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Abstract

The discovery of causal relationships from observational data is an omnipresent task in
data science. In real-world scenarios, observational data is often high-dimensional, and
functional causal relationships can be nonlinear. To handle nonlinear relationships within
constraint-based causal discovery, appropriate conditional independence tests (CI-tests)
become necessary, e.g., non-parametric information-theory-based CI-tests. Both high-
dimensional data and CI-tests for nonlinear relationships pose computational challenges.

Existing work proposes parallel processing on Graphics Processing Units (GPUs) to
address the computational demand resulting from high-dimensional data, in the case of
discrete data or linear relationships. We extend this idea to cover CI-tests for nonlinear
relationships in our work. Therefore, we develop GPUCMIknn, a GPU-accelerated version of an
existing CI-test, which builds upon conditional mutual information (CMI) combined with
a local permutation scheme. Further, we propose a version of the PC algorithm, called
GPUCMIknn-Parallel, to process multiple instances of GPUCMIknn on the GPU in parallel.

Experiments show that the performance of GPUCMIknn is mainly a↵ected by the number
of k-nearest-neighbors (knn) within the CMI estimation. Depending on the chosen number
of knn, the achieved speedup of GPUCMIknn ranges between factors of 2.3 to 352. In causal
discovery, our method GPUCMIknn-Parallel outperforms a single-threaded CPU version by
factors of up to 1 000, a multi-threaded CPU version using eight cores by factors of up to
240, and a naive GPU version by up to a factor 3.

Keywords: GPU Acceleration, PC Algorithm, Conditional Independence Testing, High-
dimensional Data

1. Introduction

The discovery of causal structures from observational data is of relevance in many do-
mains (Spirtes et al., 2000; Rau et al., 2013; Huegle et al., 2020; Hagedorn et al., 2022), in
particular when randomized control trials are not feasible due to costs, ethics, or complex-
ity (Rubin, 2007). In real-world scenarios, frequently, observational data sets have neither
purely discrete nor continuous variables but contain a mixture of discrete-continuous vari-
ables or have non-linear relationships (Malinsky and Danks, 2018). Furthermore, data
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sets are often high-dimensional, leading to long execution times for causal discovery algo-
rithms (Le et al., 2019).

Recent advances in the field of constraint-based causal structure learning (CSL) pro-
pose non-parametric conditional independence tests (CI-tests) based on information theory
to handle non-linear relationships (Runge, 2018) or mixed discrete-continuous data (Hue-
gle, 2021). These CI-tests build upon the estimation of mutual information (MI), respec-
tively conditional mutual information (CMI) using k-nearest-neighbor (knn) estimators,
e.g., see Frenzel and Pompe (2007); Vejmelka and Paluš (2008); Gao et al. (2017); Mesner
and Shalizi (2021) and combine the estimator with a local permutation scheme to generate
the null distribution. The computational complexity of such CI-tests is much higher, i.e.,
O(n2) (Runge, 2018), compared to well-known CI-tests, e.g., Fisher’s z-test (Fisher, 1915)
or Pearson’s �2 test (Pearson, 1900) for continuous or discrete data. Consequently, the run-
time of the individual CI-test and hence runtime of constraint-based CSL algorithms, such
as the well-known PC algorithm (Spirtes et al., 2000), increase with higher computational
complexity.

In this context, versions of the PC algorithm for highly parallel execution on Graphics
Processing Units (GPUs) are proposed, which achieve speed-up of orders of magnitude
over CPU-based approaches (Schmidt et al., 2018; Zarebavani et al., 2020; Hagedorn and
Huegle, 2021a). The GPU-accelerated versions are tailored to use of common CI-tests for
continuous (Schmidt et al., 2018; Zarebavani et al., 2020) or discrete data (Hagedorn and
Huegle, 2021a). Each version leverages unique CI-test characteristics to achieve speed-
up on a GPU. Therefore, the approaches are not easily transferred to CI-tests based on
information theory.

This paper addresses the high runtime of the existing information-theoretic CI-test
CMIknn (Runge, 2018) by employing a GPU as an execution device. Our GPU-accelerated,
CUDA-based version GPUCMIknn computes the local permutation scheme and estimates the
CMI value in separate CUDA kernels. The permutation kernel of GPUCMIknn leverages GPU
thread block scheduling (Hennessy and Patterson, 2017) to create a random order for the
permutation scheme by processing observations within multiple warps over multiple thread
blocks. In the CMI estimation kernel, we apply ideas of pipelined execution (Funke et al.,
2018) to utilize per-thread local memory during knn computation following a brute force
approach. While generally, knn estimation using a kd-tree has lower computational com-
plexity than using a brute force approach, the brute force approach benefits from the parallel
computing capabilities of the GPU. Therefore, our proposed GPU-accelerated version im-
plementing a brute force approach is well suited for CMI estimators requiring a smaller k,
such as, k  200. Note that the optimal choice of the parameter k within CMI estimation
depends on the employed estimator. For example, for CMIknn, hence for GPUCMIknn, it is
suggested to set k = 0.2⇥ n, where n is the number of observations (Runge, 2018).

We integrate GPUCMIknn into a custom version of the PC algorithm, which allows for par-
allel execution of multiple CI-tests on the GPU. Therefore, we implement parallel versions
of the permutation kernel and the CMI kernel. Additionally, we adopt an execution order of
CI-tests that allows reusing computed local permutations across multiple CI-tests, reducing
the runtime.

We evaluate GPUCMIknn and our proposed version of the PC algorithm GPUCMIknn-Parallel

in an experimental setting on synthetic data. Therefore, we consider the execution of a sin-
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gle CI-test and investigate the performance regarding relevant parameters, e.g., number of
observations n, number of permutations perm, or number of kCMI nearest neighbors within
CMI estimation. Second, we evaluate the performance of GPUCMIknn in the context of the PC
algorithm. In both cases, we compare with the existing CPU-based version CMIknn (Runge,
2018). We find that the performance of our GPU-based version of the CI-test is mainly
dominated by choice of kCMI , the number of knn during CMI estimation. For values of
kCMI  200, the GPUCMIknn outperforms its CPU counterpart by up to two orders of mag-
nitude, mainly when keeping kCMI  20. Under the assumption of small values for kCMI ,
GPUCMIknn scales well within all other considered dimensions, i.e., number of samples n,
number of permutations perm, or size of separation set |S|. In the context of the PC al-
gorithm, we observe similar behavior concerning the parameter kCMI . GPUCMIknn-Parallel
provides additional speed-up of almost a factor of 3 over a baseline non-parallel version
employing GPUCMIknn. Compared to the parallel execution of CMIknn on the CPU on eight
cores, GPUCMIknn-Parallel remains faster by factors of up to 250 for kCMI = 7 but performs
similarly for kCMI = 200.

The remainder of the paper is structured as follows: Section 2 provides background
on constraint-based CSL, the concepts of information-theoretic CI-tests, and GPUs. In
Section 3, we discuss existing work on GPU acceleration for CSL. We introduce our GPU-
accelerated CI-test GPUCMIknn and its parallel implementation within the PC algorithm in
Section 4. Section 5 provides an experimental evaluation of our proposed method and
discusses our results. Finally, in Section 6, we summarize our work.

2. Preliminaries

This section introduces terminology in the context of constraint-based CSL, the PC algo-
rithm, and information-theoretic-based CI-tests. Also, we outline necessary GPU hardware
and execution concepts together with the associated programming model.

2.1 Constraint-based Causal Structure Learning

Within our work, we follow the well-known theory of Causal Graphical Models (CGMs) and
CSL, cf. (Spirtes et al., 2000; Peters et al., 2017; Pearl, 2009). Thus, a Directed Acyclic
Graph (DAG) G is defined by G = (V,E), with N random variables V = {V1, . . . , VN}
and an edge set E ✓ V ⇥ V, that contains only directed edges Vi ! Vj such that G
contains no cycles. The combination of a DAG G and a joint probability distribution over
the variables V defines a CGM (Pearl, 2009). Thus, a directed edge Vi ! Vj in G represents
a direct causal relationship. Further, the DAG G entails information about the conditional
independence of the variables via the d-separation criterion. Hence, two variables Vi, Vj 2 V
are conditionally independent given a set of variables Si,j ⇢ V \ {Vi, Vj} if and only if the
variables Vi and Vi are d-separated by the set Si,j .

