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Abstract 
 

The approaches by which the machine learning and clinical research communities utilize real 
world data (RWD), including data captured in the electronic health record (EHR), vary 
dramatically.  While clinical researchers cautiously use RWD for clinical investigations, ML 
for healthcare teams consume public datasets with minimal scrutiny to develop new 
algorithms. This study bridges this gap by developing and validating ML-DQA, a data quality 
assurance framework grounded in RWD best practices. The ML-DQA framework is applied 
to five ML projects across two geographies, different medical conditions, and different 
cohorts. A total of 2,999 quality checks and 24 quality reports were generated on RWD 
gathered on 247,536 patients across the five projects. Five generalizable practices emerge: all 
projects used a similar method to group redundant data element representations; all projects 
used automated utilities to build diagnosis and medication data elements; all projects used a 
common library of rules-based transformations; all projects used a unified approach to assign 
data quality checks to data elements; and all projects used a similar approach to clinical 
adjudication. An average of 5.8 individuals, including clinicians, data scientists, and trainees, 
were involved in implementing  ML-DQA for each project and an average of 23.4 data 
elements per project were either transformed or removed in response to ML-DQA. This study 
demonstrates the importance role of ML-DQA in healthcare projects and provides teams a 
framework to conduct these essential activities. 

 
 

1. Introduction 
The machine learning (ML) in healthcare and clinical research communities have entirely 

different approaches to developing new products using real-world data (RWD). Until the last 
decade, nearly all data used for the regulatory approval of novel therapeutics and medical devices 
was manually curated through high-cost clinical trials. The broad adoption of electronic health 
records (EHRs) after the HITECH act of 2009 hastened the digitization of patient data and laid 
the groundwork for new opportunities to leverage EHR data. The 21st Century Cures Act of 2016 
formally promoted the use of RWD, including EHR data, medical claims, billing data, registry 
data, and patient-generated data, in regulatory reviews of products by the Food and Drug 
Administration (FDA).1 However, despite increased use of EHR data to assess product safety and 
efficacy, the FDA continues to closely scrutinize the use of RWD in clinical investigations.2 

While the clinical research community has approached use of RWD with great 
trepidation, the ML community zealously develops new algorithms on the same types of datasets. 
The ML community frequently calls for the open release of new RWD datasets and datasets that 
are publicly available attract thousands of teams to develop and validate new algorithms.3 The 
ML community recognizes that the current approach to commoditize benchmark datasets is 
untenable.4 A recent review succinctly described the problem: “It is essential that researchers, 
advocacy groups, and the public at large understand both the contents of the datasets and how 
they affect system performance. In particular, as the field has focused on benchmarks as the 
primary tool for both measuring and driving research progress, understanding what these 
benchmarks measure (and how well) becomes increasingly urgent.”4 Beginning in 2018, efforts to 
improve dataset documentation, including Datasheets for Datasets,5 have emerged and are 
broadly cited. However, they remain poorly adopted by ML in healthcare teams and they do not 
account for the rich literature and best practices surrounding RWD use in clinical research. 
 The current study seeks to close this gap. We build upon seminal work performed by the 
Observational Health Data Science and Informatics (OHDSI) and Patient Centered Outcomes 
Research Institute (PCORI) to harmonize a data quality framework for secondary use of EHR 
data.6 The PCORI harmonized data quality terminology and definitions were “explicitly scoped to 
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focus on the broad-based evaluation of a large data set typically found in clinical data sharing 
networks” and were designed to be agnostic of EHR system.6 The effort convened representatives 
from 20 of the largest United States distributed research networks along with international 
representatives and the participants collectively gather data on over 540 million patients. This 
study also builds upon prior work to adapt the PCORI harmonized data quality framework to 
assess quality of data curated by a custom-built automated EHR data pipeline.7 To our 
knowledge, this study is the first of its kind to develop and validate a data quality assurance 
(DQA) framework grounded in clinical research RWD best practices on a portfolio of ML 
projects. 
 This study has two main objectives. The primary objective is to validate a DQA 
framework applied to five ML projects across different product development stages, geographic 
settings, and disease conditions. While conducting this validation, we highlight generalizable 
practices across projects. The secondary objective is to characterize the resource requirements 
and effect of utilizing the ML-DQA framework on each ML project. 
 
1.1  Generalizable Insights 
 This study presents a DQA framework validated on five ML in healthcare projects at 
different stages, in different geographies, and different disease conditions. We distill findings into 
a set of practices and templates that can easily be adopted by other groups working with RWD to 
develop ML products in healthcare. 
 
2. Methods 
2.1  Setting 
 This study is led by an interdisciplinary team at Duke Health. Since the founding of the 
Duke Institute for Health Innovation (DIHI) in 2013, DIHI has completed over 90 projects, 
including the development and integration of 15 ML products into clinical care. DIHI’s approach 
to ML product development is heavily influenced by close and longstanding collaborations with 
leaders of the Duke Clinical Research Institute (DCRI). DCRI works closely with nearly all major 
therapeutic and device developers to advance novel products through regulatory approval and 
post-market surveillance. DCRI also serves as the data coordinating center for PCORI and utilizes 
the harmonized DQA framework to aggregate data from sites across the distributed research 
network. 
 A secondary site involved in the study is Jefferson Health, which also conducts a 
portfolio of clinical research studies with industry sponsors. Duke Health and Jefferson Health are 
collaborating to expand their clinical research partnership activities to include the development 
and validation of novel ML products. The current study includes the first time an ML product 
built at Duke Health undergoes external validation at Jefferson Health. Notably, both Duke 
Health and Jefferson Health use Epic Systems as their EHR.   
 
