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Abstract

Imbalanced data is ubiquitous in the real world, where there is an uneven distribution of
classes in the datasets. Such class imbalance poses a major challenge for modern deep learn-
ing, even with the typical class-balanced approaches such as re-sampling and re-weighting.
In this work, we introduced a simple training strategy, namely pre-finetuning, as a new
intermediate training stage in between the pretrained model and finetuning. We leveraged
the idea of data augmentation to learn an initial representation that better fits the im-
balanced distribution of the domain task during the pre-finetuning stage. We tested our
method on manually contrived imbalanced datasets (both two-class and multi-class) and
the FDA drug labeling dataset for ADME (i.e., absorption, distribution, metabolism, and
excretion) classification. We found that, compared with standard single-stage training (i.e.,
vanilla finetuning), our method consistently attains improved model performance by large
margins. Our work demonstrated that pre-finetuning is a simple, yet effective, learning
strategy for imbalanced data.
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1. Introduction

Real-world data often exhibit long-tailed distributions with heavy class imbalance (e.g.,
Buda et al., 2018; Liu et al., 2019; Van Horn and Perona, 2017). When training machine
learning models on imbalanced datasets, where certain classes contain many more samples
than others, the models tend to learn better on the samples of majority classes but generalize
poorly on minority classes (Branco et al., 2016; Buda et al., 2018; He and Garcia, 2009;
Van Horn and Perona, 2017). Learning on such classes is of crucial importance in high-stakes
settings such as the diagnosis of rare disease or unfairness for minority groups.

Data imbalance is particularly challenging for pretrained language models (LMs) in
natural language processing (NLP, Brown et al., 2020; Devlin et al., 2019; Raffel et al.,
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2020, inter alia). Finetuning is the prevalent paradigm for using large pretrained LMs to
perform downstream tasks. In this paradigm, a large LM such as BERT, which stands
for Bidirectional Encoder Representations from Transformers, is trained on vast amounts
of text, then finetuned on a specific downstream task (Figure 1A). Despite widely used,
the finetuning may predispose the pretrained model to overfitting and poor generalization
due to the large model and relatively small data samples in the downstream task. Owing
to the paucity of samples, learning on the minority classes presents a persisting hindrance
to improving task performance, even with the specialized class-balanced techniques such
as re-sampling (Buda et al., 2018; He and Garcia, 2009; Van Horn and Perona, 2017) and
re-weighting (Cao et al., 2019; Huang et al., 2016).

To tackle the above challenges, we proposed a simple training strategy, pre-finetuning
(Figure 1B), as an additional training stage in between the pretrained model and finetuning.
In our approach, we leveraged the idea of Data Augmentation (DA, Dhole et al., 2021; Feng
et al., 2021; Wei and Zou, 2019) to produce a vast amount of augmented data that preserve
a similar distribution as the original data for handling data scarcity and enhancing data
diversity. Our pre-finetuning strategy (or pre-finetuning with DA) encourages the pretrained
model to be better adapted to the target data, thereby leading to a good initialization for
next stage of standard finetuning.

We first validated our proposed method on two manually created imbalanced benchmark
datasets (both two-class and multi-class). We then applied our approach to a real-world
FDA drug labeling dataset for enhancing product-specific guidance (PSGs) assessment (Shi
et al., 2022). PSGs, recommended by the United States Food and Drug Administration
(FDA), are instrumental to promote and guide generic drug product development. The
FDA assessor needs to take extensive time and effort to manually retrieve supportive drug
information of absorption, distribution, metabolism, and excretion (ADME) from the ref-
erence listed drug labeling for the PSG assessment. As a result, it is highly desirable to au-
tomate this process by developing a text classification model to automatically label ADME
paragraphs with their semantic meaning. The dataset is by nature heavily class-imbalanced.

The contributions of our work are as follows:

e We introduced a novel method, pre-finetuning with data augmentation, to improve
imbalanced learning before the vanilla finetuning takes place.

e We validated our approach on two benchmark datasets of text classification (both
two-class and multi-class) and both achieved increased performance by improving the
generalization of the minority classes.

e We presented a real-world application for ADME semantic labeling task, which gained
superior performance when our approach was applied.