In this context, CSL is the search for the underlying causal relationships described by G
from i.i.d. observational data D with n samples of N variables. Thereby, methods of CSL
leverage the conditional independence characteristics of the joint probability distribution
over the variables, which allows estimation of the causal structures up to the Markov equiv-
alence class of G, which can be represented by a Complete Partially Directed Acyclic Graph
(CPDAG) (Chickering, 2002). Therefore, methods of constraint-based CSL apply CI-tests
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to discover the causal structures of the CGM. Note that the appropriate CI-test for a given
datasset is directly determined by the datasset’s probability distribution (Dawid, 1979).
An e�cient method for constraint-based CSL is the PC algorithm (Spirtes et al., 2000).
The PC algorithm has an adjacency search and an edge orientation. The adjacency search
determines the skeleton graph C of G, in which all edges Ei,j 2 E, with Ei,j = (Vi, Vj)
are undirected. The adjacency search is an iterative algorithm running from level l = 0
up to l = maxVi2V |adj(G, Vi)| � 1, where adj(G, Vi) returns all adjacent variables of Vi

in G. The algorithm starts with a fully connected skeleton C0 in level l = 0. Within
each level, the algorithm performs CI-tests for all remaining edges Ei,j in Cl, for which at
least one separation set Si,j of size l can be constructed. A separation set Si,j contains a
combination of adjacent variables from Vi, i.e., Si,j that is drawn from adj(Cl, Vi) \ {Vj}.
The algorithm iteratively processes all possible separation sets Si,j = {Si,j

1 , . . . , Si,j
M }, where

M =
�|adj(Cl,Vi)\{Vj}|

l

�
, where the size l equals to the current level. In case the p-value

computed by the CI-test CI(Vi, Vj |Si,j) is larger than the provided significance level ↵, the
corresponding edge Ei,j is removed from Cl. Additionally, the corresponding separation set
Si,j is stored, and no additional CI-tests are conducted for this edge. Hence, this inner
loop can be terminated early. Further, the edge Ei,j is not considered at any higher level.
Once all edges within the current level have been processed, the algorithm continues with
the subsequent level. Upon reaching the maximum level, the adjacency search returns the
estimated skeleton C and the stored separation sets SepSet.

Within the edge orientation, as many edges as possible are oriented based upon deter-
ministic rules (Spirtes et al., 2000; Colombo and Maathuis, 2014). The adjacency search
constitutes the majority of the computation of the PC algorithm, given its computational
complexity, which is exponential to the number of variables N in the worst case and remains
polynomial even for sparse graphs (Kalisch and Bühlmann, 2007). Therefore, CPU-based
parallel extensions (Le et al., 2019; Schmidt et al., 2019; Scutari, 2017) and GPU-accelerated
versions (Schmidt et al., 2018; Zarebavani et al., 2020; Hagedorn and Huegle, 2021a) of the
PC algorithm, focus on improving the execution time of the adjacency search.

2.2 Information-theoretic Conditional Independence Tests

In information theory, measures, such as mutual information (MI), provide a means to an-
alyze the information flow between two systems (Hlaváčková-Schindler et al., 2007). Thus,
the concept of MI encodes the shared information for two random variables Vi, Vj , and is the
basis for CI-testing (Bishop, 2006). Utilizing the MI for CI-tests has two challenges. First,
MI has to be estimated from the observational data, depending on the underlying data
distribution (Gao et al., 2017). Second, to use MI within a CI-test requires determining a
null distribution. A recently proposed information-theoretic CI-test (Runge, 2018) employs
k-nearest neighbor estimation (Frenzel and Pompe, 2007; Vejmelka and Paluš, 2008) to es-
timate MI, respectively CMI and utilizes a local permutation-scheme (Doran et al., 2014)
to determine the null distribution. The CI-test is sketched in Algorithm 1.

The algorithm starts by computing for each sample a with a 2 {1, . . . , n} a list of nearest
neighbors knn[a] of size kperm with 0 < kperm < n. The nearest neighbors are determined
according to the distance in the dimension of the separation set Si,j of the current sample
to all other samples of the observation data (cf. Algorithm 1 lines 1–3).

4



GPU-accelerated Information-theoretic Causal Discovery

Algorithm 1 CI-test based on nearest-neighbor permutation (Runge, 2018)
Input: number of permutations perm, k-nearest neighbors within permutation kperm,k-
nearest neighbors within CMI estimation kCMI , observational data D, variables Vi, Vj ,
separation set Si,j , number of samples n, estimator function estimatorknn()
Output: p-value p, test statistic cmi

1: for all a 2 {1, . . . , n} do
2: knn[a] = k nearest neighbors(kperm, a,D[Si,j ], n)
3: end for
4: for all m 2 {1, . . . , perm} do
5: for all a 2 {1, . . . , n} do
6: Shu✏e list knn[a]
7: end for
8: Initialize empty set used
9: D̂ = {}

10: ord = create random order({1, . . . , n})
11: for all a 2 ord do
12: x = knn[a][0]
13: y = 0
14: while x 2 used & y < kperm � 1 do
15: y = y + 1
16: x = knn[a][y]
17: end while
18: D̂[a] = D[Vi][x]
19: used.add(x)
20: end for
21: ˆcmi[m] = estimatorknn(D̂,D[Vj ], D[Si,j ], kCMI)
22: end for
23: cmi = estimatorknn(D[Vi], D[Vj ], D[Si,j ], kCMI)

24: p = 1
perm

permP
m=1

1(cmi  ˆcmi[m])

Next, for each permutation m with m 2 {1, . . . , perm} the values of Vi are locally
permuted according to the lists of nearest neighbors knn[a] with a 2 {1, . . . , n}. In this
step, first, each list of nearest neighbors knn[a] is shu✏ed, an empty set for used elements
used is initialized, a vector of size n for the permuted values D̂ is initialized, and a random
order is created for the n samples (cf Algorithm 1 lines 5–10). Next, the samples are iterated
in the previously determined order (cf. Algorithm 1 lines 11–18). For each sample, one of
its nearest neighbors is drawn from the list and placed at the sample’s position in the local
permutation D̂. The drawing mechanism chooses the nearest neighbor of the current sample
that a previous samples has not drawn unless it is the kth-nearest neighbor. This restriction
is achieved as drawn neighbors are added to the set for used elements used. Once the
local permutation of Vi is generated, it is used to compute the CMI based on the estimator
function estimatorknn() (cf. Algorithm 1 line 21). The calculated CMI value is stored for
each permutation in a list ˆcmi.
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After the CMI values for all permutations are computed, the CMI value from original
non-permuted samples cmi is computed (cf. Algorithm 1 line 23). Finally, the p-value p
is computed as the average of the indicator function, evaluating if cmi is less or equal to
the permuted CMI values ˆcmi[m] over all permutations m 2 {1, . . . , perm}. The algorithm
returns the p-value p and cmi as the test statistic.

The algorithmic template of the CI-test sketched in Algorithm 1 allows substituting the
estimator. Without additional changes to the algorithm, estimators suitable for specific
data characteristics can be plugged-in. For example, in the original version of the CI-
test, a k-nearest neighbor estimator suitable for continuous time series data with non-linear
relationships (Frenzel and Pompe, 2007) is used. In recent work, Huegle (2021) suggests
employing a k-nearest neighbor estimator proposed by Gao et al. (2017) for mixed discrete-
continuous data.

2.3 Graphics Processing Units

GPUs have seen a growing interest as dedicated processing units to accelerate machine
learning workloads (LeCun et al., 2015). These machine workloads benefit from the ample
parallel computing capabilities and specific hardware features of GPUs.

GPU hardware characteristics A GPU provides global and shared memory and has its
cache hierarchy and dozens of streaming multiprocessors (SMs), with individual processing
cores each. Within current GPU generations, the global memory has a capacity of up to 80
GB (Choquette et al., 2021). Data structures in global memory can be accessed by threads
placed on cores across all SMs. In contrast, shared memory has a limited capacity of only
up to 192 KB. Yet, it has a higher memory bandwidth than global memory. Further, data
structures in shared memory are only accessible by threads placed on cores within the same
SM.

GPU execution concept The GPU is a throughput-oriented device (Kirk and Hwu,
2013) that follows the Single Instruction Multiple Threads (SIMT) execution model (Lind-
holm et al., 2008), meaning that processing threads are grouped and execute the same
scheduled instruction in lockstep. Each thread operates on a dedicated core. Commonly,
32 threads are grouped, referred to as a warp.

Programming model Programming frameworks, such as CUDA (Nickolls et al., 2008),
enable e�cient development for GPUs. The functions executed on a GPU are organized in
kernels within CUDA code. Each kernel is launched with several CUDA threads organized
in thread blocks that execute the code. Each thread block is mapped to one SM during
execution, enabling access to shared memory and providing fast synchronization mechanisms
for all threads within the same thread block. The number of threads and thread blocks
are specified in three dimensions upon launch of the kernel. Hence, each thread has its
three-dimensional ids within the kernel, i.e., threadIdx.(x,y,z) and blockIdx.(x,y,z),
abbreviated with tx, ty, tz or bx, by, bz. Furthermore, programmers can explicitly move data
structures to global and shared memory for e�cient memory management.
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3. Related Work

We first discuss existing work on parallel execution of the PC algorithm, focusing on GPU
acceleration. Second, as the information-theoretic CI-test CMIknn (Runge, 2018) builds
upon knn estimation, we consider existing GPU-based knn searches.

3.1 Parallel Approaches of PC Algorithm

Several versions of the PC algorithm have been proposed that leverage parallel computing
capabilities of modern hardware, such as multi-core CPUs (Le et al., 2019; Madsen et al.,
2015; Schmidt et al., 2019; Scutari, 2017), GPUs (Hagedorn and Huegle, 2021a,b; Schmidt
et al., 2018, 2020; Zarebavani et al., 2020), or FPGAs (Guo and Luk, 2022), to address
the computational demand of causal discovery. Most work on parallel execution on multi-
core CPUs parallelizes over the edges within the CGM (Le et al., 2019; Madsen et al.,
2015; Schmidt et al., 2019; Scutari, 2017). Therefore, the proposed approaches remain
independent from the applied CI-test and thus can be directly applied to information-
theoretic CI-tests.

