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Abstract

We consider the problem of deciding how best
to target and prioritize existing vaccines that may
offer protection against new variants of an infec-
tious disease. Sequential experiments are a promis-
ing approach; however, challenges due to delayed
feedback and the overall ebb and flow of disease
prevalence make available methods inapplicable
for this task. We present a method, partial likeli-
hood Thompson sampling, that can handle these
challenges. Our method involves running Thomp-
son sampling with belief updates determined by
partial likelihood each time we observe an event.
To test our approach, we ran a semi-synthetic exper-
iment based on 200 days of COVID-19 infection
data in the US.

1 INTRODUCTION

Methods for sequential experimentation have proven them-
selves as powerful and versatile in a number of application
areas, ranging from online advertising [Chapelle and Li,
2011] and revenue management [Ferreira et al., 2018] to
website optimization [Letham et al., 2019]. These methods
enable us to efficiently optimize an explore-exploit tradeoff
between first discovering which of a number of actions is
best and then efficiently deploying it once we’ve identified
it. One simple yet successful idea for doing so is Thomp-
son sampling [Thompson, 1933, Russo et al., 2018], where
an agent dynamically updates a belief distribution for the
probability that each action they could take is best, and then
takes actions with propensity proportional to these beliefs.

An important and potentially promising application for se-
quential learning1 is in deciding how best to use existing

1In this paper, we use the terms sequential learning and se-
quential experimentation interchangeably.

vaccines to target new variants of an infectious disease. For
example, in the case of the COVID-19 pandemic, a number
of vaccines were developed and found to be safe and effec-
tive in protecting against the original viral strain; however,
new coronavirus variants then emerged that exhibited at
least partial ability to evade protection from vaccines, thus
making it more difficult to contain the pandemic [Kustin
et al., 2021]. In situations like this, it is of considerable
value to promptly assess which of the existing vaccines (if
any) offer protection against the new variant. Castillo et al.
[2021] call for embedding vaccine trials on new COVID-
19 variants within national vaccine rollouts, and sequential
learning seems like a perfect candidate for optimizing the
resulting explore-exploit tradeoff across vaccines. In this
setup, we would only be comparing vaccines that have al-
ready been established as generally safe and effective, and
so the goal is to discover—as quickly as possible—which
vaccine is most effective in the context of interest.

The main difficulty in using sequential experiments for vac-
cine trials is that such trials involve delayed feedback of a
type that cannot readily be handled by available methods, in-
cluding Thompson sampling [Thompson, 1933, Russo et al.,
2018] or the UCB algorithm [Lai and Robbins, 1985, Auer
et al., 2004]. The standard framework for sequential learn-
ing involves a tight feedback loop, where in each time-step
an agent chooses an action, sees the corresponding reward,
and can then update their beliefs. In a vaccine trial, however,
we cannot immediately assess success after an innoculation;
rather, we can only wait and see whether the patient gets
infected any time before the end of the trial.

There has been some recent work on adaptive trials with
delayed feedback [Grover et al., 2018, Joulani et al., 2013,
Zhou et al., 2019]; however, available methods cannot si-
multaneously address some key difficulties that arise when
testing vaccines in a pandemic. First, there is no (useful)
upper bound on the delay separating an action and the corre-
sponding reward. Study subjects could experience a negative
reward (i.e., get infected) anytime between when they’re en-
rolled in the study (and given a vaccine) and the end of the
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study. Second, the rate of infections doesn’t just depend on
which vaccines are used, but also on the ebb and flow of
the pandemic. Any method that adaptively adjusts vaccine
allocation frequencies without accounting for varying base-
line infection rates risks providing a biased comparison. The
main goal of this paper is to develop methods for sequential
experimentation that can handle the above challenges.