2. Related Work

Pretraining and Finetuning Framework Finetuning is the prevalent paradigm for
using large LMs (Devlin et al., 2019; Radford et al., 2019) to perform downstream tasks. In
this paradigm, a large LM such as BERT, is trained on vast amounts of text, then finetuned
on a specific downstream task. Among different finetuning approaches, vanilla finetuning
is perhaps the most popular approach, which finetunes some or all the layers of the LM
and then adds one or two simple task-specific output layers (known as the classifier or the
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Figure 1: Schematics showing the vanilla finetuning pretrained model (A) and the pre-
finetuning with data augmentation we proposed (B) for imbalanced data. A: The vanilla
finetuning initializes with the general-purpose model pretrained with a large unlabeled
corpus, and then performs a small amount of task-specific parameter updates. B: Our
method introduces an additional pre-finetuning stage to adapt the pretrained model to
have an initial representation of the target data before the standard finetuning takes place.
It consists of three steps: (1) data augmentation, (2) finetuning with augmented data, and
(3) standard finetuning.

head, Wolf et al., 2020). In this work, we built upon the vanilla finetuning by introducing
the pre-finetuning to deal with imbalanced data.

Imbalanced Learning There is rich literature on learning imbalanced data. Re-sampling
and re-weighting are two popular approaches (e.g., Geifman and El-Yaniv, 2017; Huang
et al., 2016; Japkowicz and Stephen, 2002; Krawczyk, 2016; Van Horn and Perona, 2017;
Yin et al., 2019). Re-sampling involves either over-sampling the minority classes or under-
sampling the majority classes, or both. Such re-sampling incurs the cost of overfitting
or losing the important information respectively. In addition, new samples can also be
generated by interpolating neighboring samples or synthesizing for minority classes (Chawla
et al., 2002; He et al., 2008). Re-weighting, on the other hand, is to modify the loss function
to compensate for class imbalance by assigning weights to different samples according to the
class distribution (Cao et al., 2019; Cui et al., 2019; Huang et al., 2016). There are different
importance weighting schemes. A simple way is to assign sample weights proportionally to
the inverse of the class frequency (Huang et al., 2016; Wang et al., 2017). Such a scheme
tends to perform poorly when training on large-scale, imbalanced datasets (Huang et al.,
2016). Instead of using the total number of samples present in each class, re-weighting loss
by the inverse effective number of samples is introduced for better class-balance (Cui et al.,
2019). Recently, a label-distribution-aware margin loss function is proposed to encourage
larger margins for minority classes, leading to significantly improved performance on a
variety of benchmark vision tasks (Cao et al., 2019).

Ensemble-based approach is also widely used for imbalanced learning. It is known to
effectively deal with imbalanced data by merging the outputs of multiple classifiers (Chawla
et al., 2003; Liu et al., 2020; Wang and Yao, 2009) or by combining individual classifiers in
a multi-expert framework (Wang et al., 2022). These methods achieve the state-of-the-art
performance mainly by reducing the model variance to obtain robust predictions (Krawczyk,
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2016). However, many of them are direct combinations of a resampling/reweighting scheme
and an ensemble learning framework (Chawla et al., 2003), which hence inherit the similar
shortcomings of existing class-balancing strategies, such as the redundancy for easy samples
by uniformly assigning experts to all classes (Wang et al., 2022). In most cases, it is difficult
to obtain an appropriate cost matrix given by domain experts (Krawczyk et al., 2014).

Data Augmentation (DA) DA is a set of techniques for increasing training data diver-
sity without directly collecting new data. It has proven widely effective in computer vision,
albeit relatively challenging in NLP, due to the discrete nature of language data (Dhole
et al., 2021; Feng et al., 2021). Broadly, there are three types of text data augmentation:
rule-based, interpolation-based, and model-based. Rule-based methods manipulate words
and phrases in a sentence to generate augmented text while ideally retaining the semantic
meaning and labels of the original text. Easy Data Augmentation (EDA) is the representa-
tive in this category by employing a set of text editing techniques such as random insertion,
deletion, replacement, and swap (Wei and Zou, 2019). They are easy to implement but
usually offer unstable improvements due to the possibility that random perturbations can
completely change the meanings of sentences (Niu and Bansal, 2018).

