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Abstract

Imbalanced datasets occur across industries, and many applications with high economical
interest deal with them, such as fraud detection and churn prediction. Resampling is com-
monly used to overcome the tendency of machine learning algorithms to favor the majority
class error minimization, while cost-sensitive algorithms are less used. In this paper, cost-
sensitive algorithms (BayesMinimumRisk, Thresholding, Cost-Sensitive Decision Tree and
Cost-Sensitive Random Forest) and resampling techniques (SMOTE, SMOTETomek and
TomekLinks) combined with kNN, Decision Tree, Random Forest and AdaBoost were com-
pared on binary classification problems. The results were analyzed with respect to relative
performance over different imbalance ratios. The influence of these techniques for handling
the class imbalance on the machine learning models complexities was also investigated.
The experiments were performed using synthetic datasets and 90 real-world datasets.
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1. Introduction

Imbalanced datasets are common in many applications, such as fraud detection, churn
prediction and intrusion detection. Class imbalance can harm classification performance
in the presence of class overlap (Prati et al., 2004) and decomposition (when a class is
composed of two or more subconcepts) (Stefanowski, 2013). In these scenarios, where class
separability is hard and the data is imbalanced, most machine learning algorithms tend
to favor the minimization of the majority (most prevalent) class error, leading to lower
performance on the minority class.

Many approaches to deal with imbalanced datasets have been proposed. One of the
most popular categories of techniques for handling the class imbalance is resampling. Re-
sampling techniques create or remove examples to balance the dataset. On the other hand,
a less studied category of techniques is the cost-sensitive algorithms (Haixiang et al., 2017),
which associate costs to the different combinations of classification errors and minimize
the total classification cost. Compared to resampling, cost-sensitive algorithms can have
some advantages including the preservation of the original data, capacity to assign distinct
costs for all possible combinations of classification errors in multi-class classification, and,
frequently, the capacity to specialize the classification costs at the example level. Consid-
ering these advantages, it makes sense to investigate comparatively the performance of the
aforementioned techniques.
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Weiss et al. (2007) compared a cost-sensitive decision tree with random oversampling
and undersampling. They found that the cost-sensitive decision tree was more suitable
for larger datasets, while oversampling for smaller ones. Seiffert et al. (2008) compared
two cost-sensitive techniques (Thresholding and ExampleWeighting), with four resampling
methods, considering two machine learning algorithms (C4.5 tree and RIPPER). In their
results, ExampleWeighting usually was better than Thresholding. They also found that
undersampling tends to outperform the other techniques, which does not agree with Weiss
et al. (2007). In another study, Lépez et al. (2012) compared the performance of two
SMOTE-based techniques against cost-sensitive implementations of C4.5 tree, SVM, kNN
and a fuzzy hybrid genetic based machine learning rule generation algortihm. They found
that the techniques were statistically equivalent.

These results illustrate that establishing which properties of the data and which machine
learning algorithms favors cost-sensitive or resampling techniques is an open question. Also,
to the best of our knowledge, no investigation have been done on how each technique for
handling the class imbalance may impact the complexity of the obtained models, which
is the main contribution of this paper to the field of learning with imbalanced domains.
Therefore, two research hypothesis are discussed: the relative performance of the techniques
for handling the class imbalance may vary according to which machine learning algorithm
they are combined with; and, the complexity of the obtained models may be affected by
these techniques.

Next sections are organized as follows: Section 2 introduces the techniques for handling
class imbalance; Section 3 shows the experiment design; Section 4 describes the datasets
used in the experiments; Section 5 shows and discusses the results; and, Section 6 presents
the final conclusions and future work.

