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Abstract

In critical applications, causal models are the prime choice for their trustworthiness and
explainability. If data is inherently distributed and privacy-sensitive, federated learning
allows for collaboratively training a joint model. Such approaches for federated causal
discovery, however, require sending local causal models, revealing the local data structure.
We propose privacy-preserving federated causal discovery by distributed min-max regret
optimization. This technique requires clients to only send local regret values, instead of
model parameters, ensuring the privacy of sensitive local data. Initial results show that
our approach reliably discovers causal networks without ever looking at local data or local
causal structures.

Keywords: Federated Learning, Causal Discovery

1. Introduction

We consider a setting where we have multiple distributed datasets over a fixed set of variables
X generated from the same causal network such that the datasets can not be pooled together
at a single location. Our goal is to discover the overall causal network over these datasets
in a privacy preserving manner.

To avoid privacy violations in many critical applications, such as healthcare, we cannot
pool data. Discovering causal models is not straightforward when the data is distributed.
A naive federated learning approach would be to discover individual causal models for each
local dataset, pool those models and parameters associated with the models and compute the
likely global causal model governing the process that generated all local datasets. However,
federated learning involving parameter sharing may not be completely privacy-preserving
and may still allow for reconstruction of local data (Geiping et al., 2020; Lyu and Chen, 2021;
Singhal et al., 2021). Applying federated causal discovery in privacy-sensitive applications
therefore requires to only transmit insensitive statistics about local data.
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While there exist approaches capable of discovering causal networks (Spirtes et al., 2000;
Chickering, 2002; Shimizu et al., 2006; Huang et al., 2018; Peters et al., 2014), they are
designed to work only on a single dataset. Approaches that do take multiple datasets into
account require that data first be pooled together at a single location (Mooij et al., 2016;
Zhang et al., 2017; Magliacane et al., 2018), work only for a single target variable (Peters
et al., 2016), or place strict assumptions on the underlying causal mechanisms (Shimizu,
2012; Ghassami et al., 2017) that are unlikely to hold in practice.

To solve this problem, we propose a privacy-preserving score-based framework for Regret-
based Federated Causal Discovery, called RFCD, which can be instantiated using any con-
sistent score-based causal discovery algorithm. In RFcCD multiple clients collaboratively
discover a joint causal model governing their local datasets without transmitting any data
or local models. The basic idea is as follows. First, each client discovers their best-fitting
local causal model. Then, the server repeatedly proposes a causal network to each of the
clients, who return only the regret relative to the proposed causal model. Regret (Griin-
wald, 2005) measures how much worse is the best causal model consistent with a proposed
network compared to the best-fitting local causal model already discovered. The server
then uses these regret values to learn a global causal model by minimizing the worst-case
regret returned by all clients. Initial results show that our score-agnostic framework reliably
discovers causal networks from distributed data, even when our assumptions may not hold.

2. Related Work

There have been a number of causal discovery approaches in recent years (Spirtes et al.,
2000; Chickering, 2002; Shimizu et al., 2006; Peters et al., 2014; Marx and Vreeken, 2017;
Huang et al., 2018; Mian et al., 2021) that are designed to work on a single dataset. One
way to adapt these approaches to discover causal networks from multiple datasets is to
collect all the data centrally. Even if we centrally collect the data, we should still not simply
pool it all together, as it is well known that naively pooling the data introduces serious
biases in estimation (Lee and Tsui, 1982; Tillman, 2009). Subsequently, methods have been
proposed to systematically combine data from multiple sources such that causal networks
can be learned (Yang et al., 2018; Squires et al., 2020). One of the popular approaches is
to introduce one or more context variables to distinguish the rows of the combined datasets
and perform causal discovery on augmented data (Zhang et al., 2017; Magliacane et al.,
2018; Ding et al., 2020). Most popular of such approaches is the Joint Causal Inference
(Jcr) framework (Mooij et al., 2016) defined for constraint-based approaches.