Interpolation-based methods generate new examples through interpolating operations
over the original text directly (Chawla et al., 2002; He et al., 2008) or their latent states
representations (Chen et al., 2020). Notably, SMOTE - Synthetic Minority Over-sampling
Technique - generates synthetic samples for minority classes by linearly interpolating sam-
ples in the same class (Chawla et al., 2002). The model remains popular but is error-prone
due to noise in the synthetic samples.

Model-based methods create augmented examples by leveraging either generative ad-
versarial networks (Goodfellow et al., 2014) to add adversarial perturbations to the original
data or the trained language models such as BERT to encode the class category along with
its associated text to generate new samples with some modifications. The backtranslation
is perhaps the most popular model-based method (Edunov et al., 2018; Sennrich et al.,
2016) that translates sentences into certain intermediate languages and then back into the
original language. This model-based approach requires significant training effort, but once
the pretrained models are built, they are readily used to create novel and diverse data that
might be unseen in the original dataset, leading to better performance.

3. Our Approach: Pre-finetuning with Data Augmentation

Our approach was both empirically and theoretically motivated. Recent empirical work
showed that weighting has a significant effect early in training, and the impact of impor-
tance weighting diminishes over successive epochs of training (Byrd and Lipton, 2019).
Theoretical analysis (Fang et al., 2021) predicted the emergence of Minority Collapse in
imbalanced learning, i.e., the minority classes collapsed to a single vector in the topmost
layer, which placed a fundamental limit on the model performance for the minority classes.
As such, we proposed a novel early training stage between the pretrained model and fine-
tuning, pre-finetuning, to adapt the pretrained model to have a rough-ready representation
of the target data before the vanilla finetuning takes place.

Central to our approach is the innovative use of Data Augmentation (DA, Dhole et al.,
2021; Feng et al., 2021; Wei and Zou, 2019) technique that allows us to produce a vast
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amount of augmented data that preserve a similar distribution as the original data to
handle data scarcity and enhance data diversity. Our approach was henceforth referred
to as pre-finetuning with DA. In this work, we used the back translation, a model-based
approach for data augmentation due to its excellent performance (Edunov et al., 2018;
Sennrich et al., 2016). In contrast to the vanilla finetuning (Figure 1A), our proposed
approach, as schematically shown in Figure 1B, consists of three stages, as described below.

First, we used the back translation (Edunov et al., 2018; Sennrich et al., 2016) to generate
a perturbed version of the training data while preserving the semantics of the original
sentences. We leveraged two translation models, one translating the source text into a
certain intermediate language and the other translating it back to the original language.
For example, we can translate original sentences from English to German and then translate
them back to get the paraphrases. Back-translated texts should maintain the semantics and
basic syntactic structure of original texts. For data with a given label, back translation can
generate a potentially infinite amount of new augmented data samples, thus can drastically
avoid overfitting. In this work, we used German and Russian as the intermediate languages
to enhance linguistic variety.

Second, we used the BERT as the pretrained model in this study. During the pre-
finetuning stage, we froze every layer of BERT except the topmost layer and the classifier,
which indicated we only tuned the topmost layer of BERT and the classifier with a larger
learning rate on the augmented data from the data augmentation stage.

Third, we unfroze every layer and tuned the entire BERT model with the original
imbalanced data as we do with the vanilla finetuning.

4. Experimental Setup

4.1. Datasets

We evaluated our pre-finetuning strategy on artificially created versions of two benchmark
datasets: IMDB (an abbreviation of Internet Movie Database, Maas et al., 2011) and the
20 Newsgroups (Lang, 1995), and a real-world application of ADME semantic labeling (Shi
et al., 2022).

IMDB This dataset consists of 50,000 movie reviews for binary sentiment classification.
The number of positive and negative reviews is evenly distributed in the original dataset.
We manually created an imbalanced training dataset by removing 90% of negative reviews.
The testing dataset remained unchanged.

The 20 Newsgroups This dataset is a collection of approximately 20,000 newsgroup
documents, partitioned almost evenly across 20 different newsgroups. We manually created
the imbalanced version of the training set by reducing the number of training examples
per class until a given imbalance ratio was reached and kept the test set unchanged. We
defined the imbalance ratio p as the ratio between sample sizes (IV;) of the least frequent
class and the most frequent class, i.e., p = min(N;)/maz(N;). Two types of imbalance
were considered to ensure that our method applicable to different settings. One is the step
imbalance (Buda et al., 2018), where we artificially created a class-imbalanced training set
with the imbalance ratio of 0.1. This is done by selecting ten classes, which sizes were
between 591 to 600, then randomly sampled about 10% of records (60 records per class)
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for the remaining classes. Another is the long-tailed imbalance (Cui et al., 2019), where
the data was also created by following the exponential decay distribution. Specifically, for
each class, we randomly draw maxz(N;) x p*/("=1) samples, where maz(N;) is the maximum
sample size for class ¢, n is the number of the classes, p is the imbalance ratio, which
was set to 0.1. The distributions of the training datasets were showed in Figure 77 of the
Appendix ?77.

