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Abstract

The discovery of causal relationships from observational data is an omnipresent task in
data science. In real-world scenarios, observational data is often high-dimensional, and
functional causal relationships can be nonlinear. To handle nonlinear relationships within
constraint-based causal discovery, appropriate conditional independence tests (CI-tests)
become necessary, e.g., non-parametric information-theory-based Cl-tests. Both high-
dimensional data and Cl-tests for nonlinear relationships pose computational challenges.

Existing work proposes parallel processing on Graphics Processing Units (GPUs) to
address the computational demand resulting from high-dimensional data, in the case of
discrete data or linear relationships. We extend this idea to cover Cl-tests for nonlinear
relationships in our work. Therefore, we develop GPUgyrknn, @ GPU-accelerated version of an
existing CI-test, which builds upon conditional mutual information (CMI) combined with
a local permutation scheme. Further, we propose a version of the PC algorithm, called
GPUcyrrnn—Parallel, to process multiple instances of GPUgyixnn on the GPU in parallel.

Experiments show that the performance of GPUgyrynn is mainly affected by the number
of k-nearest-neighbors (knn) within the CMI estimation. Depending on the chosen number
of knn, the achieved speedup of GPUcurxnn ranges between factors of 2.3 to 352. In causal
discovery, our method GPUcyrxnn—Parallel outperforms a single-threaded CPU version by
factors of up to 1000, a multi-threaded CPU version using eight cores by factors of up to
240, and a naive GPU version by up to a factor 3.

Keywords: GPU Acceleration, PC Algorithm, Conditional Independence Testing, High-
dimensional Data

1. Introduction

The discovery of causal structures from observational data is of relevance in many do-
mains (Spirtes et al., 2000 Rau et al., 2013; Huegle et al., 2020; Hagedorn et al., 2022), in
particular when randomized control trials are not feasible due to costs, ethics, or complex-
ity (Rubin, 2007). In real-world scenarios, frequently, observational data sets have neither
purely discrete nor continuous variables but contain a mixture of discrete-continuous vari-
ables or have non-linear relationships (Malinsky and Danks, 2018). Furthermore, data
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sets are often high-dimensional, leading to long execution times for causal discovery algo-
rithms (Le et al., 2019).

Recent advances in the field of constraint-based causal structure learning (CSL) pro-
pose non-parametric conditional independence tests (CI-tests) based on information theory
to handle non-linear relationships (Runge, 2018) or mixed discrete-continuous data (Hue-
gle, 2021). These Cl-tests build upon the estimation of mutual information (MI), respec-
tively conditional mutual information (CMI) using k-nearest-neighbor (knn) estimators,
e.g., see Frenzel and Pompe (2007); Vejmelka and Palus (2008); Gao et al. (2017); Mesner
and Shalizi (2021) and combine the estimator with a local permutation scheme to generate
the null distribution. The computational complexity of such Cl-tests is much higher, i.e.,
O(n?) (Runge, 2018), compared to well-known Cl-tests, e.g., Fisher’s z-test (Fisher, 1915)
or Pearson’s x? test (Pearson, 1900) for continuous or discrete data. Consequently, the run-
time of the individual Cl-test and hence runtime of constraint-based CSL algorithms, such
as the well-known PC algorithm (Spirtes et al., 2000), increase with higher computational
complexity.

In this context, versions of the PC algorithm for highly parallel execution on Graphics
Processing Units (GPUs) are proposed, which achieve speed-up of orders of magnitude
over CPU-based approaches (Schmidt et al., 2018; Zarebavani et al., 2020; Hagedorn and
Huegle, 2021a). The GPU-accelerated versions are tailored to use of common Cl-tests for
continuous (Schmidt et al., 2018 Zarebavani et al., 2020) or discrete data (Hagedorn and
Huegle, 2021a). Each version leverages unique Cl-test characteristics to achieve speed-
up on a GPU. Therefore, the approaches are not easily transferred to Cl-tests based on
information theory.

This paper addresses the high runtime of the existing information-theoretic Cl-test
CMIknn (Runge, 2018) by employing a GPU as an execution device. Our GPU-accelerated,
CUDA-based version GPUcyrinn computes the local permutation scheme and estimates the
CMI value in separate CUDA kernels. The permutation kernel of GPUeurinn leverages GPU
thread block scheduling (Hennessy and Patterson, 2017) to create a random order for the
permutation scheme by processing observations within multiple warps over multiple thread
blocks. In the CMI estimation kernel, we apply ideas of pipelined execution (Funke et al.,
2018) to utilize per-thread local memory during knn computation following a brute force
approach. While generally, knn estimation using a kd-tree has lower computational com-
plexity than using a brute force approach, the brute force approach benefits from the parallel
computing capabilities of the GPU. Therefore, our proposed GPU-accelerated version im-
plementing a brute force approach is well suited for CMI estimators requiring a smaller k,
such as, k < 200. Note that the optimal choice of the parameter k within CMI estimation
depends on the employed estimator. For example, for CMIknn, hence for GPUcuixnn, it is
suggested to set k = 0.2 x n, where n is the number of observations (Runge, 2018).

We integrate GPUcyrknn into a custom version of the PC algorithm, which allows for par-
allel execution of multiple CIl-tests on the GPU. Therefore, we implement parallel versions
of the permutation kernel and the CMI kernel. Additionally, we adopt an execution order of
Cl-tests that allows reusing computed local permutations across multiple Cl-tests, reducing
the runtime.

We evaluate GPUgytrnn and our proposed version of the PC algorithm GPUgyryn,~Parallel
in an experimental setting on synthetic data. Therefore, we consider the execution of a sin-
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gle Cl-test and investigate the performance regarding relevant parameters, e.g., number of
observations n, number of permutations perm, or number of k¢ nearest neighbors within
CMI estimation. Second, we evaluate the performance of GPUcyrinn in the context of the PC
algorithm. In both cases, we compare with the existing CPU-based version CMIknn (Runge,
2018). We find that the performance of our GPU-based version of the Cl-test is mainly
dominated by choice of kcoprr, the number of knn during CMI estimation. For values of
koyvr < 200, the GPUcyignn outperforms its CPU counterpart by up to two orders of mag-
nitude, mainly when keeping kcar; < 20. Under the assumption of small values for kcayr,
GPUcurknn Scales well within all other considered dimensions, i.e., number of samples n,
number of permutations perm, or size of separation set |S|. In the context of the PC al-
gorithm, we observe similar behavior concerning the parameter koarr. GPUemtknn—Parallel
provides additional speed-up of almost a factor of 3 over a baseline non-parallel version
employing GPUcyixnn. Compared to the parallel execution of CMIknn on the CPU on eight
cores, GPUcnixnn—Parallel remains faster by factors of up to 250 for kopsr = 7 but performs
similarly for ko = 200.

The remainder of the paper is structured as follows: Section 2 provides background
on constraint-based CSL, the concepts of information-theoretic Cl-tests, and GPUs. In
Section 3, we discuss existing work on GPU acceleration for CSL. We introduce our GPU-
accelerated Cl-test GPUcyrknn and its parallel implementation within the PC algorithm in
Section 4. Section 5 provides an experimental evaluation of our proposed method and
discusses our results. Finally, in Section 6, we summarize our work.

2. Preliminaries

This section introduces terminology in the context of constraint-based CSL, the PC algo-
rithm, and information-theoretic-based Cl-tests. Also, we outline necessary GPU hardware
and execution concepts together with the associated programming model.

2.1 Constraint-based Causal Structure Learning

Within our work, we follow the well-known theory of Causal Graphical Models (CGMs) and
CSL, cf. (Spirtes et al., 2000; Peters et al., 2017; Pearl, 2009). Thus, a Directed Acyclic
Graph (DAG) G is defined by G = (V,E), with N random variables V. = {Vi,..., Vx}
and an edge set E C V x V, that contains only directed edges V; — V; such that G
contains no cycles. The combination of a DAG G and a joint probability distribution over
the variables V defines a CGM (Pearl, 2009). Thus, a directed edge V; — Vj in G represents
a direct causal relationship. Further, the DAG G entails information about the conditional
independence of the variables via the d-separation criterion. Hence, two variables V;,V; € V
are conditionally independent given a set of variables S%/ C V' \ {V;, V;} if and only if the
variables V; and V; are d-separated by the set S%J.