Our core proposal is to extend the Thompson sampling
method for sequential Bayesian learning to the proportional
hazards model [Cox, 1972], which is widely used in medi-
cal statistics. In our context—as spelled out in more detail
below—the proportional hazard model posits that, at time
t and for an as-of-yet uninfected person having received
vaccine k, the instantaneous risk (i.e., hazard) of getting
infected is of the form h0(t)e−θk . Here, h0(t) is the base-
line hazard, i.e., the time-varying instantaneous risk that
an unvaccinated person gets infected, and θk captures the
protective effect of the vaccine (the larger θk the better the
vaccine). The proportional hazards model is a natural fit
for our setting in that it allows us to address the challenges
highlighted above (i.e., unbounded delays to observed infec-
tions and time-varying baseline hazards), yet it has enough
structure to enable sample-efficient learning. One celebrated
property of the proportional hazards model is that we can
learn about the underlying efficiency parameters θk via a par-
tial likelihood in which the baseline risk h0(·) gets canceled
out [Cox, 1975, Efron, 1977].

Our proposed approach, partial likelihood Thompson sam-
pling (PLTS), involves running Thompson sampling with
belief updates determined by partial likelihood each time we
observe an event (i.e., each time an already vaccinated study
participant gets infected). This differs from a Bernoulli ban-
dit in that we do not control when events may happen, and
the relevant “at risk” sample size changes with time. The
resulting Bayesian problem doesn’t have a closed-form solu-
tion for the posterior, but we find the setting to be amenable
to popular methods for approximate inference with Thomp-
son sampling—including Laplace approximation [Chapelle
and Li, 2011, Russo et al., 2018]. While the use of par-
tial likelihood for Bayesian inference in general is well
established [Kalbfleisch, 1978], we are not aware of prior
research on using proportional hazards modeling or partial
likelihood for sequential experiments.

In a semi-synthetic study using data from the COVID-19
pandemic, we find that our approach can more reliably iden-
tify the best vaccine than a classical randomized controlled
trial (RCT), in which volunteers are assigned to different
treatments uniformly at random throughout the trial. Our
approach also considerably reduces the within-experiment
regret from assigning study participants to sub-optimal vac-
cines.

1.1 RELATED WORK

At a high level, sequential vaccine experiments can be seen
as a bandit problem with partial, delayed feedback: Feed-
back is partial because we only ever observe negative re-
wards (infections), and delayed because it takes time for a
study participant to potentially get infected post vaccination.
There is a large amount of work on bandits with full feed-
back: Dudik et al. [2011] consider bandits with constant de-
terministic delays; Joulani et al. [2013] study a setting where
delays have bounded expectation; Mandel et al. [2015] con-
sider bounded delays in the stochastic multi-armed bandit
problem; Thune et al. [2019] work with bounded delays in
the nonstochastic bandit problem. Meanwhile, Vernade et al.
[2017] allow for partial feedback but assume i.i.d. delays
with a known distribution, and Gael et al. [2020] consider
the same partially observable model but with the assump-
tion that delay distributions satisfy polynomial tail bounds.
Lancewicki et al. [2021] develop algorithms based on UCB
and successive elimination that allow for unrestricted delay
distributions. However, their bounds are vacuous in our sce-
nario as we only observe infections (i.e., negative rewards);
and the delays considered in Lancewicki et al. [2021] are
assumed to be i.i.d across time. Thus, we are not aware of
existing methods studied in a setting that includes vaccine
trials, where delays are unbounded and time-varying, and
positive rewards are never observed. We do note, however,
that the method of Thune et al. [2019] is one that—at least
algorithmically—could be plausibly considered in our set-
ting, and we use it as a baseline in our experiments; see
Section 4 for details.

Proportional hazards modeling and partial likelihood are
core techniques in survival analysis. Cox [1972] first pro-
posed the proportional hazards model, while Cox [1975]
and Efron [1977] further developed statistical theory for
estimators based on partial likelihood. Kalbfleisch and Pren-
tice [1973], Breslow [1974], Efron [1977] provided alterna-
tive likelihood formulas when the event times are discrete
with multiplicity. We also note a line of work justifying the
use of Bayesian methods on partial likelihood. Kalbfleisch
[1978] show that partial likelihood is a limiting marginal
posterior under noninformative priors for baseline hazards.
Sinha et al. [2003] further extend the result to scenarios
with time-dependent covariates and time-varying regression
parameters. Ibrahim et al. [2014] gives a comprehensive
textbook treatment of Bayesian survival analysis.

