
Finite-horizon Equilibria for Neuro-symbolic Concurrent Stochastic Games

(Supplementary material)

Rui Yan *1 Gabriel Santos ∗1 Xiaoming Duan2 David Parker3 Marta Kwiatkowska1

1Department of Computer Science, University of Oxford, Oxford, UK
2Department of Automation, Shanghai Jiao Tong University, Shanghai, China
3School of Computer Science, University of Birmingham, Birmingham, UK

A PROOFS OF MAIN RESULTS

To prove Lemmas 6 and 8, we introduce the following ex-
ample.

Example 1. Consider a two-stage two-agent game with
deterministic transitions in Fig. 6, in which each agent has
two actions: {U,D} for agent 1 and {L,R} for agent 2.
Non-leaf and leaf nodes, containing the node numbers, are
marked with circles and rectangles, respectively. For clarity,
several histories reaching stage 2 are not displayed here.
Edges are labelled with the associated joint actions. The
payoff vectors below leaf nodes are the terminal rewards,
while the payoff vectors below non-leaf nodes denote the
unique equilibrium payoffs (expected accumulated rewards)
from these nodes to the leaf nodes, where φ is negative. The
immediate rewards along the edges are assumed to be zero.

By GBI, there are three NEs at node 4: µ4(1) =
{(1, 0), (1, 0)}, µ4(2) = {(1/5, 4/5), (1, 0)} and µ4(3) =
{(0, 1), (0, 1)}, and the respective equilibrium payoffs are
V 4(1) = (0, 8), V 4(2) = (0, 8/5) and V 4(3) = (5, 2). The
NE and the equilibrium payoff at the initial node 1 de-
pend on which NE is considered at node 4. If V 4(1) or
V 4(2) is selected, then there is a unique NE at node 1:
µ1(1) = {(1, 0), (1, 0)} with equilibrium payoff (1, 1 + φ).
If V 4(3) is chosen, then there is a unique NE at node 1:
µ1(2) = {(0, 1), (1, 0)} with equilibrium payoff (5, 2).

Proof of Lemma 6. We consider the game in Example 1.
Given φ < 0, the SW-SPNE and SW-SPCE starting at node
1 are the same and unique with social welfare 5 + 2 = 7,
in which the strategy at node 4 is µ4(3). However, the SW-
SPNE and SW-SPCE for the subgame starting at node 4 are
both µ4(1) instead of µ4(3), which completes the proof.

Proof of Proposition 7. It is well known in game theory
that, for a normal-formal game, (mixed-strategy) NEs al-
ways exist [Nash, 1951] and all NEs are fully characterized

*Equal Contributions.

1

2 3 4 5

6 7 8 9

(U,L) (U,R) (D,L) (D,R)

(U,L) (U,R) (D,L) (D,R)

(0, 8) (0, 0) (0, 0) (5, 2)

(1, 1 + φ) (3, φ) (0, 0)

Figure 6: A two-stage game tree with two agents with φ < 0.

by the set of feasible solutions of a nonlinear program with
compact constraints [Osborne et al., 2004]. This implies
that the SWNEs, which are NEs maximising social welfare,
always exist as well. Since every NE is a CE and all CEs
are fully characterized by the set of feasible solutions of a
linear program with compact constraints [Aumann, 1974],
then SWCEs always exist, which completes the proof.

Proof of Lemma 8. We consider Example 1 again. Since
µ4(1) has the maximum social welfare, then Generalized
BI via SWE feeds V 4(1) to node 1 for both the case of
SWNE and SWCE, thus leading to node 1’s social welfare
Wµ

0,s = 2+φ. However, node 1’s social welfareWµ∗

0,s under
both SW-SPNE and SW-SPCE µ∗ is 7. Thus, if φ is negative
enough, the difference Wµ∗

0,s −W
µ
0,s = 5−φ is positive and

unbounded.

Proof of Theorem 9. The conclusions (i) and (ii) are
straightforward by the encoding procedure. The sets of feasi-
ble solutions to (4) and (5) are not empty, as (mixed-strategy)
NEs of a normal-form game always exist [Nash, 1951], and
thus so do CEs. Additionally, they are compact by noting
the constraints (1), (2) and (3). Then, the conclusions (iii)
and (iv) follow from the continuity of the objective function.