In the context of GPU acceleration of the PC algorithm, such a universal approach is not
feasible, as GPU hardware characteristics and the execution concept have to be considered.
Thus, existing GPU-based approaches leverage CI-test characteristics to achieve speed-up
and provide individual CI-test implementations targeting a specific data distribution. Also,
the GPU-based algorithms provide unique kernels corresponding to specific levels l of the
PC algorithm. In the case of continuous data, Schmidt et al. (2018) take advantage of pre-
calculated correlation coe�cients to avoid access to samples within each CI-test. Further,
they compute batches of CI-test for a single edge, i.e., considering di↵erent separation sets, in
parallel within the same thread block. In cupc (Zarebavani et al., 2020), intermediate results
of CI-tests for continuous data with the same separation set are shared. In detail, cupc
reuses computed inverse matrices required for the CI-test for continuous data. In both GPU-
based versions for continuous data (Schmidt et al., 2018; Zarebavani et al., 2020) CI-tests
are parallelized over the GPU threads. In contrast, in the case of discrete data, Hagedorn
and Huegle (2021a) propose parallelizing the processing of individual samples within CI-
tests. The authors reflect the requirement of the implemented Pearson’s �2 test (Pearson,
1900) to compute the marginals over contingency tables from the samples for each CI-test
separately.

Given that the existing GPU-based approaches are tailored to the CI-test characteristics,
direct transfer to the case of an information-theoretic CI-test is not an option. Therefore,
a GPU-accelerated information-theoretic CI-test requires a unique GPU-based implemen-
tation of the CI-test that is tailored to the SIMT execution model and considers the GPU
memory constraints. Second, in the context of execution within the PC algorithm, a parallel
execution scheme is required that takes full advantage of the parallel processing capabilities
of the GPU, i.e., by processing multiple CI-tests or edges in parallel. Therefore, we propose
GPUCMIknn, a GPU-based information-theoretic CI-test, and provide an adapted version of
the PC algorithm for parallel execution of multiple CI-tests.
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3.2 GPU-based Approaches to knn Estimation

The CPU-based version CMIknn (Runge, 2018) implements the knn estimation using kd-
search trees (Bentley, 1975; Friedman et al., 1977). Kd-trees are a computationally e�cient
option for the knn estimation, given that their computational complexity is in average
O(n ⇥ log(n)) when searching over all n samples. In contrast, a brute-force approach to
solving the knn estimation has a complexity of O(n2). GPU-based implementations exist
for knn estimation using kd-search (Garcia et al., 2010) and for knn estimation built upon
brute force approaches (Gieseke et al., 2014; RAPIDS Development Team, 2018).

Commonly, performing knn searches using kd-search trees on GPU may result in poor
performance due to branching and memory access inapt for GPU hardware. Gieseke et al.
(2014) propose a bu↵er kd-tree that addresses these shortcomings. The bu↵er kd-tree
consists of one top tree with a small height of, e.g., h = 8, leaf structures and bu↵ers
for each leaf of the top tree. When querying the bu↵er kd-tree the bu↵ers are filled with
query indices processed upon reaching a threshold. During the processing of the bu↵ers
the k nearest neighbors are determined for each query index within each bu↵er in parallel,
using one GPU thread each. The GPU thread conducts a brute force search within the
leaf structure corresponding to the query index bu↵er. Note the initial construction of the
kd-tree and orchestration occurs on the CPU. A huge amount of queries is needed for the
bu↵er kd-tree to be e�cient (Gieseke et al., 2014).

The brute-force approach is well suited for the execution model of a GPU. (Garcia
et al., 2010) propose a GPU-accelerated implementation of the brute-force approach that
outperforms CPU-based versions by up to two orders of magnitude. Their approach im-
plements two separate GPU kernels. The first kernel computes a distance matrix of size
n⇥ n between all n samples. Given that these computations are independent, the problem
is embarrassingly parallel. The second kernel sorts the distances in parallel for each sample.

Despite the lower computational complexity, the construction and search of kd-trees
remain challenging on the GPU. The bu↵er kd-tree (Gieseke et al., 2014) requires many
queries to become an e�cient option. Furthermore, the kd-tree requires additional stor-
age from the limited GPU memory. Therefore, we chose a brute force approach to knn
estimation within GPUCMIknn. Thus, we build upon the general idea of Garcia et al. (2010)
but make adaptions suited to our use case. In particular, we apply a pipeline execution
approach (Funke et al., 2018) to keep intermediate results, e.g., the k nearest neighbors,
in GPU thread local memory and avoid storing additional data structures, such as large
distance matrices.

4. GPU-Accelerated Causal Discovery using Information-theoretic
CI-test

This section presents GPUCMIknn
1, a GPU-accelerated implementation of the information-

theoretic CI-test CMIknn (Runge, 2018). Therefore, we sketch the algorithm and provide
detail on two GPU kernel implementations (see Section 4.1). The first kernel computes
the local permutation by applying the nearest neighbor search on the GPU. The second
kernel computes the CMI estimates based on the permuted values, again using nearest

1. Code available on GitHub: https://github.com/ChristopherSchmidt89/gpucmiknn/
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Algorithm 2 GPUCMIknn
Input: number of permutations perm, k-nearest neighbors within permutation kperm, k-
nearest neighbors within CMI estimation kCMI , observational data D, variables Vi, Vj , sep-
aration set Si,j , number of samples n, knn-based CMI estimation kernel estimateCMIknn()
Output: p-value p

1: transferToGPU(D[Vi], D[Vj ], D[Si,j ])
2: allocateOnGPU(V̂i[perm][n], used[perm][n], partialcmi[perm+ 1])
3: launchOnGPU(localPermutation, {D[Si,j ], D[Vi], V̂i, used, n, perm, kperm})
4: launchOnGPU(estimateCMIknn, {D[Vi], D[Vj ], D[Si,j ], V̂i, partialcmi, n, kCMI})
5: transferFromGPU(partialcmi)

6: basecmi = z(kCMI)� partialcmi[0]
n

7: c = 0
8: for all a 2 {1, . . . , perm} do

9: if (z(kCMI)� partialcmi[a]
n ) � basecmi then

10: c = c+ 1
11: end if
12: end for
13: p = c

perm
14: return p

neighbor searches. Additionally, we present a GPU-accelerated version of the PC algorithm
that employs an extended version of GPUCMIknn, in which the kernel implementations allow
computing multiple CI-tests in parallel (see Section 4.2). Note the proposed algorithms
allow exchanging the CMI-estimator, assuming that the CMI-estimator builds upon knn
searches, e.g., see Mesner and Shalizi (2021).

4.1 GPU-Accelerated Information-theoretic CI-test: GPUCMIknn

GPUCMIknn uses the GPU to accelerate the computation of the local permutation and the CMI
estimate. In both computations, the knn are estimated. Despite a higher computational
complexity than Kd-trees, GPUCMIknn implements a brute-force approach to estimate the knn,
as the brute-force approach is well-suited for parallel execution on the GPU (see Section 3.2).
Thus, GPUCMIknn parallelizes over the samples, or the samples and permutations, respectively.
In both cases, each GPU thread computes the knn for one sample, respectively, one sample
or permutation. During computation of the knn, GPUCMIknn aims to keep all intermediate
data in GPU thread local memory fo e�cient execution. Therefore, GPUCMIknn works best
for small values of kperm and kCMI .

We sketch the overall idea of our GPU-based implementation in Algorithm 2. GPUCMIknn
receives a series of input parameters to conduct the CI-test and outputs the p-value p. As
input, the algorithm takes the observational data D, and indices of the variables Vi,Vj , and
Si,j that point to the corresponding samples within D. Furthermore, GPUCMIknn requires
the following input parameters: perm, the number of permutations, kperm the number of k-
nearest neighbors during local permutation, kCMI the number of k-nearest neighbors during
CMI estimation, n the number of samples and estimateCMIknn() kernel for CMI estimation.

9



C. Hagedorn et al.

In the beginning, the algorithm prepares the data on the GPU. Therefore, the algorithm
transfers the observational data of the variables Vi,Vj , and Si,j to the GPU and allocates
memory for the permutations of Vi V̂i, the intermediate CMI values partialcmi, and the
auxiliary matrix used (see Algorithm 2 lines 1 – 2). Next, the localPermutation kernel is
launched on the GPU, which computes V̂i. After completion of the localPermutation ker-
nel, the estimateCMIknn kernel is launched, which calculates perm+ 1 intermediate values
for the CMI stored in partialcmi. After transfer of partialcmi from the GPU (see Algo-
rithm 2 line 5), the final CMI values are determined. The applied calculation corresponds
to the implementation of the estimateCMIknn() kernel. In Algorithm 2 and in our reference
implementation, we follow the approach of CMIknn (Runge, 2018) that builds upon the CMI
estimator by Frenzel and Pompe (2007); Vejmelka and Paluš (2008). Thus, the calculation
uses the following equation:

cmi = z(kCMI)�
partialcmi

n
, (1)

where partialcmi is based upon the counts of points within the subspaces Vi⌦Si,j , Vj ⌦Si,j

and Si,j that are within the distances of the k-nearest neighbor taken from the joint space
Vi ⌦ Vj ⌦ Si,j (cf. Equation 5 in Runge (2018)). At first, the baseCMI is computed based
on the non-permuted case Vi,Vj ,Si,j . Next, the CMI is computed for all permutations
{1, . . . , perm}. Within the same loop, the algorithm checks if the CMI for a permutation
is larger or equal than the baseCMI and increments a counter c. Finally, the actual p-value
p is computed as the sum of the indicator function over the number of permutations (see
Algorithm 2 line 13). In the following, we provide detail on the localPermutation kernel
and the implemented estimateCMIknn kernel.