In this context, CSL is the search for the underlying causal relationships described by G
from i.i.d. observational data D with n samples of N variables. Thereby, methods of CSL
leverage the conditional independence characteristics of the joint probability distribution
over the variables, which allows estimation of the causal structures up to the Markov equiv-
alence class of G, which can be represented by a Complete Partially Directed Acyclic Graph
(CPDAG) (Chickering, 2002). Therefore, methods of constraint-based CSL apply Cl-tests
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to discover the causal structures of the CGM. Note that the appropriate Cl-test for a given
datasset is directly determined by the datasset’s probability distribution (Dawid, 1979).
An efficient method for constraint-based CSL is the PC algorithm (Spirtes et al., 2000).
The PC algorithm has an adjacency search and an edge orientation. The adjacency search
determines the skeleton graph C of G, in which all edges E%/ € E, with E% = (V;,V})
are undirected. The adjacency search is an iterative algorithm running from level [ = 0
up to | = maxy,ev |adj(G,V;)| — 1, where adj(G,V;) returns all adjacent variables of V;
in G. The algorithm starts with a fully connected skeleton C° in level I = 0. Within
each level, the algorithm performs Cl-tests for all remaining edges E*J in C!, for which at
least one separation set S of size | can be constructed. A separation set S%J contains a
combination of adjacent variables from V;, i.e., $%J that is drawn from adj(C!, Vi) \ {V;}.

The algorithm iteratively processes all possible separation sets 8%/ = {Si’j ey Sj\g , Where

M = (ladj (Cl"l/i)\{‘/j}|), where the size | equals to the current level. In case the p-value
computed by the Cl-test CI(V;,V;|S%7) is larger than the provided significance level «, the
corresponding edge E*Jis removed from C!. Additionally, the corresponding separation set
S%J is stored, and no additional Cl-tests are conducted for this edge. Hence, this inner
loop can be terminated early. Further, the edge E%7 is not considered at any higher level.
Once all edges within the current level have been processed, the algorithm continues with
the subsequent level. Upon reaching the maximum level, the adjacency search returns the
estimated skeleton C and the stored separation sets SepSet.

Within the edge orientation, as many edges as possible are oriented based upon deter-
ministic rules (Spirtes et al., 2000; Colombo and Maathuis, 2014). The adjacency search
constitutes the majority of the computation of the PC algorithm, given its computational
complexity, which is exponential to the number of variables N in the worst case and remains
polynomial even for sparse graphs (Kalisch and Bithlmann, 2007). Therefore, CPU-based
parallel extensions (Le et al., 2019; Schmidt et al., 2019; Scutari, 2017) and GPU-accelerated
versions (Schmidt et al., 2018; Zarebavani et al., 2020; Hagedorn and Huegle, 2021a) of the
PC algorithm, focus on improving the execution time of the adjacency search.

2.2 Information-theoretic Conditional Independence Tests

In information theory, measures, such as mutual information (MI), provide a means to an-
alyze the information flow between two systems (Hlavackova-Schindler et al., 2007). Thus,
the concept of MI encodes the shared information for two random variables V;, V;, and is the
basis for Cl-testing (Bishop, 2006). Utilizing the MI for Cl-tests has two challenges. First,
MI has to be estimated from the observational data, depending on the underlying data
distribution (Gao et al., 2017). Second, to use MI within a Cl-test requires determining a
null distribution. A recently proposed information-theoretic CI-test (Runge, 2018) employs
k-nearest neighbor estimation (Frenzel and Pompe, 2007; Vejmelka and Palus, 2008) to es-
timate MI, respectively CMI and utilizes a local permutation-scheme (Doran et al., 2014)
to determine the null distribution. The Cl-test is sketched in Algorithm 1.

The algorithm starts by computing for each sample a with a € {1,...,n} alist of nearest
neighbors knnla] of size kperm With 0 < kperm < n. The nearest neighbors are determined
according to the distance in the dimension of the separation set S%/ of the current sample
to all other samples of the observation data (cf. Algorithm 1 lines 1-3).
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Algorithm 1 Cl-test based on nearest-neighbor permutation (Runge, 2018)
Input: number of permutations perm, k-nearest neighbors within permutation kpepm, k-
nearest neighbors within CMI estimation kcpasy, observational data D, variables V;,Vj,
separation set S/ number of samples n, estimator function estimatory,()
Output: p-value p, test statistic cmi

1: for all a€ {1,...,n} do

2. knnla] = k_nearest_neighbors(kperm, a, D[S%], n)
3: end for
4: for all m € {1,...,perm} do
5. for all ae€{l,...,n} do
6: Shuffle list knnlal
7. end for
8:  Initialize empty set used
9: ﬁ = {}
10:  ord = create_random_order({1,...,n})
11:  for all a € ord do
12: x = knnla][0]
13: y=0
14: while z € used & y < kperm — 1 do
15: y=y+1
16: x = knnlal[y]
17: end while
18: D[a] = D[Vj][z]
19: used.add(x)
20:  end for
21:  cmim] = estimatorgn, (D, D[V;], D[S™], kcarr)
22: end for
23: cmi = estimatorg,,(D[Vi], D[V;], D[S™], kcnr)
perm .
24: p = pe},m mZZI 1(cmi < emilm])
Next, for each permutation m with m € {1,...,perm} the values of V; are locally
permuted according to the lists of nearest neighbors knnla] with a € {1,...,n}. In this

step, first, each list of nearest neighbors knn[a] is shuffled, an empty set for used elements
used is initialized, a vector of size n for the permuted values D is initialized, and a random
order is created for the n samples (cf Algorithm 1 lines 5-10). Next, the samples are iterated
in the previously determined order (cf. Algorithm 1 lines 11-18). For each sample, one of
its nearest neighbors is drawn from the list and placed at the sample’s position in the local
permutation D. The drawing mechanism chooses the nearest neighbor of the current sample
that a previous samples has not drawn unless it is the k*-nearest neighbor. This restriction
is achieved as drawn neighbors are added to the set for used elements used. Once the
local permutation of V; is generated, it is used to compute the CMI based on the estimator
function estimatory,,() (cf. Algorithm 1 line 21). The calculated CMI value is stored for
each permutation in a list emi.
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After the CMI values for all permutations are computed, the CMI value from original
non-permuted samples ¢mi is computed (cf. Algorithm 1 line 23). Finally, the p-value p
is computed as the average of the indicator function, evaluating if ¢mi is less or equal to
the permuted CMI values emi[m)] over all permutations m € {1,...,perm}. The algorithm
returns the p-value p and cmi as the test statistic.

The algorithmic template of the Cl-test sketched in Algorithm 1 allows substituting the
estimator. Without additional changes to the algorithm, estimators suitable for specific
data characteristics can be plugged-in. For example, in the original version of the CI-
test, a k-nearest neighbor estimator suitable for continuous time series data with non-linear
relationships (Frenzel and Pompe, 2007) is used. In recent work, Huegle (2021) suggests
employing a k-nearest neighbor estimator proposed by Gao et al. (2017) for mixed discrete-
continuous data.

2.3 Graphics Processing Units

GPUs have seen a growing interest as dedicated processing units to accelerate machine
learning workloads (LeCun et al., 2015). These machine workloads benefit from the ample
parallel computing capabilities and specific hardware features of GPUs.

GPU hardware characteristics A GPU provides global and shared memory and has its
cache hierarchy and dozens of streaming multiprocessors (SMs), with individual processing
cores each. Within current GPU generations, the global memory has a capacity of up to 80
GB (Choquette et al., 2021). Data structures in global memory can be accessed by threads
placed on cores across all SMs. In contrast, shared memory has a limited capacity of only
up to 192 KB. Yet, it has a higher memory bandwidth than global memory. Further, data
structures in shared memory are only accessible by threads placed on cores within the same

SM.

GPU execution concept The GPU is a throughput-oriented device (Kirk and Hwu,
2013) that follows the Single Instruction Multiple Threads (SIMT) execution model (Lind-
holm et al., 2008), meaning that processing threads are grouped and execute the same
scheduled instruction in lockstep. Each thread operates on a dedicated core. Commonly,
32 threads are grouped, referred to as a warp.

Programming model Programming frameworks, such as CUDA (Nickolls et al., 2008),
enable efficient development for GPUs. The functions executed on a GPU are organized in
kernels within CUDA code. Each kernel is launched with several CUDA threads organized
in thread blocks that execute the code. Each thread block is mapped to one SM during
execution, enabling access to shared memory and providing fast synchronization mechanisms
for all threads within the same thread block. The number of threads and thread blocks
are specified in three dimensions upon launch of the kernel. Hence, each thread has its
three-dimensional ids within the kernel, i.e., threadIdx. (x,y,z) and blockIdx. (x,y,2),
abbreviated with tx, ty, tz or bz, by, bz. Furthermore, programmers can explicitly move data
structures to global and shared memory for efficient memory management.
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3. Related Work

We first discuss existing work on parallel execution of the PC algorithm, focusing on GPU
acceleration. Second, as the information-theoretic CI-test CMIknn (Runge, 2018) builds
upon knn estimation, we consider existing GPU-based knn searches.

3.1 Parallel Approaches of PC Algorithm

Several versions of the PC algorithm have been proposed that leverage parallel computing
capabilities of modern hardware, such as multi-core CPUs (Le et al., 2019; Madsen et al.,
2015; Schmidt et al., 2019; Scutari, 2017), GPUs (Hagedorn and Huegle, 2021a,b; Schmidt
et al., 2018, 2020; Zarebavani et al., 2020), or FPGAs (Guo and Luk, 2022), to address
the computational demand of causal discovery. Most work on parallel execution on multi-
core CPUs parallelizes over the edges within the CGM (Le et al., 2019 Madsen et al.,
2015; Schmidt et al., 2019; Scutari, 2017). Therefore, the proposed approaches remain
independent from the applied Cl-test and thus can be directly applied to information-
theoretic Cl-tests.

