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Abstract

We present Causal ABM, a methodology to derive causal structures describing complex
underlying behavioral phenomena. Agent-based models (ABMs) have powerful advantages
for causal modeling that have not been explored sufficiently. Unlike traditional causal
estimation approaches which often result in “one best” causal structure that is learned,
two properties of ABMs - equifinality (the ability of different sets of conditions or model
representations to yield the same outcome) and mutlifinality (the same ABM might yield
different outcomes) - can be exploited to learn multiple diverse “plausible causal models”
from data. Using an illustrative example of news sharing on social networks we show how
this idea can be applied to learn such causal sets. We also show how genetic algorithms can
be used as a estimation technique to learn multiple plausible causal models from data due
to their parallel search structure. However, significant computational challenges remain
before this can be generally applied, and we, therefore, highlight specific key issues that
need to be addressed in future work.
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1. Introduction

Explanatory statistical models, and in particular causal frameworks, are powerful method-
ological tools (Pearl, 2019). Besides offering much needed explanatory insights using tested
theoretical frameworks, they allow for exploiting the abundance of data toward a deeper
understanding of diverse underlying phenomena. In some phenomena, however, such mod-
els often do not reach their full potential, mainly because of the rigidness imposed by the
frameworks used to estimate them. For example, typical econometric estimation approaches
offer possibilities for linear, polynomial or exponential model estimations, but they do not
offer the same possibilities when it comes to estimating models of other — possibly ex-ante
unknown — forms. In a large majority of phenomena, linear, polynomial or exponential
models suffice to describe the underlying relationships with high precision (Chaibub Neto,



2020; Chan et al., 2010; Kiritoshi et al., 2021; Malinsky and Spirtes, 2018). Yet, there are
phenomena that could benefit from more flexible explanatory models.

This need for higher flexibility has been recently identified in domains such as a infec-
tious epidemiology (Germann et al., 2006 Hernan, 2015; Marshall and Galea, 2015). For
example, epidemiologists have been trying to model the exact causal outcomes of pandemic
mitigation strategies (e.g., social distancing measures) (Germann et al., 2006) which re-
quires the ability to model complex relationships such as network effects within patient
communities. Agent-based models allow for building very granular representations of the
world (e.g., infected and non-infected individuals), with distinct heterogeneous behaviors
(e.g., daily interaction of individuals with heterogeneous behavior). They can also be used
to derive counterfactual scenarios using these realistic representations (e.g., the probability
of an certain individual getting infected). If such models are (i) driven by theory and (ii)
built to find the most accurate relationship between input and output data sets, they can
serve as causal agent-based frameworks. However, such models include many non-linear
relationships with feedback loops; therefore, estimating them with high precision requires
advanced computational methods (Lamperti et al., 2018; Zhang et al., 2020).

ABM has traditionally been used to help build bottom-up models of complex phenom-
ena (Grignard et al., 2013; Peters et al., 2018 Rand and Stummer, 2021; Wellman, 2016).
However, the use of ABM as a means to derive causal frameworks is scarce (Istrate, 2021).
Agent-based model estimation techniques known formally as validation or calibration (Oliva,
2003; Stonedahl and Rand, 2014; Stonedahl et al., 2011) to some extent resemble the causal
framework estimation methods, as they aim at finding the most realistic calibration of a
model, matching inputs and outputs. Yet, these approaches do not necessarily require
the adherence to a theoretical model, which is one of the major elements of establishing
causality (Shmueli and Koppius, 2011). As a result, frequently such approaches sacrifice
model realism for computational ease. As Rand and Stummer (2021) point out, the lack of
causality is a fair criticism against ABM.

We show how ABM can be used as a framework for building causal models by leveraging
its modeling flexibility and ability to capture complex relationships. Especially given the
advancement of ML, computational researchers can use their know-how toward building
powerful causal ABMs that do not sacrifice realism for computational ease. Such a new
pathway could allow researchers to explore possibly more complex underlying causal rela-
tionships in real-world phenomena leveraging large data sets. At the same time, estimating
the parameters and structural forms of causal agent-based models requires the design of
appropriate ML algorithms. Hence, the contribution of such work can be enriched by new
ML algorithms proposed to estimate these models.

ABMs offer two unique ideas for causal modeling - equifinality (the ability of different
sets of initial conditions or model representations to yield the same outcomes/data) and
mutlifinality (the same ABM might create different outcomes/data in different runs). Given
the difficulty of learning causal models from observational data, we suggest that it may be
useful to develop approaches that offer the ability to learn multiple plausible solutions in a
causal inference setting. Causal ABMs, as we show in this paper, present one approach to
doing this.

This paper presents an approach for designing Causal ABMs and using genetic algo-
rithms for its estimation - i.e. to learn multiple plausible causal sets from data. The



benefits of a Causal ABM framework are (i) its expressive power (ii) its ability to present
a realistic approach to learning causal models from data; specifically, a recognition that in
many cases it might be possible to have not one, but multiple plausible causal explanations
from observed data. As far as we know, this paper is the first to introduce the notion of
using ABM-based modeling to learn multiple plausible causal models given data. The rest
of the paper presents the approach using a specific example of learning causal models in
the context of news sharing behavior on social networks. We use this example to illustrate
the potential of our approach while identifying challenges that need to be addressed before
this idea can be practically applied in larger settings.

2. ABM estimation and causal inference in the literature

Our work builds on many related ideas in the literature. Below, we summarize the key
works, and note the terminologies used in these.

2.1 ABM and model abduction

Abduction is rooted in the theory of logic (Mayer and Pirri, 1996) and refers to the process
of deriving a reasonable explanatory connection between inputs and outputs (Glass, 2019),
as opposed to induction and deduction which are based on logical inferences to get from
inputs to outputs. Based on deductive reasoning, if Y is derived by X, then Y is a “formal
logical consequence” of X. In contrast, in inductive reasoning, if we can infer Y from X, it is
quite probable that all instances that resemble Y are inferred by X, without this being the
absolute norm. In this sense, deduction is often considered as going logically from general to
specific, while induction is going from specific to general. Abductive reasoning, on the other
hand, allows us to infer Y as a reasonable explanation for X. This indicates that there might
be unobserved relationships connecting X and Y, and we can only infer some of those by
observing the outcome of this connection X — Y. In effect, abduction is, therefore, a process
of considering alternative explanations given data and then choosing what seems to be “the
best one”. It has been noted that human decision making is often abductive in nature, and a
statistical analogy is maximum likelihood estimation, except that this process of identifying
the most likely explanation usually happens inside a human brain. Abductive reasoning
has been used extensively in the fields of Al and knowledge representation (Boutilier and
Beche, 1995) to provide plausible explanations of various phenomena.