Local Permutation Kernel The localPermutation kernel (see Algorithm 3 below) takes
several parameters and pointer to data structures as input (see Algorithm 3 Input). The
kernel does not return a specific result but places the perm local permutations of Vi in the
data structure V̂i, which remain on GPU for further processing. The kernel is launched
with � threads per thread block and dn� e thread blocks. The parameter � should ideally be
chosen as a multiple of the GPU warp size, i.e., 32, and not exceed hardware constraints,
i.e., 1024. As a default, we set � = 32. Further, upon kernel launch, shared memory of
size �⇥dimension(Si,j) ⇥ sizeof(float) bytes is reserved for each thread block. Note the
function dimension() returns the size of the separation set, i.e., the number of variables
contained within Si,j . The function sizeof() returns the size of the input data type in byte.
Once the kernel is launched, each GPU thread processes lines 1–29 of Algorithm 3. Given
that the kernel is launched with at least n GPU threads, each thread is responsible for
processing one of the n samples and computing the corresponding local permutations of its
sample.

At first, two arrays of size kperm, namely sDist and sPos are allocated and initialized
in GPU thread local memory. These arrays will eventually store the distances and posi-
tions of the k-nearest neighbors. Further, each GPU thread loads the values from D[Si,j ]
corresponding to its sample, calculated based on the GPU thread’s thread id and block id.

After this setup, all n samples are iterated in a stride of size �. The following steps
are executed within this loop over the n samples. First, the values from D[Si,j ], which
remain in global memory, are loaded into shared memory (see line 5 in Algorithm 3). After
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Algorithm 3 Local permutation kernel within GPUCMIknn
Input: samples D[Si,j ] and D[Vi], data structure for permutations V̂i, auxiliary data struc-
ture used, number of samples n, number of permutations perm, k-nearest neighbors within
permutation kperm
# of blocks: dn� e
# of threads per block: �
Shared memory: �⇥dimension(Si,j)⇥sizeof(float)

1: Initialize sDist[kperm] with BIG FLOAT , sPos[kperm] with 0 in thread local memory
2: Initialize myS of size dimension(Si,j) in thread local memory
3: Set myS = D[Si,j ][bx⇥ � + tx]
4: for all a 2 {0, . . . , (dn� e � 1)} do

5: Sshared[tx] = D[Si,j ][a⇥ � + tx] in shared memory
6: syncthreads()
7: for all b 2 {0, . . . , (� � 1)} do
8: if a⇥ � + b == bx⇥ � + tx then
9: continue

10: end if
11: dist =distMetric(myS, Sshared[b])
12: if dist is smaller than any c 2 sDist then
13: Insert dist in sorted order into sDist
14: Insert position a⇥ � + b in sorted order into sPos
15: end if
16: end for
17: end for
18: curand init()
19: for all c 2 {0, . . . , (perm� 1)} do
20: for all d 2 {(kperm � 1), . . . , 1} do
21: posshuffled = curand() mod(d+ 1)
22: swap(sPos[d], sPos[posshuffled])
23: end for
24: u = 0
25: while atomicCAS(used[c⇥ n+ sPos[u]], 0, 1) 6= 0 and u < kperm � 1 do
26: u = u+ 1
27: end while
28: V̂i[c⇥ n+ bx⇥ � + tx] = D[Vi][sPos[u]]
29: end for

synchronizing the threads within the same thread block, the stride of values from D[Si,j ]
stored in shared memory is processed iteratively (see Algorithm 3 lines 7 – 16). If a value
selected from the current stride corresponds to the GPU thread’s sample, the iteration
is skipped. Otherwise, the distance dist is computed between myS, the GPU thread’s
sample, and Sshared[b], the sample from the current iteration within the current stride. A
distance function distMetric is used to compute dist. As a default GPUCMIknn computes
the Chebyshev distance. Based upon the computed distance dist, the local arrays sDist
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and sPos are updated. In case the value of dist is smaller than any element in sDist, dist
is inserted into sDist at the position that keeps sDist in order. The remaining elements
are shifted accordingly, and the entry with the largest distance is removed from sDist.
Accordingly, the array sPos is updated, storing the positions of the corresponding samples
inD[Si,j ]. After both loops have been executed, the kperm-nearest neighbors are determined,
and their positions are stored in sPos.

Next, the permutations V̂i are computed. This step builds upon using a random number
generator, e.g., from NVIDIA’s cuRAND library. After initializing the random number
generator, each GPU thread computes the permutations corresponding to its sample (see
Algorithm 3 lines 18–29). Thus, for each permutation, the following steps are executed.
First, the positions within sPos are randomly shu✏ed (see Algorithm 3 lines 20–23). Next,
positions from sPos are drawn until either no other GPU thread has drawn the same
position (from {0, . . . , n � 1}) before, or it is the last position in sPos. To ensure that
no other GPU thread has drawn the same position before, an atomic compare and swap
operation atomicCAS is performed on the used data structure (see Algorithm 3 line 25).
Finally, the selected position from sPos is used to retrieve the value from D[Vi], which
is used within the current permutation at the GPU thread’s corresponding position (see
Algorithm 3 line 28). Once all GPU threads have terminated, the data structure V̂i contains
the local permutations of Vi according to the kperm-nearest neighbors within the Si,j space.

CMI Estimation Kernel The estimateCMIknn kernel (see Algorithm 4) takes several
parameters and pointer to data structures as input (see Algorithm 4 Input). The kernel
computes partial CMI values for each permutation, stored in the list partialcmi on GPU
upon termination. The kernel is launched with � threads per thread block and (perm +
1)⇥dn� e thread blocks. The parameter � should ideally be chosen as a multiple of the GPU
warp size, i.e., 32, and not exceed hardware constraints, i.e., 1024. Again, as a default, we
set � = 32. Further, upon kernel launch, shared memory of size 2⇥ �⇥dimension(Si,j)⇥
sizeof(float) bytes is reserved for each thread block. Note the dimension function returns
the size of the separation set, i.e., the number of variables contained within Si,j . Once the
kernel is launched, each GPU thread processes lines 1–39 of Algorithm 4. Given that the
kernel is launched with n⇥(perm+1) GPU threads, each thread is responsible for processing
one of the n samples within one permutation and participates in the computation of the
corresponding partial CMI value. Note that we increment perm by one to handle the base
CMI estimation from the non-permuted D[Vi] values.

At first, the array sDist of size kCMI is allocated and initialized in GPU thread local
memory. sDist is used to store the kCMI -nearest neighbors. Further, each GPU thread
loads the values relevant to the sample it is processing, i.e., at position pos, into shared
memory (see function loadIntoShared in Algorithm 4 line 3). Apart from D[Vj ][pos]
and D[Si,j ][pos], the function loadIntoShared either loads D[Vi][pos] if bx == 0, or
V̂i[bx⇥ n+ pos] into the shared memory Dshared[tx].

Now, all n samples are iterated in a stride with a size corresponding to the number of
threads per block �. The following steps are executed within this loop over the n samples and
compute the distance of the kCMI -nearest neighbor. In the first step, values for the current
stride of samples are loaded into shared memory Dshared[� + tx]. The loadIntoShared
function is used to distinguish between values from D[Vi] and its permutations V̂i. After
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Algorithm 4 CMI estimation kernel within GPUCMIknn
Input: samples D[Vi], D[Vj ] and D[Si,j ], permutations V̂i, data structure for partial cmi
values partialcmi, number of samples n, k-nearest neighbors within CMI estimation kCMI

# of blocks: (perm+ 1)⇥ dn� e
# of threads per block: �
Shared memory: 2⇥ � ⇥ (dimension(Si,j) + 2)⇥sizeof(float)

1: Initialize sDist[kCMI ] with BIG FLOAT in thread local memory
2: pos = by ⇥ � + tx
3: loadIntoShared(Dshared[tx], bx, pos, V̂i, D[Vi], D[Vj ], D[Si,j ])
4: syncthreads()
5: for all a 2 {0, . . . , (dn� e � 1)} do
6: pos2 = a⇥ � + tx
7: loadIntoShared(Dshared[� + tx], bx, pos2, V̂i, D[Vi], D[Vj ], D[Si,j ])
8: syncthreads()
9: for all b 2 {0, . . . , (� � 1)} do

10: dist =distMetric(Dshared[tx], Dshared[� + b])
11: if dist is smaller than any c 2 sDist then
12: Insert dist in sorted order into sDist
13: end if
14: end for
15: end for
16: Init counter CSi,jVi