In the context of GPU acceleration of the PC algorithm, such a universal approach is not
feasible, as GPU hardware characteristics and the execution concept have to be considered.
Thus, existing GPU-based approaches leverage Cl-test characteristics to achieve speed-up
and provide individual Cl-test implementations targeting a specific data distribution. Also,
the GPU-based algorithms provide unique kernels corresponding to specific levels [ of the
PC algorithm. In the case of continuous data, Schmidt et al. (2018) take advantage of pre-
calculated correlation coefficients to avoid access to samples within each Cl-test. Further,
they compute batches of Cl-test for a single edge, i.e., considering different separation sets, in
parallel within the same thread block. In cupc (Zarebavani et al., 2020), intermediate results
of Cl-tests for continuous data with the same separation set are shared. In detail, cupc
reuses computed inverse matrices required for the Cl-test for continuous data. In both GPU-
based versions for continuous data (Schmidt et al., 2018; Zarebavani et al., 2020) Cl-tests
are parallelized over the GPU threads. In contrast, in the case of discrete data, Hagedorn
and Huegle (2021a) propose parallelizing the processing of individual samples within CI-
tests. The authors reflect the requirement of the implemented Pearson’s x? test (Pearson,
1900) to compute the marginals over contingency tables from the samples for each CI-test
separately.

Given that the existing GPU-based approaches are tailored to the CI-test characteristics,
direct transfer to the case of an information-theoretic Cl-test is not an option. Therefore,
a GPU-accelerated information-theoretic Cl-test requires a unique GPU-based implemen-
tation of the Cl-test that is tailored to the SIMT execution model and considers the GPU
memory constraints. Second, in the context of execution within the PC algorithm, a parallel
execution scheme is required that takes full advantage of the parallel processing capabilities
of the GPU, i.e., by processing multiple Cl-tests or edges in parallel. Therefore, we propose
GPUcurknn, @ GPU-based information-theoretic Cl-test, and provide an adapted version of
the PC algorithm for parallel execution of multiple CI-tests.



C. HAGEDORN ET AL.

3.2 GPU-based Approaches to knn Estimation

The CPU-based version CMIknn (Runge, 2018) implements the knn estimation using kd-
search trees (Bentley, 1975; Friedman et al., 1977). Kd-trees are a computationally efficient
option for the knn estimation, given that their computational complexity is in average
O(n x log(n)) when searching over all n samples. In contrast, a brute-force approach to
solving the knn estimation has a complexity of O(n?). GPU-based implementations exist
for knn estimation using kd-search (Garcia et al., 2010) and for knn estimation built upon
brute force approaches (Gieseke et al., 2014; RAPIDS Development Team, 2018).

Commonly, performing knn searches using kd-search trees on GPU may result in poor
performance due to branching and memory access inapt for GPU hardware. Gieseke et al.
(2014) propose a buffer kd-tree that addresses these shortcomings. The buffer kd-tree
consists of one top tree with a small height of, e.g., h = 8, leaf structures and buffers
for each leaf of the top tree. When querying the buffer kd-tree the buffers are filled with
query indices processed upon reaching a threshold. During the processing of the buffers
the k nearest neighbors are determined for each query index within each buffer in parallel,
using one GPU thread each. The GPU thread conducts a brute force search within the
leaf structure corresponding to the query index buffer. Note the initial construction of the
kd-tree and orchestration occurs on the CPU. A huge amount of queries is needed for the
buffer kd-tree to be efficient (Gieseke et al., 2014).

The brute-force approach is well suited for the execution model of a GPU. (Garcia
et al., 2010) propose a GPU-accelerated implementation of the brute-force approach that
outperforms CPU-based versions by up to two orders of magnitude. Their approach im-
plements two separate GPU kernels. The first kernel computes a distance matrix of size
n x n between all n samples. Given that these computations are independent, the problem
is embarrassingly parallel. The second kernel sorts the distances in parallel for each sample.

Despite the lower computational complexity, the construction and search of kd-trees
remain challenging on the GPU. The buffer kd-tree (Gieseke et al., 2014) requires many
queries to become an efficient option. Furthermore, the kd-tree requires additional stor-
age from the limited GPU memory. Therefore, we chose a brute force approach to knn
estimation within GPUcyiknn. Thus, we build upon the general idea of Garcia et al. (2010)
but make adaptions suited to our use case. In particular, we apply a pipeline execution
approach (Funke et al., 2018) to keep intermediate results, e.g., the k nearest neighbors,
in GPU thread local memory and avoid storing additional data structures, such as large
distance matrices.

4. GPU-Accelerated Causal Discovery using Information-theoretic
Cl-test

This section presents GPUcyrknn ', & GPU-accelerated implementation of the information-
theoretic CI-test cymn (Runge, 2018). Therefore, we sketch the algorithm and provide
detail on two GPU kernel implementations (see Section 4.1). The first kernel computes
the local permutation by applying the nearest neighbor search on the GPU. The second
kernel computes the CMI estimates based on the permuted values, again using nearest

1. Code available on GitHub: https://github.com/ChristopherSchmidt89/gpucmiknn/
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Algorithm 2 GPUCMIknn

Input: number of permutations perm, k-nearest neighbors within permutation kperm, k-
nearest neighbors within CMI estimation kcasr, observational data D, variables V;, V;, sep-
aration set 9%/, number of samples n, knn-based CMI estimation kernel estimatec s Tknn()
Output: p-value p

1: TRANSFERTOGPU(D[V;], D[V;], D[S%])

2: ALLOCATEONGPU (V;[perm][n], used[perm][n], partial em;[perm + 1])

3: LAUNCHONGPU (local Permutation, { D[S*7], D[V;], Vi, used, n, perm, kperm})
4: LAUNCHONGPU (estimatecns1knn, { D[Vi], D[V;], D[S], Vi, partialem;, n, kcwmr})
5: TRANSFERFROMGPU (partialcm;)

6: basecmi = F (kcmr) — piartm,i”m 9]

7. ¢c=0

8: for all a € {1,...,perm} do

9. if (F(kemr) — %l”'”[a]) > basesm; then

10: c=c+1

11:  end if

12: end for

13: p= pef"m

14: return p

neighbor searches. Additionally, we present a GPU-accelerated version of the PC algorithm
that employs an extended version of GPUcyiknn, in which the kernel implementations allow
computing multiple Cl-tests in parallel (see Section 4.2). Note the proposed algorithms
allow exchanging the CMI-estimator, assuming that the CMI-estimator builds upon knn
searches, e.g., see Mesner and Shalizi (2021).

4.1 GPU-Accelerated Information-theoretic CI-test: GPUcuknn

GPUcurknn uses the GPU to accelerate the computation of the local permutation and the CMI
estimate. In both computations, the knn are estimated. Despite a higher computational
complexity than Kd-trees, GPUcyrinn implements a brute-force approach to estimate the knn,
as the brute-force approach is well-suited for parallel execution on the GPU (see Section 3.2).
Thus, GPUcyrran parallelizes over the samples, or the samples and permutations, respectively.
In both cases, each GPU thread computes the knn for one sample, respectively, one sample
or permutation. During computation of the knn, GPUcyixnn aims to keep all intermediate
data in GPU thread local memory fo efficient execution. Therefore, GPUcyrknn Works best
for small values of kpern and ko

We sketch the overall idea of our GPU-based implementation in Algorithm 2. GPUcyurknn
receives a series of input parameters to conduct the Cl-test and outputs the p-value p. As
input, the algorithm takes the observational data D, and indices of the variables V;,V;, and
S%J that point to the corresponding samples within D. Furthermore, GPUcyrxan requires
the following input parameters: perm, the number of permutations, kper, the number of k-
nearest neighbors during local permutation, kcpsr the number of k-nearest neighbors during
CMI estimation, n the number of samples and estimatec s rknn () kernel for CMI estimation.
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In the beginning, the algorithm prepares the data on the GPU. Therefore, the algorithm
transfers the observational data of the variables V;,V;, and S%J to the GPU and allocates
memory for the permutations of V; V;, the intermediate CMI values partiale,;, and the
auxiliary matrix used (see Algorithm 2 lines 1 — 2). Next, the local Permutation kernel is
launched on the GPU, which computes V;. After completion of the local Permutation ker-
nel, the estimatecnsrrnn kernel is launched, which calculates perm + 1 intermediate values
for the CMI stored in partialem,;. After transfer of partiale,; from the GPU (see Algo-
rithm 2 line 5), the final CMI values are determined. The applied calculation corresponds
to the implementation of the estimatecnsrxnn() kernel. In Algorithm 2 and in our reference
implementation, we follow the approach of CMIknn (Runge, 2018) that builds upon the CMI
estimator by Frenzel and Pompe (2007); Vejmelka and Palus (2008). Thus, the calculation
uses the following equation:

. artial cm;
cmz:F(k‘CM[)—pT, (1)

where partial.,; is based upon the counts of points within the subspaces V; ® %, V; @ S/
and 8%/ that are within the distances of the k-nearest neighbor taken from the joint space
Vi ®V; ® 8% (cf. Equation 5 in Runge (2018)). At first, the basecr is computed based
on the non-permuted case V;,V;,5%/. Next, the CMI is computed for all permutations
{1,...,perm}. Within the same loop, the algorithm checks if the CMI for a permutation
is larger or equal than the basecysr and increments a counter ¢. Finally, the actual p-value
p is computed as the sum of the indicator function over the number of permutations (see
Algorithm 2 line 13). In the following, we provide detail on the local Permutation kernel
and the implemented estimatec prinn kernel.

