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Abstract

Sensitivity analysis measures the influence of a Bayesian network’s parameters on a quantity
of interest defined by the network, such as the probability of a variable taking a specific
value. In particular, the so-called sensitivity value measures the quantity of interest’s
partial derivative with respect to the network’s conditional probabilities. However, finding
such values in large networks with thousands of parameters can become computationally
very expensive. We propose to use automatic differentiation combined with exact inference
to obtain all sensitivity values in a single pass. Our method first marginalizes the whole
network once using e.g. variable elimination and then backpropagates this operation to
obtain the gradient with respect to all input parameters. We demonstrate our routines by
ranking all parameters by importance on a Bayesian network modeling humanitarian crises
and disasters, and then show the method’s efficiency by scaling it to huge networks with
up to 100’000 parameters. An implementation of the methods using the popular machine
learning library PyTorch is freely available.

Keywords: Automatic differentiation; Bayesian networks; Sensitivity analysis; Markov
random fields; Tensor networks.

1. Introduction

Probabilistic graphical models, and specifically Bayesian networks (BNs), are a class of
models that are widely used for risk assessment of complex operational systems in a variety
of domains. The main reason for their success is that they provide an efficient as well as
intuitive framework to represent the joint probability of a vector of variables of interest using
a simple graph. Their use to assess the reliability of engineering, medical and ecological
systems, among many others, is becoming increasingly popular. Sensitivity analysis is a
critical step for any applied real-world analysis to assess the importance of various risk
factors and to evaluate the overall safety of the system under study (see e.g. Goerlandt and
Islam, 2021; Makaba et al., 2021; Zio et al., 2022, for some recent examples).

As noticed by Rohmer (2020), sensitivity analysis in BNs is usually local, in the sense
that it measures the effect of a small number of parameter variations on output probabil-
ities of interest, while other parameters are kept fixed. In the case of a single parameter
variation, sensitivity analysis is usually referred to as one-way, otherwise, when more than
one parameter is varied, it is called multi-way. Although recently there has been an in-
creasing interest in proposing global sensitivity methods for BNs measuring how different
factors jointly influence some function of the model’s output (see e.g. Ballester-Ripoll and
Leonelli, 2022; Li and Mahadevan, 2018), the focus of this paper still lies in one-way sensi-
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tivity methods. However, extensions to multi-way local methods are readily available and
discussed in Sec. 5.

One-way local sensitivity analysis in BNs can be broken down into two main steps.
First, some parameters of the model are varied and the effect of these variations on output
probabilities of interest is investigated. For this purpose, a simple mathematical function,
usually termed sensitivity function, describes an output probability of interest as a function
of the BN parameters (Castillo et al., 1997; Coupé and van der Gaag, 2002). Furthermore,
some specific properties of such a function can be computed, as for instance, the sensitivity
value or the vertex proximity, which give an overview of how sensitive the probability of
interest is to variations of the associated parameter (van der Gaag et al., 2007). Such
measures are reviewed below in Sec. 2. Second, once parameter variations are chosen, the
effect of these is summarized by a distance or divergence measure between the baseline and
the varied distributions underlying the BN, most commonly the Chan-Darwiche distance
(Chan and Darwiche, 2005) or the well-known Kullback-Leibler divergence.

As demonstrated by Kwisthout and van der Gaag (2008), the derivation of both the
sensitivity function and its associated properties is computationally very demanding. Here
we provide a novel, computationally highly-efficient method to compute many sensitivity
measures of interest which takes advantage of backpropagation. The method works thanks
to automatic differentiation: by computing the probability of interest once and working
out the derivatives of each step along the way in reverse order (the so-called backward
pass), one obtains the gradient w.r.t. all model parameters at once (Baydin et al., 2017)
(in our case, the network’s conditional probability tables). Once we have the gradient,
we bake in the proportional covariation principle (Laskey, 1995) to obtain the desired
sensitivity metrics. Our algorithm is demonstrated in a BN modeling humanitarian crises
and disasters (Sec. 4), and an extensive simulation study shows its efficiency by processing
huge networks in a few seconds. We have open-sourced a Python implementation using the
popular machine learning library PyTorch 1, contributing to the recent effort of promoting
sensitivity analysis (Douglas-Smith et al., 2020).