2.2  Project Selection 
 The current study includes 5 ML projects. Project details are listed in Table 1. Four 
projects apply the ML-DQA framework to EHR data from Duke Health and one project applies 
the framework to EHR data from Jefferson Health. The projects focus on predicting surgical 
complications, pediatric sepsis, adult sepsis, chemotherapy associated adverse events, and 
maternal morbidity and mortality. The five included projects also represent two different stages of 
ML product development. The Jefferson Health Sepsis project is an external validation of a 
previously published algorithm.8,9 The other four projects are developing new ML algorithms 
using Duke Health EHR data. These four projects were all selected through a competitive, annual 
request for applications in which Duke Health senior leaders specify strategic priorities for the 
organization and front-line clinical staff propose projects aligned with the strategic priorities. 
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Clinical project leaders were all front-line clinicians who were perceived by Duke Health senior 
leaders to be well positioned to champion development and adoption of the new ML product. The 
projects were all undergoing DQA simultaneously between November 1, 2021 and March 31, 
2022. All projects have completed the ML-DQA process. All projects have individual IRB 
approval for data curation and analyses. 
 
Table 1. Descriptions of all 5 ML projects 

 
Project Description Outcome of Interest Setting Project 

Stage 

Pediatric 
Sepsis 

Develop an ML model to predict sepsis in the 
pediatric emergency department. The model 
is built to be used after pediatric patients 
present to the ED up until time of death, 
discharge, or sepsis. The model will be used 
to identify patients who may need treatment 
for sepsis. 

Pediatric Sepsis (see 
Supplemental Table 1) 

Duke 
Health 

Initial ML 
model 
development 

Lung 
Transplant 

Develop an ML model to identify patients 
who are at high risk of  poor outcomes after a 
lung transplant. The model is built to be used 
after patients are listed for transplant leading 
up until the time of lung transplant. The 
model will be used to identify patients who 
may need pre-operative interventions to 
minimize risk of post-operative 
complications.  

Mortality at 1 year post-
transplant and 
"Textbook outcomes" 10 

Duke 
Health 

Initial ML 
model 
development 

Jefferson 
Sepsis 

Externally validate the Sepsis Watch model 
built at Duke Health on EHR data curated at 
Jefferson Health. The model is built to be 
used after adult patients present to the ED up 
until time of death, admission, discharge, or 
sepsis. The model will be used to identify 
patients who may need treatment for sepsis. 

Sepsis as defined by 
Sepsis Watch 

Jefferson 
Health 

External 
validation of 
previously 
developed 
Sepsis 
Watch ML 
algorithm 

Immune 
Related 
Adverse 
Events (irAE) 

Develop an ML model to predict which 
cancer patients treated with immune 
checkpoint inhibitors are at high risk of 
immune related adverse events. The model 
will be used by outpatient oncologists to 
identify patients who need closer monitoring 
or additional support to prevent emergency 
department visits or hospital admissions. 

Hospital admissions and 
Emergency Department 
visits 

Duke 
Health 

Initial ML 
model 
development 

Maternal 
Early 
Warning 
Score 
(MEWS) 

Develop an ML model to predict maternal 
morbidity and mortality. The model is built to 
be used after pregnant patients present to the 
hospital up until the time of death, discharge, 
or adverse event. The model will be used to 
identify patients who may need treatment. 

Hemorrhage, Sepsis, 
Acute Heart Failure, 
Acute Respiratory 
Distress Syndrome, 
Pulmonary Embolism,  
Eclampsia, 
Disseminated 
Intravascular 
Coagulopathy, Acute 
Renal Failure 

Duke 
Health 

Initial ML 
model 
development 

 
 
2.3  Machine Learning – Data Quality Assurance (ML-DQA) Framework 
 The ML-DQA framework focuses on a narrow portion of the data curation process and 
applies most specifically to ML products developed using structured EHR data. The ML-DQA 
framework is completed before ML models are developed and does not depend on the model 
training methodology. Two activities are completed before application of the ML-DQA 
framework. First, clinical project leaders identify relevant data elements to include in the ML 
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model. Potential data elements are identified from prior literature as well as surveys distributed to 
clinicians involved in the diagnosis and treatment of the condition of interest. An example project 
survey is included in the Supplement. Second, data elements selected for inclusion are mapped to 
the EHR data source and extracted into a project-specific data store. After the queries are refined 
to ensure capture of all relevant data, we proceed with the ML-DQA framework. The framework 
has three phases, illustrated in a simplified workflow process diagram in Figure 1. 
 
Figure 1. Workflow process diagram describing ML-DQA framework 

 
 
Phase 1: Data Element Pre-Processing 
 The first step is entity resolution, also called grouping. Entity resolution is required for 
many different types of healthcare data and can draw upon publicly curated resources, but also 
often requires local clinical expertise and input. Entity resolution mappings are built for many 
types of healthcare data, such as laboratory measurements, vital sign measurements, medications, 
and escalation of care events. For example, glucose is measured dozens of different ways, 
including blood measurements, urine measurements, measurements taken from point-of-care 
devices, measurements during fasting, measurements processed at Labcorp, measurements 
processed at Quest Diagnostics, and measurements taken from both venous and arterial samples. 
Defining a serum glucose data element grouper requires clinicians to specify a mapping that 
resolves the redundancy to map various forms of measurement to the same object. A serum 
glucose grouper is included in the supplement illustrating 38 different ways that glucose was 
captured in the Duke Health EHR between June 1, 2014 and November 29, 2020. Similar 
mappings are required for the different ways heart rate is measured, the myriad types of 
antibiotics that can be administered, and transitions from a general inpatient unit to any of the 
different types of intensive care units. 
 The second step is rules-based data transformations that address common problems 
encountered with EHR data. These rules sets include unit normalizations to transform various 
units of measurement into a single reference unit per data element. Threshold-based rules are 
often developed when no reference unit is available. For example, a substantial proportion of 
weight measurements are captured in ounces. Weight measurements over 1,200 are assumed to be 
measured in ounces and are converted to lbs. There are also rules sets designed specifically for 
the EHR configuration at Duke Health: invalid numeric values are replaced with the value 
999999; missing entries for birth date are imputed with the value December 31, 1841; and 
timestamps are most often recorded in local time and need to be converted to UTC. The rules set 
library is dynamic and expands over time as new transformations are identified. 
 