Especially in ABM, abduction is being used to explain the outcomes of counterfactual
scenarios, using logic programming (Pereira and Saptawijaya, 2016). Alberti et al. (2005)
present an abductive logic programming framework, which can update the derived model
dynamically based on upcoming facts and as a second step allows for hypotheses confir-
mation/rejection. For example, a realistic agent-based model of disease spread may have
been calibrated on real data. This model can then be used to examine counterfactuals
such as ‘what would have happened in social distancing was in place earlier.” Along similar
lines, Gavanelli et al. (2004) propose an abductive reasoning logic programming framework
that provides a group of agents the same abductive semantics, and the agents using their
own knowledge base are expected to make abductive inferences about a common goal.

Building on the abductive logic programming literature, Satoh et al. (2000) propose spec-
ulative computation based on abductive reasoning. They show that the agents in the multi-



agent system can infer certain literals even using incomplete information sets, applying ab-
ductive reasoning. Similar abductive frameworks have been used in cyber-security (Karafili
et al., 2018), defense-system algorithmic design (Das et al., 2011), or robotics and automa-
tion (Dennis et al., 2016). Karafili et al. (2018) propose the use of abductive reasoning on
observed cyber-attack technical data and social evidence to infer the origin of a cyber-attack.
In this work, whereas no claims about causality are made, by observing the argumentation
(logical) rules that are used in their system it becomes clear that causality is the under-
lying assumption. Specifically, attributing an attack to an attacker entails a strong causal
element. Das et al. (2011) use abduction to identify and reason about agent actions in an in-
tegrated air-defense system. In every simulation counterfactual scenario, the agent behavior
and their environments are observed, and abductive claims are being made. With a slightly
different objective, Dennis et al. (2016) use abductive reasoning to infer the rationale of an
autonomous vehicle choice. Their goal is to show that when an autonomous vehicle makes
a choice, there is reason to believe that this is the choice that causes the least ethical harm
and, thus, it is chosen by the vehicle.

The most representative work of using abductive modeling to derive an agent-based
model that is built on causal theories and matches reality is presented by Cedeno-Mieles
et al. (2020). The authors build an agent-based model based on causal assumptions derived
from theory, and in parallel run behavioral experiments. They combine the outputs of the
experiments to adjust the model so that it matches the experimental output, and for this
they use iterations of abduction. This has some flavors of causal ABM, which we define as
ABM with strong theoretical framework and model estimation based on real-world data.

2.2 ABM and model learning

Model learning in ABM refers to observing inputs and outputs of an agent-based model to
derive the best model that connects the two. Grimm et al. (2005), borrowing concepts from
ecology, derive the underlying agent-based model not only by finding the best model that
fits inputs and outputs, but also by falsifying alternative theories, attempting to establish
causality in their resulting model. The work of Grimm et al. (2005) belongs to a broader
family of solutions that is known as inverse simulation, based on which multiple “simulated
worlds” are generated, and via comparing the outcomes of these worlds with real data, the
researchers select the most realistic modeling representation (Kurahashi, 2018).

A different stream of literature (Chen and Liao, 2005; Janssen et al., 2019; Kvassay et al.,
2017; Maes et al., 2003, 2007; Mao and Gratch, 2005, 2006, 2012; Nagoev et al., 2020 Wan
and Singh, 2003; Wurzer and Lorenz, 2014) uses ABM to infer explanations for emergent
phenomena arising from simulations. Often these explanations have a causal flavor. Chen
and Liao (2005) design an agent-based model to replicate the stock market functionality,
and by observing the output of the simulation model infer explanations about macro- or
micro-phenomena that emerge. Janssen et al. (2019) present an agent-based methodology
to conduct causal discovery of emergent phenomena via simulating and analyzing different
scenarios. Kvassay et al. (2017) create an agent-based model to simulate a set of scenarios,
and using causal inferences they try to derive the most plausible explanation to the outcomes
of these scenarios. Similarly to Kvassay et al. (2017), Nagoev et al. (2020) infer reasoning
from the agents actions and emergent interactions. Mao and Gratch (2005, 2006, 2012)



present a method that infers causal beliefs from social interactions, and Wan and Singh
(2003) infer causal commitments from agent interactions without proposing an explicit
model learning.

In the articles belonging in the latter category, there is no explicit matching of the output
of the model with real-world outputs. Therefore, this model learning could be considered
implicit. A more explicit approach is followed by the works dealing with model estimation
via calibration and validation, as presented below.

2.3 ABM and model calibration and validation

Model calibration in ABM, typically, refers to calibrating the parameters of a model based
on some realistic conditions (Oliva, 2003). However, if this calibration is not conducted
in a way that establishes a causal (and best-fit) relationship between inputs and outputs,
the ABM model cannot be considered as causal. Such a non-causal approach is presented
by Gilli and Winker (2003), who use an “indirect model estimation” method to calibrate
their agent-based model so that it reflects the conditions of financial markets realistically.
Similarly, Stonedahl et al. (2011), Stonedahl and Rand (2014) and Nguyen et al. (2019)
propose genetic algorithms (GAs) to find the best calibration values for their agent-based
model, so that it matches real output data. Oliva (2003) posits that such a model calibration
can be seen as a hypotheses testing methodology, provided that the calibration is using a
solid theoretical basis.

Bianchi et al. (2007) and Zhang and Vorobeychik (2019) connect the calibration of an
agent-based model with the term wvalidation. Model validation reflects this model calibra-
tion that makes the model “correct”, in the sense of reflecting reality Bianchi et al. (2007).
To this end, they find the best calibration of their model (validation) by matching the
model-generated output with real-world output data. Similar validation processes are be-
ing presented by Rand and Rust (2011), who place particular emphasis on validation as a
dimension of rigor in ABM. Windrum et al. (2007) present a critical review of ABM valida-
tion approaches. Naturally, the agent-based model calibration and validation process can
be very computationally complex and sometimes intractable, as it has been pointed out by
Gilli and Winker (2003) and Oliva (2003), among others. Thus, to address this limitation,
Lamperti et al. (2018); Zhang et al. (2020) propose a set of ML surrogates that can explore
the calibration space more efficiently and derive more accurately the set of parameters that
establish causal relationships.