2. Bayesian Networks and Sensitivity Analysis

A BN is a probabilistic graphical model defining a factorization of the probability distri-
bution of a random vector by means of a directed acyclic graph (DAG). More formally,
let [n] = {1, . . . , n} and Y = (Yi)i∈[n] be a random vector of interest with sample space
Y = ×i∈[n]Yi. A BN defines the probability distribution P (Y = y), for y ∈ Y, as a product
of simpler conditional probability distributions as follows:

P (Y = y) =
∏
i∈[n]

P (Yi = yi | YΠi = yΠi),

where YΠi are the parents of Yi in the DAG associated to the BN.

The definition of the probability distribution over Y , which would require defining
#Y− 1 probabilities, is thus simplified in terms of one-dimensional conditional probability
distribution. The coefficients of these functions are henceforth referred to as the parameters

1. Available at https://github.com/rballester/gmtorch.
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θ of the model. The DAG structure may be either elicited from experts or learned from
data using structural learning algorithms, and the associated parameters θ can be either
elicited from experts as well or learned using frequentist or Bayesian approaches. No matter
the method used, we assume that a value for these parameters θ has been determined which
we refer to as the baseline value and denoted as θ0.

In practical applications it is fundamental to extensively assess the implications of the
chosen parameter values θ0 to outputs of the model. In the context of BNs this study is
usually referred to as sensitivity analysis, which can actually be further used during the
model building process as showcased by Coupé et al. (2000). Let YO be an output variable
of interest and YE be evidential variables, those that may be observed. The interest is
in then studying how P (YO = yO | YE = yE) varies when a parameter θi is varied. In
particular, P (YO = yO | YE = yE) seen as a function of θi is called sensitivity function and
denoted as fO,E(θi).

2.1 Proportional Covariation

Notice that when an input θi is varied from its baseline value θ0
i then the parameters from

the same conditional probability distribution need to covary to respect the sum-to-one con-
dition of probabilities. When variables are binary, this is automatic since one parameter
must be equal to one minus the other, but for variables taking more than two levels this co-
variation can be done in several ways (Renooij, 2014). We henceforth assume that whenever
a parameter is varied from its baseline value θ0

i to a new value θi, then every parameter θj
from the same conditional probability distribution is proportionally covaried (Laskey, 1995)
from its baseline value θ0

j :

θj(θi) =
1− θi
1− θ0

i

θ0
j . (1)

Proportional covariation has been studied extensively and its choice is motivated by a
wide array of theoretical properties (Chan and Darwiche, 2005; Leonelli et al., 2017; Leonelli
and Riccomagno, 2018).

Under the assumption of proportional covariation, Castillo et al. (1997) and Coupé and
van der Gaag (2002) demonstrated that the sensitivity function is the ratio of two linear
functions:

fO,E(θi) =
c1θi + c2

c3θi + c4
, (2)

where c1, c2, c3, c4 ∈ R+. van der Gaag et al. (2007) noticed that the above expression
actually coincides with the fragment of a rectangular hyperbola, which can be generally
written as fO,E(θi) = r

θi−s + t where s = − c4
c3

, t = c1
c3

and r = c2
c3

+ st.

2.2 Sensitivity Value

The sensitivity value describes the effect of infinitesimally small shifts in the parameter’s
baseline value on the probability of interest and is defined as the absolute value of the first
derivative of the sensitivity function at the baseline value of the parameter, i.e. |f ′

(θ0
i )|.
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This can be found by simply differentiating the sensitivity function as

|f ′
O,E(θ0

i )| =
|c1c4 − c2c3|
(c3θ0

i + c4)2
. (3)

The higher the sensitivity value, the more sensitive the output probability to small changes
in the baseline value of the parameter. As a rule of thumb, parameters having a sensitivity
value larger than one may require further investigation (van der Gaag et al., 2007).

Notice that when YE is empty, i.e. the output probability of interest is a marginal
probability, then the sensitivity function is linear in θi and the sensitivity value is the same
no matter what the baseline θ0

i was. Therefore in this case the absolute value of the gradient
is sufficient to quantify the effect of a parameter to an output probability of interest.

2.3 Vertex Proximity

van der Gaag et al. (2007) further noticed that parameters for which the sensitivity value is
small may still be such that the conditional output probability of interest is very sensitive
to their variations. This happens when the baseline parameter value is close to the vertex
of the sensitivity function, defined as the point θvi at which the sensitivity value is equal
to one, i.e. |f ′

O,E(θvi )| = 1. The vertex can be derived from the equation of the sensitivity
function as

θvi =

{
s+

√
|r|, if s < 0,

s−
√
|r|, if s > 0.

