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1 GENERAL BELLMAN EQUATION FOR A FIXED POLICY

In this section, we prove Proposition ??. In particular, the first part of the proposition for V* has been covered in Bertsekas
and Tsitsiklis [1991]. Therefore, we only consider the second part, which is a Bellman equation for fixed policy. Moreover,
we do not constraint to proper policy and our result holds true for all the policies.

Lemma 1.1 (General Bellman equation for fixed policy 7). Let 7 be a fixed policy, proper or improper and cost ¢ > 0 for
the SSP. Then the following Bellman equations hold:

Q7 (s,a) =c(s,a) + Ps o V", V7™(s) = Eqpur()5)[Q" (s,a)]. (1)

Proof of Lemma 1.1. By definition of Q™, we have

T
Q™ (s,a) = hm E, Z c(Sh,an)|so = s,a9 = al.

We can rewrite term E . [ZZ:O c(sn,an)|so = s,a0 = al as

T T
chh,ah )|so = s,a0 = a] = ¢(s,a) +ZIP’ (s'|s,a)E chh,ah )s1 =]
h=0 s’ h=1
T—1
:c(s,a)—l—Z[P’(s’Ba { chh,ah |50—s]}
s’ h=

0

where the first equality is by law of total expectation. The second equality follows from the fact that the transition kernel P
is homogeneous in SSP.
Define the sequence Vr(s) := { [Zh o Y e(sh,an)|so = s]} Since for any state-action pair (s, a), ¢(s,a) > 0, we know

that the sequence {V(s)}52_; is non-decreasing. It implies that limy_, o Vi (s) exists. (limp_, o Vr(s) either diverges to
400 or converges to a positive number.) It follows that (the following switching the order of limit and summation is valid
since the summation is finite sum)
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h=0

“Equal contribution.

Accepted for the 38" Conference on Uncertainty in Artificial Intelligence (UAI 2022).



Combine the above two equalities together, we can get

Q" (s,a) = c(s,a) + Z]P(S/|S, a) Th—Igo {Eﬂ[i c(sn,an)|so = s’]}

h=0

s’

= c(s,a) + Z]P’(s’|s7 a)V™(s').

ry

(€)]
From the definition of value function, we have (where the second line uses law of total expectation)
T
V7(s) = Tlgr(l)O]E,r[Z c(sn,an)|so = s]
h=0
T
= Th_r)r;o Ea, [E,T[Z c(sn,an)|so = s, ap]|so = s
h=0
T
= 1. E = =
A za: m(als) ﬂ[; c(Sh,ap)|so = s,a9 = aj

Similar to lim7_, o E, [Z::o c(sh,ap)|so = s], we can prove that limr_, o Eﬂ[Zf:o c(Sh,an)|so = 8,a0 = a] exists.
Then we have

T
V™(s) = lim w(a\s)]Eﬂ[Z c(spyan)|so = s,a0 = al
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c(sh,ap)|so = s,a0 = a] = Zﬂ'(a\s)Q”(s,a).

a h=0 a
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Remark 1.2. Essentially, the above proof only requires c(s,a) > 0. Moreover, even if the general Bellman equation holds,
it does not imply c¢™ + P™(-) is a contraction (i.e. doing value iteration for general policy ™ might not converge to V7).

2 RESULTS FOR GENERAL STOCHASTIC SHORTEST PATH PROBLEM

Lemma 2.1. For any two contraction mapping Ty and Ty that are monotone (i.e. for any vector greater than V> V',
it holds T\V > T\V' and ToV > ToV') on the metric space RS, Suppose V1 and Vs are the fixed points for T and Ts
respectively. If we have Ty (V) (s) > To(V')(s) for any s € S', then we have V1 (s) > Va(s) forany s € S'.

Proof. First we have T1V; > T V. Since V; is the fixed point of 77, we know V; := T1V; > T5V;. By monotone property
with recursion, we have that
Vi > (To)"Vi. @)

Since V5 is the fixed point of 75, we have

lim (T5)*V; = V.

k—oc0

Combine the above inequalities together we can get 17 > V5. O

3 CONVERGENCES FOR ALGORITHM ??

Lemma3.1. 77 : RS x {0} — RS x {0} is a contraction mapping, i.e., V1, Vo € RS, Vi(g) = Va(g) = 0, we have

|7 vi-Tva| <plvi-Vall,, 5)

Here p i=max st (5247) < Land TV () = (x([s).2(s.) + Po.V).



Proof of Lemma 3.1. We first prove the result for state g. Since g is a zero-cost absorbing state, we have for any a € A,
c(g,a) = 0and P, ,V = V(g). Then forany V € RS x {0}, V(g) = 0, we have

T™V(g) = (x(9).@g,) + Py, V) = 0. ©)
Therefore T™Vi(g) — T Va(g) =0 < p||[Vi — Vo || - Next we only need to prove for all state Vs # g. Indeed,

1T Vi(s) — T Va(s)| = [(m(-|s), Ps.(Vi — V)]

max ‘ﬁs,a(vl - Va)|
= max| Y P(s'|s,a)(Vi(s) — Va(s"))

IN

s'#g
naa
< max (- )1 S" P, a) (Vi(s') — Va(s)]
s'#g
< max(—=2 ) ||V} — V3| (7)
X — .
= e e 1 1 1 21l 0o

where the second inequality is due to Vi(g) = Va(g) = 0 and the third inequality is by the definition of P. Take the
supremum over s, we get

Ng
[T =T < max(—"20) Vi - Vall. ®)
S79

sa+1

O

Lemma 3.2. V7 € Il define Vo= lim; o0 V) (Note by Lemma 3.1 this limit always exists since V™ is the fixed
point of T™ and V1) = TV @), Then (recall p := max i (= ) <1)
s g s,a

Voo < max n(s,a) + 1.

s#g
Proof of Lemma 3.2. Recall the definition, V™ = 7717
Hf/’* - H?”f/” )
< max [(m(-]s),e(s,))| + max [(x(-]s), Py, V™) (10)
$,87 S$,873g
< max |(m(-]s),e(s, )| + max | Py, V7|
$,87#9g s,a
s#g
<1+ max | PV
s#g
<1+ rnax P(s V7r
{( o + Z "Is,a)V™(s")|}
s'#g
<1+4p Hf/’f (11
O

The first inequality follows from T IA/"( ¢) = 0 and triangle inequality. Since p < 1, we can get H\Aﬂr

< -1 From the
%) I=p

definition of p, we can conclude the proof.

Ns,a

Ns,at+1

) < 1 as in Lemma 3.1 and V9 is the output of

Lemma 3.3. HXA/“ —v®
Algorithm ??.

< J%E, where p = maxs,a (
P
oo s#g



Proof of Lemma 3.3. Using definition Vo= lim; o0 V) and the telescoping sum we obtain
> €
Sy < o
oo =0 —pP

where the second inequality uses 7" is a p-contraction. O

H‘/}ﬂ' - ’L)
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Remark 3.4. Throughout the paper, we denote the number of state-action visitation as either ns o or n(s, a). They represent
the same quantity.

Lemma 3.5. Forany V (-) € R satisfying V(g) =

5 5 [V 1]oo =~ 5 2|V|2, S
Psa_PsaVS ) V Psa7V _V Psa7V S = . 12
‘( ] ] ) | n(s’a) +1 | ar( ] ) a’r( ] )‘ n(s,a) _|_ 1 ( )
Proof. See Lemma 12 of Tarbouriech et al. [2021]. O

4 SOME KEY LEMMAS

4.1 HIGH PROBABILITY EVENT

We define the “good property” event € := & N Ey N E3 N E4 N 5 according the following (where ¢ := log(1052A4/6))

& =

~ 2P(s'|s,a)t 2
>1:|P(s — P(s < :
V(s,a,s") € (S x Ax S8),Vn(s,a) >1:|P(s|s,a) (s']s,a)| < n(5,a) +3n(s,a)}

82:

V(s (S x A),Vn(s,a) > 1: |(Psa— Pso)V| <

n(s,a) 3n(s,a)

Var(Poa, V)i, 2||V||OOL}

WVar(Py o, Ve 7|[V|]oot
n(s,a) 3n(s,a)

)

&= qV(s,a) € (§x A),Vn(s,a) >1:|c(s,a) —c(s,a)] <

3n(s,a)

Es = {V(s,a)e (S x A),Vn(s,a) >1:[c(s,a) —c(s,a) 1/ Z 3n 5.0) } (13)

Lemma 4.1. The event £ holds for any V that is independent from P with probability 1 — g.