Summarizing the current literature, there is a need for building causal models, and
existing ideas offer some directions in this context. While models consistent with data have
been derived (best-fit function that connects inputs and outputs), we do not see derivations
or learning of causal models purposefully.

2.4 Causal inference in the literature

Causal inference is a rich field with contributions stemming from disciplines spanning from
computer science to economics. One of the most established causal inference methodologies
deals with directed acyclic graphs (DAGs) (Dawid, 2010; Elwert, 2013; Knight and Win-
ship, 2013; Pearl, 1998; Williams et al., 2018), which represent causal relationships between
variables (nodes). DAGs most of the times assume specific types of relationships among



the variables, which poses some expressive limitations in the kinds of causal structures that
might be represented. Partially in response to this limitation, non-linear models have been
proposed to model the relationships among variables in graphical models such as DAGs
(Glymour et al., 2019) or new fuzzy directed graphs with feedback have been proposed
(Osoba and Kosko, 2019). This stream of literature despite its longstanding presence is still
facing challenges such as identifying the strength of a causal relationship (Janzing et al.,
2013), identifying possibly hidden causal factors that are not properly modeled in a DAG
(Dablander, 2020) or even computationally searching for the best DAG representation given
raw data (Viinikka et al., 2020; Vowels et al., 2021). Recent advancements in causal mod-
eling using DAGs include increase in efficiency by using “recursive Markov boundary-based
causal structure learning” (Mokhtarian et al., 2021), interactive causal structure learning
(Melkas et al., 2021), and latent causal structure learning (Young et al., 2020), among
others.

The focus of this work is to provide a different approach to modeling causal relationships.
Specifically, the objective of this work is to offer more “specific and informative formalism
than its simpler (yet intuitive) graphical counterpart” (Vowels et al., 2021). As highlighted
by Vowels et al. (2021) graphical models are intuitive and simple, but they might sacrifice
expressive power (e.g., modeling the relationship between each variable with another in
a more detail) for simplicity and macro-focus. With the proposed causal ABM, we aim
to provide a framework for modeling complex dynamics and feedback loops among agents
while non-linear learning causal relationships. Feedback loops are harder to model using
DAGs (Strobl, 2019), and the ABM approach can address this limitation. However, the
expressive power advantages offered by this approach do come with greater computational
complexity in estimation, which we acknowledge here to be an issue that needs significant
work in order for Causal ABM methodologies to become practical.

3. An Illustrative Framework

To motivate how we can approach causality in a richer sense with ABMs, here we present
a framework that can learn plausible causal models in a setting where agents interact in
a network and receive time- and agent-dependent feedback from other agents or them-
selves. Notationally, we assume agents ¢ € [1,M] that have a set of attribute vectors
Xi = {x’l, ...,xﬁv}, where :Jcil, ,xﬁv are temporal vectors. Agents generate an output Y
(agent observed behavior) while receiving environment-induced signals E and affected by
time- or agent-dependent feedback.

For example, the network can be a social network where agents are connected, and
the outcome of interest could be news sharing behavior. In this domain, prior knowledge
from theory (from areas such as psychology, network science, and consumer behavior) can
provide insights into sharing behavior of individuals; such theory needs to be explicitly
modeled in causal frameworks as opposed to purely predictive ones. The agents interact
in an environment from which they receive signals, such as a major news event outbreak.
Agents can have a combination of static and dynamic attributes, such as gender, income,
and propensity to share. As agents interact with each other and the environment and
share information, data is constantly generated as a stream; such temporal data could
even reflect endogenous interactions between the outcome of interest (news sharing) and



the agent attributes or the presence of confounding factors leading to a causal outcome.
In such a context, the problem of learning causal models is essentially being able to learn
the underlying, theory-driven agent interactions that lead to the emergent data stream
that is observed - i.e., learning the true data generating process. Interestingly, the same
emergent data stream can be generated from different starting points; this is referred to
as equifinality. A critical observation, therefore, is that multiple patterns of interactions -
all consistent with theory - could generate the same observed data. This is our motivation
for learning plausible causal sets, rather than seeking a single causal model as commonly
done in the literature. As we show later in the paper, the learning such of such sets, or
the estimation problem, is particularly interesting given one important observation. If we
“seed” our ABM with one causal model driving the interactions, it is in fact possible that
the same causal model leads to multiple datasets in different runs of the real world, due to
stochasticity. Hence, estimation methods need to be robust in the sense of not “requiring”
learned models to be fine-tuned only to the single observed temporal data instance (more
on this in Section 5).

Formally, in such a model, the relationships between the input X! = {le, o xﬁv}, and
output Y are captured by a function in the form of Y = f(g(l)(Xl, XM g(XT L XM,
E), where z is the number of sub-functions that capture inner-relationships among input
attributes X! = {xi,...,2%} over time, as well as among input attributes and output over
time (Figure 1). Each sub-function ¢()(X1,.., XM), .. ¢®)(X', .., XM) captures certain
relationships among any of the inputs X', .., XM or output Y, driven by theory. Theory
in psychology or network science can offer more than one reason g(X1,.., XM), e.g., how
homophily influences sharing behavior, captured by g(l) (X1, XM); and how behavior
of influencers in the network affect sharing behavior, captured by 9(2) (Xl,.., XM), ete.
The function f(-) models all the interactions that subsequently take place for an individ-
ual to share a piece of news. The functions g(l)(Xl,..7 XM),...,g(z)(Xl,..,XM) can be
parametrized in order to model functional, theory-driven rules, but the function f(-) can be
as complex as needed to model all interactions that subsequently occur among agents and
the environment that finally ends in some sharing behavior. In our case, the function f(-)
is the ABM itself (i.e. the computational mechanism that creates the emergent outcome).
It is tempting to learn the relationship, Y = f(X1,..,XM), E), between inputs and outputs
directly from data in a continuous manner using deep learning frameworks; however, such a
model, while likely accurate and predictive, would not be causal. For causal inference, it is
important to learn the actual data generating process that is playing out behind the scenes;
which are the actual relationships f(-) and g(-) captured in a causal ABM framework.