Phase 2: ML-DQAChecks 
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 The first step is to assign checks to every data element that assess for completeness, 
conformance, and plausibility. This step draws upon the PCORI harmonized data quality 
framework, which defines similar domains of quality.6 Conformance checks test that variable 
type, value, range, and computational output match prespecified expectations. Completeness 
checks report missingness of data and plausibility checks test data variable credibility within 
clinical contexts. All data elements are assessed in an atemporal and temporal fashion to ensure 
that data quality is stable over time. Temporal shifts or drifts in data quality are particularly 
important for ML projects, because model performance can deteriorate if data or the population 
changes.11 Checks are defined by clinicians and data scientists, with plausibility checks requiring 
the most clinical expertise. For example, we try to reproduce associations between known risk 
factors and an outcome (e.g., older patients have higher rates of in-hospital mortality). Similarly, 
we try to reproduce heuristics that associate certain interventions with certain clinical factors 
(e.g., patients who are hypotensive often receive vasopressors). 
 Once clinicians and data scientists agree on the ML-DQA checks, data quality reports are 
generated for categories of data elements, including encounters, laboratory measurements, vital 
sign measurements, and medications. Data quality reports are currently generated using Jupyter 
notebooks and contain numerous tables and visualizations. The ML-DQA reports are meant to 
enable rapid assessment of completeness, conformance, and plausibility of each data element. 
 
Phase III: ML-DQA Adjudication 
 The final step in the ML-DQA framework is adjudication of data quality by clinicians. 
This last step requires project stakeholders to confirm that each data element is fit-for-use in 
downstream analyses and ML model development. For a data element to be fit-for-use, the 
reviewer must confirm that the data element is sufficiently complete, conformant, and plausible. 
These determinations are made by reviewing the ML-DQA Jupyter notebooks and completing a 
spreadsheet form. An example adjudication form for the lung transplant project is included in the 
Supplement. 
 After ML-DQA adjudication, data elements that are not fit-for-use are reviewed by the 
data scientist and project manager. An alternate source for the data may be identified, the query 
sourcing data from the EHR may be adapted, or additional transformations may be needed. 
Modifications to the data element are presented in a new ML-DQA report, which undergoes 
another round of adjudication by a clinical reviewer. Ultimately, any data elements that continue 
to not be fit-for-use are not used in ML model development. 
 
2.4  Validation Analyses 

The primary objective of this study is to validate the ML-DQA framework applied to five 
diverse ML projects. To do this, we describe how each project completed each of the ML-DQA 
steps described above and highlight the components of the framework that were most 
generalizable across projects. We synthesize our findings and present resources that can be used 
by teams using EHR data to develop new ML in healthcare products. 
 
2.5  Impact Analyses 

The secondary objective of this study is to characterize the resource requirements and 
effect of utilizing the ML-DQA framework on each ML project. To do this, we quantify the 
personnel involved in completed ML-DQA and measure number of data elements that were 
deemed to not be fit-for-use as well as the number of data elements that required transformation 
or were excluded from use in ML model development. 
 
3. Results 
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 In total, the ML-DQA framework was applied to data curated for 247,536 patients across 
the five ML projects. Cohort sizes ranged from 742 patients who underwent lung transplantation 
at one hospital between 2014 and 2020 to 212,531 patients who presented to a large, urban 
hospital in 2019. Cohorts varied by age, including one pediatric cohort (mean age = 7.85 years), a 
cohort of young women admitted to labor and delivery (mean age = 29.8 years), and a cohort of 
older adults undergoing chemotherapy (mean age = 65.46 years). Population characteristics for 
the five ML projects are presented in Table 2. 
 
Table 2. Cohort characteristics for all ML projects 

 Pediatric Sepsis 
Lung 
Transplant 

Jefferson 
Sepsis 

Immune 
Related 
Adverse Events MEWS 

Patients, n 10,492                                             719 212,531 3,962 19,832                                       

Number of 
encounters, n 

17,491                                            742 484,448 130,265 15,634                                            

Age, y, mean ± SD 7.85  ±  6.00 years 55.69 ± 15.19 
years 

57.88 ± 18.26 
years 

65.46  ±  11.8 
years 

29.80 ± 6.08 

Female sex in 
patient population 
(n%) 

5,140 (49%) 304 (40.97%) 119,054 
(59.87%) 

1,564 (39.47%) 19,832 (100%) 

Race (n%)           

    ≥2 races 418 (3.98%) 8 (1.08%) 930 (0.44%)  56 (1.41%) 1,557 (9.96%) 

    American Indian 
or Alaska Native 

115 (1.09%) 3 (0.40%) 1,292 (0.61%) 10 (0.25%) 54 (0.35%) 

    Black or African 
American 

3232 (30.80%) 72 (9.70%) 61,713 
(29.07%) 

700 (17.67.%) 4,826 (30.87%) 

    Caucasian/white 4971 (47.37%) 637 (85.85%) 110,064 
(51.85%) 

2,939 (74.18%) 6,109 (39.08%) 

    Asian 264 (2.51%) 4 (0.54%) 15,377 (7.24%) 64 (1.62%) 1,160 (7.42%) 

    Native Hawaiian 
or Pacific Island 

31 (0.29%) 1 (0.13%) NA 7 (0.18%) 0 (0%) 

    Other/missing 1461 (13.92%) 17 (2.29%) 22,897 
(10.79%) 

194 (4.90%) 1,928 (12.33%) 

Ethnicity (n%)           

    Non-Hispanic 8590 (81.87%) 697 (93.94%) 180,983 
(85.26%) 

3647 (98.78%) 12,127 (77.6%) 

    Hispanic 1343 (12.80%) 17 (2.29%) 13,977 (6.58%) 55 (1.39%) 3,221 (20.6%) 

    Other/missing 544 (5.18%) 23 (3.10%) 17,313 (8.16%) 260 (7.04%) 286 (1.98%) 