Ez = { (S x A),Vn(s,a) >1:|(Psq— ﬁs7a)V| <

2Varc(s CL)L 20 }

Proof. From the empirical Bernstein’s inequality given in Lemma 12.4, we have that for each fixed (s, a), the event

(Pyo — Py g)V| < ) erlPeaVie 4 TlVIIsot 16]ds with probability 1 —

n(s,a) Sn(s a)
event &3 holds with probability 1 — 105 Similarly, we have event & holds with probability 1 — 10 To5- BY applying the
standard Bernstein’s inequality in Lemma 12.3 and taking union bound over (s, a, s"), we can get that event £, & and &,
holds with probability 1 — 1%. Since £ is the intersection of the above events, we can prove the lemma by taking a union
bound again over all of the five events. O

10 S,, —~ - By taking a union bound we have that

4.2 VALUE DECOMPOSITION LEMMA

Lemma 4.2. Suppose Vo= im0 V@) where V) = Ty G-1) for all j, then we have the following suboptimality
decomposition for any initial state s:

V7 (3) szhé s,a){(€—c)(s,a) + (Psa —Pbﬂ)f/"} (14)

=0 S,a

s#g



Proof of Lemma 4.2. We prove this lemma by recursion. First, we have for any h > 0,

> () (VT (s) — Zshs )> " w(als)(Q(s,a) — Q" (s, a))
= Zgh,E S,CL Qﬂ(sva) - Qﬂ(sva))
587,;1(]
=Y Gsls,a){@=0)(s,0) + (PoaV™ = P uV™)}

s#g
:thssa C*C)(S a)+(Psa*Ps,a)‘7ﬂ-+Ps7a(‘7ﬂ—*Vﬂ—)}

@#g
= th s(5,0){@=)(5,0) + (Poa = Poa)VT} + > & o) (VT = V7)(s),
s;éq 5;59

where the third equality uses both Bellman equations and empirical Bellman equations and the last equality follows from the
fact that §p11(s") = 3_, , n(s,a)P(s'[s,a) and V™ (g) = V™ (g) = 0. By recursion, we have that

H
V76) = VT6) = 3D Eals. @ s 0) + (Poa = Poa)V7} 4 D€ s) (V76 = V), (13)
h=0 Sé;l; )
for all H. Then we have
S s P76~ VI € Y Ernnate) - [P -V
s#g

|
S
s#g

< PX(siin#9)- [V7 = V"

oo

Since 7 is proper, we have ||V 7 ||, < oo and by Lemma 4.3 limy 1 oo PT(sg # ¢g) = 0. From Lemma 3.2, we have
|V |0 < oo. It follows that

1 — ™ = 16
Hggoo Z Efr1,5(8) (V7 (5) = V™ (s)) = 0 (16)
By taking H to infinity in Equation (15), we conclude the proof. O

4.3 KEY LEMMAS: ARRIVAL TIME DECOMPOSITION AND DEPENDENCE IMPROVEMENT FOR SSP

Below we present two lemmas for SSP problem, which is the key for obtaining tight instance-dependent bounds.

Lemma 4.3 (Arrival time decomposition). Let TT be the expected time of arrival to goal state g when applying proper
policy T and starting from s, then TF = >~ > o &7 (s, a). Moreover, TT < oo for all 3.
s#g "

Proof of Lemma 4.3. Denote T' to be the random variable of arrival time to goal state g when applying proper policy m,
starting from 5. Then E[T'] = T7. Furthermore, since 7' is non-negative integral variable, it holds E[T] = >~ (P(T" > h).

Then we have

I7 =EpT =Y Pp(T >h)
h=0

]PPJT(Sl 7& g, 52 7é g, Sh 7& g)
]P)PTF Sh#g Zzghssa

0 h=0 $a
s#g

~
—-
~

e I4¢

>
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where equality (i) follows from the fact that g is an absorbing state, so we can only reach a state which is not a goal state if
all the previous steps are not goal state and vice versa.

Lastly, since 7 is proper, T < oo for all § and this implies limy,_, o Pp (s, # g) = 0. O

The next lemma is the key for achieving optimal rate.

Lemma 4.4 (Dependency Improvement). For any probability transition matrix P, policy m, and any cost function ¢ € [0, 1],

we use T (s, a) to denote the probability of visiting (s, a) associated with SSP(P, ). Suppose V€ RS+ is any value
function satisfying order property (where V(g) = 0), i.e., V(s) > > m(a|s)Ps,V forall s € S, then we have

Zth s,a)Var(P, ., V) < 2|V Zfo ) < 2[[VI%, (17
h=0 s#g

Proof of Lemma 4.4.

ZZ{h s,a)Var(Ps 4, V) = ZZﬁhsa{Psa (V)? —(Ps,av)2}
h= o;;g h= o;;g

=Y D (Vi) = DY &(s,a)(PV)?
h=0 ;g h=0 ;;Z;

YD GOVEs) = YD &5, a)(PeaV)?
h= Osig h=085¥2

@z Zs;<s>{v2<s> — 3" n(als)(PoaV)?}

(i) 2

_ZZ§h (s){V?(s) (Zﬂ'(als)Ps,aV)Q}

a

=ZZ£z<s>{<v<s>—Zw<a|s>Ps,av )+ X r(el) PV )
h=0,2q

a

(iii) oo
L2Vl YD & (s)(V(s) = Y m(als)PeaV)

h=0 3 a
s7#g

=20V 3N ) Vis) = DD er i (s)V(s
h=0zg "=0tg
=2V, > &(s)V(s) < 2[[V]12

where (i) follows from the fact that £(s, a) = £(s)m(als), (ii) uses the Jensen’s inequality and the fact that f(z) = 22 is a
convex function. (¢i¢) uses the ordering condition. U

S CRUDE EVALUATION BOUND

Theorem 5.1. Denote d,, := min{} -, &'(s,a) : s.t. > 5, (s, a) > 0}, and T to be the expected time to hit g when
starting from s. Define T — maxses T7. Then when n > max{532¢, 64(T™)? 24, C -1og(SA/8)/ 352, &l (s,a)}, we



have with probability 1 — §, (here . = O(log(SA/9))

T™\/max; , Var.(s,a)t + T”HV”HiOL vl
-0 Vv \ +O< V" Mo L)'

oo ndm ’ﬂdm

Hf/\'ﬂ' vy

Proof. We denote § € S to be any initial state. From Lemma 4.2, we have (here 5}7{’ s(s,a) is the marginal state-action
probability when starting from state 5 and following )

~

VT(E) = V@) = DD &isls,a){(@—e)(s,a) + (P — Poa)V™}

h=1 $,a
s#g
(oo} oo 5 R
<Y Y G a)l@E—o)s,a)l+ D) & s(s,a)|(Poa = Poa) (VT = VT
S S
+ZZ§hssa sa_Ps,a)VTr‘
"= kg

We bound the above three parts one by one. First of all, by Bernstein inequality, Lemma 12.6 and union bound, with
probability 1 — 6,

Var.(s,a)t 4t
n(s,a) 3n(s,a)

Zthssa (c—¢) sa|<ZZ§hssa

=1 S,a =1 S,a

579 s#g
1) & 2Var.(s,a)t
< £ b —- c ) +
hzlbza: " [ ny -, & (s,a) 3"Zh 15h s,a)
s#g
2max, , Vare(s,a)t 8t
< 2 )
Zlgfhgsa \/ n - dp Jr37”L-clm
s7#g
2max; , Vars(s,a)t 8t
<T7™ 192 )
- \/ n-dm + 3n-dn

() uses Lemma 12.6 and the last inequality uses Lemma 4.3.

For the second part, note

ZZ% (5,0)|(Paa = Paa) (VT = V7))

=1 S,a
s#g
< izfﬂ (s,a) QS-Var(PS)m‘?” V) + 4HV” v 0 HVﬂ - o0
st P85 n(s,a) 3n(s,a) n(s,a) +1
=1 i
S 45 Var(P, Vr— V) 14HV” VoS
<D &slsa) \/ ull v + "
h=1 S,a 7 n Zh:l é.h (87 CL) 3n Zh:l gh ('S? a)
579 -
Zh Ogh s,a) 2, 14HV7T_V7r St dr (s, a)
< |2 =gy |49 s(s,0)[|[7m = v = 2
- Z Yoo &h(s,a) Zth 4 n * 3n g dr(s,a)
S#g T s#g 5s



S,a 4ST7r T _ym 2 i + 14HVW -V ooSL d;-r(s,a)
- d“ (s,a) c M 3n dr(s,a)
8,a,8#£9
s [P v N VTV
5 a || | Y A m ™
d“ o M g n- d H ’

where the first inequality uses Lemma 10.3 and Lemma 3.5, the second inequality uses Lemma 12.6, the third inequality
uses Var(-) < |- H2 , the fourth and fifth inequality use Lemma 4.3 and the last inequality follows from the condition

495 ~ 495 dz (s,a)
2 9d,, 2 9T T s,a,5#g d+(s,a)"