Before providing more details, it is useful to ask how conventional causal modeling
frameworks would consider such a setting. Traditional frameworks estimate a given causal
model directly from the data using different approaches (e.g. panel estimation models,
bayesian networks, etc.), which are also theory-driven. What do ABMs add in this context?
We believe ABMs offer something unique which existing approaches do not - the ability to
model highly complex and flexible interactions among agents and the environment, which
capture not just the effects of the theoretical rules, but the effect of subsequently generated
data on the behavior of agents in the next time period. At the same time, ABMs through
their theory-driven rules can model endogenous relationships among variables and the effect
of confounding factors on the final outcome (all this can be captured by the functions f(-)



and ¢(-) but needs to be modeled explicitly). In addition, ABMs can include counterfac-
tual analysis via simulating the ABM world without the presence of the causal rules, and
comparing the outcome.

We define Causal ABMs as ABMs that are informed by theory and are consistent with
observed data. For example, theory informs the way that inputs X', .., XM connect with
the output Y. Also, theory determines the way that environment-induced signals E affect
Y (the signals E could capture the presence of confounding factors on the final outcome Y).
In addition, theory can specify the way that different attributes a1, ..., 2% of each agent can
interact with one another or the way that past outputs (Y at ¢t —k) affect current outputs (Y
at t). Therefore, a Causal ABM is a particularly good framework to model data generating
processes exactly as they occur in practice. But, for an ABM to be causal, not only should
it reflect theory, it should also be consistent with observed data, i.e. the theory-driven
rules embedded in the ABM should actually generate the data that is observed in the real
world. Learning such Causal ABMs from data is indeed challenging; this paper provides
one approach and highlights the opportunities ahead for researchers.

Estimating causal ABMs shows a lot of parallels with either cross-sectional or panel
data model estimations. In both ABM and econometric causal model estimations, a causal
model that best expresses the relationship Y = f(X1, ..,XM,E) is estimated. The main
difference is found in the form of the function f(-), which in the econometric model es-
timations has a pre-specified structure, potentially less complex and flexible than the
function f(¢M(X1,..,XM), ..., ¢®)(X1,..,XM) E). In causal ABM learning, the function
FlgM (X, .. XM ¢3)(X1,.,XM), E) might not even have a closed-form representation;
instead, it might be a sequence of if-then rules, ensembles of networks or other ML algo-
rithms such as the approaches described by Cui et al. (2020). Hence, ensembles of ML can
be used to learn the most realistic and causal ABM. Naturally, this flexibility and ability
to model complex relationships comes at a estimation complexity cost. Therefore, each of
these groups of methods are suitable for solutions with different complexity requirements.
Particularly powerful in this framework is the ability of ABM approaches, due to their equifi-
nality and multifinality properties, to learn multiple plausible sub-functions consistent with
theory, that can lead to a much richer understanding of the causal phenomena.

4. Case Study: Sharing Political News

Estimating causal ABMs can be challenging depending on the examined scenario, and it
requires specific estimation algorithm design. Through a case study example about an
agent’s decision to share political news depending on the sharing behavior in her social
network, we explore estimation challenges and complexities.

4.1 Agent-based simulation preliminaries

We create a simulation in which agents i € [1, M| connected in a network decide to share
or not a piece of political news in their social media. The decision to share political news
is denoted as Y; € Y and is a binary decision that varies across agents i and across
time t. In addition, our simulation randomly decides to connect two agents by creating
a bidirectional edge between them. Furthermore, in our simulation there are some agents
that are considered influential (e.g., influencers). These agents have the power to influence
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Figure 1: Causal ABM: inference of causal relationships from agent-level data with agent
and time-dependent feedback

other agents connected with them in their decision to share political news in their social
media. Finally, we assume that at random points in time, some exogenous events take
place that are very popular on aggregate and this increases the probability of agents to
share political news about these events. Such events represent aggregate signals induced by
the environment surrounding the simulation (these signals are denoted by E in Figure 1).

4.2 Agent characteristics

The agents have certain attributes (X*...X™ in Figure 1). For expositional simplicity, we
assume that the agents have as differentiating attribute their endowment si € S. Each
agent’s endowment s could change over time ¢ or remain constant. This attribute could
establish “similarity” (or homophily) between agents. Agents with homophily along the
endowment dimension have a higher probability to influence one another in their decision
to share political news in their social media if they are connected. Other characteristics that
could establish homophily among two agents could be age, gender, geographical proximity,
educational background, etc.

Second, we assume that past sharing decisions Y}’ .. affect current decisions to share or
not Y;!. To express agent heterogeneity not only in endowment and ability to be influential,
but also in terms of decision making, we model agents that belong in two categories, A and
B, with respect to the propensity to be affected by their past preferences in sharing. Agents
belonging in category A have higher propensity to be affected by their past preferences as
opposed to agents belonging in category B. The assignment of agents in the categories A
and B takes place randomly once the simulation gets initialized.

Next, we present the theory-driven decision rules of agents that lead to their decision
to share or not political news.



4.3 Theory-driven decision rules

For demonstration purposes, we assume that there are six rules that influence each agent’s
decision to share or not a piece of political news in their social media. These rules serve as an
example; depending on the problem, domain experts must decided which rules are necessary
or sufficient to model causal relationships. Ideally, such decisions can be accompanied
with the use of real data. In the absence of real data coupled with knowledge about the
exact causal underlying phenomena, rules such as the presented ones can be used to create
synthetic data. In this example, the combination of the rules Eq. (1)-(6) are comprising
the function f(-), whereas each of the Eq. (1)-(6) correspond to g™ (-)-g((-) (following the
notation of the presented causal ABM framework).