Finally we note that using hazard rates to model the effi-
cacy of vaccines is widely used in medical statistics; see
for example Longini Jr and Halloran [1996], Durham et al.
[1998] and Halloran et al. [1999]. Thus, the main contri-
bution of this paper is to leverage fundamental concepts in
survival analysis and classical vaccine RCTs, i.e., propor-
tional hazards modeling and partial likelihood, to develop a
new bandit algorithm suitable for adaptive vaccine trials.
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2 INFECTION MODELING VIA
PROPORTIONAL HAZARDS

We model vaccine trials as follows. At the start of the trial
(i.e., at time t = 0), some participants are recruited to the
trial and assigned to each vaccine group (arm) uniformly
at random. After the initial assignment, volunteers arrive
over time, and we randomize and assign them to a treatment
arm as soon as they arrive. After enrollment, participants
are followed until either they get infected or the study ends;
any infected participants are removed from the study at the
moment they are infected. Throughout, we use the following
notation:
Mt,k = # participants assigned to arm k by time t
mt,k = # participants assigned to arm k at time t
Nt,k = # observed infections in arm k by time t
nt,k = # observed infections in arm k at time t
ot,k = # participants remaining in arm k at time t,

(1)

i.e., Mt,k and Nt,k are cumulative sums of mt,k and nt,k
respectively, and ot,k = Mt,k − Nt,k. We also denote the
sum of these statistics across all arms as Mt,mt, Nt, nt, ot.
We also have the assumption that n0,k = 0 for all k since
we do not observe any infection at the start of the trial
and mT,k = 0 for all k since we do not assign any new
participants when we end the trial.

This general model is formalized in Protocol 1. One im-
portant case of this study design is the batched setting we
consider in this paper, where there are a finite number of
time points participants can join the study and infections
can be recorded. Specifically, at t = 0, ...., T , we collect
mt newly arrived participants and assign them to differ-
ent groups and we also observe a vector of new infections
(nt,1, ..., nt,K). At time T , we end the experiment. This is
summarized in Protocol 2.

We model person-specific infection risk using the classical
notion of a hazard rate, as follows. We assume that each
of the k = 1, . . . , K treatment arms is characterized by
a hazard rate hk(t), which captures the instantaneous risk
that a person in study arm k becomes infected at time t.
Below, note that ot,k denotes the number of still uninfected
participants in arm k at time t, and hk(t) describes the
expected fraction of these participants who will become
infected in the next instant [Cox and Oakes, 1984].

Assumption 1. For each study arm k = 1, . . . , K, there is
a hazard rate hk(t) such that, for all 0 < t < T ,

hk(t) = lim
dt↓0

1

dt

Et[Nt+dt, k −Nt, k]

ot,k
, (2)

where Et denotes expectations conditionally on information
available at time t.

The key flexibility of Assumption 1 is that it allows infection
risk to ebb and flow over time: There may be some periods

Protocol 1 General Vaccine Trial
Input: Length of experiment T , number of vaccines K
Assign m0 participants uniformly at t = 0
while t ≤ T do

if mt 6= 0 then
Assign mt participants to vaccine groups.

end if
Observe a vector of infections (nt,1, ..., nt,K) and

end trial for the infected participants.
end while

Protocol 2 Discrete Time Vaccine Trial
Input: Length of experiment T , number of vaccines K
for t = 0, 1, ..., T do

Assign mt participants to vaccine groups.
Observe a vector of infections (nt,1, ..., nt,K) and

end trial for the infected participants.
end for

where very few people from any study arms are getting
infected, and others where infections are highly prevalent in
some arms. However, Assumption 1 does impose non-trivial
structure on the problem: For example, it implies that the
length of time a patient has been in the study does not affect
their risk of getting infected.

Given Assumption 1, Halloran et al. [1999] defines vaccine
efficiency in terms of a ratio of hazard functions. Suppose
that one of the study arms (without loss of generality the
first arm k = 1) is a placebo that does not provide any
protection against infection. Then the efficiency of the k-th
vaccine depends on hk(t)/h1(t).