Cohort dates Start Date: 
11/1/2016              
End Date: 
12/31/2020 

Start Date: 
07/06/2014                  
End Date: 
11/29/2020 

Start Date: 
01/01/2019             
End Date: 
12/31/2019 

Start Date: 
04/01/2016 
End Date: 
07/31/2021 

Start Date: 
01/15/2015.                 
End Date: 
06/01/2020 

Exclusion/Inclusion 
criteria for cohort 

Inclusion: 30 
days < Age < 18 
years; 
Inpatient/ED at 
DUH, 11/1/2016 - 
12/31/2020. 
Exclusion: 
patients who 
received care 
while in L&D 
departments at any 
time during their 
encounter 

Inclusion: All 
patients >= 18 
y.o. who have 
had at least one 
encounter with 
the lung 
transplant clinic 
and a lung 
transplant 
procedure. 
Exclusion: <18 
y.o 

Inclusion: >18 
yrs, inpatient 

Inclusion: Age 
≥18 years old, 
1st 
immunotherapy 
administration at 
Duke Health 
hospitals 
between 
04/1/2016 – 
07/31/2021 
Exclusion: <18 
years old  

Inclusion: In 
OB 
Triage//Post 
Partum or 
L&D 
Triage/Post 
Partum, non 
male, older 
than 1 year old, 
less than 50 
years old, has 
admission time 
value.  
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 All five projects successfully applied the ML-DQA framework described in the methods. 
Completed steps include: entity resolution and rules-based transformations; ML-DQA check 
assignment and data quality report generation; and ML-DQA adjudication involving manual 
review of data element completeness, conformance, and plausibility by clinicians. Results of 
these activities across all five projects are captured in Table 3. Across the five projects, a total 
220 new project-specific groupers were built, 2,999 ML-DQA checks were run, and 24 data 
quality reports were generated. 
 
Table 3. Results of data element pre-processing and ML-DQA checks across projects 

 

Pediatric 
Sepsis 

Lung 
Transplant 

Jefferson 
Sepsis 

Immune 
Related 
Adverse 
Events 

MEWS 

Phase I: Data Element Pre-
Processing           

Pre-existing groupers 108 109 30 39 310 

Project-specific groupers 73 35 59 41 12 

Phase II: ML-DQA Checks           

Number of data quality checks 389 432 267 1,034 877 

Number of completeness checks 144 144 70 508 404 

Number of conformance checks 122 144 132 225 69 

Number of plausability checks 123 144 61 301 404 

Number of data quality reports 4 4 4 7 5 

Names of data quality reports 

Analytes, 
Encounters, 
Flowsheets, 
Medications 

Analytes, 
Encounters, 
Flowsheets, 
Medications 

Analytes, 
Encounters, 
Flowsheets, 
Medications 

Analytes, 
Flowsheets, 
Medications, 
Demographics, 
Comorbidities, 
Orders, 
Encounters 

Orders, 
Analytes, 
Flowsheets, 
Medications, 
Comorbidities 

 
3.1  Generalizable Practices 
 Five practices emerged that were generalizable across all projects. First, all projects 
utilized a common set of metadata when conducting data element entity resolution to build 
groupers. Specifically, there was consensus across projects of the relevant metadata required to 
group analytes/laboratory measurements, medication administrations, and flowsheet/vital 
measurements. For analytes/laboratory measurements, the following metadata was curated: 
component id, component name, component count, common name, test name, procedure name, 
order name, component numeric value count (frequency of component), component numeric 
mean, top specimen source values, top specimen source counts, top reference unit values, top 
reference unit counts, normal upper bound, and normal lower bound. For medication 
administrations, the following metadata was curated: medication administration record (MAR) 
medication count, raw MAR name, top MAR action label values, top MAR action label counts, 
top route label values, top route label counts, top raw volume dose values, top raw volume dose 
counts, top raw volume dose unit values, and top raw volume dose unit counts. Lastly, for 
flowsheets/vital measurements, the following metadata was curated: flowsheet measure id, 
flowsheet measure name, flowsheet measure name count, display name, value type label, top 
flowsheet measure values, and top flowsheet measure value counts. 

The second generalizable practice was the development of automated utilities to build 
default groupings for medical comorbidities and medication therapeutic classes. Rich public 
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ontologies exist for both these domains of healthcare data. Historical ICD codes are mapped to 
AHRQ clinical classification software comorbidities, incorporating findings from prior research 
comparing different approaches to grouping ICD codes.12 Similarly, all raw medication names are 
parsed, tokenized, and then sent to the RxNorm API to retrieve potential tags mapping each 
medication to therapeutic classes. 
 The third generalizable practice was the collection of rules-based transformations into a 
local library and set of software scripts. After applying the ML-DQA framework to the five 
projects, 22 categories of rules-based transformations emerged. Table 4 contains a complete list 
of the rules-based transformations and maps each different type of data element to the relevant set 
of transformations. Example transformations include normalizing units that are labeled, applying 
thresholds to result values to impute missing units, parsing result values to remove indeterminate 
results, and detecting the bounds at which instruments reliably report measurement values. 
Project-specific and general transformations are now stored in a centralized library. 
 
Table 4. Unified approach for mapping data elements to rules-based transformations 

 Rules-Based Transformations Example 

Analyte/Laboratory Measurement  

N
um

er
ic

 

•Unit normalization performed through reference unit 
mapping 
•Parse specimen source value and subset by source 
•Parse typos and non-ASCII characters included in unit of 
measure 
•Apply project-specific or general upper and lower bound 
•Parse string text that conveys numeric result is outside 
range of measurement instrument and replace with upper 
bound 
•Ensure time stamp is captured in UTC 

•Normalize serum creatinine values reported in mg/dL and 
mg/mL 
•Identifying and dropping serum glucose values that have 
specimen source of urine 
•Find and replace greek letters and typos used in units and 
replace with ASCII characters 
•Remove serum creatinine values over 150 mg/dL 
•Convert point-of-care glucose value of ">600 mg/dL" to 
"600 mg/dL" 
•Convert timestamp from EDT to UTC 

Ca
te

go
ric

al
 

•Parsing specimen source value and subsetting by source 
•Map character string to hierarchical value through 
expert-derived reference table 
•Map character string to binary value through expert-
derived reference table 
•Parse result text to identify indeterminate values 
•Ensure time stamp is captured in UTC 