For the third part, we have

Z 252,5(37 a)|(]55,a — Psa)V7

h:lss";
= Var(Py o,V )e 4|V, VT
< 71'7 2 o0 o0
—;;5’“(8’” n(s,a) 3n(s,0) | n(sa)
S g -
> [ [2Var(P, ., V) UV
S 577537(1/ 2 oo : + oo .
2.2 alsd) |2 e Sy e o)
s#g B
Zh §h5 S, a 14 V’T s,a
_ 821— S S aa(p, vt T 5 g
Eh gh 5, a s,a,s7#g h=1 $,a,87#g 7CL
8#9

oI VTS 14Vl e TE
=\ dn, n 3n dm

where the first inequality uses Lemma 3.5 and Bernstein inequality, the second inequality uses Lemma 12.6 and the last one
uses Lemma 4.3. Recall 7" = maxzcs 17, then combine all the three parts together and take the max over 5, we can derive

(1 . 4T’T\/§> HXA/’“ _yT

n-dm + 3n-dpy, 8dm n 3n dm

<7 2\/2 maxs o Var.(s, a)t 8t T ||V’T||io - |Vt TF

T" maxs,aVarc(s,a) T~ ”‘/7r " 4 :
(T Vo (T,

n-dn n - dpy,

therefore it implies (by applying the condition n > 64(7™)

T maxg o Vare(s T~ V7r el .
<0 Vv +/T7 <T V. L)

n-dpy

QSL)

Hvﬂ _yr

o ndm

6 PROOF OF THEOREM ??

Theorem 6.1 (Restatement of Theorem 2?). Denote d,, := min{}_,;~ , & (s, a) : s.t.> -, fh (s,a) > 0}, and TT to be
the expected time to hit g when starting from s. Define T™ = max;cs T7. Then when n > max{ 4 IS 64(T7r)2 dS—L, C-i/dp},




we have with probability 1 — 0,

, 2Var VT +c ~ 1
|V(l)(sinit)_vﬂ’(5init)| §4 Z dﬂ(&a)\/Psv’l[s]_*_O()_‘r €OPE.

s,a,8#g

where the O absorbs Polylog term and even higher order term.

Proof. Recall that we start from the initial state s;jp;;. Then by Lemma 3.3,

V™ (sinit) — V@ (init)

+ ‘Vﬂ(sinit) — VO (simi)

. -~ €
< ‘Vﬂ(sinil) = V7 (sinit) < ‘VW(Sinit) — V7™ (Sini) | + 1(13];, (18)

it remains to bound |V (i) — V”(smnﬂ.

From Lemma 4.2, we have

~

V™ (siit) — V™ (Sinit) Z Z«fh 5,0){(€—¢)(s,a) + (Psqa — Ps.a)V™}
h= 1557::]
<D Gsa)lE-s,a) + DY &is )l (P — Poa) (VT = V7))
h=1 55;22 h=1 50
+ZZ§h Sa sa_Ps,a)Vﬂ‘
e

We bound the above three parts one by one. First of all, by Bernstein inequality and Lemma 12.6 together with union bound,
with probability 1 — 4,

Var(s, 4
ar‘(sa)L+ L ]

Zzgh(s a)|(c_c 5a|<ZZ£hsa n(s a) 3n(s a)
h=1 8;a h=1 $a ’ ’
s#g s#g
1) & 2Var (s, a)t 8t
< n(s,a) |2 +
hz_%;gh(s a)[ I SEHCROMETS Shayd e >]
W - (19)
11 o0 s,a S, 8
\s;éq = S;éqh 1 $,a,8%g
(iii) '”(S, a) \%u (Sim‘t) L 8t
o R POk |
\55#‘1(] $,a,87#£g

(i) uses Lemma 12.6 and (ii) uses Cauchy-Schwartz inequality. (iii) uses the fact that Var.(s,a) < EC(s,a)? < c(s,a)
since the realization C'(s,a) € [0, 1] and the definition of V™ (siy;).



For the second part, note

ZZsh 5,0)|(Psa — Psa) (VT = V7]

h=1 $a
s#g
<3 T ensra) || Ve P VT = Ve L P L
B h=1 S,a e n(saa) 371(8,0,) n(s,a) +1
SFEg =
00 4S-Va1“(Ps7a,"/\v7r _Vﬂ)[/s,a 14HV7T _yT OOSLS’(L
= Z th(s,a) oo T + 3 0 T
h=1 $a "thl fh(saa) ”thlﬁh(s,a)
s# L
: = g (20
14||Vr—-VT L
Eh o0& (s,a 2 H d"(s,a)
B P AC PR o P Y [ )
Zzh o &h(s 2; n 3n Sas;ﬁgd“(s,a)
s#£g s#g '@y
14 Hf/fr —vr| s .
58 v 2L d" (s, a)
ASTT™ ||V -V — oo
- d“ s, a N + 3n dr (s, a)
s,a,8#g
$) g ||gm _ vyt
d“ s,a a o n

where the first inequality uses Lemma 10.3 and Lemma 3.5, the second inequality uses Lemma 12.6, the third inequality uses
Var(-) < ||- H2 and CS inequality, the fourth inequality use Lemma 4.3 and the last inequality follows from the condition

4QSL 49S¢ d" (s,a)
= 2 9T~ s,a,87#g d+(s,a)"

For the thlrd part, we have

Zth 5,a) _PS,a)Vﬂ

—1 s,a

s#g

Var(Ps o, V™) 4|V ot [V
<225h5“ 2 ( a) + 3n(s,a) Jrn(S,(I)

=1 S,a

s#g

i _ [ ovar(P, ., V™) 14|Vl
55 ) EeE R [A/ R

h=1 S,a L n Zh:l g;:(s’ Cl) 3n Zh:l g;:(s’ a
s#g
= Q1)
Zh 1§h ,a) - N 14HV || S, )
(< 82 S H(s,a) Z th(s,a)Var(Ps,a,V )ﬁ Z dﬂ
;ﬁg h=1Sh\S; s,a,57#g h=1 8,a,574g

53 dr(s,a) |IV=[I5. ¢ L 14||V”H

n dl‘
$,a,87#£g

IN

a

) 7

s,a
s#g

m(s,a) VTS
<t |2 Ml 1y,
;d“(s,a) n
s#g

where the first inequality uses Lemma 10.3 and Lemma 3.5, the second inequality uses Lemma 12.6. The third inequality
uses the Cauchy-Schwartz inequality.



Combine Equation (19), (20) and (21) together, we obtain

2Var(Ps q, V™)t 14|V ¢
V(s 5 o)
V7 s = 7 o) ;;5’1 S P\ ) T B € (s, @)
s#g
= 2Varc(s,a)t 8¢
+ £ (s,a) |2 S + =
,;1; " [ ny o1&y (s,a) - 3nyo7, 55(570)]
s#g
4 4. sT ya| L
* Zd# e

7

[Var(Ps,a, V™) + Varc(s, a)]v 223 51 & (s,0) [Vl 0
<4 E g s, @) + g = &0
—1 s,a €h \/ n Zh:l gh (87 a’) s,a 3n Zh:l 5;:(37 a)
é#g s#g

)

d (s, a) (T™)? - max,, Vare(s,a)e + T [V7|° 0« ~/( 1
4 ST . ’ X .1+ —
" ; d“(S (1) n- dnL n * TL3/2
s#g

4 Z d”(s7a)\/2varp‘9’““/ﬂ+c]+5(1)

s ndt (s, a) n

where the only inequality uses Theorem 5.1. Combining this with (18) we finish the proof of Theorem ??. O

7 PREPARATIONS FOR PROVING OFFLINE LEARNING SSP

Throughout the whole section, we denote ¢ = O(log(5A/4d)). All the results apply to the construction of Algorithm ??. In
particular, we use V to denote the limit of V() (by letting eopr. = 0). This limit exists, as guaranteed by Lemma 7.6.

7.1 AUXILIARY LEMMAS

Lemma 7.1. Denote the limit of sequence V) in Algorithm ?? as V, we have that

Wl <B

Proof. First of all, by Lemma 7.6, we know V exists. Next, from the Algorithm ??, we can get that

QU (s,a) = min{e(s,a) + P, VO + b, (VW) , B} < B V(s,a) € S x A, Vie N
and thus
VD (s) = min QY (s,a) < B Vs e S x A,Vi€N.
It implies that V (s) = lim; ., V() (s) < B. O

Lemma 7.2. Forany V (-) € RS satisfying V (g) =

[Vloo

Tomax + 1

2
2|[VIIs

Y V) — Var(P, ., V)| < .
\Var(P,,,V) — Var(P;, )\_an

(P, — Pyo)V| < (22)

Proof. The proof is similar to Lemma 12 in Tarbouriech et al. [2021]. We include the proof for completeness. Since
V(g) = 0, for all state s # g, we have P;yaV P s L P(s'|s,a)V(s') = (-2mes_ )PS oV

Nmaz+1 Nmaz+1

|(ﬁs/,a_ﬁs,a)v| = |(M)ﬁ V Ps aV|

Nmaz + 1 ’



S POV Ve
- nmam+1 - nmaz“f‘l.