ADME Semantic Labeling We applied our methods on the FDA drug labeling dataset
for ADME classification. The FDA drug labeling dataset was retrieved from the Daily-
Med!, which is a free drug information resource provided by the U.S. National Library of
Medicine. The electronic drug labeling in DailyMed follows the Structured Product Label-
ing standard, which specifies various drug label sections by Logical Observation Identifiers
Names and Codes (LOINC). ADME is a part of the pharmacokinetics section (LOINC code:
43682-4) of drug labeling. The rule-based method was used to extract 5,687 ADME para-
graphs with explicit ADME titles and 5,367 paragraphs under other topics (e.g., “specific
populations”, “drug interaction studies”, etc.) and hence labeled them as “Other” from the
pharmacokinetics section in drug labeling. For details about data preparation, please refer
to Shi et al. (2021). We randomly split 85% of the dataset for training and the rest 15%
for testing, so both training and testing datasets remained class imbalanced. In addition
to the hold-out method, we also performed 5-fold cross-validation (CV) on this dataset for
additional check.

4.2. Implementation Details

We used PyTorch (Paszke et al., 2019) for all experiments. To generate the augmented
data for pre-finetuning, we employed the back-translation method. Specifically, we first
randomly sampled from the training set to get equal numbers of the labeled data for each
class, then used nlpaug? to generate the corresponding augmented data by selecting German
and Russian as intermediate languages for back translation. Hence, the input sentence was
altered by back translation, while the class label was maintained. For example, for a
sentence from IMDB: “You’d better choose Paul Verhoeven’s even if you have watched it.”,
the augmented texts through German and Russian were, respectively, “You should choose
Paul Verhoeven’s, even if you saw it.” and “You’d better pick Paul Verhoeven, even if you
were watching him.”

In our implementation, we used the BERT base model, bert-base-uncased?®, as the pre-
trained model due to its use in NLP predominantly*. The batch size and maximum sequence
length remained the same as the vanilla finetuning. With the augmented data, we used 1
epoch with a larger learning rate of le-4 to only tune the topmost layer and the head in the
pre-finetuning stage, which enables the model to learn quickly and preserve the pretrained
features. The hyperparameters used for finetuning in the second stage kept the same as the
vanilla finetuning for all the datasets. We provided further details of the hyperparameters

. https://dailymed.nlm.nih.gov/dailymed

. https://github.com/makcedward/nlpaug

. https://huggingface.co/bert-base-uncased

. We note that our method does not depend on the BERT base per se; other pretrained models such as the
BERT large can also be used. However, it is generally observed that larger models have higher accuracy.

=W N =
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used for each dataset in Table 7?7 of Appendix 77. All the experiments were run on either
a single Nvidia Tesla P100-PCIE-16GB or Nvidia Tesla V100-SXM2-32GB.

4.3. Baselines

We benchmarked our proposed method against the vanilla finetuning as the our primary
baseline. We used the bert-base-uncased model which was pretrained and initialized with the
parameters released by (Devlin et al., 2019), which can be accessed from Huggingface (Wolf
et al., 2020). The model configuration we used was consistent with the recommendations
in the original release. We grid searched a batch size of {8, 16, 32}, and a learning rate
of {5e-6, le-5, 3e-5, He-5}, with the optimal hyperparameters for each dataset shown in
Table ?? of the Appendix ?77.

For completeness, we also included results for additional baselines: (1) Finetuning via
oversampling, which is perhaps the most popular sampling scheme to oversample training
examples from the minority classes (Buda et al., 2018; Cui et al., 2019; Cao et al., 2019),
and (2) LP-FT, a two-step strategy of linear probing (LP or head tuning) followed by full
finetuning (FT) which has been shown to achieve competitive results (Levine et al., 2016;
Kanavati and Tsuneki, 2021; Kumar et al., 2022).