•Identify and drop blood cultures that have specimen source 
pleural fluid 
•Map blood culture results to negative, likely contaminant, 
and likely pathogen 
•Map HIV antibody titer levels to positive or negative result 
•Replace "hemolyzed sample" with missing value 
•Convert timestamp from EDT to UTC 

Flowsheet/Vital Sign Measurement  

N
um

er
ic

 

•Apply project-specific or general upper and lower bound 
•Parse string value to generate numeric 
•Unit normalization performed through reference unit 
mapping 
•Unit normalization through expert-derived thresholds 
•Ensure time stamp is captured in UTC 

•Remove pulse values over 400 beats per minute 
•Transform blood pressure (120/80) to separate systolic (120) 
and diastolic (80) 
•Convert kg weight values to lbs 
•Temperature values above 60 are assumed to be Fahrenheit 
•Convert timestamp from EDT to UTC 

Ca
te

go
ric

al
 

•Map character string to hierarchical value through 
expert-derived reference table 
•Map character string to binary value through expert-
derived reference table 
•Map character string with multi-select to hierarchical 
value through expert-derived reference table 
•Ensure time stamp is captured in UTC 

•Ranking oxygen support such that room air < nasal canula < 
CPAP < mechanical ventilation 
•Documentation of impella device in flowsheet represented 
as 1 
•If patient is documented to be both alert and oriented and 
sedated, take minimum level of consciousness 
•Convert timestamp from EDT to UTC 

Medication Administrations  

Ca
te

go
ric

al
 

•Parse MAR action name and subset by action 
•Ensure time stamp is captured in UTC 

•Identify and drop antibiotic administrations where the MAR 
action name is "held" 
•Convert timestamp from EDT to UTC 
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 The fourth generalizable practice was a unified approach to assign ML-DQA checks to 
each type of data element. Table 5 illustrates the approach to map different data element types to 
corresponding conformance, completeness, and plausibility checks. For example, each numeric 
analyte or laboratory measurement is assigned the following completeness checks: report total 
number of measurements across cohort, report proportion of patients with at least 1 measurement, 
and generate a histogram of number of measurements per patient. By standardizing ML-DQA 
check assignment, this also allowed teams across projects to reuse code to generate the data 
quality reports. For example, the first ML project to generate data quality reports was the 
pediatric sepsis project. All subsequent projects adapted the code after assigning checks using the 
framework in Table 5. Data elements that were not analytes/laboratory measurements, vital sign 
measurements/flowsheets, medications, or encounter-level patient characteristics required more 
customized quality checks. An example section from a flowsheet report for the lung transplant 
project is included in the Supplement. 
 
Table 5. Unified approach for mapping data elements to ML-DQA checks 

 
Associated 
Meta-data Conformance Checks Completeness Checks Plausability Checks 

Analyte/Laboratory Measurement  

N
um

er
ic

  

Order time, 
collection time, 
result time, 
specimen source, 
reference unit 

•Reference unit frequency table 
•Specimen source frequency 
table 
•Table showing deciles of 
values 

•Total number of measurements across cohort 
•Proportion of patients with at least 1 measurement 
•Histogram of number of measurements per patient 

•Number of measurements per 
month across cohort 
•Box plot of measurement value 
distribution per month across cohort 

C
at

eg
or

ic
al

 Order time, 
collection time, 
result time, 
specimen source, 
reference unit 

•Reference unit frequency table 
•Specimen source frequency 
table 
•Frequency table of all string 
values 

•Total number of measurements across cohort 
•Proportion of patients with at least 1 measurement 
•Histogram of number of measurements per patient 

•Number of measurements per 
month across cohort 
•Line plot of number of values per 
categorical value per month across 
cohort 

Flowsheet/Vital Sign Measurement  

N
um

er
i

c  

Measurement 
time 

•Table showing deciles of 
values 

•Total number of measurements across cohort 
•Proportion of patients with at least 1 measurement 
•Histogram of number of measurements per patient 

•Number of measurements per 
month across cohort 
•Box plot of measurement value 
distribution per month across cohort 

C
at

eg
or

ic
al

 

Measurement 
time 

•Frequency table of all string 
values 

•Total number of measurements across cohort 
•Proportion of patients with at least 1 measurement 
•Histogram of number of measurements per patient 

•Number of measurements per 
month across cohort 
•Line plot of number of values per 
categorical value per month across 
cohort 

Medication   

C
at

eg
or

ic
al

 

Administration 
time, order time, 
MAR action 
label, route 

•MAR action name frequency 
table 
•Frequency table of all raw 
medication names 

•Total number of med administrations across cohort 
•Proportion of patients with at least 1 measurement 
•Histogram of number of administrations per 
patient 

•Number of med administrations per 
month across cohort 
•Box plot of number of med 
administrations per patient per 
month across cohort 

Encounter-Level 

N
um

er
ic

 

ED arrival time, 
admission time, 
discharge time 

•Table showing deciles of 
values 

•Total number of values across cohort 
•Proportion of patients with a value 
•Histogram of number of values per encounter 

•Number of encounter values per 
month across cohort 
•Box plot of encounter value 
distribution per month across cohort 

C
at

eg
or

ic
al

 

ED arrival time, 
admission time, 
discharge time 

•Frequency table of all string 
values 

•Total number of values across cohort 
•Proportion of patients with a value 
•Histogram of number of values per encounter 

•Number of measurements per 
month across cohort 
•Line plot of number of values per 
categorical value per month across 
cohort 
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 The fifth generalizable practice was the development of a unified approach to adjudicate 
the ML-DQA reports. Each adjudication form had 4 sections and was expected to be completed 
by both a data scientist and a clinician working on the project, as depicted in Figure 1. Clinical 
trainees working full-time as data scientists through the DIHI Clinical Research and Innovation 
Scholarship were target users.13 The first section of the adjudication form included relevant 
metadata and aggregate data from a related dataset. For example, an adjudication form for 
numeric analytes included frequency of measurement, mean, standard deviation, and reference 
unit drawn from a previously curated dataset of individuals in the same geography and the same 
age. These reference values can be obtained either through prior work or through published 
literature using a similar cohort. The second section of the adjudication form asked the reviewer 
to respond yes or no to three questions: is the data sufficiently complete? Is the data sufficiently 
conformant? Is the data sufficiently plausible? The reviewer could also enter notes for each of the 
three domains of data quality. The third section of the adjudication form asked the reviewer to 
answer yes or no to six questions: Do we include the data element? Do we transform the data 
element? Are there data element values we exclude? Which values do we exclude from the data 
element? Is there a lower bound for inclusion? Is there an upper bound for inclusion? The fourth 
and final section of the adjudication form allowed the reviewer to write questions or comments in 
free text. An example adjudication form is included in the Supplement. 
 