The first rule is called “homophily 1”. Specifically, following the theory about homophily
(Aral et al., 2009; Fang and Hu, 2018; Kossinets and Watts, 2009; Shalizi and Thomas, 2011),
agents are influenced in their decision to share political news by agents that are homophilus
to them. Based on the threshold model by Granovetter (1978), if the percentage of the
connected neighbors of an agent ¢ that have the same endowment and have shared a piece
of political news during time ¢ is surpassing a certain threshold H1 (e.g., 50%), then the
agent ¢ will also share this piece of political news during time ¢ + 1. We denote the set
of connected neighbors of each agent i as C!, and the set of neighbors that have same
homophily trait (endowment) with agent ¢ and have shared the piece of news during time ¢
as Psi, where s denotes the homophily trait “endowment”. Since in this example endowment
is the only homophily trait, for presentation clarity we omit the index s from P?. Then,
this rule is:

e [P
i = {1’ ot > H e (1)
0, else
In addition, we implement the decision rule “homophily 2”. Based again on the theory
about homophily (Aral et al., 2009; Fang and Hu, 2018; Kossinets and Watts, 2009; Shal-
izi and Thomas, 2011) and the threshold model Granovetter (1978), if the number of an
agent’s i connected neighbors that have shared this piece of news during time ¢ surpasses
a certain threshold H2, then agent ¢ will also share this piece of news during time ¢ 4 1.
Mathematically, this rule is expressed as:

. {1, it Y,V > H2 y

= : jeCl Viell, M (2)
0, else

The sharing decision is also known to be affected by social influence (Shalizi and Thomas,
2011). Hence, for every time t some agents are randomly chosen to be influential. These

influential agents, in case they have decided to share a piece of political news, are likely
to influence their connected agents with a certain probability p}“ﬂ to also share this piece
of news. In the social influence literature (Fang and Hu, 2018; Rice et al., 1990; Shalizi

and Thomas, 2011), the probability of influence can be measured by the frequency of social
interactions or any other interaction proxy. If Ber(pi") denotes a Bernoulli random variable
with probability plifnﬂ to be 1, the above influence rule is expressed as:

VjieCl Vie(l,M] (3)

i ~ Ber(p), if j = influential
t+1 =

0, else

10



Furthermore, agent past preferences or decisions about sharing influence their current
decision to share Y. According to preference theory (Hanley et al. 2006; Rafailidis and
Nanopoulos, 2014), user preferences are relatively stable over time and change as a result of
exogenous events. Thus, in our simulation, we assume that agents ¢, depending on whether
they belong in category A or B, are influenced by their past preferences with a probability
p? or pP. However, after a critical point in time t., the probability of sharing the piece of
news is not anymore determined by the category, but becomes proportional to the times
they have shared a piece of news before. The above rule is summarized as:

Ber(p?), if i€ Ajand t <t
Y4 ~ { Ber(p?), if ie B,and t<t.,V €1, M] (4)
Ber(ZtY;), if t>t.

In terms of exogenously-induced signals E, some events are “viral” leading to sharing by
more agents in the network. According to Salganik et al. (2006), some events are much more
influential than others leading to a cascade of influence in a network. Such a cascade follows
the “rich-get-richer” propagation theory (Easley et al., 2010) also known as the “Matthew
Effect” (Rigney, 2010), based on which if the percentage of agents that has shared the news
during time ¢ surpasses a threshold V' in the whole network, then this piece of news is
considered viral and all agents in the simulation will share it with a probability p¥ during
t + 1. This rule is described by Eq. (5).

3 ~ v 3 Zt}/tz
Al:{ Ber®@"), =t >V e M (5)

0, else

Finally, we model sporadic exogenous events that we call “rare events”. When these
take place, then the whole agent network is likely to share the piece of news about such
events with a probability p”. Similarly to viral events, these rare events also follow the
the “rich-get-richer” propagation theory (Easley et al., 2010; Rigney, 2010; Salganik et al.,
2006). We denote the presence of rare events as t = tya and this rule is:

~Y T 1 =
Vi = { . Ber(e"), ;flsz frare e (1, M) (6)

The last two rules express the effect of exogenous environment-induced signals E to the
final outcome Y. For example, the probability of a rare event (for example a rare shooting
incident) is directly influenced by the environment, and as such these rules indirectly express
the effect of E on the Y.

5. Estimation Method

The estimation problem in a Causal ABM framework can be stated informally as follows.
Given (i) temporal data, and (ii) some knowledge about the underlying dynamics within
the ABM, identify the exact data generating process inside the ABM that generated the
observed data. Of course, with only observed data and no knowledge or assumptions the
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estimation problem is intractable. Based on problem settings, specific versions of the esti-
mation problem may be proposed, that differ in what kind of prior knowledge is assumed.
Below we discuss this in the context of the case study.

5.1 Preliminaries

In order to estimate the causal agent-based model described in section 4, first, a set of
environment inputs should be provided. These inputs are known beforehand and describe
the agent-based environment within which agents make decisions. In our case study, these
environment inputs are the number of agents M, the number of connected neighbors C? of
each agent 7, the endowment s’ of each agent i, the preference category A or B of each agent
i and the critical time threshold t.. We denote this input set as I = {M, C?, s', A, B, t.}.

In combination with the above inputs, the output Y = {Zi\il Y/}, expressed as the
aggregate decisions of all agents M to share or not the piece of news over time, is known.
This output Y can be the result of any of the decision rules described by Eq. (1) - (6);
however, the rule that caused sharing or not sharing is not known.

Finally, the set of causal rules described by Eq. (1) - (6) are known but without their
exact parameters. That is, using theory, a researcher can derive the general structure of
these rules; however, the exact parameters that connect the known inputs and outputs
need to be discovered. For example, in Eq. (1) the threshold H1 is the unknown param-
eter. Similarly, in Eq. (2) the threshold H2, in Eq. (3) the probability p™, in Eq. (4)
the probabilities p? and p®, and in Eq. (5) and (6) the probabilities p* and p” are the
unknown parameters that need to be estimated. Denoting these unknown parameters as
K = {H1,H2,p™ pA pB p¥,p"}, the set of causal rules can be expressed as: R(K). And,
therefore, assuming that the agent-based model is f(-), we have that Y = f(I, R(K)). The
objective of this agent-based model estimation is to find the parameter set K that satisfies
Y = f(I R(K)).