Definition 1. Under Assumption 1, for each non-placebo
arm k = 2, . . . , K, the vaccine efficiency is

VEk(t) = 1− hk(t)

h1(t)
. (3)

Given our assumptions so far, the vaccine efficiency VEk(t)
may vary with time, which creates some potential ambi-
guity in defining what the best vaccine is. Our next major
assumption is that vaccine efficiency doesn’t change with
time, i.e., equivalently, that the hazard functions follow the
proportional hazards model of Cox [1972].

Assumption 2. For each study arm k = 2, . . . , K, there is
an efficiency parameter θk such that

hk(t) = h1(t)e−θk , VEk(t) = 1− e−θk . (4)

Given Assumption 2, the main task of interest in assessing
vaccines’ efficiency is to estimate the efficiency parameter
θk: The bigger the θk, the more effective the vaccine is. To
illustrate this with a concrete example, in initial studies,
Polack et al. [2020] reported that the Pfizer COVID-19
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vaccine was 95% effective in preventing infection while
Baden et al. [2021] reported that the Moderna COVID-19
vaccine was 94.1% effective. In the context of our model,
both of these points estimates correspond to an efficiency
parameter θ ≈ 3.

Remark 1. We set θ1 = 0 so the placebo arm has the same
hazard rate as the baseline hazard.

Remark 2. Here, for simplicity, we assume constant effi-
ciency of the vaccine. We make this assumption because
we are modeling the infection against a particular variant
within the time span of the trial. So, for example, in study-
ing COVID vaccine efficiency against the omicron variant,
we would only count omicron infections as events, while
ignoring infections with other variants (and h0(t) would
be essentially 0 early in the pandemic until omicron got
prevalent). Given the usual time of such vaccine trials (on
the order of months) we think it is reasonable to consider a
constant θk. However, for longer experiments, it may be nec-
essary to extend the model to allow for waning efficiency.
We leave extensions to non-constant efficiency to future
work.

One major advantage of the proportional hazards model is
that it enables a simple approach to learning the efficiency
parameters θk via partial likelihood [Cox, 1972, 1975, Efron,
1977], as follows. Let us first suppose that the infection times
(event times) of our participants in the trial are continuous as
in Protocol 1 and recall at time t the number of participants
in each group is characterized by the vector (ot,1, ..., ot,K),
i.e., this is the number of participants in each group who
have joined the study, been assigned a treatment, and have
not yet been infected. Then, the conditional probability that
a person in vaccine group j is infected given that there is an
infection at time t is (let θ1 = 0):

pj(θ2, ..., θK
∣∣ ot,1, ...., ot,K)

=
h0(t)e−θj∑K

k=1 ot,kh0(t)e−θk
=

e−θj∑K
k=1 ot,ke

−θk
.

The unknown baseline hazard function cancels out because
of the proportional hazards assumption. Now suppose we
have J events (infections) happening at time t1 < t2 <
· · · < tJ and event j happened to group Ij . We can then
form the following partial likelihood,

`(θ1, ..., θK) =

J∏
j=1

e−θIj∑K
k=1 otj ,ke

−θk
, (5)

which is a product over all the conditional probabilities of
the observed events. It is a partial likelihood because we
ignore all non-events. However, it is efficient for estimating
the hazard rate parameters [Efron, 1977].

The partial likelihood (5) we obtained in the last section
assumes continuous infections times where there are no ties
in a single event time tj . However, in Protocol 2 the event

times will be 1, ..., T and there could be multiple infections
in a single vaccine group if the hazard rate is really high.
Recall the definition of (nt,1, ..., nt,K) which denotes the
number of infections happened in each vaccine group during
the time interval (t− 1, t] and nt which denotes the sum of
infections across all vaccine groups. In this case the exact
likelihood proposed in Cox [1972] is the following

`(θ1, ..., θK) =

T∏
t=1

e−
∑K

k=1 θknt,k∑
l∈R(nt)

e−θ(l)
(6)

where R(nt) is the set of all possible sets of nt participants
from the risk set (ot,1, .., ot,K) and θ(l) is the sum of all
the θ values of the individuals in set l. Due to its compli-
cated form, Breslow [1974] suggests using the following
approximation