Proof of Theorem 10. In Algorithm 2, step 1 returns a
feasible solution to the nonlinear program (4) or (5) (de-
pending on the equilibrium type T). Since the variables of

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

the nonlinear program P (step 5) are independent of the
frozen variables due to the game tree structure and the his-
tory selection (or region construction), the pair (µ, V) in
steps 7 and 8 is still a feasible solution to (4) or (5). The con-
clusions follow from the coordinate descent optimization
with constraints [Wright, 2015].

B FURTHER DETAILS FOR
ALGORITHMS

B.1 APPROXIMATION ALGORITHMS

FSI is described in Sec. 4 and is summarised as Algorithm 2.
In Fig. 7, we give an illustration of the approach: FSI freezes
all variables related to the red histories and optimizes over
the blue history, where each node contains the current equi-
librium payoff.

8

4

3 2 2 1

6

3 5 4 2

6

2 3 2 1

3

2 3 3 1

Figure 7: An example for Frozen Subgame Improvement.

We also suggest an alternative approach for the selection of
histories in FSI, shown in Algorithm 3. It returns a history
by starting from the initial state s, moving to the successor
with the maximum social welfare indicated by the current
equilibrium payoff V and perturbed by ε (if there are multi-
ple such successors, we select one randomly), and iterating
until the stage K − 1, where UNIFORM(·) is a uniform
sampling function.

Algorithm 3 Finding a History by Maximum Social Welfare
Input: histories Hs, distribution µ, equilibrium payoff V ,
exploration rate ε ∈ [0, 1]
Output: a history h ∈ HK−1

s

1: h← s
2: repeat
3: h′ ← arg maxh′′∈Succ(h)

∑
i∈N V

h′′

i

4: if UNIFORM([0, 1]) > ε then
5: h← h′

6: else
7: h← UNIFORM(Succ(h))
8: end if
9: until h ∈ HK−1

s

10: return h

C FURTHER DETAILS FOR CASE
STUDIES

C.1 AUTOMATED PARKING

The formal details of the NS-CSG model for the automated
parking case study are as follows. There are two players
(vehicles) {Agi}i∈N for N = {1, 2} and two parking slots
M = {1, 2} in a 5 × 4 grid C. The coordinate of the cell
in the ith row and jth column is denoted by (i, j). Thus,
C = {(i, j) | i ∈ [5], j ∈ [4]}. The coordinates of two
parking slots are y1 = (2, 4) and y2 = (5, 1). Fig. 3 shows
the grid. Vehicles are forbidden to enter the red cells and
have to follow the traffic rules indicated by black arrows.

The environment state is sE = (x1, x2), where xi ∈ C is
vehicle i’s coordinate. Each agent i ∈ N is as follows:

• a state of agent Agi is si = (loci, (x1, x2)), where the
local state loci is dummy, and the coordinates xk ∈ C
(k ∈ N) of two vehicles constitute the percept;

• actions include four directions U = (0, 1), D =
(0,−1), L = (−1, 0), and R = (1, 0). We assume that
Ag1 is twice as fast as Ag2, i.e., A2 = {U,D,L,R}
and A1 = A2 ×A2 \ {UD,DU,LR,RL};

• the available action function is such that ai ∈ ∆i(si)
iff taking action ai at si does not break the traffic rules
or enter a red cell;

• observation function obsi computes the cells where
two vehicles are, i.e., obsi(s1, s2, sE) = (x1, x2);

• the local transition function δi is dummy.

For α = (a1, a2) ∈ A1 ×A2, δE(sE , α) = (x′1, x
′
2) where

x′i = xi + ai for all i ∈ N . The two vehicles start from
x01 = (3, 1) and x02 = (2, 2).