Then we prove the second inequality. Similarly,

\Var(P. ., V) — Var(Py 4, V)| = |P. V2 — (P. V)2 = P, V2 + (P ,V)?|

Nmax Nmax D 5
= |(n n 1)Ps,aV2 - (m waV)? = PoaV? 4 (PeaV)?|

fu>

1 ~ ~ n ~
=1- (m){Ps,aVZ - (PS,LLV)Q} + ﬁ(Ps,av)ﬂ

2
2|[VII5

nmaw + 1 ’

1 D Nmax

S O — Psa7 7ﬁsa 2 <
() V(P V) 22 (Pl VP <

O

Lemma 7.3. Let Tyax = max; T; and n > O(T2, log(SA/8)/d?)). If in addition n >

max
— §, we have that for any state action pair (s,a),

~ - B 1681 Var
P.,—P V< -V
(P, salVI < n(s,a) 3n(s,a) n(s,a) \/ | H

Proof. First, we can bound term (P , — ﬁs’,a)V.

2d , with probability at least

|(P8,a - ﬁ;,a)‘_/l < ‘(ﬁ&a - ﬁ;,a)‘_/| + |(P5,a - ﬁé,a)(v - V*)| + I(PS,a - ﬁS,a)V*| (23)

Then we bound the above three terms one by one. From Lemma 7.1 and Lemma 7.2, we have

5, 5,0 T Namazx + 1~ Nmaz T 1 .
For the second term, we have
~ _ . 25Var(Ps .,V — V* ) 2”‘7_‘/*“005L
|(Psa = Psa)(V = V7| < \/ n(s,a) + 3n(s,a)
_ V-v+|_ S
< L&HV_V*H +w’ (25)
n(s,a) oo n(s,a)

where the first inequality holds because of lemma 10.3. For the last term, we have that

() 2Var(Psa,V o, TV ot
n(s,a) 3n(s,a)

(i1) p * _ Y PV B
Y Var(Ps o, V* — V) 49 Var (P V)L n 7B
n(s,a) ( 3n(s,a)

Var ﬁ 7BL
= 2\/ n(s a) HV V*H (( a) b + 3n(s,a)
(iii) . _ Var(PL,, V)t 2v/20)|V]]oo 7B.
§2\/n(57a))’|V_V*Hoo+2 7(1(5 a) D \/r:(,l ay +3n(s,a)

Var(P, .,V 16B
<2 DIV =Vl +2 e Ve | 165 (26)
n(s a) n(s,a) 3n(s,a)

[(Ps.a = Ps.a)V7| <




where (i) holds under event &3. (ii) holds because of Var(X + Y) < 2Var(X) + 2Var(Y"). (iii) comes from Lemma 7.2.
Both (ii) and (iii) uses the result that va + b < v/a + Vb when @ > 0 and b > 0. Combine the above inequalities together,
we can get

~ B 16BL Var
' s n(s,a) 3n(s,a) (s,a) (s,a) n(s,a)

Since with probability 1 — &, by Lemma 12.2 n(s, @) > $nd,,,. When n > 55—, we have

o
)

™
=
IN

V=V

2d., °
,/ ,/ )|V = v f+2+2,/ H -Vl
sa sa sa
L W *
a)uv—vum

O

Lemma 7.4. Define function f : RS x RS x R — Ras f(p,v,n) = pv —|—max{2\/m 4BL} if |vll., < B and
v(g) = 0, then we have (3£)(s) > 0and }", , (3)(s) <1 - p(g)*

Proof.
(L)) = ploy + 102 ) 4}2\/; O artp.0) g(% v
= p(s) + {2 Var(p’ Lo \/; Var o p“)
Simplifying the above equation, we can get
(E)(6) 2 minfp(s) ) - L2,

27

Since |pv — v(s)| < B, we have p(s) — w > 0. Then we would have (%)(s) > 0. For the second part, we have

1. Casel: 2 Var(f’”ﬁ > 4%, we have

> ()= X tos) +2 mpw)(v(s) - )}

8,879 $,8#g
< p(s) + { p(s)( p(s")v(s))}
<3 pls)+2 %[ ps)o())(1 = " pls))
Sgg nVar(p, v) s,g;g s,g;g
S Z p(S) + [Zs,s;ﬁg p(s)v(s)gl - Zs,s;ﬁg p(S))
Ry
< p) + (D] )= p(s) =1 (plg))?
5,579 5,579 5,579

2. CaseII: 2 Var(f’”)L < 4%, we have

> (gi)( )= > pls)=1-p(g) <1-p(g)°

8,579 8,579



Combine this inequality with (27), we complete the proof. O

262x250(T*)2 10°(V/ B4+1)*ST*T 0

{43* 2cmm7 = R CVL L (T2, log(SA/6)/d2,)}, 7 is a proper policy

Lemma 7.5. When n > max .
(Recall 7 is the output of Algorithm ??).

Proof. By definition we need to show that 77 (s) < oo for any s € S. We prove this by contradiction. Suppose 77 (s) = oo,
then we have that there exists at least one state e such that the expected visiting times of state e is infinite, i.e., Je € S, such
that T; . = 00. In this case, e is a (positive) recurrent state in the finite Markov Chain induced by policy 7. Denote the
communication class which e belongs as Sy. Since the state space is finite, we have that every state in the communication
class Sy is recurrent. From the finite Markov Chain theory, we know that the communication class Sy is closed. In other
words, Yz € Sy, and Vy € S\Sy, we have P(y|z, 7(x)) = 0. Thus with probability 1, we have 37, 27 I(s; @ -

j=1
" =g 0V =7
S SL, sV =, af =7(2), 51, =y) = 0. By definition

z, a0l = w(x), (-'1)-1 = y) = 0. This implies that ﬁ(y|x, 7(x)) =

J (@)
of the estimated transition matrix P’, we have P'(g|z, 7(z)) = ﬁ It follows that
o oo n
= max h
= — T O\ = 1. 2
Z Z En,e(s) Z(nmaz T 1) Nmaz + (28)
h=0s€Sy h=0
Then we have
- : 1
Z Z gh,e(s) = Nypaz + 1 > indmam + 17 (29)

h=0s€Sy

where the last inequality holds with probability 1 — § by Lemma 12.6. Define V7 (¢) = >oneoEp -[¢(sh,an)|so = €], then

6) 2 ZEﬁ/ﬁ[cmin}

h=0
s 1
> };}E [Cmm (Sh S SO = Cmin hz% ; gh e > C'rmn(2 Ndmaz + 1)~

Apply Lemma 1.1 to the SSP problem with M := <S7 A P é e, g>, we can get
V7(s) = P;ﬁ(s)Vﬁ +é(s,7(8)) == T'V7(5)

Since V(s) = P! Tr( )V + &(s,7(5)) + bs 75 (V) = TV (s), from Lemma 2.1 we have V (s) > V7(s) (since b(V') is
non-negative and both T 7" are monotone operators). Then we get

~ 1
Vie) >V™(e) > cmm(§ndmm +1). (30)
From Lemma 8.1 (note Lemma 8.1 only bounds V' and V* and has nothing to do with 7), we have that with probability 1 — §,
26°x254(T")" 106(\/E+1)4SLT*T}, which implies n > w , we have V(e) < V*(e) + B, <

dm » B, (VB.+1)2d, B.d
2B,. Combine this inequality with (30), we can get n < %, which contradlcts with the assumptions in the lemma. [

when n > max{

7.2 CONVERGENCE OF PESSIMISTIC VALUE ITERATION IN ALGORITHM ??

Define the operator 7 as 7 (V)(s) = min, {min{E(s, a) + ﬁMV +bs,0(V), E}} First, we prove that 7 is a contraction
mapping.
Lemma 7.6. 7 : RS x {0} — RS x {0} is a contraction mapping, i.e., ¥VVi,Vs € RS, Vi(g) = Va(g) = 0, we have

|Tvi-Tw| _<vivi-vall. (3D

1
(14maxs,q n(s,a))?"

where v :=1 —



Proof of Lemma 7.6. First, we prove the result for s = g. Since by (V) = 0, then we have T(V)(g) = 0 and thus
T(V1)(g) — T(Va)(g) = 0. When s # g, we have

TVi(s) — TVa(s)| < max | min{e(s, a) + PL,Vi + by a(Vi), B} — min{e(s,a) + PL,Va + bya(Va) . B}

@ - _
< max [{e(s, a) + Py o Vi + bs,a(V1)} = {28, a) + F{ Vo + bsa(Va)}

Vi) — f(P!

s,a?

= max| f(P, Va)|

s,a’

(ll)InaXZ| af sa’a(vl V2)+‘/2)7‘/1 _‘/2>|

5f

P; w0(Vi = Vo) + Vo)) Vi = Vol
s’ s#g

(iii)
< max{1—P{,(9)°} Vi — Vel .

where (i) comes from Lemma 12.7. (ii) is due to the mean value theorem. (iii) uses the result in Lemma 7.4. Then we have

1
(1 4+ max, 4 n(s,a))

[7Va) = TVa(o)|| < max{1 - PLu(9)HIVi — Vall o < {1 - 2 Vi~ Vil

We then introduce the following two regret decomposition lemma.