2. Techniques for handling class imbalance

This section describes the techniques for handling class imbalance used in this work. SMOTE
(Chawla et al., 2002) is one oversampling technique that generates new examples through
interpolation of nearest neighbors. First, it identifies k-nearest neighbors for each example
of the minority class that also belong to the minority class. Then, to generate a synthetic
example, one example from the minority class is randomly chosen (z1) and also one of its
k-nearest neighbors (z2). Finally, a random value between 0 and 1 (\) is taken and the
synthetic example is created from the equation:

Tnew = T1 + A X (l‘g - :L'l) (1)

TomekLinks (Tomek, 1976) is an undersampling heuristic-based technique. If two ex-
amples from distinct classes are closer to each other than to any other example, they form
a Tomek link. The technique then removes the majority example from this link, that is
believed to be noise in the data. This technique intends to reduce the imbalance and de-
noise the dataset. SMOTETomek (Batista et al., 2003, 2004) is an hybrid approach that
combines SMOTE and TomekLinks. First, SMOTE is applied to balance the dataset, then
Tomek links are identified and the two examples from the link are removed. The purpose
of the last step is to improve class separability. Thresholding (Sheng and Ling, 2006) is a
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cost-sensitive algorithm that seeks to determine a new classification threshold for a cost-
insensitive model in order to minimize its classification cost. Another probability-based
cost-sensitive algorithm is BayesMinimumRisk, that tries to quantify the risk associated
with the assignment of each class for an instance, finally making the choice that minimizes
the risk (Ghosh et al., 2006). Formally, let ¢ and j be two different classes, = an example,
C'(i, ) the cost of confounding 7 as j, and P(j|z) the probability of z being of class j (that
we get from a cost-insensitive model). The Bayes Risk for class i is

R(ilx) = Zc(i7j)P(j|fU)7 (2)

and the class assigned by BayesMinimumRisk is

Lpyr(z) = argzmin R(i|z). (3)

Thresholding and BayesMinimumRisk are called cost-sensitive meta-algorithms, since
they do not learn and minimize the cost-function simultaneously. Different from them, the
Cost-Sensitive Decision Tree (Bahnsen et al., 2015) considers the classification cost during
the induction and pruning of a decision tree, producing a tree that is natively cost-sensitive.
The main difference between the Cost-Sensitive Decision Tree and the standard implemen-
tation of a decision tree is the replacement of the error measure (e.g. Gini coefficient) by
a cost measure. Finally, a Cost-Sensitive Random Forest (Bahnsen, 2015) is obtained by
creating different Cost-Sensitive Decision Trees on random subsamples of the training set,
and then combining them by some approach (majority voting in this study).

3. Experiment design

Each dataset was splitted into train and test subsets, with 70% and 30% of the examples
on each, respectively. To select the best hyperparameters from the search space, grid search
was applied on using a 5-fold cross-validation. The classification metric used in this work
was balanced accuracy. Four machine learning algorithms were used in this study: Decision
Tree, Random Forest, kNN and AdaBoost (the implementation available in Scikit-Learn
(Pedregosa et al., 2011) was adopted). For consistency with the original work on PMLB
(see Section 4.2), which also used these algorithms, the same hyperparameter space used
by the benchmark for the machine learning algorithms was adopted in this study (see Table
1). The datasets were standardized using RobustScaler.

Seven techniques for handling the class imbalance were compared, three resampling tech-
niques and four cost-sensitive algorithms. The resampling techniques used were SMOTE,
SMOTETomek and TomekLinks. The cost-sensitive algorithms evaluated were Threshold-
ing, BayesMinimumRisk, Cost-Sensitive Decision Tree and Cost-Sensitive Random Forest.
The implementations from the library Imbalanced-Learn (Lemaitre et al., 2017) were used
for the resampling techniques and from CostCla' for the cost-sensitive algorithms. Table
2 shows the hyperparameter space for each technique. The values for k_neighbors were
based on the work of Maciejewski and Stefanowski (2011). The values for the cost matrices

