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Abstract

The MAP problem in Bayesian networks is notoriously intractable, even when approxi-
mated. In an earlier paper we introduced the Most Frugal Explanation heuristic approach
to solving MAP, by partitioning the set of intermediate variables (neither observed nor
part of the MAP variables) into a set of relevant variables, which are marginalized out,
and irrelevant variables, which will be assigned a sampled value from their domain. In
this study we explore whether knowledge about which variables are relevant for a particu-
lar query (i.e., domain knowledge) speeds up computation sufficiently to beat both exact
MAP as well as approximate MAP while giving reasonably accurate results. Our results
are inconclusive, but also show that this probably depends on the specifics of the MAP
query, most prominently the number of MAP variables.

Keywords: MAP problem; approximate MAP; heuristic; algorithm comparison; back-
ground knowledge.

1. Introduction

In a Bayesian network, the Maximum A Posteriori (MAP) problem is the computational
problem to infer the most probable explanation given evidence, i.e., the mode of a pos-
terior distribution. In a decision support system, where the underlying statistical model
is a Bayesian network (e.g., Dey and Stori, 2005; Geenen et al., 2006; Kuang et al., 2017;
Liu et al., 2018), the MAP problem typically establishes the diagnosis or advice that is
best supported by the available evidence and as such is a crucial component of such sys-
tems. Computing the MAP problem is computationally very demanding in larger networks;
the problem is NPPP-hard (Park and Darwiche, 2004) and remains NP-hard under various
structural constraints (de Campos, 2020; Kwisthout, 2011) as well as under a variety of ap-
proximation approaches (Kwisthout, 2015a). This unfavourable complexity not only hinders
practical application; it also implies that even the state-of-the-art approximation algorithm
(ANNEALED MAP; Yuan et al. (2004)) will have difficulty on at least some problem in-
stances.

To partially overcome this challenge, in earlier work we proposed a heuristic approach
to MAP, based on the observation that in many real-world inference queries, only a small
subset of the variables really contributes to the decision. In the MOST FRUGAL EXPLANA-
TION heuristic (Kwisthout, 2015b) the set of intermediate variables in the network (those
variables that are neither to be explained nor contain observations) is partitioned, based on
background information about their role in the inference process, in relevant and irrelevant
variables. The relevant variables are marginalized over, the irrelevant variables are sampled
from. By this method, and under some assumptions about the probability distribution,
a reasonably well approximation of the MAP explanation can be offered with hopefully
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less resources. We showed that the quality of the explanation (that is, its deviation to
the ground truth MAP explanation in terms of structural distance, rank, and probability)
strongly depends on the accuracy of the partitioning in relevant and irrelevant variables, as
well as on the probability landscape.

In this follow-up paper we are interested in the question to what extent domain knowl-
edge about which variables are and are not relevant in a particular query can help speeding
up the MAP computation with reasonable accuracy. To that end, we compared the MOST
FRUGAL EXPLANATION heuristic with ExacT MAP and ANNEALED MAP on a number
of benchmark networks, measuring the amount of time needed for computation and the
deviation from the actual MAP explanation. In general, for an arbitrary computation only
a small proportion of the intermediate variables will be relevant (Druzdzel and Suermondt,
1994). Knowledge of the causal structure modelled by the Bayesian network, previous expe-
rience, or clinical evidence can help to assess this relevance. In addition, in the absence of an
authoritative source of information, one can compute, on the fly, whether a particular vari-
able is instrumental for a particular inference question, or use a pre-computed assessment
in a lookup table. This computation aims to assess the likeliness (expressed as intrinsic
relevance, see Section 2) that a variable, were it observed to one of the possible values in
its domain, would change the outcome of the MAP problem. In this paper we investigate
both aspects: Is knowledge about relevance helpful for establishing MAP explanations in
situations where we 1) have access to a ‘lookup table’ and 2) approximately compute this
on the fly as part of the heuristic? Obviously, the second method takes more time as it is
integrated in the heuristic. More specifically, our research questions and working hypotheses
are the following;:

e RQ 1: If we have access to pre-computed knowledge about which intermediate vari-
ables are irrelevant (have a low likeliness of changing the outcome of the MAP prob-
lem), could this speed up approximate inference, with comparable accuracy, compared
to the state-of-the-art approximation algorithm?

e Hypothesis 1: Yes, on large networks with a huge number of intermediate variables,
and with many of them being irrelevant, it will. In either other case probably not.

e RQ 2: If we assess, by sampling, during the execution of the algorithm which in-
termediate variables are relevant, could this speed up approximate inference, with
comparable accuracy, compared to the state-of-the-art approximation algorithm?

e Hypothesis 2: It might, under the same conditions as in RQ 1, if the assessment of
the relevance of the variables is computationally cheap. Otherwise, probably not.