`(θ1, ..., θK) =

T∏
t=1

K∏
k=1

(
e−θk∑K

i=1 ot,ie
−θi

)nt,k

(7)

of the exact partial likelihood (6), and this is what we do in
our approach.2

3 PARTIAL LIKELIHOOD THOMPSON
SAMPLING

In this section, we describe our proposed algorithm for se-
quential experimentation, which we call Partial Likelihood
Thompson Sampling (PLTS). Thompson sampling [Thomp-
son, 1933] is a Bayesian heuristic for sequential experiments
that chooses the actions at each round according to the pos-
terior probability that the action maximizes expected reward.
This is usually implemented by sampling, where we sample
an instance of environment from the posterior and take the
action that maximizes the expected reward [Russo et al.,
2018].

In our setting our model parameters are efficiency param-
eters θ2, ...θK (recall we assume that θ1 = 0, i.e., that the
first arm is a placebo). At each round we will get a sample
of (θ2, .., θK) from the posterior and assign our participants
accordingly. We start with uninformative prior for all the
parameters as they are potentially unconstrained [Gelman
et al., 2013]. Then, following the blueprint of Thompson
sampling (see Algorithm 3), we update the posterior each
time we collect new data; and here, we do so using the par-
tial likelihood introduced in the previous section. The use of
partial likelihood for Bayesian posterior updates is further
discussed in Kalbfleisch [1978].

2Other approximations have also been proposed in case of ties,
notably that of Efron [1977]. Here, we use the Breslow approxi-
mation due to its simplicity and the fact that in our experiments
there are only a few ties—and so our results are not particularly
sensitive to the approximation method we use.
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Given this setup, it now remains to derive an efficient pos-
terior sampling method for assigning new participants as
they arrive. Since we put an uninformative prior on all the
parameters θ2, ..., θk the posterior at time t given observed
data D will be

Pt(θ2, .., θK
∣∣D) =

p(D
∣∣ θ1, ..., θK)p(θ1, ..., θK)

p(D)

∝ `(θ1, ..., θK)

=

t∏
l=1

K∏
k=1

(
e−θk∑K

i=1 ol,ie
−θi

)nl,k

.

(8)

Now, one difficulty in using (8) directly is that efficiently
sampling from the posterior is non-trivial. For computational
tractability, we thus use the popular idea of replacing the
exact posterior with its Laplace approximation [Basu and
Ghosh, 2020, Chapelle and Li, 2011, Gomez-Uribe, 2016,
Russo et al., 2018]. The main idea is as follows. Writing
Pt(θ2, .., θK) for the partial likelihood used in (8), we see
that ignoring constants,

logPt(θ2, .., θK
∣∣D)

=

t∑
l=1

(
−

K∑
k=1

nl,kθk − nl log

(
K∑
i=1

ol,ie
−θi

))

= −
K∑
k=2

t∑
l=1

nl,kθk −
t∑
l=1

nl log

(
ol,1 +

K∑
i=2

ol,ie
−θi

)
.

From the above formula we see that the logarithm of the like-
lihood is concave, hence there exists a unique global max-
imizer of the likelihood. Laplace approximation involves
approximating the posterior with a Gaussian distribution
centered at the posterior mode; the inverse covariance ma-
trix will be−∇2 logPt(θ̂2, ..., θ̂K

∣∣D), where θ̂2, ..., θ̂K are
the posterior mode. Formally, this gives us an approximate
sampling distribution

θ̂2, ...., θ̂K = argmaxPt(θ2, ..., θK
∣∣D)

Σ̂ = −∇2 logPt(θ̂2, ..., θ̂K
∣∣D)

Pt ≈ N (θ̂2, ...., θ̂K ; Σ̂)

(9)

We can efficiently solve the maximization problem in (9) us-
ing any smooth convex optimization algorithm (for example
Newton’s method). Here, the Hessian is readily available
given the form of the likelihood, and so approximate sam-
pling of the posterior is computationally efficient.

Now we can proceed to formulate our algorithms. Given
the posterior sampling scheme described above, there are
two popular ways of running Thompson Sampling. The
canonical way [Thompson, 1933, Chapelle and Li, 2011]
samples parameters from the current posterior distribution
and takes the action that maximizes the expected reward,
which aims at achieving low regret [Agrawal and Goyal,

2012, 2017, Kaufmann et al., 2012, Russo and Roy, 2016].
In our setting, we sample θ2, .., θK using (9) and choose the
vaccine group with the maximum θ. Algorithm 3 gives the
details.

