0.752 0.781
GMI 0.618 0.689 0.763 0.502 0.722 0.834
BGS 0.308 0.703 0.679 0.502 0.635 0.665

MAML 0.570 0.660 0.591 0.546 0.618 0.707
RALE 0.752 0.858 0.888 0.656 0.792 0.813

BGSMI 0.770 0.859 0.890 0.664 0.814 0.855

Table 3: Accuracy with different depths.

Method Cora Citeseer
2 layers 4 layers 6 layers 2 layers 4 layers 6 layers

GCN 0.631 0.683 0.693 0.603 0.636 0.643
GAT 0.624 0.689 0.670 0.703 0.733 0.711

CHEB 0.635 0.701 0.697 0.637 0.694 0.683
GMI 0.627 0.696 0.723 0.633 0.702 0.713
BGS 0.503 0.563 0.544 0.551 0.600 0.561

MAML 0.611 0.653 0.662 0.596 0.646 0.624
RALE 0.733 0.822 0.833 0.722 0.761 0.784

BGSMI 0.746 0.887 0.847 0.738 0.772 0.793

We find that: (a) On Cora, BGSMI achieves the highest
accuracy under 1-way 3-shot, 1-way 5-shot, 3-way 5-shot,
with the highest average accuracy of 84.0%. On Citeseer,
BGSMI also achieves the highest accuracy under 1-way 3-
shot, 1-way 5-shot, 3-way 5-shot, with the highest average
accuracy of 77.8%. (b) On Cora, BGSMI improves almost
2.4%, 0.1% and 0.2% accuracy under the 1-way 3-shot,
1-way 5-shot, 3-way 5-shot compared with the highest accu-
racy of other comparison models, respectively. On Citeseer,
BGSMI improves almost 1.2%, 2.8% and 5.2% accuracy
under the 1-way 3-shot, 1-way 5-shot and 3-way 5-shot
compared with the highest accuracy of other comparison
models, respectively. These results verify the effectiveness
of our BGSMI to improve the accuracy of few-shot learning.

Alleviation of over-fitting and over-smooth. To test how
MI alleviates over-fitting and over-smooth, we compared
the accuracy of few-shot learning based on BGSMI and
comparison methods by varying different depths of BGS,
reported in Table 3.

We find that: (a) On Cora, the average accuracy of BGSMI
keeps almost 82.7% as the highest with the increase of
depths of BGS. On Citeseer, BGSMI also achieves the aver-
age accuracy of 76.8% with the increase of depths. (b) On
Cora and Citeseer, BGSMI improves 1.7% and 1.1% accu-
racy respectively, compared with other comparison models
when the layers increase to 6. (c) On Cora and Citeseer, the
average rate of accuracy increase/decrease of BGSMI from
2 layers to 6 layers is 1.1%, while 34.9% of other compari-

son methods, which shows the accuracy of BGSMI remains
stable with the increase of depths of BGS. This means that
the correlation in BGSMI indeed alleviates the over-smooth
and over-fitting in few-shot learning.
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Figure 2: Impacts of training size on accuracy of BGSMI.

Impacts of parameters. To evaluate the impacts of experi-
mental variables, we recorded the accuracy of BGSMI based
few-shot learning with the increase of training size and dif-
ferent parameters, reported in Figure 2. Meanwhile, we
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Figure 3: Impacts of depths on accuracy of BGSMI.

recorded the accuracy with the increase of depths and differ-
ent parameters, reported in Figure 3.

From Figure 2, we can see that on Cora and Citeseer, the
accuracy increases with the increase of training size on both
datasets with different depths, and the accuracy does not
decrease sharply when adding noise on both datasets with
different sized training sets.

From Figure 3, we can see that: (a) high accuracy of few-
shot learning on Cora could be kept, and the accuracy on
Citeseer remains stable, while the accuracy decreases with
the increase of depths of BGS. (b) On Cora and Citeseer,
the accuracy remains stable with the increase of depths after
adding noise. The above results show that BGSMI is robust
to noise to a certain extent, and BGSMI based few-shot
learning could achieve high accuracy with limited training
data under different depths of BGS.

Impacts of noise. MI may intensify the impacts of noise on
accuracy, so we evaluated the accuracy of BGSMI based
few-shot learning by adding the Gaussian noise, reported
in Figure 4. It tells us that, the average accuracy on Cora
remains at 60% with noise, which is very close to the min-
imum accuracy without noise. On Citeseer, the difference
between the average accuracy with noise and the quarter-
point accuracy without noise is less than 0.1. This shows
that the accuracy of BGSMI does not decrease sharply when
adding the Gaussian noise.

Summary. Following the above experimental results with
different experimental variables and datasets, we find that
more useful features could be provided by incorporating the
MI-based correlation into BGNN and indeed improve the
accuracy of BGSMI based few-shot learning.
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Figure 4: Impacts of noise on accuracy of BGSMI.

• By incorporating with the MI-based correlation,
BGSMI outperforms other state-of-the-art methods.
Specifically, BGSMI improves 67.8% and 29.7% aver-
age accuracy over BGS on Cora and Citeseer respec-
tively with limited training data. Moreover, BGSMI
also achieves the highest accuracy on Cora and Citeseer
with different depths of BGS.

• Efficient approximation of MI could be achieved and
BGSMI is insensitive to noise. Specifically, the dif-
ference between the average accuracy of BGSMI with
noise and that without noise is less than 0.2 on different
datasets.

6 CONCLUSION AND FUTURE WORK

In view of the insufficient features in few training data,
we propose a framework BGSMI to leverage the feature
correlation described by MI to improve the accuracy of
BGNN based few-shot learning. Without proposed frame-
work not only achieves high accuracy, but also alleviates the
over-smooth and over-fitting with limited training data in
few-shot learning tasks. Experimental results show that the
noise will not make BGSMI destroyed.

As further work, we will study how to enhance our frame-
work to eliminate the influence of noise as much as possible.
For better interpretability of the combination of deep neural
network and BN, we will consider incorporating the ideas
of Bayesian deep learning models for further integration of
BNCV and BGS.
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