All of the aforementioned approaches, however, require data to be centralized, which
is prohibitive in many applications. In such cases, a federated causal discovery approach
allows to discover the network without centralizing data. The topic of federated causal
discovery is relatively young. Existing approaches allow for causal inference (Xiong et al.,
2021) or causal discovery (Shimizu, 2012) given some parametric assumptions. More recent
approaches overcome this issue, but either sacrifice a convergence guarantee (Gao et al.,
2021), or require sharing additional learning parameters (Ye et al., 2022; Na and Yang,
2010). All of the aforementioned approaches still share local causal models that can reveal
sensitive information about data, up to the point of allowing attackers to reconstruct local
data from model parameters (Geiping et al., 2020; Lyu and Chen, 2021; Singhal et al., 2021).
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3. Preliminaries

3.1 Problem Setting and Notation

We have data X, over m variables, split into multiple different datasets XM, ..., X® of
sizes ..., n drawn i.i.d. from the same global distribution P(X®) which we assume
to correspond to the true causal network G*. We assume that the data cannot be shared to
create a single dataset due to e.g., privacy concerns.

Our goal is to discover the true causal network G* from local datasets X which we
assume to be the same for all for all i. While on each dataset X we can try to find
a local causal graph G if each of the datasets X contains only few samples, none of
these learned graphs G will be a good description of the true generating process. Note
that discovering local causal models G will, in the limit with respect to local dataset size,
uncover the true network G*. For finite dataset sizes, however, locally discovered causal
models G can vary substantially from G*.

We therefore develop a method to discover a causal network over the data X which
does not require us to pool the data. Before we can do so, we first introduce the necessary
assumptions to perform causal discovery in our setting.

3.2 Assumptions for Causal Discovery

We assume that the shared distribution P(X®) and the true causal network G* satisfy the
following assumptions generally made in the field of causal discovery.

First is the Causal Markov Condition which states that every node in G* is independent
of its non-descendants conditional on its parents in P. Second is the Causal Faithfulness
assumption is that if sets U,V are independent given W in P then W d-separates U and
V in G*. Together, the Causal Markov Condition and Causal Faithfulness condition entail
that the conditional independence relations in P correspond precisely to d-separation rela-
tions in G*. Last, we make the Causal Sufficiency assumption, telling us that all common
parents of all observed variables are themselves observed. That is, there are no latent con-
founders affecting our data. The sufficiency and faithfulness conditions, however, are not a
must. We make these assumptions to simplify explanation as our initial proof-of-concept is
presented over score-based approaches all of which make these aforementioned assumptions.
In practice, the assumptions of our framework will be as strict as the assumptions of the
score-based approach that is used inside it, as we explain later in Sec. 6.

When all of the above assumptions hold, certain algorithms, e.g. GES (Chickering, 2002)
and the Pc algorithm (Spirtes et al., 2000) have been shown to be consistent for a single

dataset and discover causal networks up to the Markov equivalence class (Glymour et al.,
2019).

3.3 Learning from Regrets

Let L(X®: @) be a scoring function, usually of the form L(X®:G) = —logp(X® | G) +
L(G) where L(G) is a function penalizing the complexity of the graph G and —log p(X¥ | G)
is the log-likelihood assuming a certain class of generating functions, e.g. linear relationships
between each variable and its parents in G.
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Due to privacy concerns, we do not pool local datasets X or the local causal models
G Instead, each client shares only the regret of a proposed network G with respect to the
local causal network G on its local dataset X?, formally defined as

Ri(G) = L(X; G) — min L(XV; G),
G K3
where we drop the dependence on the data X to simplify notation.
It measures how much worse the proposed network G is compared to the best network for

the data X, Our goal then is to minimize the mazimum regret over each of the datasets
X je. want to find G as follows

G = argmin max R;(G) . (1)
G 7

The obtained network G is the one which is least bad compared to any of the individual
networks. It trades off errors relative to one network G() for errors relative to another
network G9) and tries to minimize them as much as possible. Intuitively, local networks in
finite-sample setting may not be identical to each other. Our aim, therefore, is to system-
atically unify them by looking for the next best thing: a network G that is ‘nearly’ as good
as each G, In doing so, we can give the best worst-case guarantees over all datasets.