We refer to each realization of Y, as a result of causal rules R(K), as a ‘world’. It
should be noted here that the agent-based model f(I, R(K)) can generate more than one
“worlds”, described by Y. In other words, for a set of inputs I and a set of rules R(K)
more than one output vectors Y are possible. The latter is coined in the literature as
multifinality (Chaturvedi et al., 2011) and has been elaborated in section 3 Equivalently,
more than a set of inputs I and a set of rules R(K) can yield the same world Y, also known
as equifinality.

Furthermore, we denote as f(I, R(K)) one “run” of the ABM, whereas as fy (I, R(K))
W “runs” of the ABM. The latter means that for the same inputs I, same rules R(K), the
whole agent-based model is run W times. Similarly to one ABM run which is characterized
by multifinality and equifinality, the W ABM runs have the same characteristics.

5.2 Evaluation Metric

As a direct consequence of the above-mentioned multifinality and equifinality, an evaluation
metric that is able to measure the “goodness” of each “world” Y should be established.
For this purpose, we set as D(Y!, Y?2) a distance function that can measure the distance
between two “worlds” Y! and Y2. The distance metric D(-) could be comparing the worlds
in as granular or coarse a manner as acceptable for the problem under consideration (e.g.,
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the worlds could be compared based on distribution of total user shares of news across time,
or the actual daily shares). The choice of the distance metric D(-) could be another possible
contribution, as the right choice of D(-) allows for faster convergence of the estimation to
the desired parameter set K that satisfies Y = f(I, R(K)).

5.3 Estimation Algorithm

In order to estimate the parameter set K that satisfies the causal agent-based model Y =
f(I, R(K)) researchers can propose a variety of methods depending on the nature and
the complexity of the problem under consideration. In this paper, we offer an estimation
algorithm example based on Genetic Algorithms (GAs) due to its parallel search structure
that naturally lends itself to learning multiple solutions (plausible causal sets). It should be
noted that the estimation algorithm serves as an example of how causal structures can be
learned in the proposed causal ABM framework. Researchers can expand on this direction
and propose novel contributions with regards to learning causal structures in agent-based
models. A summary of the proposed estimation algorithm is presented in Algorithm 1.

Step 1 receives inputs I which are known ex-ante, as well as the output Y1 which
serves as ground truth. In other words, the objective of the GA is to find the parameter
rules that generate a world as close as possible to Y. Step 2 finds an initial set of rule
parameters K as a result of either one model run f(I, R(K)) or W ABM model runs
fw (I, R(K)) (fw (I, R(K)) produces a matrix containing the outcomes of all W runs). Step
3 includes a set of steps that are repeated until the GA produces a satisfactory solution
(expressed in the termination condition). In this step the GA continuously evaluates the
generated solutions against the ground truth Y, and through crossover operations and
a population maintenance policy creates a new population of solutions Q. In the end, in
Step 4, the algorithm returns the set of solutions that have an acceptable distance from
the ground truth Y?!. To establish the acceptable distance from the ground truth we set a
fitness_threshold, which can be determined exogenously by the algorithm designer.

As mentioned previously, the choice of the distance function is crucial for the discovery
of the underlying causal ABM. In the presented case study, there is substantial stochastic-
ity in the environment of the agents which poses significant challenges to the estimation
of the true causal ABM. This stochasticity stems from many behavioral attributes of the
agents, for example, the initialization of the input parameters I = {M, C?, s', A, B,t.} is
done stochastically, and in addition, in every time t different agents are defined as influ-
ential, increasing the stochastic nature of the case study. Therefore, we set our fitness
function as the L2 norm of the difference between ground truth Y! and W ABM runs,

D(YY f(LR(K))) = ||[Y! - E (=) fx(I’R(K)) ||2. L2 norms are commonly used in GA algo-
rithms to guide the algorithm to convergence (Stonedahl et al., 2011). However, in our case
study we are benefiting from multiple ABM runs, as opposed to one. Such a function, using
the average output of W ABM runs is more accurate in discovering the actual causal ABM
structure, as opposed to a single ABM run, because it can eliminate part of the stochastic
noise that is injected in the GA algorithm via the stochastic initialization and behavior of
the agent population. It is important to mention that while W increases, the convergence
of the GA takes place faster, as well. However, this comes at a computational cost, there-
fore, researchers need to identify the right balance between accuracy and computational
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complexity while estimating the causal ABM structure, and as a result the sets K. Future
work can produce meaningful contributions in this direction, because for example, there are
rules that might influence the outcome more than others; hence, more elaborate distance
functions could achieve faster convergence.

Algorithm 1 Summary of the Proposed Estimation Algorithm

Step Description

1 Receive the input parameter set I and the world Y1

2 Initialize a population Q of candidate solutions

K, where each candidate solution is a specific

binding for the parameters of the causal rules.

Q can contain the result of W ABM model runs fi (I, R(K))

3 While termination condition is met:
a. For each candidate solution K in the population Q
compute fitness as fitness(K) = D(Y?, fw (I, R(K))=
Iyt — ZYZ:1>fVVVV(I,R(K)>H2

b. Use the fitness values fitness(K) V K € Q to
probabilistically select parents K' and K2 for
a crossover operation
c. Create new candidate solutions L1, L2 based on a
crossover and compute fitness(L!) and fitness(L2)
d. Insert children into the population and update the
population by removing the worst solutions
e. With some random probability mutate a randomly
chosen solution
f. If the average fitness function is not decreasing,
perform diversity boosting by replacing a
share of the population with new solutions
g. Update Q with the set of new solutions

4Return plausible causal sets R = {K]| fitness(K)

<< fitness_threshold}

GAs have been used in the ABM literature to calibrate or validate models in order
to match real-data (Calvez and Hutzler, 2005; Nguyen et al., 2019, Stonedahl and Rand,
2014; Stonedahl et al., 2011), without, however, the constraint of causality in mind. The
latter adds extra complexity in the model calibration process but it allows for making
causal inferences using the proposed ABM. Furthermore, in our approach, we are interested
in finding sets of plausible causal parameters so that the mechanism behind the ABM is
revealed, as opposed to finding the “best-fit” parameters that optimize a model, which is the
objective of model validation methods. As Rand and Stummer (2021) highlight, causality
is missing from the current model validation or calibration methods in ABM, and is the
natural next step to enhance our understanding behind emergent phenomena.