1. http://albahnsen.github.io/CostSensitiveClassification/
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Algorithm Hyperparameter space
min_impurity_decrease : [0;2.5 x 10745 x 1074 .5 x 10_3]
Decision Tree | max_features : [0.1; 0.25; 0.5; 0.75; 1.0; sqrt; log2)

criterion : [ging; entropy]

n_estimators: [10; 50; 100; 500]

min_impurity_decrease : [0;2.5 x 10745 x 1074 ..;5 x 10*3]
maz_features : [0.1; 0.25; 0.5; 0.75; 1.0; sqrt; log2]

criterion : [gini; entropy]

n_neighbors : [1; 2; ... ; 24; 25; 50; 100]

weights : [uniform; distance]

n_estimators : [10; 50; 100; 500]

learning_rate : [0.01; 0.1; 0.5; 1; 10; 50; 100]

Random Forest

kNN

AdaBoost

Table 1: Hyperparameter space for each machine learning algorithm used in this study.

Technique Hyperparameter space
sampling_strategy : minority

SMOTE k_neighbors : [3; 5; 7]
SMOTETomek The same values used for SMOTE
TomekLinks sampling_strateqy : majority
Let C(i,j) be the cost of predicting i as j:
e (C(0,0):0
. e C(1,1): 0
Thresholding « C(O,1): 1

e ((1,0): [2; b; 10; b], where b is inversely proportional
to the Imbalance Ratio

BayesMinimumRisk The same cost matrix (C') used by Thresholding

cost_mat: The same cost matrix (C') used by Thresholding
maz_features: [0.1; 0.25; 0.5; 0.75; 1.0; sqrt; log2]
Cost-Sensitive Decision Tree | criterion: [gini_cost; entropy_cost; direct_cost]

min_gain: [0;2.5 x 10745 x 107%;...;5 x 1073]

pruned: True

cost_mat: The same cost matrix (C') used by Thresholding
n_estimators: [10; 50; 100; 500]

max_features: [0.1; 0.25; 0.5; 0.75; 1.0; sqrt; log2]
combination: majority_voting

Cost-Sensitive Random Forest

Table 2: Hyperparameter space for each technique used in this study for handling the class
imbalance.

were based on Domingos (1999) (one configuration was added, which is the cost inversely
proportional to the Imbalance Ratio, since it is commonly used). Whenever possible, the
machine learning algorithms hyperparameter values were replicated on its cost-sensitive
implementations.
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4. Datasets

This section describes the datasets used in the study. Section 4.1 introduces synthetic
datasets with controlled imbalance ratios, class overlap and class decomposition. Section
4.2 presents and characterizes the Penn Machine Learning Benchmark (PMLB), which is
used to validate and complement the analysis on the synthetic datasets. Section 4.3 presents
a brief comparison of them.

4.1. Synthetic datasets

The synthetic datasets used in this study were part of a previous research and are publicly
available on GitHub 2. Synthetic datasets with various imbalance ratios, levels of class
overlap and minority class decomposition were obtained. In total, 135 datasets were created,
each with 10,000 examples, 2 continuous predictor variables and a binary target variable.
The majority class was drawn from a uniform distribution and covers the entire space around
and below the minority class. The minority class is composed of 2, 4 or 8 subconcepts (as
in Jo and Japkowicz (2004)). Here, each subconcept is a circular cluster obtained from
a two-dimensional Gaussian distribution with radius » € {0.25;0.5;1.0} (all subconcepts
in the same dataset have the same r). Different levels of class overlap were produced
by establishing a exclusion region within each subconcept. The exclusion region is an
area within the subconcept, concentric with the subconcept, where only minority examples
exist. The size of the exclusion region is determined by its radius, measured in standard
deviations of the subconcept Gaussian distribution, and the levels varied in this study were
e € {0,1,2}. The imbalance ratio was also varied between 1:1, 1:2, 1:4, 1:9 and 1:99 (5 of
the 9 levels varied in Batista et al. (2005), including the minimum and maximum). Figure 1
illustrates two datasets with the same imbalance ratio, 4 subconcepts with the same radius,
but varying the exclusion radius. Note the halo around each subconcept in Figure 1(b) that
results from a high exclusion radius, while in Figure 1(a) the exclusion radius was set to
zero and the two classes completely overlap.