4. Regret-based Federated Causal Discovery

In this section we describe the practical implementation of our framework defined in Eq 1
which we refer to as the Regret-based Federated Causal Discovery (RFcD). We begin by
dealing with the intractability of finding the minima in Eq. (1) in a score-agnostic manner.

To this end, let A be any score-based structure discovery algorithm, e.g. GES (Chick-
ering, 2002) or GSP (Solus et al., 2017) and let L be any consistent score used within A
such as the BIC-score (Schwarz, 1978) or MDL-based score (Mian et al., 2021). Then we
can replace the terms mingu L(X OF G(i)) in the regret term as follows

G = argmin max (E(G)) , where (2)
G (2

—

where G() is the graph learned by A on X@ and L(X(i); G) is the score that evaluates
how well does G fit the data X, The idea is that when A is a consistent algorithm with

respect to L then as n(® — oo we find that GO — G* «+ argmin L(X(i); G(i)) so that
for sufficiently large datasets the above replacement is harmless.

Next, given the goal in Eq. (2), how do we estimate G? We can, in theory, find the
true causal network by exhaustively searching over the space of DAGs and taking the one
minimizes Eq. 2. Such an approach, however quickly becomes infeagsible as the space of
DAGs grows super-exponentially in the number of nodes and the loss landscape associated
with L does not exhibit any structural regularities, which makes optimal Bayesian structure
discovery NP-Hard (Chickering et al., 2004).
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In practice, we can implement the above approach as a beam search which is guaranteed
to find the optimum, given correct beam size, but also allows to reduce beam size to trade
optimality for runtime. That is, starting from the empty network Gg we evaluate at every
step every one-edge extension G of the b best networks G 1,..., Gy from the previous step
and keep the b best networks from the current step Gyy1.1,...,Giy1p. We repeat this until
no further extensions of any of the networks G;; improve upon the best network already
found. Then we set

~ —_

Gpg = argmin max (L(X(i); Gij) — LX), G(i))) ,
Gy j ¢

to be the best performing network discovered so far.

We can use the above formulation to perform federated causal discovery as shown in
Algorithm 1. Given a server S and [ different clients C' @ ..., each with their own private
datasets XM, ..., X® the server communicates the algorithm A and the scoring metric L

to each of the clients. Each client then runs A on its own data to learn the local G() (line
4). The server then sends an empty network Gy to each client and receives the regrets 7“((]1)
w.r.t locally learned networks back from each C(™. Next, the server calculates the worst-case
regret 7o (lines 5-7) and initializes a beam B of size b with the state (Gp, ) (line 8). Then the
search process begins. At each search-step, all possible single edge extensions of each DAG in
the beam are enumerated and their worst-case regret calculated via communication between
the server and clients (lines 11-14). The top b extensions with lowest worst-case regret are
then retained as the new beam (line 15). An immediate advantage of our search procedure
is that it is guaranteed to converge. This is because regret defined using a consistent score
L used within A can never go below 0, and we only take steps that reduce regret. Hence
we continue the search until convergence. During the entire learning process, the server
neither sees the data, nor the locally learned causal networks for each dataset. The only
communication that takes place between server and client is the regret value rg for a query
DAG G.

Setting beam size to ((mQT;) /2) is equivalent to an exhaustive search where we are guar-
anteed to find the global optimum. This, however, is only suitable for networks with small
number of variables and quickly becomes infeasible even for variable sizes m = 8. Alter-
natively, setting b = 1 results in a greedy DAG search algorithm which is only guaranteed
to discover correct causal network if the underlying structure is a tree. In practice, we find
that setting beam-sizes as small as 10 already performs well even though our search is only
guaranteed to find local optima in those cases.

5. Experiments

We now provide initial results of our work on RFCD. For our assessment, we are mainly
interested in answering the following two questions: (1) Can RFc¢D discover causal networks
over data from multiple environments? (2) How well does RFCD perform on networks
where our assumptions may not hold? We describe our experimental setup and then provide
empirical results to answer these questions.