Notice that the case s = 0 is not contemplated since it would coincide to a linear sensitivity
function, not an hyperbolic one.

Vertex proximity is defined as the absolute difference |θ0
i − θvi |. The smaller the vertex

proximity, the more sensitive the output probabilities may be to variations of the parameter,
even when the sensitivity value is small.

2.4 Other Metrics

Given the coefficients c1, . . . , c4 of Eq. (2), it is straightforward to derive any property of the
sensitivity function besides the sensitivity value and the vertex proximity. Here we propose
the use of two additional metrics. The first is the absolute value of the second derivative of
the sensitivity function at the baseline parameter value, which can be easily computed as:

|f ′′O,E(θ0
i )| =

2c3 |c1c4 − c2c3|(
c3θ0

i + c4

)3 .

Similarly to the sensitivity value, high values of the second derivative at θ0
i indicate param-

eters that could highly impact the probability of interest.
The second measure is the maximum of the first derivative of the sensitivity function

over the interval [0, 1] in absolute value, which we find easily by noting that the denominator
of Eq. (3) is a parabola:

max
θi∈[0,1]

{|f ′O,E(θi)|} =

{
∞ if − c4/c3 ∈ [0, 1]

max{|c1c4 − c2c3|/c2
4, |c1c4 − c2c3|/(c3 + c4)2} otherwise.
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Again high values indicate parameters whose variations can lead to a significant change in
the output probability of interest.

3. The YODO Method

3.1 First Case: Marginal Probability as a Function of Interest

Suppose f(θi) = P (YO = yO) = c1θi + c2 assuming proportional covariation as θi moves.
Let θj1 , . . . , θjn be the other parameters of the same conditional PMF as θi, i.e. they are
all bound by the sum-to-one constraint θi + θj1 + · · ·+ θjn = 1. First, we rewrite fO,E as

fO,E(θi) = g(θi, θj1(θi), . . . , θjn(θi))

and we will show how to obtain f ′O,E(θi) provided that we can compute the gradient ∇g
with respect to symbols θi, θj1 , . . . , θjn (Sec. 3.3 for details on the latter).

By the generalized chain rule, it holds that

f ′O,E(θi) =
∂g

∂θi
· 1 +

∂g

∂θj1
· dθj1
dθi

+ · · ·+ ∂g

∂θjn
· dθjn
dθi

.

By deriving Eq. (1), we have that for all 1 ≤ m ≤ n:

dθjm
dθi

=
−θ0

jm

1− θ0
i

and, therefore,

f ′O,E(θi) =
∂g

∂θi
−

(∂g/∂θj1) · θ0
j1

+ · · ·+ (∂g/∂θjn) · θ0
jn

1− θ0
i

.

Last, since fO,E(θi) = P (YO = yO) = c1θi + c2, we easily find the parameters c1, c2:{
c1 = f ′O,E(θ0

i )

c2 = P (YO = yO)− c1θ
0
i .

3.2 Second Case: Conditional Probability as a Function of Interest

When fO,E(θi) = P (YO = yO | YE = yE) = P (YO = yO,YE = yE)/P (YE = yE), we simply
repeat the procedure from Sec. 3.1 twice:

1. We first apply it to P (YO = yO,YE = yE) to obtain c1 and c2;

2. we then apply it to P (YE = yE) to obtain c3 and c4.

3.3 Computing the Gradient ∇g

Let YK = yK be a subset of the network variables taking some evidence values (this could
be K = O or K = O ∪ E, hence we cover the two cases above).

We start by moralizing the BN into a Markov random field (MRF) M. This marries
the parents of each variable together and, for each conditional probability table (now called
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potential), drops the sum-to-one constraint; see e.g. (Darwiche, 2009) for more details.
Next, we impose the evidence YK = yK by defining MYK=yK as a new MRF that results
from substituting each potential Φi1,...,iM (xi1 , . . . , xiM ) by a new potential Φ̂i1,...,iM defined
as follows:

Φ̂i1,...,iM (Yi1 = xi1 , . . . , YiM = xiM ) ={
0 if ∃m, k | im = k ∧ xim 6= yim
Φi1,...,iM (Yi1 = xi1 , . . . , YiM = xiM ) otherwise

In other words, we copy the original potential but zero-out all entries that are incom-
patible with the assignment of values YK = yK . See Tab. 1 for an example using a bivariate
potential.