7.3 REGRET DECOMPOSITION LEMMA FOR POLICY OPTIMIZATION

Lemma 7.7. Suppose V is the limit of the sequence V®) in Algorithm ??, we have the following decomposition lemma.

‘”W<ZZ& Pl ey = Pare())V 4+ &(5,7(5)) — e(5,7*(8)) + by e () (V) } (32)

h=0 8
s7#g

Proof.

=) & V(s))

5,579

Since for any i € N, we have

_ ® _
DGV () =V = D &(9)(Qs,m(5) — Q* (5,77 (s))

s,57#9g 8,879
(11) * D ¥ * ~ * * %
= Z fh(s){Pglz,ﬂ'*(s)V - Psm'*(s)v + C(Saﬂ- (5)) - C(Sa ™ (S)) + bs,‘n’*(s)(v)}
8,5#g
- Z gh r(s) T Ps,w*(s))f/ + 6(8,7‘('*(5)) - C(S,TF*(S)) + bs,Tr*(s) (V)}
8,579
+ Z gh s7r*(s) V %% )
8,879
=) GNPl e () = Poer())V 4 6(,7(5)) = (5,7 (8)) + b e () (V) }
8,579

+ ) GV = V)(s)

s,87#9



(i) follows from the fact that V' (s) = min, Q(s,a) < Q(s, 7*(s)). (ii) uses the fact that V" is the limit of V() and we have
Q(s,a) = &(s,a) + Ps’ oV + bs.o (V). By recursion over time step h, we can get

V-Vvr< Z Y Gl () = Pomn())V + (5,77 (5)) = (5, 7(5)) + by e () (V)

h=0 s,s#g

+ D () (V =V, (33)
$,87#9

Since 7* is a proper policy, we have that for any s # g, limpg .o {77, 1(s) = 0. Also, V is bounded by B and V* is bounded

by B,. Thus let H goes to infinity, we can complete the proof. O
Lemma 7.8. When n > max{ 43;‘32’3’", 26" XQ(f:(T*)z, 10;(*\(/\/'2%2;9;5;%, O(T2, log(SA/d)/d?,))}, we have
-V= Z Z&Z(S){(PS,TT(S) Ps/,ﬁ(s))v + C(Sv 77—(‘9)) - 6(87 777—(3)) - bs.ir(S)(V)}- (34)
-0 s
s#£g

Proof. First of all, by the condition we have 7 is a proper policy by Lemma 7.5. We prove by recursion formula.

Y GV =V) = D G (HParn)VT + (s, 7(8)) = Pl oV — &5, 7(5)) = ba ) (V)}

,
5,579 5,579

= Z Sh 5 7(s) — s w(s))v + Pa 7 (s )(V - V) + 0(377?(8)) - 6(5,7_1'(8)) - bs,fr(s)(v)}

s,57#g
= 3" FH(Poris) = Phnio))V +cls,7(5)) — &(5,7(5)) — by () (V)}
8,579
+ ) GV =V,
8,579

where the first inequality uses the Bellman equation for policy 7, which follows from Lemma 1.1. By recursion, we have

V Z Z gh s ,7(s) ﬁé/7‘ﬁ'(5))‘7 =+ C(S? 77'(8)) - 6(37 77'(8)) - bs,ﬁ(s)(v)}

h=0 s,s#g

+ Y (VT =T).

5,879

Cmin@maz

From Lemma 7.5, we have that whenn > max{ 2= 2cnin 262X2dSL(T*)2, 10;(\({/;%2;1)32LZ*T, O(T2,, log(SA/S)/d2 )}, &

is a proper policy. Thus ||[V7™||__ < o0, and for any state s, s # g, limpy_,o 5 (s) = 0. Let H goes to infinity, we can
prove the lemma. O

8 CRUDE OPTIMIZATION BOUND

In this section, we give a rough bound for V — V*.

Theorem 8.1. Denote d,, := min{d> ;> &' (s,a) : st.Y ;- & (s,a) > 0} and Tax = max; T;. Let T be

the expected time to hit g when starting from s with the optimal policy and denote T™ = max, TT. Then when
n > max{ QGZXQdSL(T*)z, 10;(2/\/';;2;8;5*T O(T?,, log(SA/5)/d%,))}, we have with probability 1 — 6,

V=V <30 T;f*b(\/B*Jrl) (35)



Proof. From Lemma 7.7, we have (by choosing £y, = 1[sg = 5])

7(6) = V) £ 3 Y€l H Pone(o) — Pae )V -+ &5, 7°(5)) — 57 (5)) + buseny (7))
h= s;ség

For the first term, we can bound it by Lemma 7.3

~ — B 16B. Var
Psa_Psa S 2 *
(Poa = Pua)VI S oo+ im0 = ,/ IV =Vl

Conditioned on the event 5, we have

Combine the above inequalities together, we can get

2B 328, Var( P’
< 2 *
verel sz wGr @) e ) P @) e Y

s#g
2¢(s, ™ (s))t 14¢ Var(P, V) B
PG e em T G @) e e o))
0y (VB
1) & 2B 44B. Var(P', V) St N
= hZOZ:ShS (s,7*(s)) * 3n(s,m*(s)) 4 n(s,m(s)) 0 n(s, (s HV v H
2¢(s, m(s))e 141 3TBS =),
2 n(s,(s)) + 3n(s, m(s)) + 180\/2n(8,7r*(5))nmin (\/54_ ek

where (i) uses the inequality that max{a, b} < a + b. For notation simplicity, we define

TB
bo(s,a) := 180 STBS \f—l— 1
2n(s a)nmm

First, we bound the variance term

PR 1
Var(PS V) < Var(Ps o, V) + ﬁ
@s, o evs I
< Var( s V) + (s, a) P
(iii) H\_/H2 S(t+1)
< 3Var(Ps,,V — V*) + 3Var(Ps o, V*) + W
i 32
W, |V = V*|°. + 3Var(P, ., V*) + 25750 +1)

)

n(s,a)

where (i) follows from Lemma 7.2. (ii) uses Lemma 10.1. (iii) uses the fact that Var(X + Y) < 2Var(X) + 2Var(Y). (iv)
uses the fact that HVHOO < B. Then we can have

2B 44B 30
V() \<szhs + b4 7=l

=y (s,7*(s)) ~ 3n(s,m*(s)) n(s, (s




\/SVar(W(),V*)L L] 28+

n(s,m(s)) WB
57 . 2¢(s, m(s))e 14, sa
+6 n(s, m™(s HV 4 H (s,m*(s)) 3n(s, m*(s)) * bols,a)}

0 & 27max{B 13VSe St _ N
B T A e LA
s7#g

3Var(P; 1+ (5), V*)t 2¢(s, m(s))e sa
+4¢ 0o, 7 (5)) +2¢nww%$>+%(’”

(g)zzghs 31maX{B 1}\/§L 413 S HV V*H

n(s,7(s)) n(s,

hOS

+4\/3\7211'( s, (s ),V*)L+2\/3C(S’W*(S))L+bo(57a>},

n(s,m*(s)) n(s,m(s))
where (i) uses the assumption ¢ > 1 and that S > 1. (ii) holds because of Lemma 10.2.

Then we have

_ i) & max{B 3
V) -V @ 23 Y g (o Zma B VS g s 7 -ve.

- ndm,
h=0 5,
6Var(Ps e (s), V*)t 6c(s, 7 (s))e -
4 2
\/ . - . +bo}
(ii) * B
D621 max{B,l}\/§L+13 QSL ||V V*|l T+ T2ho
nd,,
e 6Var(PS e (s), V) 6c(s, m(s))e
* 4 ) 2 A\ N7
+};);§h,s(s){ \/ ndm + ndm }’
T s#g

where by := 180 ?gdéf \/7 B + 1)¢. (i) holds with probability 1 — ¢ because of Lemma 12.6. For any (s,a) € S x A, we
have n(s,a) > ind(s,a) > ind,,. In particular, ny;, > $nd,,. Since

Zm{VM“WW”&4iz%,¢&ﬁ;@mwumm>

nd
hos ho;g m

(>i1)

12
< 4\/T? anw

where (i) uses the Cauchy-Schwartz inequality. (ii) uses the result in Lemma 4.3 and Lemma 10.1. Similarly, we have

(s 63 heo 22,5, Shs(s)e(s, m(s))
S S ot B o Sy (g [PE i

h=0_5, =03
< oyTr | I Nt
Combine the above together, we get
T(8) - v (5)|< 2T max{B. VS QSL V-V T2 T

nd,,



12 6||V*
FAVTE 2y 42y T [ Dt

m

§62T*ma;§B’1}ﬁL+13 251 — V=V T+ T

— 3 — |/6||V*
8T [ 2 v 2Ty | A et

It implies that

(1-13,/ 5T* V=V < C2max{BAWST | pp

nd,,
T*B
+ 14y — Y (V/By+1). (36)
Since n. > 262 x 281 (T*)>

de ’

_ 124 max{B, 1}/5.T*

[V(s) =V*(s)]l,, < o +2T"bo
T*B
ro1y ) =2 (B, + 1)
nd,,
124 B,1 T* _. |6TB ~
< 2Amax{ B, YVST* | 7. [6TBS SWB+ 1)
ndy, n2d2,
T*B,
+28 “(VB, +1)
nd,y,

_ | 6TS | /= TBL
< 720T* W(\/EH)%HS (VB» +1)

m

When n > 10 6(VB+1) S T* T

B VB ii2a, Ve have

[7(9) = V*(6)]. <30\ 2 (VB + )

9 PROOF OF THEOREM ??

In this section, we provide the proof of Theorem ??. However, before that, we first present a lemma that guarantees
pessimism.