Note, here, that in the presented example, for expositional simplicity, we have not
included a counterfactual analysis (which is common in causal modeling). Incorporating a
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counterfactual analysis in causal ABMs can be done by simulating the ABM world without
the presence of the causal rules, represented by f(-) and g(-) or in Eq. (1)-(6) in our specific
example, and adjust the distance function to measure the proximity or (lack thereof) of the
counterfactual outcome. More in-depth counterfactual analyses can examine the impact of
specific rules (Eq. (1)-(6)) on the outcome.

5.4 Baseline

As commonly done with evolutionary algorithms, to evaluate the presented approach, we
implemented a random generator benchmark. This benchmark serves as our baseline and
generates equal number of candidate solutions K as the ones generated by the proposed
approach. If 7 the number of solutions generated by the proposed GA approach, the bench-
mark algorithm behaves as shown in Algorithm 2.

Algorithm 2 Summary of the Baseline Algorithm

Step Description

1 Receive the number of solutions, 7, generated by the
proposed GA approach
2 For T:
initialize random solution vector K, where K is a
specific binding for the parameters of the causal rules.
3 Return sets R = {K]| fitness(K) << fitness_threshold}

6. Estimation Results
6.1 Preliminaries and Simulation Environment

Next, we present the results of our proposed estimation approach and we compare them to
the results of the baseline. The objective of the proposed estimation algorithm and the base-

line is to estimate the true causal rule parameters denoted as A = {H1, H2, p™® p4, pB p¥ p'}.

We denote as A = {H1, H2, pinfl pA pB v g "} the parameters estimated either by the pro-
posed GA-based approach or the baseline. The sets A are the sets in R = {K} with the
lowest fitness. To quantify the comparison between the actual and the es:cimated parameter
set, we use the euclidean distance: {(Hl H1)?2 4 (H2— H2)2 + (p™i —pinf)2 4 (pA —pA)2 4
(B = pB)? + (p¥ — p¥)2 + (b7 — p)2} 3.

In this 51mulat10n run, we have M = 23 agents (randomly generated number in each
simulation). These agents interact with each other for 23 days (randomly generated num-
ber). The number of agents and the number of days of the simulation are randomly drawn.
The agent characteristics are also randomly initialized. Figure 2 displays the sharing be-
havior of some agents of the simulation over the 23 day horizon. We observe a diverse agent
behavior: agent 8 during the first day does not share the piece of news, but after day 1 she
keeps on sharing until the end of the simulation; agent 21 starts with sharing and later this
behavior changes, finishing the simulation without sharing the piece of news. Agent 3 also
changes behavior between sharing and not sharing, possibly influenced by more than one
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causal rules. We should note here that in our simulation, more than one rules might cause
sharing, making the estimation challenge more complex.
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Figure 2: Sharing behavior of some randomly selected agents.

6.2 Learning Causal Sets

The proposed estimation’s objective is to learn the causal rule parameters of the agents that
lead to sharing or not a piece of news (Y). The actual rules that drive the agent behavior
as well as the best learned rules by the proposed algorithm are presented in Table 1. The
rules in Table 1 have been shortened due to space limitations, and their full expressions can
be found in Eq. (1) - (6). The parameters of interest are presented in bold.

In addition, we present the best 3 results generated by the proposed algorithm and the
baseline in Tables 2 and 3. The baseline algorithm generated 7 = 735 causal sets K, equal
to the number of causal sets generated by the GA-based approach. The solutions in both
Tables 2 and 3 are sorted based on their ability to generate an output closer to the ground
truth Y. We should note that the Euclidean Distance is comparing the causal parameters
and not their generated output.

The proposed approach outperforms the baseline in learning the causal sets. Specifically,
the best estimated causal set deviates only by 1.25 units of Eucl. Dist. from the true set,
whereas the best estimated causal set by the baseline deviates by much more from the actual
parameters, i.e., 8.3 units of Eucl. Dist. Also, on average the best 3 solutions estimated
by the proposed method deviate by 1.42 units from the actual parameters, whereas the
respective average deviation of the baseline is 6.38 units.

6.3 Multifinality Observations

Because of the many stochastic factors in our simulation, which are meant to mimic the real
world, we notice substantial presence of multifinality. As a proxy for multifinality, we use
the fitness function defined to ensure convergence of the GA-based algorithm. Specifically,
we use the actual causal parameter set A = {0.88,22,0.70,0.90,0.10,0.90,0.80} to run
W = 50 “worlds” using our simulation. The initialization of the simulation remains the
same (agent network, neighbors, attributes, etc), and only the stochastic factors change.
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Table 1: Sharing Political News: Decision Rules

Actual Rule

Estimated Rule

1, if 2 , 1, if 2 1
v , | > 0.88 vi , | > 0.6
t+1 t+1 =
0, else else
. j J
;)L it >,Y/ >22 it >,Y/>21
1 0, else b1 = 0, else
vi o1~ Ber(0.70) vi o1~ Ber(0.90), if j =infl.
t+1 = t+1
0, 0, else
Ber(0.90) Ber(0.90), ifi e A, &t <t.
e~ Ber(O 10) e~ Ber(029) ifieB, &t <t
Ber( ) Ber(Zt £ ), ift >t
v~ Ber(O.QO) vi Ber(O 27), if S >V
t+1 t+1
0, else
, )~ Ber(0.80) P R Ber(0.93), if t=trare
b 0, i 0, else
Table 2: Best 3 GA Solutions
H1 H2 pf pA pP p’ p" | Eucl.
Dist.
Actual Causal 0.88 22 0.70 090 0.10 0.90 0.80
Parameters
Best 3 GA 0.61 21 090 090 0.29 0.27 093 | 1.25
Solutions 0.22 21 090 090 0.29 0.27 0.14 | 1.53
0.22 21 0.90 090 0.29 0.07 093 | 1.49
Mean Eucl. Dist. 1.42
Table 3: Best 3 Baseline Solutions
H1 H2 pf p pf p° p" | Eucl.
Dist.
Actual Causal 0.88 22 0.70 090 0.10 0.90 0.80
Parameters
Best 3 Baseline 0.26 14 0.63 085 0.03 0.79 043 | 8.03
Solutions 0.74 15 056 0.96 0.07 0.73 0.45 | 7.05
0.26 18 0.74 091 0.12 048 0.69 | 4.07
Mean Eucl. Dist. | 6.38

Calculating the fitness function of these runs compared with the ground truth Y?!, we get:

fitness(A) = D(Y?,

f(I R(A))) =

1
||Y - 50
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even with the actual causal rules known, the “simulation world” is not identical, if it is run
many times.