4.2. Penn Machine Learning Benchmark (PMLB)

All datasets marked as appropriate for binary classification on the Penn Machine Learning
Benchmark (PMLB) (Olson et al., 2017) were used in this study, which totals 90 datasets.
The PMLB datasets are very diverse with respect to the quantity of examples and predictors,
as shown in Figure 2(a). Most of the PMLB datasets are imbalanced, but the imbalance
ratio is usually not extreme (Figure 2(b)).

4.3. Comparison of synthetic datasets and PMLB

In addition to the difference in quantity of examples and predictor variables (that are fixed
on the synthetic datasets and vary on PMLB) and imbalance ratio, other characteristics
of the data are relevant to evaluate the obtained results. Two of them are class overlap
and decomposition. Since these features are hard to obtain from real-world datasets, the
methodology from Han et al. (2005), that classifies each example as safe, borderline or

2. https://github.com/jairojuunior/cost_sensitive_vs_resampling
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(a) Exclusion radius: 0 std. (b) Exclusion radius: 2 std.

Figure 1: Two synthetic datasets with Imbalance Ratio of 1:4, 4 subconcepts on the minor-
ity class, each with a radius of 1.0 and varying exclusion radius (e). Red x markers
indicate the center of the subconcepts (including where additional subconcepts
would be placed).
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Figure 2: Characterization of PMLB datasets with respect to the quantity of predictors
and examples and imbalance ratio.
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noise from its local neighborhood, was adopted. In our case, if 3 or more out the 5-nearest
neighbors of the minority example were also of the minority class, it was classified as safe.
If just 1 or 2 of its neighbors are of the minority class, then it was labeled as bordeline.
Otherwise, it was classified as noise. Figure 3 shows the variation of borderline and noise
examples as a function of the imbalance ratio. The results show that, for the imbalance ratio
interval between 1:1 and 1:4, where most of PMLB datasets are concentrated, the variation
in borderline and noise examples is similar between PMLB and synthetic datasets. It was
also observed a tendency for higher variation in the percentage of noise examples as the
imbalance ratio increases.
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Figure 3: Scatterplot of borderline and noise examples per imbalance ratio for synthetic
and PMLB datasets.

5. Results

This section presents and discusses the obtained results. In Figures 4-6, each point represent
the mean of the results and its confidence interval for o = 0.05 obtained via bootstrap. The
results on the synthetic datasets and PMLB are always displayed side-by-side. Since the
PMLB datasets are much more heterogeneous, the confidence interval on the PMLB results
are always higher than on the synthetic datasets. The results are organized as follows:
Section 5.1 compares the performance of the techniques for handling the class imbalance
on each machine learning algorithm; Section 5.2 analyzes the impact of the techniques to
handle class imbalance on model complexity. Part of the results presented in Section 5.1
are from the research carried out during an undergraduate project (Freitas Junior, 2022),
which discusses additional comparative performance analysis with respect to other dataset
parameters (e.g. exclusion radius on synthetic datasets).