In our experiments, we also consider a PLTS-based adapta-
tion of the top-two Thompson Sampling algorithm of Russo
[2020]. This adaptation, where the second best action is
selected in any given round with fixed probability β, targets
the best arm identification problem. Algorithm 4 details
the algorithm. The algorithm takes in a parameter β which
indicates the probability of sampling from the second best
arm. We fix β = 0.5, which Russo [2020] suggests as a safe
default choice.

Algorithm 3 Partial Likelihood Thompson Sampling

for t = 0, ..., T − 1 do
if no infection has happened to any arm then

Assign new participants uniformly randomly.
else

Update posterior using (9).
for each mt newly arrived participant do

Sample (θ2, ..., θK) and set θ1 = 0.
Assign participant to group arg maxi θi.

end for
end if

end for

Algorithm 4 Top Two Partial Likelihood Thompson Sam-
pling (β)

for t = 0, ..., T − 1 do
if no infection has happened to any arm then

Assign new participants uniformly randomly.
else

Update posterior using (9).
for each mt newly arrived participant do

Sample (θ2, ..., θK) and set θ1 = 0.
I ← arg maxi θi.
Sample B ∼ Bernoulli(β).
if B = 1 then

Assign participant to group I .
else

repeat
Sample (θ2, ..., θK) and set θ1 = 0.
J ← arg maxi θi.

until J 6= I
Assign participant to group J .

end if
end for

end if
end for
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Figure 1: Baseline hazard rate as a function of time using
moving average daily infections data provided by the CDC.

4 EVALUATION USING COVID-19
INFECTIONS DATA

We conduct semi-synthetic experiments in this section
which is motivated by the real COVID-19 vaccines and
case counts. Specifically, we model the baseline hazard rate
using real world COVID-19 infections data and choose the
efficiency parameters according to the efficacy of some ap-
proved vaccines. We evaluate our algorithm in both tasks,
getting as few infections as possible and correctly identify-
ing the best vaccine.

We simulate our experiment using Protocol 2 and fix our
length of experiment to be T = 200. For simplicity we
let the number of new participants to be constant at each
time step, i.e. mt is a constant. Denote the total number of
volunteers by M , we let mt = M

T .

4.1 DATA

To model the baseline (or placebo) hazard rate, we use the
data of 7-day moving average infections in US provided by
the CDC data tracker [Centers for Disease Control and Pre-
vention, 2021]. We pick the period of 200 days starting from
March 9th, 2020. To get h1(t) we divide the daily infec-
tion numbers by the US population. The resulting baseline
hazard rate is shown in Figure 1. We clearly see two dis-
tinct waves of infections that occurred during this 200-day
period.

Our next task is to set the efficiency parameters θk corre-
sponding to the non-placebo study arms. To do so, we use
point estimates from a number of randomized controlled
trials run early in the COVID-19 pandemic. Specifically:

• Based on AstraZeneca Vaccine trials with a 70% re-
ported efficacy [Voysey et al., 2021], we set θ2 = 1.2.

• Based on SinoPharm Vaccine trials with a 78% re-
ported efficacy [Al Kaabi et al., 2021], we set θ3 = 1.5.

• Based on Novavax Vaccine trials with an 89% reported
efficacy [Heath et al., 2021], we set θ4 = 2.2.

• Based on Sputnik Vaccine trials with a 91% reported
efficacy [Logunov et al., 2021], we set θ5 = 2.4.

• Based on Pfizer and Moderna Vaccine trials with
roughly 95% reported efficacies [Polack et al., 2020,
Baden et al., 2021], we set θ6 = 3.0.

The motivation for using these numbers is that we hope they
capture realistic effect sizes one might see in a multi-arm
vaccine trial, and not necessarily that they exactly match
real-world efficiencies of the above vaccines established
after pooling data from multiple trials.

4.2 EVALUATION METRICS

We evaluate the performance of each experimental design
using the following metrics; throughout, we use the fact that
the 6-th arm is best to condense notation.