4.4. Evaluation Metrics

We used the Fl-score as our primary metric to assess the model performance as it is sensi-
tive to data distribution. Since we dealt with both two-class and multi-class problems, we
reported both the overall F1 score (micro-F1) and per-class F1 score to quantify the gener-
alization performance of both majority and minority classes in the data. When we reported
the F1 score for multi-class classification, we computed the micro-F1 on the non-majority
classes to remove the dominance of the majority class, hence it is not biased toward the
majority class. Note that we mainly used the hold-out method for model evaluation. While
the hold-out method is particularly attractive in deep learning where model training is ex-
pensive, the results can depend on a particular random choice of the data set. To reduce the
potential sampling bias, we reported all the results that were based on the average of the
five independent runs, each with different seed. Additionally, we performed the stratified
5-fold CV on the ADME dataset to check the robustness of our results since the CV is a
common, albeit costly, practice to obtain better estimates. The uncertainty in estimates
was represented by error bar based on the standard error of the mean (SEM).

5. Results
5.1. Imbalanced Benchmark Datasets: IMDB and the 20 Newsgroups

IMDB Before we showed our main results, we performed a quick sanity check on the
quality of the data augmentation technique we used. To assess to what extent the augmented
data preserved a similar distribution as the original, we compared the distributions of the
text embedding for the augmented data and for the original data. To do so, we first
generated the augmented data for 2,500 samples from the training dataset (1,250 for each
class), and similarly set aside 2,500 hold-out original data samples for validation. We then
obtained the embeddings for both the augmented data and the hold-out data through the
finetuned BERT models. Finally, we compared the distributions of their embeddings using
t-SNE visualization (Van der Maaten and Hinton, 2008).
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The results were displayed in Figure 2. We =
can observe that the distribution of the aug-
mented data very well matched with that of the
original hold-out dataset in each class. The com-
parison indicated that the augmented data in-
deed possess a similar distribution as the original .
data. Note that the original data used for data
augmentation and the hold-out data were from -
the same data distribution, but independent of
each other to avoid potential confounding.

We reported the F1 scores and per-class F1
scores for the IMDB dataset in Table 1 for
both our method and the baselines: the vanilla
finetuning, finetuning via oversampling and lin-
ear probing-then-full finetuning (LP-FT). Our Figure 2: The t-SNE visualization of
method showed the best performance of both IMDB original data and augmented data
the F1 and per-class F1 when compared to all via back translation from German.
three baselines. The negative class was the mi-
nority class, which achieved more improvement than the majority class. This suggested
that, with the pre-finetuning, our method was successful in regularizing minority classes
more strongly.

Positive - Original Data —— Negative - Original Data
Positive - Augmented Data ---- Negative - Augmented Data

Table 1: F1 and per-class F1 (SEM) comparisons on the IMDB dataset between our
method (pre-finetuning with DA) and three baselines (the vanilla finetuning, finetuning
via oversampling and LP-FT). The Negative class is the minority class, which has a larger
improvement than the majority class (Positive class). Note that the testing dataset is
balanced.

Per-class F1

F1
Negative Positive
Vanilla Finetuning 0.8637 (0.0031) 0.8447 (0.0037) 0.8786 (0.0021)
Finetuning via Oversampling 0.8583 (0.0019) 0.8373 (0.0023) 0.8745 (0.0013)
LP-FT 0.8639 (0.0028) 0.8446 (0.0035) 0.8789 (0.0019)
Pre-finctuning with DA 0.8651 (0.0026) 0.8463 (0.0032) 0.8799 (0.0018)

The 20 Newsgroups We reported the per-class F1 scores in Figure 3. We observed that
both our pre-finetuning with DA and the baseline method (the vanilla finetuning) showed
the minority classes had much lower F1 than the majority classes, but our method exhibited
better generalization on minority classes with a significant improvement of F1 than the
majority classes. Overall, the F1 score increased from 0.6433 for the vanilla finetuning to
0.6781 for our method.