There are two reward structures. The first one is plain time
minimizing: rAi (s, α) = 0; if x1 = x2, then rSi (s) = −20;
if x1 6= x2 and xi = yj for some j ∈ M , then rSi (s) = 0;
rSi (s) = −1 otherwise. The second one is time minimizing
with bonus, in which we add a bonus of 5.5 to agent 2 at
a designated cell (in yellow): rS2 (s) = 5.5 − 1 = 4.5 if
x2 = (1, 2) when k ≤ 1.

This example was modelled using the PRISM-games mod-
elling language, since the simplicity of the perception mech-
anism lets it be reduced to a discrete-state CSG.

C.2 TWO-AGENT AIRCRAFT COLLISION
AVOIDANCE SCENARIO

In the VCAS[2] system (Figure 1) there are two aircraft
(ownship and intruder, denoted by Agi for i ∈ {own, int}),
each of which is equipped with an NN-controlled collision
avoidance system called VCAS. Each second, VCAS issues
an advisory (adi) from which, together with the current trust
in the previous advisory (tri), the pilot needs to make a de-
cision about accelerations, aiming at avoiding a near mid-air

collision (NMAC), a region where two aircraft are separated
by less than 100 ft vertically and 500 ft horizontally.

The environment state sE = (h, ḣown, ḣint, t) records the
altitude h of the intruder relative to the ownship (ft), the
vertical climb rate ḣown of the ownship (ft/sec), the vertical
climb rate ḣint of the intruder (ft/sec), and the time t until
loss of horizontal separation of the two aircraft (sec).

Each aircraft is endowed with a perception function imple-
mented via a feed-forward NN fadi : R4 → R9 with four
inputs, seven hidden layers of 45 nodes and nine outputs
representing the score of each possible advisory. There are
nine NNs F = {fi : R4 → R9 | i ∈ [9]}, each of which
corresponds to an advisory.

Each advisory will provide two non-zero acceleration ac-
tions for the agent to select from, except that the agent is
also allowed to adopt zero acceleration. The trust in the pre-
vious advisory and previous advisory (percept) are stored
in a state of the agent si = (tri, adi). There are four trust
levels {4, 3, 2, 1} and nine possible advisories [Akintunde
et al., 2020b]. The current advisory is computed from the
previous advisory adi and environment state sE using the
observation function obsi. The trust level is increased prob-
abilistically if the current advisory is compliant with the
executed action, and decreased otherwise.

Formally, each agent Agi for i ∈ {own, int} and the envi-
ronment E are defined as follows:

• si = (tri, adi) is a state of the agent Agi with local
state tri∈[4] and percept adi∈[9];

• the set of environment states is SE = [−3000, 3000]×
[−2500, 2500] × [−2500, 2500] × [0, 40], with sE =
(h, ḣown, ḣint, t) as above;

• Ai = {0,±3.0,±7.33,±9.33,±9.7,±11.7}, where
ai ∈ Ai is an acceleration ḧi;

• the available action function ∆i returns two non-zero
acceleration actions [Akintunde et al., 2020a] shown
in Table 3 given a state of the agent, plus zero accelera-
tion;

• observation function obsi, implemented via F , is given
by ad′i = obsi(adi, sE), where obsown(adown, sE) =
argmax(fadown(h, ḣown, ḣint, t)) and
obsint(adint, sE) = argmax(fadint(−h, ḣint, ḣown, t));

• the local transition function δi computes a trust level
according to the current trust level tri, the updated
advisory ad′i and the executed action ai: if ai is com-
pliant with ad′i (i.e., ai is non-zero), when tri ≤ 3,
then tr′i = tri+1 with probability 1−εi and tr′i = tri
with probability εi, and when tri = 4, then tr′i = tri;
otherwise, when tri ≥ 2, then tr′i = tri− 1 with prob-
ability 1 − εi and tr′i = tri with probability εi, and
when tri = 1, then tr′i = tri, where εi ∈ [0, 1].

• the environment transition function δE(sE , α) is de-

fined as: h′ = h−∆t(ḣown−ḣint)−0.5∆t2(ḧown−ḧint),
ḣ′own = ḣown + ḧown∆t, ḣ′int = ḣint + ḧint∆t and
t′ = t−∆t, where ∆t = 1 is the time step.