3.2  ML-DQA Personnel and Capabilities Requirements 
 The personnel involved in implementing the ML-DQA framework for each ML project 
are listed in Table 6. The mean number of people involved in the process for each project was 5.8 
and the median was 5. Each project had at least one clinical expert, one data scientist, one clinical 
trainee, one clinician data scientist, and one project manager involved in process. The steps that 
required the most clinician involvement were entity resolution or grouping during phase one, 
defining the data quality checks during the second phase, and ML-DQA adjudication during the 
third phase, as illustrated in Figure 1. The steps that required the least clinician involvement were 
the mapping to data elements to the EHR, curation of meta-data for entity resolution, data 
element pre-processing, and generating the ML-DQA reports. 
 
Table 6. Personnel involved in ML-DQA for each ML project 

Project 
Personnel 
Involved Roles and Capabilities 

Pediatric Sepsis 5 
data science; clinical expert; project manager; clinical data scientist; clinical 
trainee 

Lung Transplant 8 
clinical expert (x3); project manager (x2); clinical data scientist; clinical 
trainee (x2) 

Jefferson Sepsis 5 data science; clinical experts (x2); clinical data scientist; clinical trainee 
Immune Related 
Adverse Events 6 

data science (x2); clinical expert; project manager; clinical data scientist; 
clinical trainee 

MEWS 5 
data science; clinical expert; project manager; clinical data scientist; clinical 
trainee 

 
3.3  ML-DQA Effect 
 The overall effect of the ML-DQA framework on ML project data is illustrated in Table 
7. All projects that implemented the ML-DQA framework identified data elements that needed to 
be transformed or removed from ML model development. The ML-DQA framework surfaced an 
average of 12.2 data elements per project that needed to be transformed in order to be included in 
ML model development. Similarly, the ML-DQA framework surfaced an average of 11.2 data 
elements per project that were deemed not fit-for-use and removed from ML model development. 
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Table 7. Effect of ML-DQA framework on data used for ML projects  

Pediatric Sepsis Lung Transplant Jefferson Sepsis Immune Related 
Adverse Events 

Maternal 
Early Warning 
Score 

Data Elements 
Transformed 11 9 13 18 10 

Example of 
Transformed 
Data Element 

Converting non-
numeric value to a 
mapped numeric 
value; 
Capillary_refill has 
multiple text options 
which were 
converted to a binary 
1 (abnormal) or 0 
(normal) 

Removed far outliers 
including: INR of 0, Na 
of 5.4, TSH of 3320 and 
0.01. Updated grouper 
for creatinine which 
mistakenly included a 
urine lab. Updated 
grouper for TPO 
antibodies. 

Replaced 744,761 
values of 9999999 with 
NaN; Converted 
ammonia values from 
ug/dL to umol/L; 
Custom entity 
resolution mappings for 
oxygen device and level 
of consciousness 

Excluded implausible 
values (e.g., HR < 
20, RR < 5); removed 
elements of premade 
groupers when 
necessary (e.g., urine 
labs appearing in 
serum groupers); 
combined rare 
elements into broader 
groupers (ie rare 
autoantibodies like 
RNP, smith, SSA/B 
combined to 
“autoantibody +”) 

Replaced values 
with 999999; 
Converted 
units; Broaded 
inclusion of 
medication 
administrations 

Data Elements 
Excluded 9 22 9 12 4 

Example of 
Excluded Data 
Element 

crp_high_sensitivity 
had very low count 
of data points and 
measurement of the 
data element was not 
stable over time 

Albumin to creatinine 
ratio was excluded, 
because only 11% of the 
cohort had data for this 
data element. 

Data elements having 
little clinical utility 
(e.g., 'pH' is more often 
used than 'arterial pH'); 
Values that are 
inherently wrong (e.g., 
troponin had far fewer 
counts than expected)  

A clinician had 
identified growth 
hormone levels as 
potentially important 
to our outcomes, 
however <0.05% of 
our cohort had this 
lab. It was removed 
from analysis. 

Certain types of 
orders, such as 
head MRI and 
nasal cannula, 
because they 
occurred so 
infrequently 

Most 
Important 
Adaptation or 
Finding 

"Personally, when I 
was initially working 
with the peds sepsis 
data, I thought since 
the vitals have been 
through the pre-
processing step, there 
shouldn't be any 
additional outliers. 
However, the QA 
process (especially 
through 
visualizations) 
revealed the need for 
additional processing 
(with attention to 
detail) to make sure 
the data is ready for 
modeling. I also 
realized that it's 
crucial to work with 
people with clinical 
expertise in the QA 
process." 

"Since most projects are 
working with the same 
underlying clinical 
database. We all work 
with similar variables. 
Therefore errors in 
groupers in one project 
can be shared with other 
projects. For example, 
the irAE project 
uncovered that the 
creatinine grouper 
contained urine 
creatinine values along 
with serum creatinine 
values which was 
incorrectly skewing the 
mean. Her find allowed 
me to isolate this error 
and remove the urine 
creatinine elements 
from the creatinine 
grouper in the Lung 
Transplant project." 

"Not necessarily a 
specific finding, but 
leadership and 
clinicians were not 
aware of the typical 
state of a raw dataset 
nor the process required 
to clean it. Even 
clinicians that work in 
informatics often use 
analytic or modelling 
products that do not 
have transparency 
regarding the state of 
the inputs. They take it 
on faith that the product 
or vendor has "taken 
care of" data quality 
with little oversight. It is 
often the case that even 
though the data quality 
issues are invisible to 
the user, it doesn't mean 
it's not there." 