Lemma 9.1. When n > max{ 267 Xzé::(T )27 10;(\({;12;1?5 T,O( T2,  log(SA/8)/d3,)} (where Tyax = max; T), with

probability at least 1 — §, we have that for any state action pair (s,a),

c(s,a) — @(s,a) + (Ps.a — PLo)V = bs0(V) <0

Proof. Applying the result in Theorem 8.1, we can get

||V V| <180 TBS (VBs+ 1)

n(s,a) ndm



Combine the above inequality with Lemma 7.3 implies that

= - B 16B. Var T*B,S
P, — P W< 180 (VB, + 1)
( Vs n(s,a) 3n(s,a) ot n(s, a)nd, <

Conditioned on the event &5, then we have

~ _ T*B,S 3TBS
— ¢l P,,— P — <1 1) 1)
c(5,0) = 2s,0) + (Poa = PL)V = bra(V) 180 [t (VB + s ey (VB

Applying the Chernoff bound given in Lemma 12.6, we have that with probability 1 — &, n(s, a) < 2nd*(s,a) for any state
action pair (s, a). Thus npin := ming 4 n(s,q)>0 1(s,a) < %n(minn(s,a»o d"(s,a)). For any (s,a) € S x A, if we have
d"(s,a) > 0, by the Lemma 12.6 we have that with probability 1 — §, n(s,a) > w > 0, which implies

{(s,a) e S x A:d"(s,a) >0} C{(s,a) €S x A:n(s,a)>0}.
Then we can get min,, (s q)>0 d"(s,a) < ming(sq)>0 d*(s,a) = dp, and thus i < 3nd,,. Because T* < T and

B, < E we can prove the result in the Lemma. O

Now we are ready to introduce the final proof.

Theorem 9.2. Given Assumption ?? and Assumption ??. When n. > ny, the suboptimality bound of the output policy T can
be upper bounded as follows with probability 1 — ¢ (where . = O(log(SA/9))),

Vﬂ—(sinit) - V*(Sinit) S 8 Z d*(S, Cl)
$,a,8%£g

+0(=), 37

n-dt(s,a) n

\/3Varp5,a[V* +ce <1

where we define ng = n > max{ 4CB*_2C”“”7 262 ><2S’L(T:l) (E+1)2’ 10;(\(/\/111;?;“ T O(Tr%ax 10g(5A/5)/d$n)}

Proof.
VT(s) = V*(s) = (V7(s) = V(s)) + (V(s) = V*(5)). (38)
From Lemma 7.8, we have with probability 1 — § and when n > max{ 222 262X2d57:(T 2 106(@21?5 T},
—V =3 Y G (Pors) = Plaie)V +el5,7(s)) = &5, 7(s)) = bs ns) (V). (39)
h=0 %
s#g

Next by Lemma 9.1 with probability 1 — §, we have
(PSJT(S) — 1, TI'(S))V + ( ( )) - é<s7ﬁ-(s)) - bs,ﬁ'(s)(v) <0. (40)
Thus combine (39) and (40) we have V™ — IV < 0 by pessimism. For the term V' — V*, we apply Lemma 7.7 to obtain:

v-v < Zzgh 571'* (s) — Sﬂ'*(S )V + ( (8)) - C(svﬂ*(s)) + bs,ﬂ'*(s)(v)}‘ 41)

h=0 5
s#g

From Lemma 7.3, we have

o B 16B: Var(PL,, V)
Pga 7P, 71 < 9 s,a
(P, sa)VI S n(s,a) + 3n(s,a) * \/7

V=7l (42)



Conditioned on the event &5, we have

~ 2¢(s,a)L T
— <
ols.) = fs.0)] < 224 s
Combine the above inequalities together, we can get
(jjs/,a - PS,a)V +¢(s,a) —c(s,a) + bS,a(V)
2¢(s, a)L 14 2B 32B. Var(P/,, V)
<2 + + + R
n(s,a)  3n(s,a) n(s,a) 3n(s,a) n(s,a)
4B 3TBS =
+ 70 ey 7V 180 22 (VB
2n(8, @) Nmin
2¢(s a)L Var P! ,V) (B+ 1) _ 3TBS
’ s %) 6 V- V¥ +180 VB
n(s,a) e TG | oo #1804 sy VB 1
<9 3e( s,a)L 3Var(Ps 4, V* )t +6((~+1)\/§L)
n(s,a) n(s,a) n(s,a)
3TBS
17 =Vl + 180 (VB +1)
20(8, @) Nmin a)nmm

Plug the above into (41), then we bound all the terms one by one. First,

S,a)L > . 6c(s . a)t
350 (3500 <5 Y zh(lmal‘zzd i

h=1 5

For the second term, first we have

= 3Var(Ps,q, V*)e = 6Var(Ps o, V*)t
5* S, a 4y ———m————— | < x s,a) |4 ——————
2,2l rermy EPIDELLY SIS o
s#g s#£g
6Var(Ps o, V*)t
=4 * _ 44
2N @
s#g

From Chernoff bound given in Lemma 12.6, we have with probability 1 — §, we have

Zth B+1 Zdu ,a) B+:L)\/§L)- 43)
—1 s,a 5, a
s;ég 5#9

Similarly, we have

= * * S *
z shsa,/ SV =V < O s [ IV = VL)
h=t 875<7

(Qézd*sa 7“35 (VB. + 1)), (46)

n2dr(s,a)d
8769




where (i) uses the Crude optimization bound given in Theorem 8.1. For the last term, we have

ZZ&hsa \f—&— <OZd*sa 7\/74-1 ), 47

2
— s (s a)nmm n2d+(s,a)d
s#g 8750

where the inequality comes from Lemma 12.6 again. Combine the inequalities (43), (44), (45), (46) and (45) together, we

have
_ . (1) / 60 . 6Var(Ps,q, V*)t
V(Sinit) -V (sinil) <2 ;d* 4Zd W
s#g 5759

+0(> d*(s,a) 7n2d”(sa (VB + 1)) + O( Zdu @ (B+1)\/§L)

n
s#g 6?59
(i) 6c 6Var(P, o, V*)i
<2) d*(s +4) d*(s —_—
2 2 ndi (s a)
s;ﬁg 55‘59
~ TS ~
O d* ——(B+1
+OQ_ &N gy v, B+
s#g
3Var(Ps,q, V* +c) TS ~
<8 d* (s, . d*( ————(B+ 1)), 48
< 2;(s®¢ i (5. }: (s,q) nmw&@%f'+”) (48)
s#g Ssﬁg
where the inequality (i) uses the assumption that T < T and B, < B. (i) uses the fact that Es a; < \/j:((s’“))d and that
B+ VB < 2(B + 1). The last inequality comes from v/a + v/b < v/2a + 2b. O

Based on Theorem 8.1, we can also get the Proposition below.

Proposition 9.3. When n > ng (where ng is defined the same as Theorem 9.2), then the suboptimality incurred by the limit
of the output policy T can be upper bounded as (with probability 1 — §)

Vﬁ(sinit) - V Stmt = (B + 1) + O( ) (49)

dl‘ (s,a) n

Proof. By Theorem ??,

n-dt(s,a) n

_ 3V V> + ~ 1
V7 (sime) — VA (sim) <8 > d*(s,a)\/ arpL Ve | 5l

$,a,87£g

SZd* s,a)Varp,  [V* +cle, 50)
8769

where (i) uses the Cauchy-Schwartz inequality. Since

Z d*(s,a)Varp, ,[V* + ] = Z Z &r(s,a)(Var(Ps o, V*) +¢(s, a))

s,a h=1 $:;a

s#g s#g

(i)
< 2(|VHI% + V*(s0)



<2B? + B,, 51)

where (i) comes from Lemma 10.1 and the definition of value function. Plug (51) into (50), we obtain

Vﬂ'(sinit) — V*(Sinit) <8 Z - d,u S a \/W—‘,— O
Sség
[ 6d*(s.a) -1 <1
<8 (Be+1)+0(—-), 52
- — dt(s,a) - n (B +1)+ (n) (52)
g
which completes the proof. O