To ensure our method applicable to different settings, we tested our pre-finetuning strat-
egy with a long-tailed imbalance training dataset on the 20 newsgroups benchmark (The
class distribution of the training dataset was showed in Figure ?7C in the Appendix ?7).
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Figure 3: Comparison of per-
class F1 scores between the
vanilla finetuning and our pre-
finetuning with DA trained on
the 20 Newsgroups data with
step-imbalance. The classes on
the left of the dashed line are the
majority classes, and the ones
on the right are the minority
classes. A: Comparison of the F1
scores between the vanilla fine-
tuning and our method. The
error bar: SEM. B: The abso-
lute improvements as the differ-
ence between the vanilla method
and our pre-finetuning with DA,
where we see the substantial im-
provements in most of minority
classes.

Our method with the F1 score of 0.7571 outperformed the baseline method with the F1
of 0.7137. The per-class F1 scores of minority classes gained more improvements than the
majority classes, which had a similar trend as those with the step-imbalanced dataset (Fig-
ure 7?7 in the Appendix ??). The results show our method can be used to adapt to different

imbalanced types of the training dataset.

In our method, we have used the back trans-
lation (Edunov et al., 2018; Sennrich et al., 2016)
in the data augmentation. To examine if other
data augmentation techniques can also be used,
we instead experimented with EDA (Wei and Zou,
2019) method in our pre-finetuning strategy. The
results showed that with EDA, our method worked
equally well by improving the overall F1 and per-
class F1 (Figure ?? in the Appendix ?7).
Impact of imbalance ratio To assess the im-
pact of imbalance ratio on the model performance,
we systematically vary the imbalance ratio from
0.1 to 0.5, with increments of 0.1. Figure 4 showed
that the overall F1 performance improved when
the imbalance ratio increased, regardless of what
method was used. However, our pre-finetuning
with DA outperformed the baseline method across
all the different imbalance ratios. In addition, we
observed that the performance gain of F1 score
decreased when the imbalance ratio increased.
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5.2. Real-world Application: ADME Semantic Labeling

We applied our method to the FDA drug labeling dataset for ADME classification, which
was used as an example to demonstrate our method could be applied to a real-world problem.
We first reported the results based on the hold-out method. Figure 5A showed the class
distribution of the ADME training data, which was inherently imbalanced. Compared to
the vanilla finetuning, our pre-finetuning with DA improved the F1 score from 0.8936 to
0.9054. The per-class F1 scores were provided in Figure 5B with the absolute improvements
shown in Figure 5C. We observed from these data that most of the F1 improvements in
minority classes (e.g. ADME) were much more substantial than the majority class (e.g.
Other). Moreover, the per-class F1 improvement increased while the sample size per class
decreased. We further performed the 5-fold CV on this dataset, and found that our method
still improved the overall F1 score from 0.8993 to 0.9070 when compared to the vanilla
finetuning. The per-class F1 scores obtained by the 5-fold CV were provided in Appendix ?77.
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Figure 5: Per-class F1 scores and improvements on ADME dataset. A: The class distri-
bution of the training set. B: The per-class F1-score comparison between the two methods
(The vanilla method and our pre-finetuning with DA). C: Improvement in per-class F1 of
our method over the vanilla method. The F1l-score increase is observed in all classes with
our method. The improvement becomes larger in the less frequent classes and smaller in
the more frequent classes. Error bars: SEM.

6. Discussion and Conclusion

Imbalanced data is inherent in many real-world problems. It occurs when there are one or
more classes (majority classes) that are more frequently occurring than the other classes
(minority classes). This problem plagues most machine learning algorithms that assume
the classes are roughly equal in size. When training a model on an imbalanced dataset,
the model becomes biased toward the majority classes, and hence generalizes poorly on
minority classes (Buda et al., 2018; He and Garcia, 2009; Van Horn and Perona, 2017).

In this work, we showed that pre-finetuning is a simple, yet effective, learning strategy
for imbalanced data. The core idea was to add the pre-finetuning as a new intermediate
training stage in between the pretrained model and finetuning. Specifically, we leveraged
the augmented data to learn an initial representation of the imbalanced data. With this
additional training stage, we can further increase the similarity between the general domain
and the target domain, which enabled the model to fit the imbalanced distribution of the
downstream task potentially better. We showed that standard pretrained representations,
when further refined with pre-finetuning, consistently improved performance on downstream
tasks, as evaluated on two manually created imbalanced datasets and an FDA drug labeling
dataset for ADME semantic labeling.