"QA helped clarify 
our thinking on a 
number of elements. 
While reviewing 
graphs of element 
stability over time we 
identified 
discrepancies in the 
time period over 
which 2 raw data 
files were collected. 
If we hadn’t done 
QA we would not 
have identified this 
issue which affected 
a significant number 
of downstream 
elements. QA made 
us slow down and be 
methodical about 
each data type." 

"I found that 
QA highlighted 
what kinds of 
data were well 
represented 
(comorbidities), 
versus data like 
labs are much 
rarer. I think 
this is a 
particular 
difficulty of 
time-based 
modeling - the 
most 
definitive/useful 
data is much 
less frequently 
received by our 
models." 

 
Data scientists across projects also highlighted specific adaptations or findings that were 

most salient and informative across projects. A common sentiment was surprise at the state of the 
raw data and the effort required to make the data usable for ML model development. Several 
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specific findings also cut across projects. Many projects identified lab measurements reported in 
incorrect units, a grouper for a blood serum analyte included instances measured from urine, and 
high rates of missingness for certain variables required developing new SQL extracts to source 
data from alternate tables in the EHR database. 
 
4. Discussion 
 The ML-DQA framework presented in this study made a significant, measurable impact 
on the quality of data used for every ML in healthcare project. On average, over 23 data elements 
per project were either transformed or removed altogether for ML model development because of 
conformance, completeness, or plausibility problems. Unfortunately, these findings are consistent 
with other results in high-stakes domains.14 Data cascades, defined as “compounding events 
causing negative, downstream effects from data issues, resulting in technical debt over time” 
were found to be widely prevalent: 92% of AI practitioners reported experiencing one or more 
and 45.3% reported two or more cascades in a given project.14 The current study further illustrates 
the massive scale of even isolated conformance problems. For example, the Jefferson Sepsis 
project contained 744,761 lab measurements with an invalid numeric value 999999. 
 The current study is situated between three bodies of work that have emerged in the ML 
community. First, there is literature advocating for much needed culture change surrounding data 
curation. In 2020, Timnit Gebru and Eun Seo Jo encouraged ML practitioners to embrace lessons 
from historical archives, including: honoring and rewarding the labor of full-time curators 
responsible for weighing the risks and benefits of gathering different types of data and theoretical 
frameworks for appraising collected data; codes of conduct/ethics and a professional framework 
for data curators; and standardized forms of data documentation.15 A more recent qualitative 
study also found that efforts to improve data quality are not rewarded: “Models were reported to 
be the means for prestige and upward mobility in the field with ML publications that generated 
citations, making practitioners competitive for AI/ML jobs and residencies. ‘Everyone wants to 
do the model work, not the data work.’ Many practitioners described data work as time-
consuming, invisible to track, and often done under pressures to move fast due to margins—
investment, constraints, and deadlines often came in the way of focusing on improving data 
quality.” 14 This advocacy led NeurIPS to launch a new Datasets and Benchmarks track to serve 
as a venue for work related to the creation of high-quality datasets and discussion of ways to 
improve dataset development. 
 The second emerging literature in the ML community relates to dataset documentation. 
Numerous frameworks have emerged including Datasheets for Datasets,5 the Dataset Nutrition 
Label,16 FactSheets,17 Data Cards,18 and Healthsheet.19 These frameworks include varying types 
and amounts of information about datasets, but they collectively have numerous shortcomings 
when it comes to data quality for ML in healthcare. The documentation frameworks assume that 
the dataset is fixed, and that the data consumer is unable to directly access the source system to 
address flaws in data collection or data representation. When applying the ML-DQA framework 
in the current study to the 5 healthcare ML projects, many iterations of queries and 
transformations were required to optimize data quality. There were even cases where low rates of 
complete data prompted clinical leaders to advocate for changes in workflow to improve data 
capture. The previously described data documentation frameworks also assume that the dataset 
curator has the skills and expertise to assess data quality. For ML in healthcare projects, clinical 
domain expertise is required to assess data conformance, completeness, and plausibility. For the 5 
ML projects included in this study, an average of 5.8 people were involved in conducting DQA, 
often including multiple clinicians and a data scientist. 
 The third relevant literature in the ML community relates to tools that support the testing 
and validation of ML datasets. For example, the Data Linter was built at Google and published as 
a Python package that identifies miscoding errors in data, outlier values or errors in scaling, and 
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packaging errors that cause duplication or missing values.20 Many similar tools and frameworks 
exist and are described in a detailed 2019 review by Zhang et al.21 However, while many 
approaches are technically sophisticated, they do not address the core data quality challenges 
described in this study. The flaws in completeness, conformance, and plausibility addressed by 
the ML-DQA framework are not adversarial. These are inherent flaws within data generating 
processes and are not introduced by an outside actor seeking to perturb an ML model. Similarly, 
these data quality flaws do not represent skew between training and testing. The flaws are 
pervasive and occur across cohorts, geographies, and disease conditions. 
 The current study ties together these relevant bodies of work and bridges clinical research 
best practices to ML in healthcare. Pharmaceutical companies, for example, have long placed a 
premium on high-quality RWD, demonstrated by the $2 billion acquisition of Flatiron Health by 
Roche in 2018 and recent investments in ConcertAI ($150M series C), Aetion ($110M series C), 
and Verana Health ($150M series E).22 The ML-DQA framework validated in this study brings 
the same level of rigor to ML in healthcare. We hope this study prompts further dialogue and 
research to streamline the ML-DQA process and cultivates expertise in the ML for healthcare 
community. Similarly, we expect the different documentation artifacts generated throughout the 
ML-DQA framework to help close the accountability gap in ML for healthcare.23 Rather than 
advocating for a single dataset label, we present different sets of documentation completed by 
different individuals with different expertise in an iterative fashion to optimize data quality. The 
data dictionary, data element groupings, data quality checks, ML-DQA reports, and adjudication 
files collectively record and log the process. Lastly, we present tables and example reports that 
can be rapidly implemented for new projects. A team developing a new ML for healthcare model 
can apply the ML-DQA frameworks in Table 4 and Table 5 to map a set of data elements to 
rules-based transformations and data quality checks to report out to a reviewing clinician. In 
future work, we hope to further automate the process for performing data element pre-processing, 
assigning quality checks, and generating quality reports. 
 