Local Permutation Kernel The local Permutation kernel (see Algorithm 3 below) takes
several parameters and pointer to data structures as input (see Algorithm 3 Input). The
kernel does not return a specific result but places the perm local permutations of V; in the
data structure V;, which remain on GPU for further processing. The kernel is launched
with § threads per thread block and [%1 thread blocks. The parameter 3 should ideally be
chosen as a multiple of the GPU warp size, i.e., 32, and not exceed hardware constraints,
i.e., 1024. As a default, we set 8§ = 32. Further, upon kernel launch, shared memory of
size BxDIMENSION(S%7) x sizeof (float) bytes is reserved for each thread block. Note the
function DIMENSION() returns the size of the separation set, i.e., the number of variables
contained within $%/. The function sizeof() returns the size of the input data type in byte.
Once the kernel is launched, each GPU thread processes lines 1-29 of Algorithm 3. Given
that the kernel is launched with at least n GPU threads, each thread is responsible for
processing one of the n samples and computing the corresponding local permutations of its
sample.

At first, two arrays of size kperm, namely sDist and sPos are allocated and initialized
in GPU thread local memory. These arrays will eventually store the distances and posi-
tions of the k-nearest neighbors. Further, each GPU thread loads the values from D[S%/]
corresponding to its sample, calculated based on the GPU thread’s thread id and block id.

After this setup, all n samples are iterated in a stride of size §. The following steps
are executed within this loop over the n samples. First, the values from D[S%J], which
remain in global memory, are loaded into shared memory (see line 5 in Algorithm 3). After
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Algorithm 3 Local permutation kernel within GPUcyrinn
Input: samples D[S*/] and D[V;], data structure for permutations V;, auxiliary data struc-
ture used, number of samples n, number of permutations perm, k-nearest neighbors within
permutation Kperm
# of blocks: [j]
# of threads per block:
Shared memory: 3xDIMENSION(S%/)xS1zEOF(float)
1: Initialize sDist[kperm| with BIG_.FLOAT, sPos[kperm| with 0 in thread local memory
2: Initialize myS of size DIMENSION(S%7) in thread local memory
3: Set myS = D[S"][bx x B + tx]
4: for alla € {0,...,([5] —1)} do

5 Sshared[tr] = D[S%][a x B + tx] in shared memory
6:  SYNCTHREADS()

7. forallbe{0,...,(8—1)} do

8: if a x f4+b==bx x f+ tx then

9: continue

10: end if

11: dist =DISTMETRIC(myYS, Sshared[b])

12: if dist is smaller than any ¢ € sDist then

13: Insert dist in sorted order into sDist

14: Insert position a x 3+ b in sorted order into sPos
15: end if

16:  end for

17: end for

18: CURAND_INIT()
19: for all c € {0,...,(perm — 1)} do
20:  for all d € {(kperm — 1),...,1} do

21: POSshuffled = CURAND() mod(d + 1)
29: SWAP(sPos[d], sPos[posshyf fied])

23:  end for

24: u=20

25:  while AToMICCAS(used[c X n 4 sPos[u]],0,1) # 0 and u < kperm — 1 do
26: u=u-+1
27.  end while

28:  Vi[e x n+bx x B+ tx] = D[V;][sPosul]
29: end for

synchronizing the threads within the same thread block, the stride of values from D[S%/]
stored in shared memory is processed iteratively (see Algorithm 3 lines 7 — 16). If a value
selected from the current stride corresponds to the GPU thread’s sample, the iteration
is skipped. Otherwise, the distance dist is computed between myS, the GPU thread’s
sample, and Sspareq[b], the sample from the current iteration within the current stride. A
distance function DISTMETRIC is used to compute dist. As a default GPUcyrxnn computes
the Chebyshev distance. Based upon the computed distance dist, the local arrays sDist
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and sPos are updated. In case the value of dist is smaller than any element in sDist, dist
is inserted into sDist at the position that keeps sDist in order. The remaining elements
are shifted accordingly, and the entry with the largest distance is removed from sDist.
Accordingly, the array sPos is updated, storing the positions of the corresponding samples
in D[Si’j ]. After both loops have been executed, the kperm-nearest neighbors are determined,
and their positions are stored in sPos.

Next, the permutations V; are computed. This step builds upon using a random number
generator, e.g., from NVIDIA’s cu RAN D library. After initializing the random number
generator, each GPU thread computes the permutations corresponding to its sample (see
Algorithm 3 lines 18-29). Thus, for each permutation, the following steps are executed.
First, the positions within sPos are randomly shuffled (see Algorithm 3 lines 20-23). Next,
positions from sPos are drawn until either no other GPU thread has drawn the same
position (from {0,...,n — 1}) before, or it is the last position in sPos. To ensure that
no other GPU thread has drawn the same position before, an atomic compare and swap
operation ATOMICCAS is performed on the used data structure (see Algorithm 3 line 25).
Finally, the selected position from sPos is used to retrieve the value from DI[V;], which
is used within the current permutation at the GPU thread’s corresponding position (see
Algorithm 3 line 28). Once all GPU threads have terminated, the data structure V; contains
the local permutations of V; according to the kje,m-nearest neighbors within the S%J space.

CMI Estimation Kernel The estimatecpsgnn kernel (see Algorithm 4) takes several
parameters and pointer to data structures as input (see Algorithm 4 Input). The kernel
computes partial CMI values for each permutation, stored in the list partial.,; on GPU
upon termination. The kernel is launched with « threads per thread block and (perm +
1) x [] thread blocks. The parameter v should ideally be chosen as a multiple of the GPU
warp size, i.e., 32, and not exceed hardware constraints, i.e., 1024. Again, as a default, we
set v = 32. Further, upon kernel launch, shared memory of size 2 x X DIMENSION(S%/) x
sizeof(float) bytes is reserved for each thread block. Note the DIMENSION function returns
the size of the separation set, i.e., the number of variables contained within S%/. Once the
kernel is launched, each GPU thread processes lines 1-39 of Algorithm 4. Given that the
kernel is launched with n x (perm~+1) GPU threads, each thread is responsible for processing
one of the n samples within one permutation and participates in the computation of the
corresponding partial CMI value. Note that we increment perm by one to handle the base
CMI estimation from the non-permuted D[V;] values.

At first, the array sDist of size kcopsr is allocated and initialized in GPU thread local
memory. sDist is used to store the kgojprr-nearest neighbors. Further, each GPU thread
loads the values relevant to the sample it is processing, i.e., at position pos, into shared
memory (see function LOADINTOSHARED in Algorithm 4 line 3). Apart from D[V}][pos]
and D[S%][pos], the function LOADINTOSHARED either loads D[V;][pos] if bz == 0, or
V}[bx X n + pos] into the shared memory Dgpared[te].