Y2 = 1 Y2 = 2 Y2 = 3

Y1 = 1 0.8 0.1 0.1

Y1 = 2 0.3 0.5 0.2

Y1 = 3 0.1 0.2 0.7

(a) Φ1,2(y1, y2)

Y2 = 1 Y2 = 2 Y2 = 3

Y1 = 1 0 0 0.1

Y1 = 2 0 0 0.2

Y1 = 3 0 0 0.7

(b) Φ̂1,2(y1, y2)

Table 1: Left: example potential of an MRF M for variables Y1 and Y2, each with three
levels {1, 2, 3}. Right: corresponding potential for MY2=3.

Intuitively, the modified MRFMYK=yK represents the unnormalized probability for all
variable assignments that are compatible with YK = yK . In particular, if MYK

denotes
the marginalization of a network M over all variables in YK , we have that (MYK=yK )Y =
P (YK = yK). In other words, computing g reduces to marginalizing our MRF. In this paper
we marginalize it exactly using the variable elimination (VE) algorithm; see e.g. (Darwiche,
2009). This method is clearly differentiable w.r.t. all parameters θ since VE only relies on
variable summation and factor multiplication. Any other differentiable inference algorithm
could be used as well. This step, evaluating the function g, is known as the forward pass in
the neural network literature. Next, we backpropagate the previous operation (a step also
known as the backward pass) to build the gradient ∇g. Crucially, note that backpropagation
yields ∂g/∂θ for every parameter θ ∈ θ of the network at once, not just an individual θi.
Last, we obtain parameters c1, . . . , c4 as detailed before, and use them to compute the
metrics of Secs. 2.2, 2.3, and 2.4 for each θi.

Note the advantages of this approach as compared to other alternatives. For example,
symbolically deriving the gradient of g would be cumbersome and would depend on the
target network topology and definition of the probability of interest (Darwiche, 2003). Au-
tomatic differentiation avoids this by evaluating the gradient numerically using the chain
rule. Furthermore, finding the gradient using finite differences would require evaluating g
twice per parameter θi. In contrast, automatic differentiation only requires a forward and
backward pass to find the entire gradient: in our experiments, this took roughly the time
of just two marginalization operations (see next section).
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4. Results

We overview first the insights revealed by our method when applied on a 21-node Bayesian
network of interest; we then study the method’s scalability by testing it on large networks
with hundreds of nodes and arcs and up to 105 parameters.

4.1 Software and Hardware Used

In order to perform variable elimination efficiently, we note that the problem of graphical
model marginalization is equivalent to that of tensor network contraction (Robeva and
Seigal, 2018), and use the library opt einsum (Smith and Gray, 2018) which offers optimized
heuristics for the latter. As backend we use the state-of-the-art machine learning library
PyTorch (Paszke et al., 2019), version 1.11.0, to do all operations between tensors and then
perform backpropagation on them. We use pgmpy (Ankan and Panda, 2015) for reading
and moralizing BNs. All experiments were run on a 4-core i5-6600 3.3GHz Intel workstation
with 16GB RAM.

4.2 Risk Assessment for Humanitarian Crises and Disasters

Similarly to Qazi and Simsekler (2021), we construct a BN model to assess the country-
level risk associated with humanitarian crises and disasters. The data was collected from
INFORM (INFORM, 2022) and consists of 20 drivers of disaster risk covering natural,
human, socio-economic, institutional and infrastructure factors that influence the country-
level risk of a disaster, together with a final country risk index which summarizes how
exposed a country is to the possibility of a humanitarian disaster. A full list of the variables
can be found at INFORM (2022). All variables take values between zero and ten and have
been discretized into three categories (low/0, medium/1, high/2) using the equal-length
method. The dataset comprises 190 countries.

A BN is learned using the hc function of the bnlearn package and is reported in Fig. 1.
As an illustration of the YODO method, we compute here all sensitivity measures for the
conditional probability of a high risk of disaster (RISK = 2) conditional on a high risk
of flooding (FLOOD = 2). Computing all metrics for all 183 network parameters with
our method took only 0.055 seconds. The results are reported in Tab. 2 for the 20 most
influential parameters according to the sensitivity value. It can be noticed that the most
influential parameters come from the conditional distributions of the overall risk given the
development and deprivation index (D AND D), as well as from the conditional distribution
of the flooding index given a projected conflict risk index (PCR) equal to low. As an
additional illustration, Fig. 2 reports the sensitivity value of the parameters for the output
conditional probability of an overall high risk given a high risk of earthquake. The blue
color is associated to positive values of the sensitivity value, the red color for negative ones.
Out of 183 network parameters, 30 had a sensitivity value of zero, meaning that they had
no effect on the probability of interest.