, CSi,jVj
, CSi,j = 0

17: for all a 2 {0, . . . , (dn� e � 1)} do
18: pos2 = a⇥ � + tx
19: loadIntoShared(Dshared[� + tx], bx, pos2, V̂i, D[Vi], D[Vj ], D[Si,j ])
20: syncthreads()
21: for all b 2 {0, . . . , (� � 1)} do
22: dist =distMetric(Dshared[tx][Si,j ], Dshared[� + b][Si,j ])
23: updateCounter(dist, sDist[kCMI ], CSi,jVi

, CSi,jVj
, CSi,j )

24: end for
25: end for
26: atomicAdd(partialcmi[bx],z(CSi,jVi

) +z(CSi,jVj
)�z(CSi,j ))

synchronization of the threads within the same thread block, each thread loops through the
samples within the current stride, i.e., b 2 {0, ..., (� � 1)}. Within each loop iteration, the
thread computes the distance dist between its sample Dshared[tx] and one sample from the
current stride Dshared[� + b]. The distance dist is computed using the distance function
distMetric, which defaults to the Chebyshev distance. If dist is smaller than any value
within sDist, i.e., the current kCMI -nearest neighbors, dist is inserted into the fix-sized
array sDist at the corresponding position to keep sDist sorted. Note that the last element
within sDist, i.e., the farthest distance, will be removed during this operation. After all
n elements have been processed, the distances of the kCMI -nearest neighbors are stored in
sorted order sDist. Thus, the distance to the kCMI -nearest neighbor is stored in sDist at
position kCMI .
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Next, the partial CMI values are computed, which requires counting the number of
points within the distance of the kCMI -nearest neighbor, i.e., within sDist[kCMI ], for the
following subspaces Vi ⌦ Si,j , Vj ⌦ Si,j and Si,j . Accordingly, the algorithm initializes
counters CSi,jVi

, CSi,jVj
and CSi,j for each subspace (see Algorithm 4 line 16). Again,

all n samples are iterated in a stride with a size corresponding to the number of threads
per block � using the loadIntoShared function to load the appropriate samples into
shared memory. For each element within the current stride, the GPU thread first computes
the distances dist within the subspace Si,j . The updateCounter function checks if dist
is within sDist[kCMI ]. If this check evaluates true, the algorithm increments CSi,j and
computes the distance within the other two subspaces, checks if these distances are within
sDist[kCMI ], and increments CSi,jVi

, CSi,jVj
accordingly. Finally, after the n samples are

processed, each GPU thread computes its partial result for its corresponding sample, i.e.,
z(CSi,jVi

) + z(CSi,jVj
) � z(CSi,j ) . The partial result is added to the partial CMI value

partialcmi[bx] for the corresponding permutation or the original CMI estimate, i.e. if bx ==
0 (see Algorithm 4 line 26). This addition requires an atomic operation to synchronize
between threads from multiple thread blocks. Once all GPU threads terminate, the data
structure partialcmi contains all partial CMI values for perm permutations and the non-
permuted case.

4.2 A GPU-based PC Algorithm for Parallel Execution of GPUCMIknn

The PC algorithm allows to plug in any CI-test to discover the causal structures. Thus,
GPUCMIknn, as sketched in Algorithm 2, can be directly applied, computing each CI-test
individually on the GPU. Note, we call this version GPUCMIknn-Single. In contrast, existing
GPU-accelerated approaches to CSL assume that all CI-tests within the same level, i.e.,
with the same sized separation set, are computed in parallel on the GPU (Hagedorn and
Huegle, 2021a; Schmidt et al., 2018; Zarebavani et al., 2020). Adopting this one kernel

launch per level approach does not apply to GPUCMIknn, given that two individual kernels
are needed. The construction of one fused kernel that integrates the localPermutation
kernel with the estimateCMIknn kernel is not considered for memory capacity reasons. In
particular, reserving space for all possible CI-tests’ local permutations in global memory
can quickly exceed the GPU memory capacity. Besides, additional engineering is needed
to compute the p-value within the kernel. Further, global synchronization across all GPU
threads computing one CI-test needs to be introduced within the kernel after calculating the
local permutation and computing the partial CMI values. Currently, this synchronization
occurs implicitly through the separation into two kernels.

Nevertheless, we propose a version of the PC algorithm tailored to the GPUCMIknn CI-
test’s ideas, which computes multiple CI-test operations in parallel. We call this ver-
sion GPUCMIknn-Parallel. By computing multiple CI-test operations within one kernel,
GPUCMIknn-Parallel achieves speed-up using the following two optimizations. First, given
that GPUCMIknn CI-test processes each of the n samples, respectively each of the n⇥(perm+1)
samples, in one GPU thread, the number of GPU threads launched within a kernel may
not fully utilize all available GPU cores. GPUCMIknn-Parallel uses the idle GPU cores to
compute multiple CI-tests in parallel within one kernel, which yields higher CI-test through-
put. Second, GPUCMIknn-Parallel reuses computed local permutations to avoid redundant
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computations. Based on the local permutation for a given separation set, the algorithm
estimates CMI values for multiple edges. In more detail, GPUCMIknn-Parallel computes
the local permutations for a given set of separation sets to one variable Vi in parallel at
once. Afterward, these local permutations are used multiple times during CMI estimation
with combinations of Vi to any of the variables Vj 2 a(Vi) adjacent to Vi. In Algorithm 5,
we describe the algorithm for GPUCMIknn-Parallel, which includes the two optimizations
mentioned earlier.

Algorithm 5 GPUCMIknn-Parallel: A GPU-based adjacency search of PC algorithm
Input: observational data D with n samples from V variables, significance level ↵, number
of permutations perm, k-nearest neighbors within permutation kperm, k-nearest neighbors
within CMI estimation kCMI , knn-based CMI estimation kernel estimateCMIknn()
Output: estimated skeleton Cl, separation sets SepSet

1: Start with fully connected skeleton C�1 and l = �1
2: repeat
3: l = l + 1
4: for all variables Vi in Cl do
5: Let a(Vi) = adj(Cl, Vi);
6: end for
7: for all variables Vi in Cl with |a(Vi)| > l do
8: Compute all possible separation sets Si from a(Vi)
9: On GPU: Compute local permutations for all Si with D, perm and kperm

10: for all Si 2 Si do
11: Store local permutations in localPerm[Si]
12: end for
13: repeat
14: Choose Si from Si

15: On GPU: Estimate CMI for all Vj 2 a(Vi) \ {Si} with D, Si, perm
estimateCMIknn(), kCMI and localPerm[Si]

16: for all Vj 2 a(Vi) do
17: Compute p based on computed CMI values
18: if p � ↵ then
19: Delete edge Ei,j from Cl

20: Save Si in SepSet
21: Remove Vj from a(Vi)
22: end if
23: end for
24: until all computed Si were chosen or |a(Vi)| == 0
25: end for
26: until each Vi in Cl satisfies |a(Vi)| < l
27: return Cl, SepSet

Our proposed GPU-based adjacency search of the PC algorithm, called GPUCMIknn-Parallel,
takes the common input parameters of the PC algorithm, such as observational data D or
the significance level ↵, together with GPUCMIknn specific parameters, such as perm, kperm,
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kCMI or estimateCMIknn(). The adjacency search outputs the estimated skeleton Cl, and
the corresponding separation sets SepSet. The algorithm starts with a fully connected
skeleton C0, technically at level l = 0. In level l = 0, independence testing does not consider
any separation sets, and therefore we can apply a simpler approach for the permutation
following the implementation of CMIknn (Runge, 2018). Description of the approach for
level l = 0 is skipped for brevity 2. In any other level l � 1, the following steps are per-
formed. First, for each variable Vi 2 Cl the adjacent variables within the current version of
the skeleton Cl are obtained (see Algorithm 5 lines 4–6). Next, for variables Vi 2 Cl whose
adjacency a(Vi) has a size larger than the current level l, i.e., for which a separation set
can be constructed, are iterated (see Algorithm 5 lines 7–25). All possible separation sets
Si are computed for Vi within this loop based on a(Vi). For these separation sets, the local
permutations are computed at once within one GPU kernel and stored in the data struc-
ture localPerm. The GPU kernel is an extended version of the localPermutation kernel
(see Algorithm 3), launched with additional � thread blocks in the second grid dimension
according to the number of possible separation sets, i.e., � = |Si|. In an inner-loop (see
Algorithm 5 lines 13–24), one separation set Si from Si is selected within each iteration.
Based on the selected separation set Si, the partial CMI values are computed for Vi and all
Vj 2 a(Vi) \ {Si} at once within one GPU kernel. This GPU kernel is an extended version
of the estimateCMIknn kernel (see Algorithm 4), which is launched with additional � thread
blocks in the third grid dimension according to the remaining adjacent variables a(Vi), i.e.,
� = |a(Vi)|. Afterward, the p-value is computed based on the corresponding partial CMI
values for each Vj 2 a(Vi). If p � ↵, the edge Ei,j is removed from the current skeleton Cl,
the separation set Si is stored in Sepset at the position of Ei,j , and Vj is removed from a(Vi)
(see Algorithm 5 lines 18–22). Once all possible Si 2 Si were chosen, or there is no adjacent
variable in a(Vi), the inner-loop is finished. After all variables Vi 2 Cl were processed, the
procedure is repeated with the next level l = l + 1. This process continues until no more
separation sets with the size of the current level l can be constructed from the adjacency
a(Vi) for any variable Vi 2 Cl. At this point, the algorithm returns the current skeleton Cl

and the corresponding separation sets SepSet.
Note that within the approach of GPUCMIknn-Parallel, the number of possible separation

sets Si and the number of adjacent variables |a(Vi)| can become significantly large and lead
to a memory demand that exceeds the capacity of the GPU memory. For these scenarios,
GPUCMIknn-Parallel provides a blocked version, which operates on blocks of separation sets
for each variable Vi. The blocked version introduces an additional loop, which performs all
steps in lines 9–23 of Algorithm 5 for each block of separation sets. Similarly, a blocked
version within the inner loop for the adjacent variables Vj 2 a(Vi) could be introduced if
required.