When computing the equilibria presented in Fig. 4, we use
two reward structures, with the first given by rSown(s) =
rSint(s) = h if k = tinit − t, and 0 otherwise. For the zero-
sum case, the reward for the intruder is negated. In both
cases, action rewards are set to 0 for all state-action pairs, i.
e., rAown(s, α) = rAint(s, α) = 0, ∀s ∈ S, α ∈ A.

This case study was developed by extending the implemen-
tation available in [Michael E Akintunde and Lomuscio,
2020]. We first modified the original code in order to con-
sider all actions recommended by the advisory system plus
the action corresponding to zero acceleration. We later de-
velop this model further by adding trust values to the states
of the agents and the corresponding probabilistic updates as
described in Section 2. In both cases, we build a game tree
by considering all states the system could be in and translate
that into a PRISM-games model.

We also consider another reward structure with additional
preferences: (i) not only safety but also trust matters; and (ii)
reducing fuel consumption is desired in addition to maintain-
ing safety. More specifically, if |h| ≤ 200, then rAi (s, α) =
0 and rSi (s) = |h|/hmax + tri/4; if |h| > 200, then
rAi (s, α) = −|ḧi|/ḧmax and rSi (s) = 0 for i ∈ {own, int},
where hmax and ḧmax are the maximal absolute values of
all altitudes and accelerations in the generated game tree,
respectively. The initial values are h = 50, ḣown = −5,
trown = 4, ḣint = 5 and trint = 4.

References

Michael E. Akintunde, Elena Botoeva, Panagiotis Kouvaros,
and Alessio Lomuscio. Verifying Strategic Abilities of
Neural-symbolic Multi-agent Systems. In Proceedings
of the 17th International Conference on Principles of
Knowledge Representation and Reasoning (KR 2020),
pages 22–32. IJCAI Organization, 9 2020a.

Michael E Akintunde, Elena Botoeva, Panagiotis Kouvaros,
and Alessio Lomuscio. Formal verification of neural
agents in non-deterministic environments. In Proceed-
ings of the 19th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2020), pages
25–33. Springer, 2020b.

Robert J Aumann. Subjectivity and correlation in random-
ized strategies. Journal of mathematical Economics, 1(1):
67–96, 1974.

Panagiotis Kouvaros Michael E Akintunde, Elena Boto-
eva and Alessio Lomuscio. Venmas: Verifica-
tion of neural-symbolic multi-agent systems, 2020.
https://vas.doc.ic.ac.uk/software/neural/.

Label (adi) Advisory Description Vertical Range Available Actions
(Min, Max) ft/min ft/s2

1 COC Clear of Conflict (−∞,+∞) -3, +3
2 DNC Do Not Climb (−∞, 0] -9.33, -7.33
3 DND Do Not Descend [0,+∞) +7.33, +9.33
4 DES1500 Descend at least 1500 ft/min (−∞,−1500] -9.33, -7.33
5 CL1500 Climb at least 1500 ft/min [+1500,+∞) +7.33, +9.33
6 SDES1500 Strengthen Descend to at least 1500 ft/min (−∞,−1500] -11.7, -9.7
7 SCL1500 Strengthen Climb to at least 1500 ft/min [+1500,+∞) +9.7, +11.7
8 SDES2500 Strengthen Descend to at least 2500 ft/min (−∞,−2500] -11.7, -9.7
9 SCL2500 Strengthen Climb to at least 2500 ft/min [+2500,+∞) +9.7, +11.7

Table 3: Two non-zero available actions given an advisory.

John Nash. Non-cooperative games. Annals of mathematics,
pages 286–295, 1951.

Martin J Osborne et al. An introduction to game theory,
volume 3. Oxford university press, New York, 2004.

Stephen J Wright. Coordinate descent algorithms. Mathe-
matical Programming, 151(1):3–34, 2015.

	Proofs of Main Results
	Further Details for Algorithms
	Approximation Algorithms

	Further Details for Case Studies
	Automated Parking
	Two-Agent Aircraft Collision Avoidance Scenario