4.3 Performance Study over Medium to Very Large Networks

We further run our method over the 10 Bayesian networks considered in Scutari et al.
(2019). As a baseline we use numerical estimation of each sensitivity value via finite differ-

7



Ballester-Ripoll and Leonelli

Figure 1: BN learned over the INFORM (2022) dataset for country-level disaster risk.

Parameter Value
Sensitivity
value ↓

Proxi-
mity

2nd deriv.
Largest

1st deriv.

RISK = high | D AND D = low 0.0012 0.914 0.056 1.437 0.916
FLOOD = high | PCR = low 0.107 0.722 0.0534 4.059 1.475
FLOOD = medium | PCR = low 0.469 0.645 0.718 3.238 ∞
FLOOD = low | PCR = low 0.425 0.645 0.718 3.238 ∞
RISK = high | D AND D = high 0.34 0.555 0.731 0.387 0.714
RISK = high | D AND D = medium 0.0686 0.467 1.002 0.295 0.488
EPIDEMIC = high | HEALTH COND = low 0.148 0.295 1.167 0.231 0.332
D AND D = high | EPIDEMIC = medium 0.0742 0.238 1.834 0.133 0.249
PCR = high | RISK = medium 0.278 0.226 0.6 0.395 0.394
PCR = high | RISK = low 0.0266 0.204 0.694 0.322 0.213
FLOOD = high | PCR = high 0.509 0.196 0.475 0.46 1.211
FLOOD = high | PCR = medium 0.136 0.167 0.787 0.25 0.206
D AND D = high | EPIDEMIC = high 0.787 0.159 4.159 0.0459 0.202
D AND D = high | EPIDEMIC = low 0.0411 0.153 2.984 0.0625 0.156
RISK = low | D AND D = high 0.0208 0.151 2.319 0.0796 0.274
HEALTH COND = medium | OTHER VULN GROUPS = low 0.05 0.151 3.026 0.061 0.154
HEALTH COND = low | OTHER VULN GROUPS = low 0.949 0.15 3.036 0.0606 0.154
PCR = low | RISK = high 0.00521 0.15 3.023 0.0609 0.236
D AND D = medium | EPIDEMIC = high 0.176 0.148 5.393 0.0338 0.18
PCR = high | RISK = high 0.943 0.148 3.092 0.0588 0.224
PCR = medium | RISK = high 0.0521 0.146 3.144 0.0573 0.22
D AND D = low | EPIDEMIC = high 0.0368 0.144 2.859 0.0626 0.231
FLOOD = low | PCR = medium 0.103 0.144 0.955 0.187 0.165
FLOOD = medium | PCR = medium 0.762 0.144 0.955 0.187 0.565
RISK = medium | D AND D = high 0.64 0.137 1.99 0.0869 0.175
PCR = low | RISK = medium 0.422 0.12 1.399 0.112 0.226
HEALTH COND = high | OTHER VULN GROUPS = low 0.0009083 0.113 4.302 0.0348 0.113
OTHER VULN GROUPS = low | RECENT SHOCKS = low 0.82 0.112 4.418 0.0337 0.118
OTHER VULN GROUPS = medium | RECENT SHOCKS = low 0.173 0.111 4.454 0.0333 0.117
PCR = low | RISK = low 0.947 0.109 1.578 0.0928 0.115

Table 2: Four sensitivity metrics for the top 30 parameters of the humanitarian crisis
network, when the probability of interest is P (RISK = high | FLOOD = high).

ences, whereby we slightly perturb each parameter θi and measure the impact on f . As a
probability of interest we set P (A = a|B = b), where A,B, a, b were two variables and two
levels picked at random, respectively, and each timing is the average of three independent
runs. Results are reported in Tab. 3, which shows that YODO outperforms the baseline by
several orders of magnitude.
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0.0 0.1 0.2 0.3 0.4 0.5
Sensitivity value