5.1. Predictive performance comparison

Figure 4(a) shows the balanced accuracy of kNN combined with the techniques for han-
dling the class imbalance, as a function of the imbalance ratio, on synthetic datasets, and
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Figure 4(b) presents the results obtained on PMLB. On both datasets, BayesMinimum-
Risk and Thresholding tended to obtain superior relative performance. Following them
were SMOTE and SMOTETomek, which seemed to be favored by higher imbalance ra-
tios. Finally, TomekLinks performance was close to the non-application of a technique (this
behavior was observed on all machine learning algorithms). It will be shown in the next
pages that cost-sensitive algorithms combined with kNN yielded models with higher values
of k-neighbors (usually by a factor of 2) compared to resampling techniques, what possibly
produced more reasonable probabilities for the cost-sensitive algorithms, explaining its high
balanced accuracy. On the other hand, Zhang and Li (2011) showed that oversampling
techniques (including SMOTE) can increase the variance errors of kNN, which may explain
the intermediate performance of SMOTE and SMOTETomek.
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Figure 4: Balanced accuracy as a function of the Imbalance Ratio for different combinations
of techniques for handling the class imbalance with kKINN and Decision Tree. In
this Figure, the “Cost-Sensitive Algorithm” is the Cost-Sensitive Decision Tree.
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Figure 4(c) shows the balanced accuracy of Decision Tree combined with the techniques
for handling the class imbalance, as a function of the imbalance ratio, on synthetic datasets,
and Figure 4(d) presents the results obtained on PMLB. SMOTE and Thresholding had
relative superior performance on both datasets, even though the most extreme imbalance
on synthetic datasets (1:99) had a high impact on Thresholding. The Cost-Sensitive De-
cision Tree (line “Cost-Sensitive Algorithm” on the plot) achieved competitive balanced
accuracy only on datasets with high imbalance ratios. Decision Trees are known to produce
poor estimates of class probabilities (Provost and Domingos, 2003). It possibly explains
why Thresholding, a technique that relies on a single classification threshold, outperformed
BayesMinimumRisk in this experiment. Previously, Chawla (2003) found that SMOTE
has a tendency to improve Decision Tree classification performance over other resampling
techniques. A similar tendency was also observed in our results.

Figures 5(a) and 5(b) present the results for the experiments with Random Forest.
BayesMinimumRisk showed a tendency for higher relative results on both synthetic (Figure
5(a)) and PMLB (Figure 5(b)) datasets. The Cost-Sensitive Random Forest, similar to the
Cost-Sensitive Decision Tree from Figures 4(c¢) and 4(d), had a relative low performance
on more balanced datasets. However, the Cost-Sensitve Random Forest started achieving
competitive results on datasets with lower imbalance ratio (1:9 versus 1:99 on synthetic
datasets and (2.4, 3.9] versus (3.9,64.0] on PMLB). Even though Random Forest may not
produce perfectly calibrated models, it’s known to be one of the best learning algorithms
to produce well-calibrated probabilities (Niculescu-Mizil and Caruana, 2005). This possibly
explains the performance of BayesMinimumRisk on this experiment. The increase in relative
performance of the Cost-Sensitive Random Forest compared to the Cost-Sensitive Decision
Tree may be the result of ensembling, which tends to reduce variance while maintaining the
low bias of weak learners.

The results obtained with AdaBoost are shown in Figures 5(¢) and 5(d). BayesMin-
imumRisk, SMOTE and SMOTETomek obtained similar balanced accuracy and superior
results compared to the other techniques. Thresholding showed a tendency for lower results
than the non-application of a technique when combined with AdaBoost, which was not
observed in the other machine learning algorithms. The models created with AdaBoost
combined with Thresholding and other techniques were compared, and it was found that
the Thresholding models had, on average, fewer estimators and, on PMLB datasets, a
much lower learning rate (which controls the contributions of consecutive estimators to the
ensemble prediction). At the moment of writing this paper, we had not reached a satis-
factory hypothesis to explain why the grid-search with cross-validation performed in the
experiments led to this result.

The findings from PMLB and synthetic datasets presented in this section overall agreed.
A higher confidence interval was observed on PMLB results, which may be a consequence of
the higher heterogeneity of its datasets. Since the synthetic datasets have a higher similarity
among them, it tends to produce less noisy results.

5.2. Model complexity analysis

This section presents an investigation of the mean complexity of the models built by the
combination of each algorithm and technique for handling the class imbalance. The com-

91



FREITAS JUNIOR PISANI

95% -
90% - - 0

90% -
85% -

o
o
=

80% -

80% -

« TomekLinks 4 75% -

Thresholding \
SMOTETemek \ 70% - 1
s SMOTE
70% - No technique
« BayesMinimumRisk
65% - * Cost-Sensitive Algorithm