We instantiate RFCD framework using GES as the score-based algorithm A and two
scoring criteria which are proven to be consistent: namely the BIC-score (Schwarz, 1978)
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Algorithm 1: Causal Discovery using RFcD framework
Input: algorithm A, consistent scoring criteria L, beam size b
Output: causal network G

1 B+

2 rg =0, Gy + 0

sfori=1...1do

4 c[i]. LEARN(A, L)

5 | 1y« c[i].REGRET(Gy, L)

6 if 7{ > ro then

7 L ro < T‘(i)

8 B+~ B® (GO, 7"0)

9 repeat
10 Q@ <+ B.copy() // priority queue to rank DAGs in order of increasing regret
11 G < all admissible single edge extensions of DAGs in B
12 foreach G € G do

13 ra < MAX(c[i].REGRET(G, L)) for i =1...1

14 LQ(_Q@(G””G)
15 B + first b entries in ()

16 until convergence;
17 G*,rg+ + first entry in B
18 return G*

and spline-based MDL score proposed by Mian et al. (2021). We refer to these instantiations
as RFcD-B and RFCD-M respectively. We compare to Direct-LINGAM (Shimizu, 2012) as
representative ANM based method for federated causal discovery over multiple groups. As
baseline, we use GES (Chickering, 2002) and Pc (Spirtes et al., 2000) to locally discover
causal networks within each environments and take a union over the discovered networks to
predict the global causal network, Note that this still requires us to share the local causal
networks. Comparing directly to CDNOD (Zhang et al., 2017) or the JcI framework (Mooij
et al., 2016) is not possible as they require that we first collect all the data in one place and
are therefore not applicable in our setting.

Under our assumptions in Sec. 3.2, causal networks are only identifiable up till Markov
equivalence class (Glymour et al., 2019). We therefore convert the causal network predicted
by RFcD to a Completed Partial Directed Acyclic Graph! (CPDAG) before calculating any
evaluation statistics. We evaluate the predicted networks in terms of structural similarity
using the Structural Hamming Distance (SHD) (Tsamardinos et al., 2006). Let G and H be
the ground truth resp. predicted causal DAG, then SHD(G, H) counts the edges where the
two causal DAGs differ. To keep results comparable across different settings we normalize
SHD between 0 and 1. To avoid susceptibility to practical issues like var-sortability (Reisach

! A Completed Partial Directed Acyclic Graph (CPDAG) is a graph that represents the Markov equiva-
lence class of DAGs
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Figure 1: [Lower is better] SHD for our identifying causal structure with synthetic data
generated from networks with 5 variables (left) and 10 variables (right). Results for RF¢D-M
and RFcD-B are reported for beam size=10

SHD

et al., 2021) we standardize all data to zero mean and unit variance before running the
experiments. Next we provide our evaluation results.

Can RFcD discover causal networks over data from multiple environments?
We start with the setting where we generate multiple datasets using the same underlying
distribution. We have number of environments [ € {3, 5, 7}, number of variables m € {5, 10},
samples per environment n = 1000, and beam-size b € {1,5,10} as our experimental setting.
We simulate DAGs using the Erdds-Rényi model and generate each variable’s data as a non-
linear polynomial function of its causal parents, using additive Gaussian noise in half of the
cases and additive uniform noise for the other half of the instances. We use the Causal
Discovery Toolbox (Kalainathan and Goudet, 2019) to generate this data.

We report the SHD for each approach in Fig. 1. We see that RFcD-M outperforms
LINGAM and the baseline algorithms for both variable sizes 5 and 10. We find that RFcD-B
is better than the baselines but performs worse than RFcD-M possibly due to a lenient
penalty on the model parameters as compared to RFcD-M. This lenient penalty allows for
inclusion of more, potentially spurious, edges when working with limited data. Furthermore,
we see that both RFcD-B and RFCD-M exhibit consistent performance even as the number
of environments grows, whereas the performances of
other approaches degrades with increasing number of Table 1: [Lower is better| Average

environments. SHD for varying beam-sizes b
We find that for greedy DAG search, varying