• In-sample regret (ISR): Defined as 1
T

∑T
t=1 θ6 − θIt

where It is the action chosen at round t.

• Best arm identification probability (BIP), i.e., the frac-
tion of times that the best arm (here, the 6-th) has
the lowest estimated infection hazard. Specifically,
let Ai be the estimated best arm for replication i,
the best arm identification probability is defined as∑B
i=1 1{Ai = 6}/B.

• Expected policy regret (EPR), as defined in Kasy and
Sautmann [2021]: Let a be the estimated best action,
let ∆a = θ6 − θa. This is defined as

5∑
i=1

∑B
j=1 1{Aj = i}

B
∆a (10)

Of these metrics, the first measures the “cost” of running the
experiment (i.e., how many study participants were assigned
to suboptimal arms during the trial), while the latter two
measure the quality of the findings from the study.

4.3 METHODS UNDER COMPARISON

Our goal is to evaluate our proposed method, PLTS, as well
as the top-two Thompson sampling based variant designed
for best-arm identification (TTPLTS). We compare these
methods to two baselines: A standard, uniformly random-
ized controlled trial (RCT), and the delayed exponential
weighting (DEW) algorithm of Thune et al. [2019].

As discussed in the related work section, we are not aware
of any existing methods for sequential experimentation
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Algorithm 5 Delayed Exponential Weights (DEW)

Input: Learning rate η, number of arms K
Initialize weights wa0 = 1, ∀a = 1, ...,K
for t = 1, .., T do

Let pat =
wa

t∑
b w

b
t

for a = 1, ...,K

Place newly arrived volunteers according to distribu-
tion pt

Observe set of infections (s, a) where s is the time of
enrollment and a is the vaccine group

For each infection (s, a), letwat = wat−1 exp(−η · 1
pas

)

end for

that were designed for our setting, i.e., with only nega-
tive feedback, unbounded delays in receiving feedback,
and time-varying delays. However, the DEW approach, al-
though introduced and studied in an adversarial setting with
bounded delays, is simple and flexible enough that—at least
algorithmically—it can be used in our setting, which is why
we also explore using it as a baseline.

The DEW algorithm is a form of exponential weighting
where weights are updated whenever negative rewards are
observed; see Algorithm 5 for details. The one major chal-
lenge in using this algorithm is in choosing the learn-
ing rate η. Thune et al. [2019] offer guidance based on
bounds on the delay distribution, but here of course we
have no such bounds (and our setting does not fall under
the purview of their theory), so it wasn’t clear to us how
to choose η. Thus, we simply consider 3 baselines, DEW
with η = 0.01, 0.1, 0.4, that span the range of behaviors one
can get from the method. (For Thompson sampling, we use
an uninformative prior and so there is no analogous tuning
parameter for the learning rate that needs to be specified.)

Finally, in order to evaluate best arm identification prob-
abilities, we need each method to output a recommended
best arm at the end of the experiments. PLTS and TTPLTS
output the vaccine with the largest posterior mode and DEW
outputs the vaccine with the largest weight. RCT picks the
vaccine with lowest infection rate at the end of the trial.

4.4 RESULTS

For each method we consider, we use a sample size of M =
60000 study participants and replicate all simulations 1000
times. Table 1 summarizes the results across all methods
and performance metrics.

Our first comparison is between the simplest variant of
our methods, PLTS, and the RCT baseline. We here see
that PLTS outperforms the RCT along all metrics: It both
achieves smaller in-sample regret and has more power to
identify the best arm. The reason it can do so is that it quickly
shifts sampling towards the most promising vaccines; see
Figure 2. This is clearly desirable from a regret minimization
point of view, but here it is also desirable from a power point

Metric
Method ISR BIP (%) EPR

RCT 385.08 (0.04) 86.0 (1.1) 0.090 (0.007)
η = 0.01 297.14 (7.71) 86.6 (1.1) 0.086 (0.007)
η = 0.1 186.03 (24.45) 89.7 (1.0) 0.067 (0.006)
η = 0.4 158.23 (39.80) 79.3 (1.3) 0.149 (0.010)
PLTS 160.25 (0.96) 91.8 (0.9) 0.052 (0.006)

TTPLTS 183.76 (0.71) 93.5 (0.8) 0.041 (0.005)

Table 1: Results comparing Partial Likelihood Thompson
sampling (PLTS), top-two PLTS (TTPLTS), DEW with vary-
ing learning rate (η = 0.4, 0.1, 0.01) and the randomized
controlled trial (RCT). We display three metrics defined
previously and fix M = 60000. Standard errors are given
in parentheses; each configuration is replicated 1000 times.