75% -

Balanced accuracy

65% - His

10 20 40 90 %0 [1.0,2.4] (2.4,3.9] (3.9, 64.0]
Imbalance Ratio Imbalance Ratio
(a) Random Forest - Synthetic datasets (b) Random Forest - PMLB
) G o
90% - 1 = 1 T _TR
g J_ll ""-U.L\ ST 85% -
85% - 1 T
z RS 1L ) S ) | A It
M Wz
L . 1 ittt -
g ‘\ h““--
o 75% - N 75% - B (11 i b
o] \
& 70% - « TomekLinks ‘\\ 70% - i
= Thresholding ‘\ 'l[ L - H
65% - SMOTETomek 1
« SMOTE b 65% -
60% - Mo technique
« BayesMinimumRisk 60% - 1
10 20 2o 90 9.0 [10, 241 (2.4,3.0] (3.9, 64.0]
Imbalance Ratio Imbalance Ratio
(¢) AdaBoost - Synthetic datasets (d) AdaBoost - PMLB

Figure 5: Balanced accuracy as a function of the Imbalance Ratio for different combina-
tions of techniques for handling the class imbalance with Random Forest and
AdaBoost. In this Figure, the “Cost-Sensitive Algorithm” is the Cost-Sensitive
Random Forest.

plexity of kNN-based models was evaluated in terms of the value of k-neighbors. The
Random Forest complexity was measured by the maximum number of features considered
per split (maz_features). AdaBoost-based models complexities were approximated by the
number of estimators, and the Decision Tree-based models complexities were measured by
the number of leaves of the trees.

Figure 7(a) shows the mean value of k-neightbors when kNN was combined with each
technique for handling the class imbalance. Cost-senstive algorithms (BayesMinimumRisk
and Thresholding) showed a tendency for producing kNN-based models with higher values
of k-neighbors when compared to oversampling techniques (SMOTE and SMOTETomek)
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in both synthetic and PMLB datasets. The value of k-neighbors for the non-application
of a technique for handling the class imbalance was similar to the value for Thresholding.
While, in the PMLB datasets, the value of k-neighbors for TomekLinks was close to the
other resampling techniques. This pattern was not observed in the synthetic datasets.

Before the application of SMOTE and SMOTETomek, most datasets had the major-
ity of non-safe examples as borderline type. The creation of synthetic examples around
borderline examples increases the likelihood of turning them safe, and, as a result, it can
make the nearest neighborhood more reliable for the classifier. This might explain why the
value for k-neighbors was low when these techniques were combined with kNN. However,
when the cost-sensitive algorithms are applied, a larger neighborhood might be needed to
reach enough minority examples to estimate the class probabilities. It was also noted that
there was an equilibrium in the occurence of choices of uniform and distance based weights
for resampling techniques, but more than 90% of the kNN-based models combined with
BayesMinimumRisk or Thresholding used uniform weights. The choice of uniform weights
for higher values of k-neighbors sounds reasonable, since distant minority examples could
be underweighted otherwise.

Figure 6: Mean complexity of the models produced by the combination of machine learning
algorithms and different techniques for handling class imbalance.
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Figure 7(b) shows the mean number of leaves when Decision Tree was combined with
each technique for handling the class imbalance. Decision Tree-based models combined
with cost-sensitive algorithms (BayesMinimuRisk and Thresholding) tended to have a lower
number of leaves compared to resampling techniques (SMOTE, SMOTETomek and Tomek-
Links). This pattern was more distinguished on the synthetic datasets.

To better understand this result, let the probability estimate by a Decision Tree for class
i on leaf m be pi, = |i,|/|m|, where |i,,| is the number of examples of class i on leaf m and
|m/| is the number of examples in m. If the number of examples in a dataset is fixed and the
number of leaves in a tree decreases, then on average |m| and |iy,,| increases. By the central
limit theorem, if the sample size increases, the probability estimate tends to be more reliable.
It might explain why Decision Tree-based models combined with cost-sensitive algorithms
tended to have a lower number of leaves, although it needs more investigation before coming
to this conclusion.