beam-size does not have a drastic effect on the qual- b m RFcp-M  RFcD-B

ity of the predicted causal networks. This is because 1 0.44 0.51

the beam quickly gets dominated by correlated local 5 5 0.46 0.51

expansions of a given DAG, which have similar worst- 10 0.46 0.50

case regrets. To maintain a diverse set of states in the

beam, we would need to choose a very large beam size 1 0.28 0.35
that results in unrealistic run-times even for networks 10 0.27 0.37
10 0.28 0.37

as small as 5 variables. We report the average SHD
for varying beam sizes in Table 1.
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Figure 2: [Lower is better| SHD for causal structures with synthetic homogeneous data (left)
and heterogeneous data (right) over RFCcD-M, RFcD-B, LINGAM, Pc, and GES. Results
for RFcD-M and RFcD-B are reported for beam size=10
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How well does RFcD perform on networks where our assumptions may not
hold? Second, and more interestingly, we investigate a challenging setting where we gen-
erate data in each environment using different interventional distributions from a fized un-
derlying causal network. This means that the data for each environment comes from a
different (sub-)network, which may be either observational or interventional. We provide
no prior knowledge about the type of the dataset nor about the intervention targets to the
methods.

We run all methods and report the results in Fig. 2 where we see both RFcD-M and
RFcD-B clearly outperform the competitors, even in this challenging setting. This shows
that RFaD is robust to situations where data across each environment is heterogeneous. One
explanation of this result is that increase in worst-case regret when including an intervened
edge in an interventional dataset is smaller than the decrease in the same for observational
datasets where the edge is present, thereby preferring the inclusion of the edge, even though
it may be absent in some of the datasets.

6. Discussion and Future Work

In this work we have presented a federated causal learning framework that is based on
minimizing the worst-case regret over distributed environments. We showed empirically
that using the min-max regret framework we can instantiate a federated causal learning
approach that only requires each environment to communicate regret values to the server,
and discovers meaningful causal structure from data, even when some of our assumptions
may not hold.

Despite the initial promising results, RFCD is still a work in progress. Since our proposed
beam search is over the space of DAGs, we need the causal sufficiency assumption. In general,
however, it is possible to relax both causal faithfulness and causal sufficiency assumptions
by using any consistent pair (A, L) within our regret-based framework that does not require
these assumptions. One additional, non-trivial modification that this entails is that beam-
search must now be defined over the space of Partial Ancestral Graphs (PAGs) instead of
DAGs. How to efficiently enumerate PAGs and their consistent extensions is one of our
current lines of investigation. Moreover, greedy DAG search with a fixed beam-size can
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get stuck in local optima, which we see in Table 1. Given a large enough beam-size we
can, in theory, arrive at the true causal network but such an approach quickly becomes
infeasible as the space of DAGs grows super-exponentially in the number of nodes. The
problem of optimal Bayesian structure learning is known to be NP-Hard after all (Chickering
et al., 2004). To improve this, we need to formulate the RFCD framework using a GEs-like
procedure such that we search over the space of Markov equivalence class instead of the
space of DAGs. This requires us to first give formal identifiability guarantees for our score
defined in Eq. (1). We are therefore working on proving consistency of our proposed score as
well as instantiating a federated Greedy Equivalence Search (Chickering, 2002) procedure as
an upgrade to the beam-search. These improvements will allow us to transform RFCD into
a non-parametric score-based causal discovery framework that can be instantiated using any
consistent score. Finally, we will investigate privacy preserving guarantees of our approach,
with the goal of providing guarantees under certain conditions.

7. Conclusion

We propose a federated causal learning framework that is different from existing work in
the sense that it does not require any of the environments to share either their data or
their local causal networks with the central server. We showed that a simple instantiation
of our framework using beam-search is already effective in discovering causal networks in a
federated setting, even in cases where our assumptions of homogeneous data may not hold.

As a continuation of this work we would like to investigate formal privacy guarantees
that can be given using RFCD framework. We aim to further provide consistency guarantees
for the proposed optimization score and use these guarantees to evolve beam search into a
more complex search procedure such as the Greedy Equivalence Search(Chickering, 2002;
Ramsey et al., 2017). This will allow us to transport our theoretical guarantees into a
practical instantiation and to further improve our results.
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