Figure 2: Total number of participants assigned to each
vaccine group for the method PLTS with M = 60000 total
participants, averaged over 1000 replications.

of view since it concentrates sampling on the most difficult
questions, i.e., distinguishing the best arms from each other.

Next, we compare PLTS to the DEW baselines in terms
of in-sample regret. Here, the picture is nuanced. When
well tuned, DEW can slightly outperform PLTS; however,
it is not clear whether an adaptive tuning parameter choice
could mirror this result. The rate at which all methods incur
infections during the study is shown in Figure 3. We see
that all the methods incur similar numbers of infections in
the first wave, but the well-performing methods are able
to focus on the better arms and considerably cut down on
infections by the time we get to the second (larger) wave.3

The comparison looks different, however, once we look at
metrics that consider the quality of the selected arm, i.e., best
arm identification probability and policy regret. Here, PLTS
still does well, but variants of DEW that achieved small

3One reason all study designs still have a fairly large number
of infections in the second wave is that all designs assigned a
non-trivial number of subjects to the less effective arms, including
the placebo, at the beginning of the study, and that many of these
participants were then vulnerable to infection in the second wave.
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Figure 3: Total infections across all vaccine groups for
6 methods we consider: DEW with varying learning rate
(η = 0.4, 0.1, 0.01), RCT, PLTS and TTPLTS, averaged
over 1000 replications with total number of participants
M = 60000.

in-sample regret do very poorly. It appears that, in order to
achieve good in-sample regret, DEW needs to make unstable
or greedy choices that hurt the quality of the selected arm.
In contrast, PLTS is able to focus on the best arms without
suffering from this phenomenon.

Relative to PLTS, the top-two variant TTPLTS achieves
better post-trial metrics but worse in-sample regret. This
is to be expected, since TTPLTS invests more in sampling
the second-best arm in order to improve power for best arm
identification. Whether a practitioner prefers the behavior
of PLTS or TTPLTS will depend on the relative importance
they give to in-sample versus post-trial performance metrics.

Finally, we investigate how arm-assignment probabilities
of different methods evolve over time: Figure 4 shows the
assignment probabilities averaged over 1000 replicates for
each vaccine candidate as a function of time for both DEW
and PLTS. The dashed horizontal line shows the uniform
probability RCT uses. We see that in both cases the more
promising candidates get larger shares as time goes on. How-
ever, we do see that when DEW uses a large learning rate
(corresponding to the cases with good in-sample regret), the
assignment probabilities almost flatten out as we approach
the end of the trial, suggesting that by this point the learning
rate has become too fast to enable reliable convergence to
the best arm.

5 DISCUSSION

Sequential experiments have considerable potential to ad-
dress challenges associated by new disease variants that
emerge during a pandemic [Castillo et al., 2021]. However,
the vaccine trial setting comes with a number of statistical
challenges—including unbounded and time-varying delay
distributions and partial feedback—that have not been con-
sidered in the context of existing bandit algorithms. We

introduced partial likelihood Thompson sampling, which
adapts Thompson sampling to the setting of vaccine tri-
als using fundamental modeling techniques that have been
prevalent for decades in the survival analysis literature [Cox
and Oakes, 1984]. We find our method to be a robust and
performant option for sequential experimentation in an ex-
periment built around data from the COVID-19 pandemic,
thus highlighting its promise as a tool for quickly target-
ing the use of existing vaccines against a new disease vari-
ant. Additionally, our method can also be applied in other
settings where the proportional hazards model is relevant;
for example, in email marketing or online advertising. Our
method deals with the complicated delay structure arising
from these applications from a modeling perspective, thus
opening the door for more efficient learning.
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