For the Random Forest-based models (Figure 7(c)), when combined with oversampling
techniques (SMOTE and SMOTETomek), a tendency for a lower value of maz_features
was observed. BayesMinimumRisk showed a tendency for lower values of maz_features on
PMLB, while, on the synthetic datasets, the results were more aligned with the ones from
Thresholding and TomekLinks. The maximum number of features considered per split is
fundamental to generate diverse enough trees to benefit from averaging them (Sage et al.,
2020). The lower its value, the higher is the randomization in the induction and, therefore,
less similar the estimators tend to be. Since SMOTE (and for extension SMOTETomek)
introduces correlation between some examples (Blagus and Lusa, 2013), the examples on
each sampled subset used to train each estimator tend to be more correlated with the ones
from other subsets than when using non-oversampled datasets, leading to more similar trees.
Reducing max_features, in the case of SMOTE and SMOTETomek, possibly counteracts the
increased similarity of subsets, producing a better final model.

Resampling techniques (SMOTE, SMOTETomek and TomekLinks) showed a tendency
for producing AdaBoost-based models with higher number of estimators, as shown in Figure
7(d). In contrast, cost-sensitive algorithms combined with AdaBoost tended to have a lower
number of estimators. The number of estimators for the non-application of a technique was
comparable to the observations for the resampling methods.

AdaBoost-SAMME (Hastie et al., 2009) iteratively train additional classifiers on copies
of the original dataset with more weights on the previously incorrectly classified instances
(hard examples). Models with high number of estimators might have their probabilities
skewed by the hard examples. Our hypothesis is that AdaBoost-based models combined
with cost-senstive algorithms tend to favor a lower number of estimators to get less skewed
probabilities.

A difference in complexity was also noted between Thresholding and BayesMinimumRisk
when combined with kNN and AdaBoost, where BayesMinimumRisk models tended to have
higher values of k-neighbors and number of estimators. Our hypothesis for this result is that,
since Thresholding relies on a single threshold to separate the classes, the importance of
probability calibration for it is smaller than for BayesMinimumRisk, reason why we believe
the latter tends to be more complex.

The results from Figure 6 show that, overall, the technique used for handling the class
imbalance can influence the complexity of the machine learning model. A consequence from

94



PERFORMANCE AND MODEL COMPLEXITY ON IMBALANCED DATASETS

this finding is the realization that the hyperparameter search space should be carefully cho-
sen depending on the combination of learning algorithm and technique for handling class
imbalance. This, however, does not mean that doing otherwise will result in low perfor-
mance. In fact, the association between the complexity of these models with overfitting or
underfitting was not addressed here and is a topic for future research.

6. Conclusions and future work

In this paper, the performance of cost-sensitive algorithms and resampling techniques were
compared when combined with four machine learning algorithms. For kNN, a better per-
formance of BayesMinimumRisk and Thresholding was observed, and these techniques also
tended to yield models with higher values of k-neighbors. Decision Tree achieved better
results with SMOTE, SMOTETomek and Thresholding, and cost-sensitive algorithms com-
bined with Decision Trees resulted in a lower number of leaves. Random Forest showed
better results with BayesMinimumRisk, and oversampling techniques combined with Ran-
dom Forest tended to produce models with lower values of maximum number of features
per split. Finally, BayesMinimumRisk, SMOTE and SMOTETomek achieved similar perfor-
mance and superior results compared to other techniques on AdaBoost. A lower number of
estimators was also observed on AdaBoost models combined with cost-sensitive algorithms.

Our results showed that the techniques for handling the class imbalance may influence
the complexity of machine learning models, including the choice of hyperparameters. To
the best of our knowledge, this study is the first to show it for these techniques. On future
works, additional learning algorithms and techniques for handling the class imbalance can be
explored. The impact of model calibration could also be evaluated, since it was previously
shown that cost-sensitive algorithms tend to benefit from it (Bahnsen et al., 2014). Finally,
extending the current study to multi-class settings is another alternative which could be
investigated in future work.
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