Similarly, we evaluate the learned sets along this dimension. Specifically, we use the
best 3 sets learned by the proposed GA-based approach and the best 3 solutions estimated
by the baseline as parameters in the described simulation to simulate W = 50 worlds. Next,
we compare their output (sharing behavior) in terms of fitness. The results are shown in
Tables 4 and 5. We observe that the parameters learned by our proposed solution have the
same fitness as the actual causal set, indicating an excellent performance of the proposed
GA-based approach. Furthermore, these results show the estimation challenges in deriving
causal sets (and a as result causal rules) from real-world data; even when the actual causal
sets are known, the realization of the “world” is not identical.

Table 4: Fitness of the Best 3 GA Solutions

H1 H2 pf p pf p* p" | Fitness
Actual Causal 0.88 22 0.70 090 0.10 0.90 0.80
Parameters 1.80
Best 3 GA 0.61 21 0.90 090 0.29 0.27 0.93 | 1.80
Solutions 0.22 21 090 090 0.29 027 0.14 | 1.82

0.22 21 0.90 090 0.29 0.07 0.93 | 1.82
Mean Fitness ‘ 1.81

Table 5: Fitness of the Best 3 Baseline Solutions

H1 H2 pmf pA pB p* p" | Fitness
Actual Causal 0.88 22 0.70 090 0.10 0.90 0.8
Parameters 1.80
Best 3 Baseline 0.26 14 0.63 085 0.03 0.79 043 | 1.99
Solutions 0.74 15 056 0.96 0.07 0.73 0.45 | 2.02

0.26 18 0.74 091 0.12 048 0.69 | 2.05
Mean Fitness ‘ 2.02

This presence of stochasticity is also captured in the convergence of the algorithm. As

shown in Figure 3, the fitness of the best solution in the GA-based approach does not
improve below 1.80. Specifically, the algorithm reaches solutions with fitness = 1.80
around the 300" iteration, and afterwards starts performing diversity boosts (spikes in the
average fitness graph) in order to possibly discover solutions with lower fitness. However, till
the end of the estimation procedure, the fitness does not improve below 1.80. As explained
previously, even multiple runs with the actual causal rules give a fitness of 1.80 because of
the stochasticity present in the simulation.

7. Discussion

This paper introduced the idea of Causal ABMs and presented one approach to learning
these in the context of a case study. In the case study, we showed how genetic algorithms

18



28 - —— Fitness of best solution in each iteration ~—— Average fitness of solution populatin in each iteration

100 200 300 400 500 0 100 200 300 400 500
GA iterations GA iterations

Figure 3: Fitness of best solution and average fitness of the solution population in each GA
iteration

can be used to learn multiple plausible causal sets based on data generated from the ABM
that embodied specific rules. More generally, causality is a key area for research, and there
are many open questions and challenges regarding learning causal ABMs given data. The
flexibility of ABMs to model real-world data generating processes is particularly appealing
from the perspective of expressive power of causal models. This, combined with effective
computational techniques for estimation, can generate fundamentally new ideas for learning
causal models from data.

Yet, as our paper highlighted throughout, there are significant challenges and hurdles
that need to be overcome. We conclude, here, with three important ones to be addressed in
future work. First, in contrast to standard econometric model estimation, the computational
complexity of the estimation method poses unique challenges. For instance, one approach to
learn the plausible Causal ABMs, here, would be to launch multiple ABMs with varying sets
of causal rules with specific parameters, and comparing the world(s) generated in each of
those cases with the actual outcomes observed in data. Hence, this opens fruitful pathways
for researchers to devise ML algorithms that are able to estimate complex causal ABMs
without suffering from high computational complexity. Second, because of the stochasticity
present in realistic agent-based simulations, there might be more than one possible causal
ABM that generates the same output Y. As noted earlier, this is known as equifinality,
or the ability of different set of conditions or model representations to yield the same
outcome (Chaturvedi et al., 2011). Here, researchers can devise new metrics that assess the
“goodness” of a causal ABM, as well as algorithms that use such metrics to learn not one,
but multiple plausible causal ABMs. Philosophically this is consistent with the notion that
the real world is just one realization of what could have happened due to a combination
of causal factors with random components; in such an interpretation it is often possible to
have multiple possible causes that could have resulted in the same outcome. Third, the
same causal ABM might yield different results (multifinality) (Chaturvedi et al., 2011) in
different runs, where some realizations are closer to the “actual” observed data while others
are less so. This does not mean that the estimations are wrong; it instead, means that we
need new ways of thinking about such occurrences. This phenomenon is also related to what
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has recently been coined as the red ribbon phenomenon.! The the red ribbon schematically
captures the set of possible outcomes in data - even if the observed data only reflects some
of these. One implication is that we might need to re-think the use of optimizing specific
distance functions in order to learn causal ABMs, and instead design new distance functions
that have the flexibility and capture the semantic complexities of what should be considered
“good match” with the true underlying data generating process.

In addition, the use of GAs, in a way, demonstrates the complexity of estimating suitable
parameters for ABM calibration or validation, and the need for designing appropriate meta-
heuristics. In our case, where causality is imposing an additional, possibly hard to satisfy
constraint, such complexity issues can become more central. However, such a challenge
opens important pathways for research contributions, as computational researchers have the
expertise to design novel meta-heuristics, possibly leveraging ML (Cui et al., 2020), to make
such causal estimation processes more efficient. Another angle that provides interesting
paths for future contributions is choice of fitness functions, something that has also been
explored in model validation approaches (Calvez and Hutzler, 2005; Stonedahl and Rand,
2014; Stonedahl et al., 2011). Finally, while this approach was motivated here by the need for
more flexibility and expressive power, and therefore presented as an alternate framework,
future work is needed to explore stronger connections between causal ABMs and other
causal frameworks (Pearl, 2010; Sekhon, 2008, VanderWeele et al., 2016).
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