RECENT_SHOCKS = 2

EARTHQUAKE = 2 | TSUNAMI = 1

TSUNAMI = 2 | D_AND_D = 0

OTHER_VULN_GROUPS = 1 | RECENT_SHOCKS = 0

OTHER_VULN_GROUPS = 0 | RECENT_SHOCKS = 0

HEALTH_COND = 2 | OTHER_VULN_GROUPS = 0

D_AND_D = 1 | EPIDEMIC = 2

D_AND_D = 2 | EPIDEMIC = 2

D_AND_D = 0 | EPIDEMIC = 2

HEALTH_COND = 0 | OTHER_VULN_GROUPS = 0

RISK = 1 | D_AND_D = 2

RISK = 0 | D_AND_D = 2

HEALTH_COND = 1 | OTHER_VULN_GROUPS = 0

D_AND_D = 2 | EPIDEMIC = 0

TSUNAMI = 2 | D_AND_D = 2

D_AND_D = 2 | EPIDEMIC = 1

EPIDEMIC = 2 | HEALTH_COND = 0

RISK = 2 | D_AND_D = 2

RISK = 2 | D_AND_D = 1

RISK = 2 | D_AND_D = 0

Figure 2: Top 20 most influential parameters for the humanitarian crisis net-
work, color-coded by the sign of f ′(θi). The probability of interest is P (RISK =
high | EARTHQUAKE = high).

#nodes #arcs #parameters Treewidth Time (fin. diff.) Time (ours)
Network

child 20 30 344 3 2.188733 0.017727
water 32 123 13484 10 337.189158 0.054150
alarm 37 65 752 4 10.203079 0.034412
hailfinder 56 99 3741 4 98.040870 0.053667
hepar2 70 158 2139 6 169.150984 0.093187
win95pts 76 225 1148 8 38.674632 0.113214
pathfinder 109 208 97851 6 8596.810546 0.188448
munin1 186 354 19226 11 113928.398017 14.394249
andes 223 626 2314 17 252.286060 0.299587
pigs 441 806 8427 10 3213.308629 0.521486

Table 3: Our method was applied to 10 Bayesian networks, here sorted by number of
nodes. All times are in seconds. The times for the baseline (second-to-last column) were
estimated as the total number of parameters in the network times the time needed to
numerically estimate one sensitivity value. Treewidths were found with the NetworkX graph
library (Hagberg et al., 2008).

5. Discussion

We demonstrated the use of automatic differentiation in the area of BNs and more specif-
ically in the study of how sensitive they are to variations of their parameters. The novel
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algorithms are freely available in Python and are planned to be included in the next re-
lease of the bnmonitor R package (Leonelli et al., 2021). Their efficiency was demonstrated
through a simulation study and their use in practice was illustrated through a BN in the
field of risk assesment for humanitarian crises.

Although YODO is specifically designed to compute the coefficients of the sensitivity
function in Eq. (2), it further addresses two additional problems in sensitivity analysis.
First, it is able to quickly find which parameters do have an effect on the output probability
of interest, which is usually called the parameter sensitivity set (Coupé and van der Gaag,
2002). Second, we identify whether a parameter change leads to a monotonically increasing
or decreasing sensitivity function, as already addressed in Bolt and Renooij (2017). Al-
though the above-cited works only require the structure of the network, YODO yields an
efficient way to tackle the same problems.

Future Work

Because of the space constraint we only focused on one-way sensitivity analysis but, be-
cause of their efficiency, the proposed methods could be generalized to multi-way sensitivity
analysis where more than one parameter is varied simultaneously. Bolt and Renooij (2014)
introduced the maximum/minimum n-way sensitivity value which bounds the effect of n-way
variations of parameters and demonstrated that it can be easily derived from the sensitivity
values of one-way sensitivity analyses. Therefore, our methods could be extended to also
efficiently compute the joint effect of variations of parameters, known to be computation-
ally challenging (Chan and Darwiche, 2004; Kjaerulff and van der Gaag, 2000). Another
possible extension of the algorithms introduced here would be to compute the so-called
admissible deviation (van der Gaag and Renooij, 2001). This consists of finding a pair of
numbers (α, β) that describe the shifts to smaller values and to larger values, respectively,
that are allowed in the parameter under study without inducing a change in the most likely
value of the output variable. For a parameter with a baseline value of θ0

i , the admissible
deviation (α, β) thus indicates that the parameter can be safely varied within the interval
(θ0
i −α, θ0

i +β). These values can be straightforwardly found by identifying the intersections
of the sensitivity functions associated to different values of the output variable.
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