5. Experiments

In the following section, we present results from a series of experiments to evaluate the
runtime performance of GPUCMIknn, our proposed GPU-accelerated version of the CMIknn CI-
test (Runge, 2018), with varying parameters (see Section 5.2). Furthermore, we evaluate
the runtime performance when GPUCMIknn is applied in constraint-based causal discovery

2. The implementation for level l = 0 is included in the GitHub repository
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(see Section 5.3). Therefore, we compare a CPU-based version of the PC algorithm that
employs CMIknn (Runge, 2018) with a version of the PC algorithm using GPUCMIknn, called
GPUCMIknn-Single, and our proposed adaption of the PC algorithm GPUCMIknn-Parallel,
which is optimized for the use of GPUCMIknn. Note that the CPU-based version is executed
on a single thread and using multiple CPU cores in parallel. All experiments are run
following the experimental setup described as follows (see Section 5.1).

5.1 Experimental Setup

For each experiment, we conducted at least ten measurements executed on the same hard-
ware setup. The experiments were conducted on a system with one AMD EPYC 7343
with 16 cores equipped with an NVIDIA A40 card, with 48 GB of global High Bandwidth
Memory. The GPU card is connected via PCI-E 4.0. The system is equipped with 96
GB of DRAM. The operating system is Ubuntu 21.04, and the NVIDIA driver version
470.57 is installed with CUDA version 11.4. We report the median runtime in seconds of
the measurement runs to reduce the impact of noise due to background operating system
processes. The implementations used for the measurements are available online 3. Note for
the implementation of CMIknn (Runge, 2018) tigramite version 5.0 is used.

For the measurement runs, we utilize synthetic data, which allows us to investigate the
scalability concerning several dimensions. These dimensions are, for example, the number
of samples n, size of separation set |Si,j | or the number of variables N . We generate data for
each measurement using the MANM-CS library (Huegle et al., 2021). In particular, we generate
CGMs that contain only continuous variables and have an edge density randomly chosen
between {0.1, . . . , 0.5}. The functions associated with the edges are randomly selected
from the following list: {linear, quadratic, tanh}. Further, the number of samples n and
number of nodes N are chosen according to the requirements of the experiment setting,
and for the remaining parameters of MANM-CS the default values are used. Note, for the
CI-test evaluation experiments, we also use the generated CGMs, but explicitly measure
the runtime of single CI-tests.

If not stated di↵erently, we chose the following default values for the parameters for
the examined implementations of GPUCMIknn, GPUCMIknn-Single, and GPUCMIknn-Parallel

and CMIknn. We set kperm = 15, which is slightly above the suggested range found in
CMIknn (Runge, 2018) and use perm = 100 to avoid excessive experiment runtimes. Note
the experiment runtime increases linearly with the number of permutations perm. Further,
we set � = 32 and � = 32. Therefore, each GPU thread block contains enough GPU threads
to fill an entire warp. At the same time, we keep the amount of shared memory required
for each GPU thread block low. For all experiments that require a significance level, we set
↵ = 0.01 by convention (Malinsky and Danks, 2018).

When comparing the GPU-accelerated approaches GPUCMIknn, GPUCMIknn-Single, and
GPUCMIknn-Parallel to the CPU-based baseline CMIknn, the comparison focuses on two
aspects. First and foremost, the comparison focuses on the di↵erence stemming from the
change in execution hardware, CPU vs. GPU. Second, the comparison considers di↵erent
knn estimation approaches. For the CPU-based baseline, computational e�cient kd-tree
searches are employed. In contrast, the GPU-based versions are built upon brute-force

3. GitHub: https://github.com/ChristopherSchmidt89/gpucmiknn/
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Table 1: Median runtime in seconds (20 CI-tests), scaling kCMI for CI-tests with fixed
parameters: n = 1000, perm = 100, |Si,j | = 1. For percentiles see Table 6 in the
Appendix.

Method
kCMI

7 10 20 30 40 50 75 100 250 500

CMIknn 1.76 1.79 1.84 1.85 1.9 1.96 1.94 2.02 2.31 2.69
GPUCMIknn 0.005 0.01 0.01 0.01 0.02 0.02 0.07 0.13 0.52 1.15

searches, which are computationally less e�cient, but better suited for the parallel execution
model of GPUs.

5.2 Runtime Evaluation of GPUCMIknn

We compare the runtime of GPUCMIknn to the CPU-based implementation CMIknn (Runge,
2018). We investigate the impact when scaling one of several parameters for the runtime
evaluation. In detail, we consider the number of kCMI -nearest neighbors, the number of
samples n, the number of permutations perm, and the size of the separation set |Si,j |. We
do not evaluate the performance concerning changes in kperm as kperm does not impact
runtime much (Runge, 2018).

Impact of kCMI : According to Runge (2018) the kCMI -nearest neighbors should be set
to kCMI ⇡ {0.1 . . . 0.2}⇥n to yield good power. In the context of GPUCMIknn, the parameter
kCMI determines the size of arrays stored in GPU thread local memory. GPU thread local
memory can yield high performance as long as the data is placed in registers, which are
highly limited in size. Otherwise, performance degrades due to register spilling (Micikevi-
cius, 2011), as data structures within GPU thread local memory are now placed within global
memory. Thus, we assume that the runtime performance of GPUCMIknn drops while kCMI

is increased. Table 1 shows the median runtime in seconds for 20 CI-tests with n = 1000
samples, perm = 100 permutations and a separation set of size |Si,j | = 1, when scaling
kCMI from kCMI = 7 to kCMI = 500. For the CPU-based baseline CMIknn that implements
kd-search trees to estimate knn, we find that the runtime increases by approximately 53%.
In contrast, for the GPU-based version GPUCMIknn, which implements a brute-force approach
to estimate knn, we see a runtime increase by a factor of 230. Particularly for kCMI > 50,
the runtime performance drops, which we account to register spilling. Thus, our assump-
tion is confirmed. Comparing the CPU- and GPU-based approaches, we find that for small
values of kCMI , e.g., up to kCMI = 50, the GPU-based version is up to a factor of 352 faster
than the CPU-based version and remains faster by a factor of 2.3 even for kCMI = 500.
Yet, for these large values of kCMI one should note that the GPU-based version is operating
in parallel, while CMIknn is single-threaded. Based on these observations we will report the
runtime of GPUCMIknn with several settings of kCMI for the following measurements.

Impact of number of permutations perm: The number of permutations perm impacts
the runtime of the local permutation computation and the CMI estimation. In fact, for both
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Table 2: Median runtime in seconds (20 CI-tests), scaling perm for CI-tests with fixed
parameters: n = 1000, |Si,j | = 1. For percentiles see Table 7 in the Appendix.

Method kCMI
perm

50 100 250 500 1 000

CMIknn 200 1.18 2.39 5.98 12.47 24.61

GPUCMIknn

7 0.004 0.01 0.01 0.02 0.04
20 0.01 0.01 0.01 0.03 0.05
200 0.2 0.39 0.93 1.83 3.65

Table 3: Median runtime in seconds (20 CI-tests), scaling |Si,j | for CI-tests with fixed pa-
rameters: n = 1000, perm = 100. For percentiles see Table 8 in the Appendix.

Method kCMI
|Si,j |

1 2 3 4 5

CMIknn 200 2.43 2.9 3.28 3.56 4.02

GPUCMIknn

7 0.005 0.01 0.01 0.01 0.01
20 0.01 0.01 0.01 0.01 0.01
200 0.39 0.39 0.39 0.38 0.38

steps, the number of required computations increases linearly to the number of permutations
perm. Within the estimateCMIknn kernel, a larger number of permutations perm results
in launching the kernel with additional thread blocks, whereas the launch parameters for
the localPermutation kernel remain una↵ected. In Table 2, we find the median runtime in
seconds for 20 CI-tests with n = 1000 samples and a separation set of size |Si,j | = 1 for
several settings of kCMI when scaling perm from perm = 50 to perm = 1000. For CMIknn,
we find that the runtime increases by a factor of 20.8 from perm = 50 to perm = 1000,
which confirms the linear increase in runtime, as perm is increased by a factor of 20. For
GPUCMIknn, we see that from perm = 50 to perm = 1000, the runtime increases below a factor
of 20. While, for kCMI = {7, 20} the runtime increases up to a factor of 10, for kCMI = 200
the runtime increases by up to factor of 18.25. We assume that the slightly lower increase in
runtime is due to better utilization of the parallel computing capabilities of the GPU, given
that more threads are launched during CMI estimation. Yet, for kCMI = 200, the accesses
to global memory, due to register spilling, seem to become a performance bottleneck.