4.1 Limitations 
 The current study has several limitations. First, while we embrace a consensus definition 
of data quality developed by research networks across the United States, data quality is in the eye 
of the beholder. The domains of completeness, conformance, and plausibility may not capture all 
aspects of data quality and new projects may need to extend the ML-DQA framework. Similarly, 
all projects included a single clinical expert and data quality determinations may differ if 
evaluated through a consensus process engaging a greater number of domain experts. Second, the 
ML-DQA framework may not generalize to all ML for healthcare model development efforts. We 
tried to minimize this risk by applying the framework to projects across two sites using cohorts of 
different ages for different medical conditions, but there may be project-specific challenges and 
nuances that emerge in new settings. All projects presented in the current study did use structured 
EHR data sourced from instances of Epic Systems. ML products built using EHR data sourced 
from a different software vendor or using unstructured notes or images may also require 
adaptation of the ML-DQA framework. We tried to minimize this risk by building upon the 
PCORI data quality framework, which was developed to be agnostic to EHR-vendor and has been 
used on datasets that span all major EHR vendor systems. 

Third, while we quantify the number of checks, number of reports, number of people 
involved, and number of flaws identified and addressed, these metrics do not measure the full 
costs of implementing ML-DQA or the value created or captured by conducting ML-DQA. We 
did not account for personnel effort to conduct ML-DQA across projects, although prior work 
does highlight the significant costs associated with curating data for EHR models.24 There is 
growing consensus that data quality labor is important and should be prioritized, but high-quality 
data may not create immediate value. Pharmaceutical companies expect to reap significant 
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financial rewards from newly approved therapeutics, whereas the return on investment for health 
systems that validate ML products on high-quality data is much smaller. Incentives to drive 
adoption of ML-DQA in healthcare are not yet mature. 

Fourth, we focused the current study on presenting a comprehensive, generalizable ML-DQA 
framework, rather than identifying which ML-DQA components are highest yield. Like code 
coverage with software testing, ML in healthcare teams can check many aspects of data quality, 
but should not expect to achieve 100% coverage. Unfortunately, our results showed that all ML 
projects surfaced data quality problems and future analysis will be required to determine if 
problems are most associated with specific types of data elements. Teams facing significant 
resource or time constraints may be able to minimize effort by limiting the number of data 
sources and number of data elements considered for ML model development. 
 
5. Conclusion 
 In conclusion, this study develops and validates the ML-DQA framework for machine 
learning in healthcare. The ML-DQA framework is applied to five ML projects across two 
geographies, different medical conditions, and different cohorts. Five generalizable practices 
emerge: all projects used a similar method to group redundant data element representations; all 
projects used automated utilities to build diagnosis and medication data elements; all projects 
used a common library of rules-based transformations, illustrated in Table 4; all projects used a 
unified approach to assign data quality checks to data elements, illustrated in Table 5; and all 
projects used a similar approach to clinical adjudication. An average of 5.8 individuals, including 
clinicians, data scientists, and trainees, were involved in conducting ML-DQA for each project 
and across projects an average of 23.4 data elements were either transformed or removed in 
response to ML-DQA. This study demonstrates the important role of ML-DQA in healthcare 
projects and provides teams a framework to conduct these essential activities. 
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Supplement 
 
Table 1. Pediatric Sepsis Definition  
Infection 

Blood culture (ordered or collected) OR transfer from external 
healthcare facility, AND 

Antibiotic administration within 2 days of blood culture or transfer day 

Acute organ dysfunction (any criteria below within 1 day of blood culture or transfer) 
Cardiovascular > 60 mL/kg isotonic fluid boluses within 7 hours, OR 

  New, additional, or increased dose of vasoactive medication, OR 
  Blood lactate >= 2.0 mmol/L 

Respiratory New invasive/noninvasive mechanical ventillation 
Hematologic Platelet < 100,000 cells/uL and >= 50% decline from baseline 
Kidney Serum creatinine >= 2x baseline and exceeding threshold for age 

 
 
Clinician Survey for Lung Transplant Project  

1. What variables do you use nearly every time you make the decision to relocate or list a 
patient for lung transplant? In other words, what recipient information can we not afford 
to miss during the listing conference? Please list 10 pieces of information (or as many as 
you can think of) to rule in or rule out listing.  

2. What top 5 variables would you want to see presented in a stratification tool for pre lung 
transplant patients at the time of a listing conference?  

3. What donor information is critical pre lung transplant? What donor information must you 
understand so that you can plan to reduce patient morbidity and mortality? Please list 
10pieces of information (or as many as you can think of) to rule in or rule out surgery.  

4. After listing and matching a donor, what other preoperative variables do you use to 
reduce patient morbidity and mortality? Please list 10 pieces of information (or as many 
as you can think of).  

5. What information must we monitor immediately after the lung transplant? Please list 10 
pieces of information (or as many as you can think of) to rule in or rule out discharge.  

6. In addition to survival, what other outcomes are critical to monitor? Please list 5 pieces of 
information (or as many as you can think of).  

7. What data should we be wary of? What are 5 data elements that, if a model identified as 
important predictors, would make you skeptical of the model? What data would a novice 
or outsider think are predictive, but you wouldn't trust as predictive?  

8. What aren't we asking? Is there anything else that is important for us to consider as we 
work to improve the triage and treatment of lung transplant patients?  

9. (Optional) – External tools/scores/decision aids review 
Please share what you consider to be the 5 most relevant tools that either: (1) help with 
clinical decision-making to avoid negative outcomes due to lung transplant, (2) describe 
risk factors for negative outcomes due to lung transplant, or (3) describe protective 
factors for negative outcomes due to lung transplant  

 