Now, all n samples are iterated in a stride with a size corresponding to the number of
threads per block . The following steps are executed within this loop over the n samples and
compute the distance of the kcopsr-nearest neighbor. In the first step, values for the current
stride of samples are loaded into shared memory Dgpareq[y + tz]. The LOADINTOSHARED
function is used to distinguish between values from D[V;] and its permutations V;. After
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Algorithm 4 CMI estimation kernel within GPUcyixnn

Input: samples D[V;], D[V;] and D[S%/], permutations V;, data structure for partial cmi
values partialenm,;, number of samples n, k-nearest neighbors within CMI estimation kgpsr
# of blocks: (perm + 1) x [7]

# of threads per block: ~

Shared memory: 2 x v x (DIMENSION(S®7) + 2)xSIZEOF( float)

1: Initialize sDist[kcprr] with BIG_.FLOAT in thread local memory
2: pos = by X v+ tx

3: LOADINTOSHARED(Dparedltz], bz, pos, Vi, D[V;], D[V;], D[S%])

4: SYNCTHREADS()

5: for alla € {0,..., (5] —1)} do

6: posg =aXxXy+ix

7. LOADINTOSHARED(Dhared|y + tz], bx, posa, Vi, D[V;], D[V;], D[S%])
8:  SYNCTHREADS()

90 forallbe{0,...,(y—1)} do
10: dist =DISTMETRIC(Dspared[tx], Dshared|y + b))
11: if dist is smaller than any ¢ € sDist then
12: Insert dist in sorted order into sDist
13: end if

14:  end for

15: end for

16: Init counter Cgi;y;, CSi,jVj, Cgi; =0

17: for all a € {0,...,([2] —1)} do

18 pospa =a Xv+ix

19:  LOADINTOSHARED(Djgparealy + tz], bz, poss, Vi, D[Vi], D[V;], D[S™])
20:  SYNCTHREADS()
21: forallbe{0,...,(y—1)} do
22: dist :DISTMETRIC(DShared[tl’] [Si’j], Dsharedh + b] [Si’j])
23: UPDATECOUNTER(dist, sDist[kcmi], Csiav,, Csiav,, Cai)
24:  end for
25: end for
26: ATOMICADD (partialem;[bx], F (Cgigy,) + F(Csi,jvj) —F(Cgij))

synchronization of the threads within the same thread block, each thread loops through the
samples within the current stride, i.e., b € {0, ..., (v — 1)}. Within each loop iteration, the
thread computes the distance dist between its sample Dgpqreq[tz] and one sample from the
current stride Dgpgreqly + b]. The distance dist is computed using the distance function
DISTMETRIC, which defaults to the Chebyshev distance. If dist is smaller than any value
within sDist, i.e., the current kcasr-nearest neighbors, dist is inserted into the fix-sized
array sDist at the corresponding position to keep sDist sorted. Note that the last element
within sDist, i.e., the farthest distance, will be removed during this operation. After all
n elements have been processed, the distances of the kcpsr-nearest neighbors are stored in
sorted order sDist. Thus, the distance to the kopsr-nearest neighbor is stored in sDist at
position koprr-
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Next, the partial CMI values are computed, which requires counting the number of
points within the distance of the kcasr-nearest neighbor, i.e., within sDist[kcag], for the
following subspaces V; ® 8, V; ® 8% and S". Accordingly, the algorithm initializes
counters Cgijy;, Cgisy, and Cgi; for each subspace (see Algorithm 4 line 16). Again,
all n samples are iterated in a stride with a size corresponding to the number of threads
per block v using the LOADINTOSHARED function to load the appropriate samples into
shared memory. For each element within the current stride, the GPU thread first computes
the distances dist within the subspace S*/. The UPDATECOUNTER function checks if dist
is within sDist[kcarr]. If this check evaluates true, the algorithm increments Cgi; and
computes the distance within the other two subspaces, checks if these distances are within
sDist[kcarr), and increments Cgijy;, Cgigy, accordingly. Finally, after the n samples are
processed, each GPU thread computes its partial result for its corresponding sample, i.e.,
F(Csisv;) + F(Cgisy;) — F(Csis) . The partial result is added to the partial CMI value
partialem;[bz] for the corresponding permutation or the original CMI estimate, i.e. if bx ==
0 (see Algorithm 4 line 26). This addition requires an atomic operation to synchronize
between threads from multiple thread blocks. Once all GPU threads terminate, the data
structure partiale,; contains all partial CMI values for perm permutations and the non-
permuted case.

4.2 A GPU-based PC Algorithm for Parallel Execution of GPUcyrknn

The PC algorithm allows to plug in any Cl-test to discover the causal structures. Thus,
GPUcyikmn, as sketched in Algorithm 2, can be directly applied, computing each Cl-test
individually on the GPU. Note, we call this version GPUeyrknn—Single. In contrast, existing
GPU-accelerated approaches to CSL assume that all Cl-tests within the same level, i.e.,
with the same sized separation set, are computed in parallel on the GPU (Hagedorn and
Huegle, 2021a; Schmidt et al., 2018; Zarebavani et al., 2020). Adopting this one kernel
launch per level approach does not apply to GPUcyrknn, given that two individual kernels
are needed. The construction of one fused kernel that integrates the local Permutation
kernel with the estimatecsrgnn kernel is not considered for memory capacity reasons. In
particular, reserving space for all possible Cl-tests’ local permutations in global memory
can quickly exceed the GPU memory capacity. Besides, additional engineering is needed
to compute the p-value within the kernel. Further, global synchronization across all GPU
threads computing one Cl-test needs to be introduced within the kernel after calculating the
local permutation and computing the partial CMI values. Currently, this synchronization
occurs implicitly through the separation into two kernels.

Nevertheless, we propose a version of the PC algorithm tailored to the GPUcyrgnn CI-
test’s ideas, which computes multiple Cl-test operations in parallel. We call this ver-
sion GPUcyixnn—Parallel. By computing multiple Cl-test operations within one kernel,
GPUcurknn—Parallel achieves speed-up using the following two optimizations. First, given
that GPUcyiknn CI-test processes each of the n samples, respectively each of the n x (perm+1)
samples, in one GPU thread, the number of GPU threads launched within a kernel may
not fully utilize all available GPU cores. GPUcyrxnn—Parallel uses the idle GPU cores to
compute multiple Cl-tests in parallel within one kernel, which yields higher CI-test through-
put. Second, GPUcyrinn—Parallel reuses computed local permutations to avoid redundant
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computations. Based on the local permutation for a given separation set, the algorithm
estimates CMI values for multiple edges. In more detail, GPUcurknn—Parallel computes
the local permutations for a given set of separation sets to one variable V; in parallel at
once. Afterward, these local permutations are used multiple times during CMI estimation
with combinations of V; to any of the variables V; € a(V;) adjacent to V;. In Algorithm 5,
we describe the algorithm for GPUgyrxnn—Parallel, which includes the two optimizations
mentioned earlier.

Algorithm 5 GPUcyrinn—Parallel: A GPU-based adjacency search of PC algorithm
Input: observational data D with n samples from V variables, significance level a;, number
of permutations perm, k-nearest neighbors within permutation kpe,m, k-nearest neighbors
within CMI estimation kcprr, knn-based CMI estimation kernel estimatec s rinn()
Output: estimated skeleton C!, separation sets SepSet

1: Start with fully connected skeleton C~' and | = —1

2: repeat

3: l=1+1

4:  for all variables V; in C' do

5: Let a(V;) = adj(C, V;);

6: end for

7. for all variables V; in C! with |a(V;)| > I do

8: Compute all possible separation sets S from a(V;)
9: On GPU: Compute local permutations for all 8* with D, perm and kperm
10: for all S € S* do

11: Store local permutations in local Perm[S?]

12: end for

13: repeat

14: Choose S* from S°

15: On GPU: Estimate CMI for all V; € a(V;) \ {S*} with D, S, perm

estimatecnsrxnn (), konr and local Perm[SY]

16: for all V; € a(V;) do

17: Compute p based on computed CMI values
18: if p > a then

19: Delete edge E*J from C!
20: Save S* in SepSet
21: Remove V; from a(V;)
22: end if
23: end for
24: until all computed S° were chosen or |a(V;)| == 0

25:  end for
26: until each V; in C! satisfies |a(V;)| < [
27: return C', SepSet

Our proposed GPU-based adjacency search of the PC algorithm, called GPUcyrknn—Parallel,
takes the common input parameters of the PC algorithm, such as observational data D or
the significance level «, together with GPUcurxnn specific parameters, such as perm, kperm,
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ko or estimatecnsignn(). The adjacency search outputs the estimated skeleton C!, and
the corresponding separation sets SepSet. The algorithm starts with a fully connected
skeleton C, technically at level [ = 0. In level I = 0, independence testing does not consider
any separation sets, and therefore we can apply a simpler approach for the permutation
following the implementation of CMIknn (Runge, 2018). Description of the approach for
level I = 0 is skipped for brevity 2. In any other level [ > 1, the following steps are per-
formed. First, for each variable V; € C! the adjacent variables within the current version of
the skeleton C! are obtained (see Algorithm 5 lines 4-6). Next, for variables V; € C! whose
adjacency a(V;) has a size larger than the current level [, i.e., for which a separation set
can be constructed, are iterated (see Algorithm 5 lines 7-25). All possible separation sets
S? are computed for V; within this loop based on a(V;). For these separation sets, the local
permutations are computed at once within one GPU kernel and stored in the data struc-
ture local Perm. The GPU kernel is an extended version of the local Permutation kernel
(see Algorithm 3), launched with additional § thread blocks in the second grid dimension
according to the number of possible separation sets, i.e., § = |S’| In an inner-loop (see
Algorithm 5 lines 13-24), one separation set St from S is selected within each iteration.
Based on the selected separation set S?, the partial CMI values are computed for V; and all
Vi € a(V;) \ {S'} at once within one GPU kernel. This GPU kernel is an extended version
of the estimatecyrknn kernel (see Algorithm 4), which is launched with additional ¢ thread
blocks in the third grid dimension according to the remaining adjacent variables a(V;), i.e.,
0 = |a(V;)|. Afterward, the p-value is computed based on the corresponding partial CMI
values for each V; € a(V;). If p > «, the edge E%/ is removed from the current skeleton C',
the separation set S° is stored in Sepset at the position of £/, and V; is removed from a(V;)
(see Algorithm 5 lines 18-22). Once all possible S? € S’ were chosen, or there is no adjacent
variable in a(V;), the inner-loop is finished. After all variables V; € C! were processed, the
procedure is repeated with the next level [ = + 1. This process continues until no more
separation sets with the size of the current level [ can be constructed from the adjacency
a(V;) for any variable V; € C'. At this point, the algorithm returns the current skeleton C'
and the corresponding separation sets SepSet.