77



SHI VALIZADEHASLANI WANG REN ZHANG HU ZHAO LIANG

With data augmentation, we can generate potentially an unlimited size of synthetic
data in the vicinity of the original data space. Ideally, the augmented data should possess
a similar distribution as the original data. The distribution of the augmented data should
neither be too similar nor too different from the original, which may respectively lead to
model overfitting or poor performance through training on examples not representative
of the given domain. Therefore, we noted that augmentation does not always improve
performance. It is still challenging to determine under what conditions DA approaches are
effective as there remains a lack of theoretical understanding as to why DA works (Dao
et al., 2019).

We note that our pre-finetuning strategy is a rather general approach to improving
downstream performance. While the method we proposed in this work is designed for
learning imbalanced data, the idea can also be applied to balanced data as well as other
domains of machine learning such as computer vision. Although our work focuses on the
imbalanced classification, extending our investigation to imbalanced regression (Steininger
et al., 2021; Torgo et al., 2013; Yang et al., 2021) is also of interest. In our approach, we have
used the augmented data for pre-finetuning. We note other strategies such as re-weighting
can be also exploited from the model perspective (ValizadehAslani et al., 2022). Prior work
(Levine et al., 2016; Kanavati and Tsuneki, 2021; Kumar et al., 2022) has shown that LP-
FT, a two-step strategy of linear probing then full fine-tuning, provides better results than
either does alone. Our work, albeit conceptually similar, has several major differences: (1)
we aim at the class imbalance problem; (2) we use the data augmentation for pre-finetuning;
(3) we additionally finetune the final layer of the model, as motivated by theoretical analysis
(Fang et al., 2021); and (4) we focus on the NLP tasks.

In the current setting, we have limited the model pre-finetuned to only the topmost layer,
which was mainly determined by the theoretical analysis (Fang et al., 2021). In practice,
it is plausible that the last few layers, rather than only the topmost layer, could be pre-
finetuned for improved performance when it comes to different datasets. When using our
method to learn imbalanced data, two important hyperparameters need to be determined,
that is, the number of epochs and the learning rate for each stage. We observe empirically
overall good performance when we use only 1 epoch and a relatively large learning rate (le-
4) for the pre-finetuning in the first stage. This enables the model to roughly adapt to the
distribution of the target domain to learn a good initial representation. For the finetuning
stage, we followed the standard BERT finetuning parameters and trained the model using a
le-5 learning rate for 3 to 5 epochs. The learning rate in the finetuning stage was relatively
small compared to the pre-finetuning stage so the second stage did not move the weights
very far. It is conceivable that the optimal parameters are application dependent. Further
research is needed to determine the optimal number of epochs for pre-finetuning.

When reporting the model performance, it has been an on-going debate about how to
choose an appropriate metric for imbalanced data (Japkowicz and Shah, 2011), particularly
for multi-class classification problems. In this work, we have mainly used the F1l-score to
assess the model performance, though other measures can be more appropriate in different
domains such as medical diagnosis. As the F1l-score is more sensitive to data distribution,
it is a suitable measure for classification problems on imbalanced datasets. As we work with
both two-class and multi-class problems, we report both the overall F1 score (micro-F1) and
per-class F1 score to quantify the generalization performance of both majority and minority

78



IMPROVING IMBALANCED LEARNING BY PRE-FINETUNING WITH DA

classes for the benchmark datasets. We also test the per-class top-1 error, which obtains
similarly consistent performance. When reporting the model performance for imbalanced
data, we deem that it is important to explicitly document what evaluation metrics are
exactly used.

Although the testing data in the two benchmark datasets in our experiments followed
the relative uniform distribution, the testing dataset could be imbalanced naturally, such
as the ADME semantic labeling task. When test distribution is imbalanced, we observed
that pre-finetuning works equally well. Specifically, we artificially generated the imbalanced
testing datasets that have different class distributions than the training datasets for both
IMDB and the 20 Newsgroups. Table ?? in the Appendix ?? showed results for IMDB
test data of step-imbalanced distribution, and Figure 77 in the Appendix 7?7 showed the
results for the 20 Newsgroups test data of different class imbalance distributions (both
the step imbalance and long-tailed imbalance). For both benchmarks, we found similar
improvements in micro-F1 and per-class F1 as the balanced testing datasets. These results
suggested that our method can also be used broadly where the test label distribution was
not necessarily uniform.
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