The latter condition is probably necessary. Computing intrinsic relevance is an NP-hard
problem (Kwisthout, 2015b). In this study we investigate how costly this computation is
in a number of benchmark cases, to see whether this may be a viable option at all. The
remainder of this paper is structured as follows. In Section 2 we formally introduce the
MAP problem in Bayesian networks, describe ANNEALED MAP and the MOST FRUGAL
EXPLANATION heuristic, and share our notational conventions. In Section 3 we explicate the
experimental setup of this study, describe the characteristics of the benchmark networks,
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and motivate some of the choices made in the study. The results are given and discussed
in Section 4. We conclude the paper in Section 5.

2. Preliminaries

A Bayesian network B is a probabilistic graphical model that describes a set of stochastic
variables, a joint probability distribution over these variables, and the conditional inde-
pendences that hold in this distribution (Pearl, 1988). B includes a directed acyclic graph
G = (V,A), modelling the variables and conditional independences in the network, and
a set of parameter probabilities Pr in the form of conditional probability tables (CPTs),
capturing the strengths of the stochastic relationships between the variables. The network
efficiently factorizes a joint probability distribution Pr(V) = [, Pr(V; | n(V;)) over its
variables, where 7(V;) denotes the parents of V; in Gg. As notational convention we will
use upper case letters to denote individual nodes in the network, upper case bold letters
to denote sets of nodes, lower case letters to denote value assignments to nodes, and lower
case bold letters to denote joint value assignments to sets of nodes. The set of values for a
particular variable (and by extension, set of variables) V' is denoted as Q(V).

Given a partitioning of the variables in the network into explanation variables H, ev-
idence variables E, and intermediate variables I, the MAP problem is the computational
problem to establish the best explanation h to H given an observation e to E. More for-
mally, the MAP problem is the problem to find argmax,Pr(H = h,E = e). The MAP
problem is NPPP-hard and thus highly intractable (Park and Darwiche, 2004). It stays
NP-hard even in trees with cardinality 3 (de Campos, 2020), yet enjoys a fixed parameter
tractable algorithm for several parameter sets, e.g., when the tree-width of the moralization
of the network, the cardinality of the variables, and the size of H is bounded.

Among the approximation algorithms are for example ANYTIME APPROXIMATE M AP
(Maué and de Campos, 2012), ANNEALED MAP (Yuan et al., 2004), and P-Loc (Park
and Darwiche, 2001). In this paper we focus on comparison with ANNEALED M AP, a local
search algorithm which can, with good accuracy, approximate relatively large benchmark
networks. Approximate MAP, however, is NP-hard as well if no additional constraints are
imposed on the input (Kwisthout, 2011, 2015b; Park and Darwiche, 2004).

In Kwisthout (2015b) we introduced a novel approach towards MAP where we exploit
a generic property of probability distributions: often-times, when making an inference only
a small subset of all variables are actually instrumental in the computation (Druzdzel and
Suermondt, 1994). Assuming a partition of the intermediate variables I in a set of relevant
variables IT and irrelevant variables I, the MFE heuristic approaches MAP by sampling
over the irrelevant variables and marginalizing only over the relevant variables. This heuris-
tic, because of this sampling, cannot deal well with deterministic variables as this might
lead to conflicting evidence. The algorithm for MFE is given below, taken from (Kwisthout,
2015b, p. 64).