Note that within the approach of GPUcyrrnn—Parallel, the number of possible separation
sets S’ and the number of adjacent variables |a(V;)| can become significantly large and lead
to a memory demand that exceeds the capacity of the GPU memory. For these scenarios,
GPUcurknn—Parallel provides a blocked version, which operates on blocks of separation sets
for each variable V;. The blocked version introduces an additional loop, which performs all
steps in lines 9-23 of Algorithm 5 for each block of separation sets. Similarly, a blocked
version within the inner loop for the adjacent variables V; € a(V;) could be introduced if
required.

5. Experiments

In the following section, we present results from a series of experiments to evaluate the
runtime performance of GPUcyrinn, our proposed GPU-accelerated version of the CMIknn CI-
test (Runge, 2018), with varying parameters (see Section 5.2). Furthermore, we evaluate
the runtime performance when GPUcyrinn 1S applied in constraint-based causal discovery

2. The implementation for level [ = 0 is included in the GitHub repository
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(see Section 5.3). Therefore, we compare a CPU-based version of the PC algorithm that
employs CMIknn (Runge, 2018) with a version of the PC algorithm using GPUcyrynn, called
GPUcniknn—Single, and our proposed adaption of the PC algorithm GPUeyryn,—Parallel,
which is optimized for the use of GPUgyrinn. Note that the CPU-based version is executed
on a single thread and using multiple CPU cores in parallel. All experiments are run
following the experimental setup described as follows (see Section 5.1).

5.1 Experimental Setup

For each experiment, we conducted at least ten measurements executed on the same hard-
ware setup. The experiments were conducted on a system with one AMD EPYC 7343
with 16 cores equipped with an NVIDIA A40 card, with 48 GB of global High Bandwidth
Memory. The GPU card is connected via PCI-E 4.0. The system is equipped with 96
GB of DRAM. The operating system is Ubuntu 21.04, and the NVIDIA driver version
470.57 is installed with CUDA version 11.4. We report the median runtime in seconds of
the measurement runs to reduce the impact of noise due to background operating system
processes. The implementations used for the measurements are available online 3. Note for
the implementation of CMIknn (Runge, 2018) tigramite version 5.0 is used.

For the measurement runs, we utilize synthetic data, which allows us to investigate the
scalability concerning several dimensions. These dimensions are, for example, the number
of samples n, size of separation set |S%/| or the number of variables N. We generate data for
each measurement using the MANM-CS library (Huegle et al., 2021). In particular, we generate
CGMs that contain only continuous variables and have an edge density randomly chosen
between {0.1,...,0.5}. The functions associated with the edges are randomly selected
from the following list: {linear, quadratic, tanh}. Further, the number of samples n and
number of nodes N are chosen according to the requirements of the experiment setting,
and for the remaining parameters of MANM-CS the default values are used. Note, for the
Cl-test evaluation experiments, we also use the generated CGMs, but explicitly measure
the runtime of single Cl-tests.

If not stated differently, we chose the following default values for the parameters for
the examined implementations of GPUcMIknn GPUCMIknn—Single, and GPUcMtknn—Parallel
and CMIknn. We set kperp, = 15, which is slightly above the suggested range found in
CMIknn (Runge, 2018) and use perm = 100 to avoid excessive experiment runtimes. Note
the experiment runtime increases linearly with the number of permutations perm. Further,
we set 8 = 32 and v = 32. Therefore, each GPU thread block contains enough GPU threads
to fill an entire warp. At the same time, we keep the amount of shared memory required
for each GPU thread block low. For all experiments that require a significance level, we set
a = 0.01 by convention (Malinsky and Danks, 2018).

When comparing the GPU-accelerated approaches GPUcuiknn, GPUcmiknn—Single, and
GPUcurknn—Parallel to the CPU-based baseline CMIknn, the comparison focuses on two
aspects. First and foremost, the comparison focuses on the difference stemming from the
change in execution hardware, CPU vs. GPU. Second, the comparison considers different
knn estimation approaches. For the CPU-based baseline, computational efficient kd-tree
searches are employed. In contrast, the GPU-based versions are built upon brute-force

3. GitHub: https://github.com/ChristopherSchmidt89/gpucmiknn/
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Table 1: Median runtime in seconds (20 Cl-tests), scaling kcprr for Cl-tests with fixed
parameters: n = 1000, perm = 100, \Si’j| = 1. For percentiles see Table 6 in the

Appendix.
komr
Method 7 10 20 30 40 50 75 100 250 500
CMIknn 176 179 184 185 19 196 1.94 202 231 269
GPUqumnn | 0.005  0.01  0.01 001 0.02 002 007 013 052 1.15

searches, which are computationally less efficient, but better suited for the parallel execution
model of GPUs.

5.2 Runtime Evaluation of GPUcyrknn

We compare the runtime of GPUcyrknn to the CPU-based implementation CMIknn (Runge,
2018). We investigate the impact when scaling one of several parameters for the runtime
evaluation. In detail, we consider the number of kcjsr-nearest neighbors, the number of
samples n, the number of permutations perm, and the size of the separation set |S%/|. We
do not evaluate the performance concerning changes in Kperm as kperm does not impact
runtime much (Runge, 2018).

Impact of kcarr: According to Runge (2018) the kcopsr-nearest neighbors should be set
to koarr =~ {0.1...0.2} x n to yield good power. In the context of GPUeurknn, the parameter
koarr determines the size of arrays stored in GPU thread local memory. GPU thread local
memory can yield high performance as long as the data is placed in registers, which are
highly limited in size. Otherwise, performance degrades due to register spilling (Micikevi-
cius, 2011), as data structures within GPU thread local memory are now placed within global
memory. Thus, we assume that the runtime performance of GPUgyrinn drops while koasr
is increased. Table 1 shows the median runtime in seconds for 20 Cl-tests with n = 1000
samples, perm = 100 permutations and a separation set of size |S*/| = 1, when scaling
koyr from koprr = 7 to ko = 500. For the CPU-based baseline CMIknn that implements
kd-search trees to estimate knn, we find that the runtime increases by approximately 53%.
In contrast, for the GPU-based version GPUcyrinn, Which implements a brute-force approach
to estimate knn, we see a runtime increase by a factor of 230. Particularly for koarr > 50,
the runtime performance drops, which we account to register spilling. Thus, our assump-
tion is confirmed. Comparing the CPU- and GPU-based approaches, we find that for small
values of kcpr, €.8., up to kopsr = 50, the GPU-based version is up to a factor of 352 faster
than the CPU-based version and remains faster by a factor of 2.3 even for kgpr = 500.
Yet, for these large values of k¢ psr one should note that the GPU-based version is operating
in parallel, while CMIknn is single-threaded. Based on these observations we will report the
runtime of GPUcyrknn With several settings of kcopsr for the following measurements.

Impact of number of permutations perm: The number of permutations perm impacts
the runtime of the local permutation computation and the CMI estimation. In fact, for both
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Table 2: Median runtime in seconds (20 Cl-tests), scaling perm for Cl-tests with fixed
parameters: n = 1000, |Si’j | = 1. For percentiles see Table 7 in the Appendix.

perm

Method ko 50 100 9250 500 1000

CMIknn 200 1.18 2.39 5.98 12.47 24.61
7 0.004 0.01 0.01 0.02 0.04

GPUchixnn 20 0.01 0.01 0.01 0.03 0.05
200 0.2 0.39 0.93 1.83 3.65

Table 3: Median runtime in seconds (20 Cl-tests), scaling |S*/| for Cl-tests with fixed pa-
rameters: n = 1000, perm = 100. For percentiles see Table 8 in the Appendix.

Method k |51
oMI 1 2 3 4 5
CMIknn 200 2.43 2.9 3.28 3.56 4.02
7 0.005 0.01 0.01 0.01 0.01
GPUcyIknn 20 0.01 0.01 0.01 0.01 0.01
200 0.39 0.39 0.39 0.38 0.38

steps, the number of required computations increases linearly to the number of permutations
perm. Within the estimatecyrrrnn kernel, a larger number of permutations perm results
in launching the kernel with additional thread blocks, whereas the launch parameters for
the local Permutation kernel remain unaffected. In Table 2, we find the median runtime in
seconds for 20 Cl-tests with n = 1000 samples and a separation set of size |S%/| = 1 for
several settings of kcpsr when scaling perm from perm = 50 to perm = 1000. For CMIknn,
we find that the runtime increases by a factor of 20.8 from perm = 50 to perm = 1000,
which confirms the linear increase in runtime, as perm is increased by a factor of 20. For
GPUcurknn, We see that from perm = 50 to perm = 1000, the runtime increases below a factor
of 20. While, for koparr = {7,20} the runtime increases up to a factor of 10, for kcprr = 200
the runtime increases by up to factor of 18.25. We assume that the slightly lower increase in
runtime is due to better utilization of the parallel computing capabilities of the GPU, given
that more threads are launched during CMI estimation. Yet, for kcarr = 200, the accesses
to global memory, due to register spilling, seem to become a performance bottleneck.