10 PROPERTIES OF TRANSITION MATRIX ESTIMATE P

Lemma 10.1. For any V (-) € R® satisfying V(g) = 0, i.e. (13), and suppose event £; holds. we have

=~ 3 2|V|12 St
Vi Ps as v S - Vi Ps as 14 —
ar(Ps.q, V) 5 ar(Ps,q, V) + (5, 0)
= 4|2 S
Var(Pa o, V) < 2Var(Poa, V) + IV Il St (53)
' ’ n(s,a)
Proof. From the event £, we have
~ P(s']s,a)t 20 P(s']s,a) 51
P(s — P(s < : < ’
[P(s']s, a) (s'ls, @)] < n(s,a) 3n(s,a) ~ 2 3n(s,a)’
where the second inequality uses v/ab < ‘”b witha = n(?a), b = P(s'|s,a). Thus we have
= 3P(s'|s,a) 5¢ 3P(s|s,a) 2
P / < ) < b
(sls,0) < 2 3n(s,a) ~ 2 * n(s,a)
P(s'|s,a) < 2P(s'|s,a) + 0 _ 2P(s'|s,a) + il (54)
T ’ 3n(s,a) ~ ’ n(s,a)’
For the first inequality, we have
Var(Py 4, V) = Py o(V — Py V)2 < Py o(V — P, V)?
3P(s'|s,a 2
< 9 V / _ Ps av 2
<2 (5 +n(s,a>>< =Pl
3 2|V, St
< “Var(P, ,, V) 4+ -1l 20
2 ar(Poa, V) + n(s,a)

here the first inequality is due to ﬁs,aV = argmin, y ., ﬁs,a(s/)(V(s/) — 2)?, and the last term has S + 1 due to the extra
state g. For the second part, we have

Var(Ps,aa V) = s a(V - Ps aV)2 < Ps a(V - ﬁs,av)2

< Z (2P (s']5,a) 5 )> (V(s') = P, ,V)?

4|V (S + 1)
n(s,a)

< 2Var(ﬁs’a, V) +



Lemma 10.2. With probability at least 1 — §, we have

10c
3n(s,a)

oL
3n(s,a)

c(s,a) < 2¢(s,a) +

N W

c(s,a) < =c(s,a) +

Proof. Conditioned on event £, we have

where the first inequality uses the assumption that ¢(s,a) € [0,1]. The second inequality follows from the result that
Vab < “T*b. Simplify the above inequality, we can conclude the proof. U

Lemma 10.3. With probability 1 — §, for all V(-) € RS such that | V||, < oo, we have for all sate-action pair (s, a)

(ﬁ PV < 25Var(Ps o, Ve 2|V St
e e = n(s,a) 3n(s,a)

, (55)

where . = O(log(SA/9)).

Proof. Suppose the event £; holds. Then we have (deterministically)

. )~
‘(]Ds,a - ]Ds,a)v| (:) |(Ps,a - Ps,a)(v - Ps,aV15>|
2P(-|s,a)e 2
< V—-P,V1
= n(s,a) ?m(s,a))' aVls|
2P, 4L 25|Vl ¢
; ~- P, V1 | R ="
— \/ n(s,a) V= PoaVls|+ 3n(s,a)
(i) , _ 2
< (\/§ 2Ps,a(v Ps,aVIS) L) + 2S||VHOOL
n(s,a) 3n(s,a)

25Var(P;s o, Ve 2|V St
n(s,a) 3n(s,a)

where (i) follows from the fact that P, ,V is a scalar, which implies that (133,@ — Pyo)(PsaV)lg =
(Ps,aV) > o (P(s'|s,a) — P(s'|s,a)) = 0. (ii) uses the Cauchy-Schwartz inequality. Lastly, £; fails with probability
only § (by Lemma 4.1).

O

11 MINIMAX LOWER BOUND FOR OFFLINE SSP

In this section, we provide the minimax lower bound for offline stochastic shortest path problem. Concretely, we consider the

family of problems satisfying bounded partial coverage, i.e. max; g s¢ ddﬂ“ ((Ss’aa)) < C*, where d™(s,a) = > 1o o & (s,a) <

oo for all s, a (excluding g) for any proper policy 7. Formally, we have the following result:



Theorem 11.1 (Restatement of Theorem ??). We define the following family of SSPs:

™ (s,a)
P *) = init» aP’ Tilsa) S ) ’
SS (C ) {(8 t M C)| s,r(?,?;é(g d“(sa a’) C }

where d™(s,a) = Y 7 o &7 (s, a). Then for any C* > 1,

V*|| = Bx > 1, it holds (for some universal constant c)

) SC~
_inf sup Ep[V™ (sinit) — V™ (sinit)] > ¢+ B. :
T proper (s ,u,P,c)SSP(C*) "

The proof of Theorem 11.1 relies on the hard instances construction that is similar to Rashidinejad et al. [2021]. However,
we need to incorporate the absorbing state g and assign the transition of initial state s;,;; carefully to make sure the optimal
proper policy exists.

Proof of Theorem 11.1. We create hard instances of SSPs as follows: we split S — 1 states (except siy;¢) into S” = (S —1)/2
groups, and denote it as S = {sin;i} U {s7, s, }le. For 1, j = 1,...,5, there are two actions a1, as and for states

Sinit» sﬂ_ and goal state g there is only one default action a4 (therefore the only choice is always optimal for those states).
Concretely,

« For state sipi, it transitions to 57 (j = 1, ..., S") uniformly with probability 1/5’, i.e. P(s]|sinit,aq) = 1/5";

¢ For each state sji, it satisfies

o . o 1 . 1
P(s’|s1,a1) = P(gls1,a1) = 1/2; P(s’|s],a2) = 5 +v;0; P(gls],a2) = 5 —

5 5 Uj 5
where v; € {41, —1} and ¢ to be specified later.
¢ For si, it satisfies
P(5]+|Si7a/d) = Q?P(g|8‘iaad) =1- q,
where ¢ = 1 — - and g is absorbing.
* the cost function satisfies (regradless of actions):
c(sinit) = C(Sjl) = C(Si_) = 1) C(g) = 0.
It is easy to check this is a SSP. Moreover, it is clear when v; = 1, the optimal action at sjl is a1 and if v; = —1 the

optimal action is ay. Note by straightforward calculation we have that |[|[V*|| < 2B,.

We consider the family of SSP instances P to satisfy Lemma 12.1, i.e. it satisfies |P| > ¢5'/8 and for any two instances in
P, |lvi —vj||; > S’/2. Also, it suffices to consider all the deterministic learning algorithms, as stochastic output policies
are randomized versions over deterministic ones (c.f. Krishnamurthy et al. [2016]). Then we have the following lemma:

Lemma 11.2. For any (deterministic) policy m and any two different transition probabilities Py, P, € P, it holds:

Vlgl (sinit) - V];rl* (Sinit) + V[z'; (sinit) — VIE; (Sinit) Z 53*/2

Proof of Lemma 11.2. Since s, uniformly transitions to S’ states (w.r.t the default action ag), therefore for any policy m,

s’ s’ 5’
s " 1 T (ol 1 L’ 1 T (b T
Vi, (sinit) = VB, (Sinit) =1+ 5 E Ve () — [ 1+ 5 E Ve, (s1) | = 5 E (Ve (s1) = VB, (s1))-
i=1 i=1 i=1

Case 1. If v; = 1, then

o 1 ; 1
P(s!|s1,a2) = 3 +0, P(glsi,a2) = 3 -0

and in this case 7*(s%) = a;.



If 7(si) = ag, then

1 1

V() = 14 (5 + OVT(s) + (5~ OV (e) = 1+ (5 + V(5L ),

and this implies

_ coan 1 AN Sy
V(1) = VT (s1) = (5 + 0V (1) = 5V (s1)
Zdvﬂﬂ)z5ﬂ+q+q”+~J:5'T%5:53*

If w(s%) = ay, then V7 (s%) — V™ (s%) > 0. Therefore, in this case, one has
VT (si) = V™ (s1) 2 6B, - 1[m(s}) # 7 (s1)].
Case 2. If v; = —1, then

o 1 ; 1
P(51|3117a2):§_63 P(g‘si7a2):§+6
and in this case 7*(s%) = as.

If 7(s!) = ay, then

and this implies

VT(s)) = VT (s)) = SVT(sh) — (5 — OV (s)
1

>V (s8) =6(1+q+¢*+...) =8 —— = dB,.

l—q
If w(s%) = as, then V7 (s}) — V™ (s%) > 0. Therefore, in this case, we still have

VT(s5) = V™ () = 6B. - Ln(s}) # 7 (s1)].
Combine the above two cases, we have

V5, (Sinit) — VEI (Sinit) + V&, (Sinit) — Vi»;* (Sinit)
1 & . . 1 & .
2 > (VB (1) = VB (s1) + 5 > (VB (1) = VA (s1)
=1 i=1
1 5’ . . _ _
> 1683 (1U(sh) # i, (5] + 1[r(s1) # 7, (51)
im1

5B, & , ,
>220 5™ 1, (51) # (5]

i=1

(56)

Lastly, by Lemma 12.1, Zlel 1[mp, (s4) # mp, (s1)] = [lup, —vp, |, = 5’/2, and plug this back to (56) we obtain the

result.