Impact of separation set size |Si,j |: The size of the separation set |Si,j | directly in-
creases the number of dimensions within the knn searches during local permutation compu-
tation and CMI estimation. Higher dimensions impact the runtime of the kd-tree approach
and the brute-force approach. Kd-trees generally su↵er under the curse of dimensional-
ity (Bentley, 1975). Thus we assume that the performance will drop with a larger separation
set |Si,j | for CMIknn. Generally, we assume a similar behavior for GPUCMIknn. In Table 3 we
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Table 4: Median runtime in seconds (20 CI-tests), scaling n for CI-tests with fixed param-
eters: |Si,j | = 1, perm = 100. Note kCMI = adaptive refers to a value dependent
on the number of samples n, kCMI = 0.2 ⇥ n. For percentiles see Table 9 in the
Appendix.

Method kCMI
n

100 250 500 1 000 2 500 5 000 10 000

CMIknn

7 0.43 0.65 1.02 1.79 4.76 9.82 20.62
20 0.43 0.67 1.05 1.85 4.89 10.19 21.64
adaptive 0.46 0.67 1.12 2.31 6.86 17.96 55.07

GPUCMIknn

7 0.002 0.002 0.003 0.005 0.01 0.04 0.13
20 0.002 0.002 0.004 0.01 0.02 0.05 0.17
adaptive 0.002 0.004 0.04 0.39 5.7 44.88 355.77

find the median runtime in seconds for 20 CI-tests with n = 1000 samples and perm = 100
permutations for several settings of kCMI when scaling the size of the separation set |Si,j |
from |Si,j | = 1 to |Si,j | = 5. For CMIknn we find that the runtime increases by 65% from
|Si,j | = 1 to |Si,j | = 5, which confirms our assumption. For GPUCMIknn, we find for all three
chosen parameters of kCMI = {7, 20, 200} that the runtime remains una↵ected by the size
of the separation set |Si,j |. We observe that loading the additional dimensions into GPU
thread local or shared memory does not add any costs.

Impact of number of samples n: The number of samples n has a major impact on the
runtime of knn-estimation approaches (see Section 3.2). Thus, we assume that the runtime
of GPUCMIknn increases quadratic with an increase of the number of samples n, whereas
the runtime of CMIknn increases approximately logarithmicconcerning to an increase of
n. Furthermore, note that according to Runge (2018), the parameter kCMI , which has a
significant impact on the runtime of GPUCMIknn, depends on the number of samples n. Table 4
accounts for this dependence within the rows where kCMI = adaptive, i.e., kCMI = 0.2⇥n.
Furthermore, in Table 4, we report the median runtime in seconds for 20 CI-tests with
a separation set size of |Si,j | = 1, and perm = 100 permutations for several settings of
kCMI when scaling the number of samples n from n = 100 to n = 10 000. For CMIknn,
we confirm that the runtime increases logarithmically to the number of samples. Similarly,
our measurements confirm a quadratic increase in runtime for GPUCMIknn, when kCMI = 200.
Yet, for small values of kCMI = {7, 20} we observe that the increase in runtime is less
drastic. Again, we assume that for kCMI = 200, accesses to global memory are the main
bottleneck within the GPU kernel. In contrast, for the smaller values of kCMI the additional
GPU threads launched due to an increase of n hide some of the assumed performance
degradations. Yet, for a certain number of samples n, the number of launched GPU threads
exceeds the capabilities of the GPU hardware, and we observe the quadratic increase, e.g.,
for n � 2 500. When comparing the CPU- and GPU-based approaches, we find a large
performance gain for sample sizes of of up to n = 1000. The performance gain depends on
the parameter kCMI , but is within the range of factor 5.9 to factor 358. For larger values
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Table 5: Speed-up over single-threaded CPU execution, median of 10 di↵erent CGMs, with
n = 1000 and perm = 100. Significance level of PC algorithm ↵ = 0.01. Addi-
tional runtime measurements for selected high-dimensional settings can be found
in Table 10 in the Appendix.

Method kCMI
N

10 20 30 40 50

CPU-8

7 3.43 4.34 3.95 4.12 4.16
20 3.33 4.21 3.91 4.03 3.97
200 2.36 2.81 3.44 3.35 3.88

GPUCMIknn-Single

7 280.73 267.46 320.71 342.39 342.19
20 190.55 176.5 216.87 258.3 234.09
200 3.62 3.15 4.94 4.39 5.17

GPUCMIknn-Parallel

7 469.07 458.64 844.69 985.83 1 002.0
20 274.15 265.17 466.63 522.87 489.25
200 3.7 3.48 5.09 4.68 5.59

of n � 2 500, the GPU-based version only remains faster if the parameter kCMI is fixed to
a small value, e.g., kCMI = {7, 20}. In this case, GPUCMIknn is up to a factor of 476 faster
than CMIknn. In contrast, for the case that kCMI = adaptive CMIknn is faster by a factor
of up to 6.5 for large n.

5.3 Runtime Evaluation of Adjacency Search in PC Algorithm with GPUCMIknn

In the following, we experimentally evaluate the runtime performance of our proposed GPU-
based CI-test GPUCMIknn used within the PC algorithm. Therefore, we compare the CPU-
based CI-test CMIknn applied within a single-threaded and parallel CPU-based version of the
PC algorithm to the two GPU-accelerated versions GPUCMIknn-Single and GPUCMIknn-Parallel,
which are described in Section 4.2.

In Table 5, we present the measurements based on synthetic generated CGMs (see
Section 5.1 for detail), increasing the number of variables N within the CGMs, keeping
the number of samples fixed at n = 1000, and the number permutations at perm = 100.
The significance level is set to ↵ = 0.01. We report the median speed-up for 10 CGMs
for GPUCMIknn-Single, GPUCMIknn-Parallel, and CPU-8 over the single-threaded CPU-based
version. Note CPU-8 is the parallel CPU-based version running on 8 CPU cores.

From the measurements presented in Table 5, we make the following observations: First,
the CPU-based parallel version, CPU-8, achieves a speed-up of roughly factor 4 over the
single-threaded version, even though it utilizes 8 CPU cores. For kCMI = 200, we observe
slightly less speed-up than for small values of kCMI . This e↵ect is explained given that single
CI-test runtime is higher for kCMI = 200, which amplifies the impact of load imbalance
present in parallel execution of the PC algorithm’ adjacency search (Schmidt et al., 2019).
For the GPU-based versions of the PC algorithm, GPUCMIknn-Single, GPUCMIknn-Parallel,
we observe a high speed-up for small values of kCMI = {7, 20}. Whereas for kCMI = 200,
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the achieved speed-up is within the CPU-based version CPU-8. Furthermore, we find that
for smaller values of N , e.g., N  40, the speed-up of GPUCMIknn-Parallel over the single-
threaded CPU-based version increases as N increases. We assume that this additional
speed-up is a results from idea behind GPUCMIknn-Parallel to process multiple CI-tests in
parallel. For larger N , the parallel computing capabilities of the GPU are already saturated,
and no additional speed-up is achieved.

Comparing GPUCMIknn-Single with GPUCMIknn-Parallel, we observe that for kCMI =
{7, 20} between factors of 1.44 to 2.93, additional speed-up is achieved with our GPU-
accelerated version of the PC algorithm tailored for the GPUCMIknn CI-test. In contrast, for
kCMI = 200, both versions achieve a similar speed-up.

Overall, we confirm the performance gain of GPUCMIknn in the context of the PC algorithm
over the existing CPU-based version CMIknn for small values of kCMI , e.g., kCMI = {7, 20},
as already observed in the experiments of the previous Section 5.2. In these settings, our
proposed version GPUCMIknn-Parallel outperforms CPU-8 by factors of up to 240. Yet, for
large kCMI , i.e., kCMI = 200, CPU-8 and both GPU versions of the PC algorithm have a
similar runtime. Thus, If runtime is the main goal, we recommend choosing a small value
for kCMI . Although, this contradicts the recommendation for choosing kCMI by Runge
(2018).

Impact of kCMI on quality of learned CGM: The proposed GPU-accelerated al-
gorithms provide good runtime for small values of kCMI , regardless of other parameters.
Thus, we examine the impact of the parameter kCMI on the structural hamming distance
(SHD) (Tsamardinos et al., 2006) when discovering the CGM. The SHD allows insights
into the quality of the learned CGM. Therefore, we randomly generate 50 CGMs with
N = 20, n = 1000 and run the PC algorithm version GPUCMIknn-Parallel with perm = 100,
↵ = 0.01 and various values for kCMI from kCMI = 7 to kCMI = 200. We set the computed
SHD for kCMI = 7 as a baseline. Then, we calculate the di↵erence between the baseline
SHD and the SHD computed for other values of kCMI . Thus, values of the SHD below 0
indicate a quality improvement of the learned CGM.