Impact of separation set size |S?/|: The size of the separation set [S*/| directly in-
creases the number of dimensions within the knn searches during local permutation compu-
tation and CMI estimation. Higher dimensions impact the runtime of the kd-tree approach
and the brute-force approach. Kd-trees generally suffer under the curse of dimensional-
ity (Bentley, 1975). Thus we assume that the performance will drop with a larger separation
set |Si’j for CMIknn. Generally, we assume a similar behavior for GPUcyrxnn. In Table 3 we
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Table 4: Median runtime in seconds (20 Cl-tests), scaling n for Cl-tests with fixed param-
eters: |Si’j| =1, perm = 100. Note kcpsr = adaptive refers to a value dependent
on the number of samples n, kcprr = 0.2 X n. For percentiles see Table 9 in the

Appendix.

Method & "
erho oMI 100 250 500 1000 2500 5000 10000
7 0.43 0.65 1.02 1.79 4.76 9.82 20.62
CMIknn 20 0.43 0.67 1.05 1.85 489  10.19  21.64
adaptive |  0.46 0.67 1.12 2.31 6.86  17.96  55.07
7 0.002  0.002 0.003 0.005  0.01 0.04 0.13
CPUovikan 20 0.002  0.002 0.004  0.01 0.02 0.05 0.17
adaptive | 0.002  0.004  0.04 0.39 5.7 44.88  355.77

find the median runtime in seconds for 20 Cl-tests with n = 1000 samples and perm = 100
permutations for several settings of kcoarr when scaling the size of the separation set ]Si’j
from |S%/| = 1 to |S%J| = 5. For CMIknn we find that the runtime increases by 65% from
|S%3| =1 to |S*| = 5, which confirms our assumption. For GPUcurkm, we find for all three
chosen parameters of koprr = {7,20,200} that the runtime remains unaffected by the size
of the separation set |S%/|. We observe that loading the additional dimensions into GPU
thread local or shared memory does not add any costs.

Impact of number of samples n: The number of samples n has a major impact on the
runtime of knn-estimation approaches (see Section 3.2). Thus, we assume that the runtime
of GPUcurxnn increases quadratic with an increase of the number of samples n, whereas
the runtime of CMIknn increases approximately logarithmicconcerning to an increase of
n. Furthermore, note that according to Runge (2018), the parameter ko7, which has a
significant impact on the runtime of GPUeurynn, depends on the number of samples n. Table 4
accounts for this dependence within the rows where kopr = adaptive, i.e., koyr = 0.2 X n.
Furthermore, in Table 4, we report the median runtime in seconds for 20 Cl-tests with
a separation set size of |S%/| = 1, and perm = 100 permutations for several settings of
kcar when scaling the number of samples n from n = 100 to n = 10000. For CMIknn,
we confirm that the runtime increases logarithmically to the number of samples. Similarly,
our measurements confirm a quadratic increase in runtime for GPUcyrinn, When kopsr = 200.
Yet, for small values of kcprr = {7,20} we observe that the increase in runtime is less
drastic. Again, we assume that for kcpsr = 200, accesses to global memory are the main
bottleneck within the GPU kernel. In contrast, for the smaller values of k-1 the additional
GPU threads launched due to an increase of n hide some of the assumed performance
degradations. Yet, for a certain number of samples n, the number of launched GPU threads
exceeds the capabilities of the GPU hardware, and we observe the quadratic increase, e.g.,
for n > 2500. When comparing the CPU- and GPU-based approaches, we find a large
performance gain for sample sizes of of up to n = 1000. The performance gain depends on
the parameter kcpsr, but is within the range of factor 5.9 to factor 358. For larger values
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Table 5: Speed-up over single-threaded CPU execution, median of 10 different CGMs, with
n = 1000 and perm = 100. Significance level of PC algorithm o = 0.01. Addi-
tional runtime measurements for selected high-dimensional settings can be found
in Table 10 in the Appendix.

N
Method ko 10 20 30 40 50
7 3.43 434 3.95 412 416
CPU-8 20 3.33 121 3.91 1.03 3.97
200 2.36 2.81 3.44 3.35 3.88
7 28073 267.46  320.71 34239 342,19
GPUcurinn-Single 20 19055 1765  216.87 2583  234.09
200 3.62 3.15 4.94 4.39 5.17
7 460.07 45864 84469 98583  1002.0
GPUanmn-Parallel 20 97415 26517  466.63  522.87  489.25
200 3.7 3.48 5.00 1.68 5.59

of n > 2500, the GPU-based version only remains faster if the parameter kgpsr is fixed to
a small value, e.g., kopr = {7,20}. In this case, GPUeuiknn is up to a factor of 476 faster
than CMIknn. In contrast, for the case that koprr = adaptive CMIknn is faster by a factor
of up to 6.5 for large n.

5.3 Runtime Evaluation of Adjacency Search in PC Algorithm with GPUcyrknn

In the following, we experimentally evaluate the runtime performance of our proposed GPU-
based Cl-test GPUcyignn used within the PC algorithm. Therefore, we compare the CPU-
based Cl-test CMIknn applied within a single-threaded and parallel CPU-based version of the
PC algorithm to the two GPU-accelerated versions GPUeurknn—Single and GPUcurknn—Parallel,
which are described in Section 4.2.

In Table 5 we present the measurements based on synthetic generated CGMs (see
Section 5.1 for detail), increasing the number of variables N within the CGMs, keeping
the number of samples fixed at n = 1000, and the number permutations at perm = 100.
The significance level is set to « = 0.01. We report the median speed-up for 10 CGMs
for GPUcutknn—Single, GPUcurknn—Parallel, and CPU-8 over the single-threaded CPU-based
version. Note CPU-8 is the parallel CPU-based version running on 8 CPU cores.

From the measurements presented in Table 5, we make the following observations: First,
the CPU-based parallel version, CPU-8, achieves a speed-up of roughly factor 4 over the
single-threaded version, even though it utilizes 8 CPU cores. For kcasr = 200, we observe
slightly less speed-up than for small values of kcoprr. This effect is explained given that single
Cl-test runtime is higher for kopsr = 200, which amplifies the impact of load imbalance
present in parallel execution of the PC algorithm’ adjacency search (Schmidt et al., 2019).
For the GPU-based versions of the PC algorithm, GPUcyrxnn—Single, GPUcurknn—Parallel,
we observe a high speed-up for small values of kcparr = {7,20}. Whereas for koasr = 200,
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the achieved speed-up is within the CPU-based version CPU-8. Furthermore, we find that
for smaller values of NV, e.g., N < 40, the speed-up of GPUcyixnn—Parallel over the single-
threaded CPU-based version increases as N increases. We assume that this additional
speed-up is a results from idea behind GPUcyrxnn—Parallel to process multiple Cl-tests in
parallel. For larger N, the parallel computing capabilities of the GPU are already saturated,
and no additional speed-up is achieved.

Comparing GPUcyiknn—Single with GPUcyrknn—Parallel, we observe that for kcoppr =
{7,20} between factors of 1.44 to 2.93, additional speed-up is achieved with our GPU-
accelerated version of the PC algorithm tailored for the GPUcyixnn Cl-test. In contrast, for
komr = 200, both versions achieve a similar speed-up.

Overall, we confirm the performance gain of GPUeurknn in the context of the PC algorithm
over the existing CPU-based version CMIknn for small values of ko, e.g., konr = {7,20},
as already observed in the experiments of the previous Section 5.2. In these settings, our
proposed version GPUcyrxnn—Parallel outperforms CPU-8 by factors of up to 240. Yet, for
large ko, i-e., koyr = 200, CPU-8 and both GPU versions of the PC algorithm have a
similar runtime. Thus, If runtime is the main goal, we recommend choosing a small value
for kcprr. Although, this contradicts the recommendation for choosing kcjr; by Runge
(2018).

Impact of kcpr on quality of learned CGM: The proposed GPU-accelerated al-
gorithms provide good runtime for small values of kcpsr, regardless of other parameters.
Thus, we examine the impact of the parameter kcopsr on the structural hamming distance
(SHD) (Tsamardinos et al., 2006) when discovering the CGM. The SHD allows insights
into the quality of the learned CGM. Therefore, we randomly generate 50 CGMs with
N =20,n = 1000 and run the PC algorithm version GPUeyrxnn—Parallel with perm = 100,
a = 0.01 and various values for ko from koprr = 7 to koprr = 200. We set the computed
SHD for kcprr = 7 as a baseline. Then, we calculate the difference between the baseline
SHD and the SHD computed for other values of kcopsr. Thus, values of the SHD below 0
indicate a quality improvement of the learned CGM.