O

Now we construct the behavior policy y such that the data trajectories generated from the induced distribution p o P suffice

for the lower bound. Since only s} has two actions, we specify below:

wlag|st) =1/C*, play|st) =1—-1/C*, Vie{1,...,5'}.



First, we examine this choice belongs to SSP(C*). Indeed, the only case where as is the suboptimal action for all s}
(ie{l,...,S})iswhenvy,...,ve all equal 1. We can eliminate this SSP from P and the property of Lemma 12.1 still

holds. Then, for some % such that v;, = —1 (az is the optimal action for this state), we have
d* 20 _ d* 10 1= 1 d“ 10 _ d“ 10 0\ _ 1
(s7,a2) =d*(sy") - 1 = g (517, az) = d"(sy")ulazlsy’) = SO’

therefore d*(s%°, ap)/d" (5%, az) = C* and this (sinit, i1, P, ¢) €SSP(C*).

Recall n is the number of episodes. Now apply Fano’s inequality (Lernma 12 5) (where each whole trajectory is considered
one single data point over the distribution y o P therefore D := {(sl 7al , cgl), sg)7 . sg))}izlw’n consists of n i.i.d.
samples) and Lemma 11.2, we have!

inf sup Ep[V™ (Sinit) — V* (Sinit)]] >

3B, < n- max#jKL(,uoPH,uOP)—HogZ)
T (Sinit;u/apac)ep

log |P|

Note by the choice of P, log |P| > S’ /8, therefore it remains to bound max;; KL(u o P;||p o P;). By definition, we have

1 & Py (75:)
KL(po Pillpo P2) = o > > Pi(ry)log Po(r)’
‘ EH

where 7, corresponds to all the possible trajectories starting from si. Then there are the following several cases:?

s If 7 ={st = a; — g}, then P(s! — a; — g) :(1_ )3

« If 7 = {s{ = ag = g}, then P(s] = az — g) = &= - (5 — vid);

o)z (1= a);

( +vi0)(1—q);

. IfTsi :{sl—>a1—>s+—>s+—>g} thenP(sl—>a1—>s+—>s+—>g):(l—c}*)%q(1—q);
o= (5 +vid)a(1 - q);
. IfTSzi ={st —a — (s+)xk — g}, then P(si — a; — (s+)xk —g)= (1 c}*)éqk Y1 —q);
o (3 +vid)d" (1 - q);

Py (Tgi )
Note for path 7,; that chooses action a1, P'1 (7, ) = P2(7,: ) which implies P1 (,: ) log 77 = 0. so we only need to sum
o

o« If 7y = {s} = a1 — st > g}, thenp(si%alﬁﬁﬁg):(

e If 7 ={st way —s° — gl thenP(s! —ay = s —g
51 1 + 1 +

. IfTS§:{51—>a2—>s+—>s+—>g} then P(s} — ag — s, — s, — g) =

s Ifry = {8t = az = (s)xk — g}, then P(s{ — ag — (s )xk — 9) =

over the paths that choose as. In particular, we have

Pin) 11 A (b—oh)
szl(ng)log P2(TS§) - O '(5 - 5)logm
S s(5 +v8)d* (1 q)

o= (3 +0/28)d" (1 — q)

k=0

1 1 o, Lol 1 P Lrofns
~cr (5‘“15>1°gm+5'(5+“i15”gﬁ
1 Py 3 511, %‘H%Pla
— o8 log 2—1 =+ — (= +016)log 21— —
s Gmutd) Bl s o SR B,
1 i+ 1 26 462

26 log 2 = —2§log(1 <
“oelos 15 = g les(l 7)<

"Note here we drop 7 is proper as the theorem statement did. We can do this since, for all the instances in P, any policy is proper.
*We omit the subscript 5 in P; here and only uses P to denote 4 o P for the moment.



where the first inequality comes from when viP T = vf * then the term is simply 0 and the second to the last equality holds true

regardless of whether v; = 1 or v; = —1. The last inequality comes from log(1 + z) < x forall z > —1 (here 0 < 6 < %).

Plug above back into the definition we obtain
maxKL(u o Pilluo Fy) < 46%/C",
7]

and as long as
4ns?

C*S'/8

1
< Z
-2

e.g. if we choose § = 1% % (recall S’ = (S — 1)/2), then we have

7 0B, 1 1 C*S
inf < En[VT cit) — v* - > 1 73* s
H;r (SinicilylgC)GP D[ (S t) (S t)H - 4 2 128 n

This completes the proof.

O
12 TECHNICAL LEMMAS
Lemma 12.1 (Gilbert-Varshamov). There exists a subset V of {—1,1}* such that
. ‘V| > 25/8’.
* for any two different v;,v; € V, it holds |lv; — v;||; > S/2.
Lemma 12.2 (Generalized Chernoff bound). Suppose X1, ..., X, are independent random variables taking values in [a, b].

Let X = """ | X, denote their sum and let u = E[X;]. Then for any § > 0,

2

PX <(1-0)nyu] < e—20%n?/(b=a)* P[X > (1+6)pn] < e 20°nu?/(b—a)

This result can be found in Sums of independent bounded random variables Section of https://en.wikipedia.org/
wiki/Chernoff bound.

Lemma 12.3 (Bernstein’s Inequality). Let x1, ..., x,, be independent bounded random variables such that E[xz;] = 0 and
;| < & with probability 1. Let 0* = L 3" | Var[x;], then with probability 1 — § we have

1 & 202 -log(1/6) = 2¢
E;xiﬁ\/in + 3 log(1/9)

Lemma 12.4 (Empirical Bernstein’s Inequality [Maurer and Pontil, 2009]). Let x1, ...,z be i.i.d random variables such
that |z;| < € with probability 1. Let # = 2 37" | @; and V,, = L 37" | (x; — 2)?, then with probability 1 — & we have

n

1 & 2V, -log(2/8) 7
=3 @ —El| < M+—§log(2/6).
n — n 3n
Lemma 12.5 (Generalized Fano’s inequality). Let L : © x A — R be any loss function, and there exist 61, ...,0, € ©

such that
L(Gi,a)—i—L(Gj,a) >A, Vi#£je€ [m],aE.A.

Then it holds

)

& A - max;z; KL(Pg,
inf sup EgL(6,6) > 3 (l—n max;z; KL(Py,

Py, ) + 10g2>
0 6co

logm

where n is the number of i.i.d. samples sampled from the distribution Py.


https://en.wikipedia.org/wiki/Chernoff_bound
https://en.wikipedia.org/wiki/Chernoff_bound

Proof of Lemma 12.5. The proof come from the combination of Lemma 1 and Lemma 3 of Han and Fischer-Hwang
[2019].

O
Lemma 12.6 (Chernoff Bound for Stochastic Shortest Path). Recall by definition
n T ) ) n oo ) _
S 1 = sl =al = 30301 = saf? =)
i=1 h=1 i=1 h=1

Let T ax = max; T; and recall d

=min{d> ;2 & (s,a) 1 s.t. Y5 & (s,a) > 0} Whenn > C-T2,, log(SA/6)/d
with probability 1 — 0, for all s,a € S X A,

o0

fn Zfﬁsa < n(s,a) <

l\D\C»D

Mg

f}‘:(s, a).

>
Il
—

Proof of Lemma 12.6. Indeed, denote n,(s,a) =Y i, 22:1 l[sg) =s, ag) = al, then

n

t n
E[n¢(s, a)] ZZ]E (Z)fs agf) Z
h=1 i=1

1=1

HM“

Zsafnngsa

Now define X, ; = Z;Zl 1[3? =s, agf) = a], then by Tinax = max; T; we have 0 < X; ; < Tax for all 4, ¢ since Tiyax
denotes the maximum length of trajectory. Then apply Lemma 12.2 (where we pick § = 3) to n;(s,a) and ), _; &, (s,a)
and union bound over s, a, we have with probability 1 — 9, for any fixed ¢

¢ ¢
P [271-];5}‘;(5,&) < ny(s,a) < n-]géﬁ(s,a),Vs,a] >1-96§

N W

Next note n¢(s,a) — n(s,a) almost surely, and 22:1 & (s,a) = >y & (s, a) almost surely, and that a.s. convergence
implies convergence in distribution, we have

O
Lemma 12.7. For any a,b,c € R, we have

| min{a, b} — min{a,c}| < |b —¢|.

(57
Proof. 1. Casel: a < band a < ¢, |min{a,b} — min{a,c}| =0
2. CaseIl: @ > band a > ¢, |min{a, b} — min{a, c}| = |b — ¢|.
3. Caselll: b < a < corc<a<b,|min{a,b} — min{a, c}| < max{|a —b|,|a —c|} <|b—¢|
O
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