In order to formally assess the relevance of intermediate variables, the concept Intrinsic
relevance was defined in Kwisthout (2015b) as the fraction of joint value assignments i in
Q(I\ {I}) for which argmaxyPr(h, e, i, ) is not identical for all i € Q(I).
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Algorithm 1 Compute the Most Frugal Explanation
Sampled-MFE(B,H,I", 1" e, N)

1: forn=1to N do

2:  Choose i € I” at random

3:  Determine h = argmax;, Pr(H = h,i,e)

4:  Collate the joint value assignments h
5: end for
6
7

: Decide upon the joint value assignment hy,,; that was picked most often
: return hp,;

3. Methods

In order to evaluate the MOST FRUGAL EXPLANATION (hereafter MFE) we studied the
performance of this heuristic in comparison with Exact MAP via the JUNCTION TREE al-
gorithm (hereafter MAP) and the ANNEALED MAP algorithm (hereafter ANN) on several
benchmark Bayesian networks (ALARM, ANDES, BARLEY, and HAILFINDER). We imple-
mented! both MFE and ANN in C++ using the LibDAI library (Mooij, 2010) and compared
running time and accuracy in terms of the number of variables in the explanation set that
differed from the actual MAP explanation. We ran additional tests to check for differences
between different accuracy measures, to assess the impact of the hypothesis space, and to
compare theoretical and run-time results.

3.1 Experimental setup

We ran our algorithms on an HP Compaq Elite 8300 CMT desktop computer, with Intel
Core i7-3770 CPU running at 3.40 GHz and 16 GB of memory, running Debian GNU/Linux
10. We partitioned the variables of the Bayesian network into hypothesis variables, evidence
variables, and intermediate variables as described per benchmark network below. For each
network we randomly assigned ten joint value assignments to the evidence nodes and sim-
ulated each MAP query five times to average out perturbations in running time due to
external factors (such as OS activity). We computed the Hamming distance between the
MAP explanation and the heuristic approaches (hereafter denoted as ‘error’) and averaged
running time and error over the 5 x 10 = 50 simulations. Data was locally stored and pro-
cessed; raw data, scripts, and processed data are available? at the Donders Data Repository
for colleagues to inspect and reuse.

Per benchmark network, we ported the .bif files from the BNLearn repository? to factor
graphs using an in-house tool* since the LibDAI library requires factor graphs as input.
As MFE cannot deal properly with deterministic variables, we manually adjusted these
variables to have values very close to 1 and 0; each 0 entry in a CPT was replaced with
0.000000001 and the 1 entry matched such that the distribution adds up to 1. We use

. https://gitlab.socsci.ru.nl/j.kwisthout/most-frugal-explanations.

. https://doi.org/10.34973/7p10-m012

. https://www.bnlearn.com/bnrepository/

. BiIr2FG, https://gitlab.socsci.ru.nl/j.kwisthout/most-frugal-explanations; note that this tool
assumes a specific ordering of the CPT entries to work.

=W N =
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the orginal factor graphs for MAP and ANN and the adjusted factor graphs for MFE
computations®.

For the MFE heuristic we simulated two variants: one where the partitioning into
relevant and irrelevant variables was given (by pre-computation) as to simulate background
knowledge, and one where the partitioning was part of the heuristic approach. In the first
case, as pre-computation we approximated the intrinsic relevance by 1000 samples or, in
case that was computationally infeasible, by 100 or even 10, as indicated per benchmark
network below; the threshold for inclusion in the set of relevant variables was set to 0.1.
In the second case, the approximation was part of the heuristic; we sampled thrice and
6. In both variants,
the algorithm marginalized out the relevant variables and assigned a random value to the
irrelevant variables.

deemed a variable as relevant if the intrinsic relevance was non-zero

The LibDALI library has no functionality to compute MAP efficiently; only inference
(using the junction tree algorithm (Lauritzen and Spiegelhalter, 1988)) and MPE (that is,
when there are no intermediate variables). As a workaround we computed MAP by com-
puting the joint distribution over the MAP variables and then searching for the maximum
value. Obviously this workaround approach does not utilize the independences between the
hypothesis variables, leading to an inefficient implementation that hugely effects the results;
see Section 4.3 for a further analysis. To mitigate this, we decided to limit the size of the
hypothesis set; rather than the 20 hypothesis variables in Yuan et al. (2004) we selected five
variables in ANDES and HAILFINDER and four in BARLEY. For HAILFINDER we explored the
effect of including more variables (specifically seven and ten) in the hypothesis set”. Note
that approximate MAP is intractable, even when a singleton binary hypothesis variable is
used (Kwisthout, 2015a).