In Figure 1, we report the minimum, median and maximum di↵erence of the SHD, de-
noted by �SHD, from the 50 CGMs. We observe that the median SHD improves for up to
kCMI = 30, remains similar for up to kCMI = 75, and deteriorates for kCMI � 100, com-
pared to the SHD calculated for kCMI = 7. Based on this observation, one could conclude
that small values of kCMI are su�cient to learn the CGM, which favor the runtime improve-
ment of our GPU-accelerated approaches. Yet, for several CGMs, there is an improvement
of the SHD observable for large values of kCMI . Thus, a trade-o↵ remains between runtime
and the quality of the learned CGM, based on the parameter kCMI . Further research on
the impact of kCMI on the quality of the learned CGM would be needed.

6. Conclusion

In this work, we propose a GPU-accelerated CI-test for nonlinear relationships called
GPUCMIknn. GPUCMIknn is a GPU-based version of CMIknn (Runge, 2018), an existing CI-test
using CMI combined with a local permutation scheme. In GPUCMIknn, we leverage the parallel
computing capabilities of GPUs to accelerate the local permutation computation and the
CMI estimation. Furthermore, we introduce an extension of the PC algorithm that employs
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Figure 1: Development of SHD with increasing kCMI as di↵erence regarding the SHD with
kCMI = 7, computed for 50 random generated CGMs with N = 20, n = 1000
and algorithm parameters perm = 100 and ↵ = 0.01. �SHD < 0 describes an
improved quality.

GPUCMIknn to compute multiple CI-tests in parallel. The approach called GPUCMIknn-Parallel

reuses computed local permutations to reduce the computational demand.

In our experimental evaluation, we demonstrate the runtime performance of our GPU-
based approaches concerning relevant parameters of the algorithm. In particular, we find
that the runtime of GPUCMIknn and, respectively, GPUCMIknn-Parallel mainly depends on the
chosen value for the parameter kCMI . For small values of kCMI , e.g., kCMI = 7, GPUCMIknn
is up to a factor 352 faster than its CPU-based counterpart. In the context of the PC
algorithm, GPUCMIknn-Parallel outperforms a multi-threaded CPU-based version running
on eight cores by up to a factor of 240. In contrast, for large values of kCMI ,e.g.,kCMI = 200,
we find that GPUCMIknn-Parallel has similar runtimes to the multi-threaded CPU-based
version. GPUCMIknn remains only up to a factor 2.3 faster than its single-threaded CPU-
based counterpart for kCMI = 500. The chosen value of kCMI impacts the quality of the
CI-test (Runge, 2018) and the quality of a learned CGM. Yet, our evaluation indicates
that the impact of a smaller value for kCMI on the quality of the learned CGM is not as
strong as expected. Further research is required to determine suitable values for kCMI that
balance runtime improvements with loss in result quality. In this context, a more extensive
experimental evaluation comparing GPUCMIknn-Parallel to other existing methods for causal
discovery in non-linear settings (Strobl et al., 2019; Zhang et al., 2011) is left for future work.
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Appendix

A. Runtime Evaluation of GPUCMIknn

Table 6: Median runtime in seconds (20 CI-tests), scaling kCMI for CI-tests with fixed
parameters: n = 1000, perm = 100, |Si,j | = 1. Extended version of Table 1
including percentiles.

Method percentile
kCMI

7 10 20 30 40 50 75 100 250 500

CMIknn

0.05 1.74 1.77 1.82 1.81 1.89 1.94 1.93 1.99 2.2 2.61
0.5 1.76 1.79 1.84 1.85 1.9 1.96 1.94 2.02 2.31 2.69
0.95 2.03 1.89 1.96 1.98 2.03 2.07 2.06 2.14 2.48 2.87

GPUCMIknn

0.05 0.005 0.01 0.01 0.01 0.02 0.02 0.07 0.13 0.52 1.14
0.5 0.005 0.01 0.01 0.01 0.02 0.02 0.07 0.13 0.52 1.15
0.95 0.005 0.01 0.01 0.01 0.02 0.03 0.07 0.13 0.52 1.15

Table 7: Median runtime in seconds (20 CI-tests), scaling perm for CI-tests with fixed pa-
rameters: n = 1000, |Si,j | = 1. Extended version of Table 2 including percentiles.

Method kCMI percentile
perm

50 100 250 500 1 000

CMIknn 200
0.05 1.17 2.36 5.87 11.79 23.87
0.5 1.18 2.39 5.98 12.47 24.61
0.95 1.29 2.51 6.3 12.63 25.03

GPUCMIknn 7
0.05 0.004 0.005 0.01 0.02 0.04
0.5 0.004 0.01 0.01 0.02 0.04
0.95 0.004 0.01 0.01 0.02 0.04

GPUCMIknn 20
0.05 0.01 0.01 0.01 0.03 0.05
0.5 0.01 0.01 0.01 0.03 0.05
0.95 0.01 0.01 0.01 0.03 0.05

GPUCMIknn 200
0.05 0.19 0.39 0.92 1.82 3.64
0.5 0.2 0.39 0.93 1.83 3.65
0.95 0.2 0.39 0.93 1.84 3.67
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Table 8: Median runtime in seconds (20 CI-tests), scaling |Si,j | for CI-tests with fixed pa-
rameters: n = 1000, perm = 100. Extended version of Table 3 including per-
centiles.

Method kCMI percentile
|Si,j |

1 2 3 4 5

CMIknn 200
0.05 2.4 2.85 3.21 3.47 3.89
0.5 2.43 2.9 3.28 3.56 4.02
0.95 2.57 3.04 3.46 3.76 4.18

GPUCMIknn 7
0.05 0.005 0.01 0.01 0.01 0.01
0.5 0.005 0.01 0.01 0.01 0.01
0.95 0.005 0.01 0.01 0.01 0.01

GPUCMIknn 20
0.05 0.01 0.01 0.01 0.01 0.01
0.5 0.01 0.01 0.01 0.01 0.01
0.95 0.01 0.01 0.01 0.01 0.01

GPUCMIknn 200
0.05 0.39 0.38 0.38 0.38 0.38
0.5 0.39 0.39 0.39 0.38 0.38
0.95 0.39 0.39 0.39 0.39 0.39
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Table 9: Median runtime in seconds (20 CI-tests), scaling n for CI-tests with fixed parame-
ters: |Si,j | = 1, perm = 100. Note kCMI = adaptive refers to a value dependent on
the number of samples n, kCMI = 0.2⇥ n. Extended version of Table 4 including
percentiles.

Method kCMI percentile
n

100 250 500 1 000 2 500 5 000 10 000

CMIknn 7
0.05 0.43 0.64 1.02 1.78 4.72 9.75 20.52
0.5 0.43 0.65 1.02 1.79 4.76 9.82 20.62
0.95 0.55 0.76 1.13 1.92 4.89 10.02 20.79

CMIknn 20
0.05 0.43 0.65 1.03 1.83 4.75 10.04 21.58
0.5 0.43 0.67 1.05 1.85 4.89 10.19 21.64
0.95 0.55 0.78 1.15 1.99 5.05 10.41 22.03

CMIknn adaptive
0.05 0.41 0.64 1.1 2.16 6.78 17.76 54.4
0.5 0.46 0.67 1.12 2.31 6.86 17.96 55.07
0.95 0.57 0.77 1.23 2.43 7.46 18.1 55.61

GPUCMIknn 7
0.05 0.002 0.002 0.003 0.005 0.01 0.04 0.13
0.5 0.002 0.002 0.003 0.005 0.01 0.04 0.13
0.95 0.002 0.002 0.003 0.005 0.01 0.04 0.13

GPUCMIknn 20
0.05 0.002 0.002 0.004 0.01 0.02 0.05 0.17
0.5 0.002 0.002 0.004 0.01 0.02 0.05 0.17
0.95 0.002 0.003 0.004 0.01 0.02 0.05 0.17

GPUCMIknn adaptive
0.05 0.002 0.004 0.04 0.39 5.69 44.8 355.37
0.5 0.002 0.004 0.04 0.39 5.7 44.88 355.77
0.95 0.002 0.004 0.04 0.39 5.72 45.04 357.36
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B. Runtime Evaluation of Adjacency Search in PC Algorithm with
GPUCMIknn

Table 10: Runtime in seconds for high-dimensional sparse synthetic CGMs and selected
gene expression datasets used in previous work (Schmidt et al., 2018). The sparse
synthetic CGMs are generated as described in Section 5.1, with n = 1000, but
have an edge density that leads to DAGs with an average degree of approximately
1.5. The algorithms’ parameters are set as follows: perm = 100, kCMI = 7,
kperm = 15, � = � = 32, ↵ = 0.01. Note experiment runs longer than 24 hours
were terminated and are marked with did not finish (DNF).

Method
Synthetic CGMs NCI-60 MCC BR51

N
100 250 500 750 1 000 1 190 1 380 1 592

CPU-8 1 399 5 425 17 586 40 762 62 967 82 287 DNF DNF
GPUCMIknn-Single 25.5 122 446 1 028 1 715 1 867 7 545 4 677
GPUCMIknn-Parallel 14.4 74.7 281 637 1 088 764 1 653 1 680
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