In Figure 1, we report the minimum, median and maximum difference of the SHD, de-
noted by ASH D, from the 50 CGMs. We observe that the median SHD improves for up to
komr = 30, remains similar for up to koyr = 75, and deteriorates for koprr > 100, com-
pared to the SHD calculated for kcps;r = 7. Based on this observation, one could conclude
that small values of ko are sufficient to learn the CGM, which favor the runtime improve-
ment of our GPU-accelerated approaches. Yet, for several CGMs, there is an improvement
of the SHD observable for large values of kcpsr. Thus, a trade-off remains between runtime
and the quality of the learned CGM, based on the parameter kcpsr. Further research on
the impact of kcpsr on the quality of the learned CGM would be needed.

6. Conclusion

In this work, we propose a GPU-accelerated Cl-test for nonlinear relationships called
GPUcMIknn. GPUcurknn i8S @ GPU-based version of CMIknn (Runge, 2018), an existing Cl-test
using CMI combined with a local permutation scheme. In GPUcyurknn, We leverage the parallel
computing capabilities of GPUs to accelerate the local permutation computation and the
CMI estimation. Furthermore, we introduce an extension of the PC algorithm that employs
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Figure 1: Development of SHD with increasing kcasr as difference regarding the SHD with
kcyr = 7, computed for 50 random generated CGMs with N = 20, n = 1000
and algorithm parameters perm = 100 and a = 0.01. ASHD < 0 describes an
improved quality.

GPUcurknn to compute multiple Cl-tests in parallel. The approach called GPUcyrknn—Parallel
reuses computed local permutations to reduce the computational demand.

In our experimental evaluation, we demonstrate the runtime performance of our GPU-
based approaches concerning relevant parameters of the algorithm. In particular, we find
that the runtime of GPUgyrknn and, respectively, GPUcyrknn—Parallel mainly depends on the
chosen value for the parameter kopsr. For small values of koarr, €.g., koyr = 7, GPUciknn
is up to a factor 352 faster than its CPU-based counterpart. In the context of the PC
algorithm, GPUcyurinn—Parallel outperforms a multi-threaded CPU-based version running
on eight cores by up to a factor of 240. In contrast, for large values of kopsr,e.g., ko = 200,
we find that GPUcyixnn—Parallel has similar runtimes to the multi-threaded CPU-based
version. GPUcyrknn remains only up to a factor 2.3 faster than its single-threaded CPU-
based counterpart for koarr = 500. The chosen value of kg impacts the quality of the
Cl-test (Runge, 2018) and the quality of a learned CGM. Yet, our evaluation indicates
that the impact of a smaller value for kcps; on the quality of the learned CGM is not as
strong as expected. Further research is required to determine suitable values for kg that
balance runtime improvements with loss in result quality. In this context, a more extensive
experimental evaluation comparing GPUeurknn—Parallel to other existing methods for causal
discovery in non-linear settings (Strobl et al., 2019; Zhang et al., 2011) is left for future work.
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Appendix

A. Runtime Evaluation of GPUgyrynn

Table 6: Median runtime in seconds (20 Cl-tests), scaling kcprr for Cl-tests with fixed
parameters: n = 1000, perm = 100, \Si’j\ = 1. Extended version of Table 1
including percentiles.

i kowmr
Method  percentile | 10 20 30 40 50 75 100 250 500
0.05 174 177 1.82 181 1.89 194 193 1.99 22 261
CMIknn 0.5 176 179 1.84 185 1.9 196 1.94 202 231 2.69
0.95 203 1.89 1.96 1.98 203 207 2.06 214 248 2.87
0.05 0.005 0.01 0.01 0.01 0.02 002 007 0.13 052 1.14
GPUchrins 0.5 0.005 0.01 0.01 001 0.02 002 007 0.13 052 1.15
0.95 0.005 0.01 001 001 002 003 007 0.13 052 1.15

Table 7: Median runtime in seconds (20 Cl-tests), scaling perm for Cl-tests with fixed pa-
rameters: n = 1000, |[S*/| = 1. Extended version of Table 2 including percentiles.

. perm

Method komr percentile 50 100 950 500 1000
0.05 1.17 2.36 5.87 11.79 23.87

CMIknn 200 0.5 1.18 2.39 5.98 12.47 24.61
0.95 1.29 2.51 6.3 12.63 25.03

0.05 0.004 0.005 0.01 0.02 0.04

GPUcMTkan 7 0.5 0.004 0.01 0.01 0.02 0.04
0.95 0.004 0.01 0.01 0.02 0.04

0.05 0.01 0.01 0.01 0.03 0.05

GPUcMTkan 20 0.5 0.01 0.01 0.01 0.03 0.05
0.95 0.01 0.01 0.01 0.03 0.05

0.05 0.19 0.39 0.92 1.82 3.64

GPUcMTkan 200 0.5 0.2 0.39 0.93 1.83 3.65
0.95 0.2 0.39 0.93 1.84 3.67
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Table 8: Median runtime in seconds (20 Cl-tests), scaling |S*/| for Cl-tests with fixed pa-
rameters: n = 1000, perm = 100. Extended version of Table 3 including per-

centiles.
Method k rcentil 5]
etho CMI percentile 1 9 3 4 5

0.05 2.4 2.85 3.21 3.47 3.89

CMIknn 200 0.5 2.43 2.9 3.28 3.56 4.02
0.95 2.57 3.04 3.46 3.76 4.18
0.05 0.005 0.01 0.01 0.01 0.01

GPUcMIknn 7 0.5 0.005 0.01 0.01 0.01 0.01
0.95 0.005 0.01 0.01 0.01 0.01
0.05 0.01 0.01 0.01 0.01 0.01

GPUcMIknn 20 0.5 0.01 0.01 0.01 0.01 0.01
0.95 0.01 0.01 0.01 0.01 0.01
0.05 0.39 0.38 0.38 0.38 0.38

GPUcMIknn 200 0.5 0.39 0.39 0.39 0.38 0.38
0.95 0.39 0.39 0.39 0.39 0.39
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Table 9: Median runtime in seconds (20 Cl-tests), scaling n for Cl-tests with fixed parame-
ters: \Sm\ =1, perm = 100. Note kcprr = adaptive refers to a value dependent on
the number of samples n, koprr = 0.2 X n. Extended version of Table 4 including

percentiles.
. n
Method ke percentile | 00 950 500 1000 2500 5000 10000
0.05 043 0.64 1.02 178 472 975  20.52
CMIknn 7 05 043 0.65 1.02 179 476 982  20.62
0.95 055 0.76 1.3 192 489 10.02 20.79
0.05 043 0.65 1.03 1.83 475 10.04 21.58
CMIknn 20 05 043 0.67 1.05 185 489 10.19 21.64
0.95 055 078 1.5 199 505 1041 22.03
0.05 041 064 1.1 216 678 17.76 544
CMIknn  adaptive 0.5 046 0.67 112 231 686 17.96 55.07
0.95 057 0.77 1.23 243 746 181 55.61
0.05 0.002 0.002 0.003 0.005 001 004 0.13
CPUayrcan 7 0.5 0.002 0.002 0.003 0.005 001 004 0.13
0.95 0.002 0.002 0.003 0.005 0.01 004 0.13
0.05 0.002 0.002 0.004 001 002 005 0.17
CPUcurnn 20 0.5 0.002 0.002 0.004 001 002 005 0.17
0.95 0.002 0.003 0.004 0.01 0.02 005 0.17
0.05 0.002 0.004 0.04 039 569 448 355.37
GPUgniean  adaptive 0.5 0.002 0.004 0.04 039 57 4488 355.77
0.95 0.002 0.004 004 039 572 4504 357.36
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B. Runtime Evaluation of Adjacency Search in PC Algorithm with
Gl:)UCI"lIknn

Table 10: Runtime in seconds for high-dimensional sparse synthetic CGMs and selected
gene expression datasets used in previous work (Schmidt et al., 2018). The sparse
synthetic CGMs are generated as described in Section 5.1, with n = 1000, but
have an edge density that leads to DAGs with an average degree of approximately
1.5. The algorithms’ parameters are set as follows: perm = 100, kopygr = 7,
kperm = 15, = v = 32, @ = 0.01. Note experiment runs longer than 24 hours
were terminated and are marked with did not finish (DNF).

Synthetic CGMs NCI-60 MCC BR51

Method N
100 250 500 750 1000 1190 1380 1592
CPU-8 1399 5425 17586 40762 62967 82287 DNF DNF
GPUcutknn—Single 25.5 122 446 1028 1715 1867 7545 4677
GPUcurknn—Parallel | 14.4  74.7 281 637 1088 764 1653 1680
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