3.1.1 ALARM

The ALARM network (Beinlich et al., 1989) consists of 37 discrete random variables which
have a natural partitioning into hypothesis variables (eight diagnostic variables), evidence
variables (sixteen observable findings) and intermediate variables (the remaining thirteen
variables). Variables can take on two, three, or at most four values; there are 46 arcs and the
in-degree is at most four. In our simulations we used the natural partitioning as indicated
above. Pre-computation of the intrinsic relevance of the thirteen intermediate variables was
done using 1000 samples each; pre-computation time varied between 11 and 78 seconds per
variable.

3.1.2 BARLEY

The BARLEY network (Kristensen and Rasmussen, 2002) has 48 nodes with 84 arcs, with
in-degree at most four. However, the cardinality of the variables is significantly larger, with

5. Note that none of the algorithms exploits determinism, and the values used have a negligible impact.
6. Given the actual distribution, any threshold between 0 and 0.9 would have led to identical results in
these experiments. The threshold for inclusion, however, is a tunable parameter in MFE in general.

7. One reviewer suggested that the number of candidate hypotheses, rather than the size of the hypothesis
set (i.e., the number of variables), is the crucial variable. That is a correct observation; however, given
minor differences between the hypothesis variables we actually considered, the size of the hypothesis set
is the most dominant factor determining the number of candidate hypothesis.
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one node having no less than 67 states. This renders exact MAP infeasible on the BARLEY
network. In line with Yuan et al. (2004) we interpreted the ten root variables as hypothesis
variables and the eight leaf variables as evidence variables, which reasonably matches the
layout of this network (Kristensen and Rasmussen, 2002, p.206). Due to the impossibility
to compute either MAP or MFE over the total hypothesis set due to the library constraints,
we selected the first four variables as our hypothesis set. From piloting it became pretty
clear that pre-computation of intrinsic relevance using 1000 samples was infeasible, as a
single sample already took about 90 seconds due to the intractability of MAP computation.
We approximated intrinsic relevance using 10 samples per variable.

3.1.3 ANDES

ANDES (Conati et al., 1997) has 223 binary nodes with 338 arcs, and in-degree at most
six; the CPTs are to a large extent rolled out from canonical models (leaky noisy or/and
models). There are 89 root nodes and 22 leaf nodes; for these simulations, the first five root
variables make up the hypothesis set. Furthermore, as ANDES has several deterministic
variables, for the MFE computation we adjusted these variables as indicated above. Due
to the large number of intermediate variables we opted for 100 samples per variable to
approximate intrinsic relevance.

3.1.4 HAILFINDER

Finally, HAILFINDER (Abramson et al., 1996) has 56 nodes with 66 arcs with maximum
in-degree four. This network has 17 root nodes and 13 leaf nodes; the cardinality ranges
from two to eleven. Again the size of the hypothesis set renders exact MAP intractable in
practice. To experiment with the effect of the size of the hypothesis set on the behaviour
of the different algorithms we ran simulations using the first 10, 7, and 5 root variables as
hypothesis set. Also for HAILFINDER we adjusted the deterministic variables as indicated
above. In contrast to MAP inference, computing the intrinsic relevance using 1000 samples
was feasible, taking from 10 to 60 seconds.

4. Results

This result section is structured as follows. We start with presenting the main results,
namely running time and accuracy of MAP, ANN, MFE with sampling, and MFE with pre-
computation (MFE+), for ALARM, BARLEY, ANDES, and HAILFINDER (with five hypothesis
variables) in Table 1 and graphically in Figure 1. We then further investigate the effect
on hypothesis set size for HAILFINDER (Figure 2) and present a preliminary interpretation
of these results. In Sub-section 4.1 we investigate, using the ALARM network, whether
the Hamming distance results sufficiently generalize to other accuracy measures for MAP.
In Sub-section 4.2 we look at the number of variables that are actually considered to be
relevant (based on the pre-computation) per network, and in Sub-section 4.3 we use this
information to compare actual running time with some theoretical analyses of the number
of elementary operations needed. In Sub-section 4.4 we discuss the overall simulations.
The results are difficult to interpret. For this hypothesis size, MAP is quicker than ANN
and MFE and as quick as MFE+! It seems that the initial costs and the estimation of effect
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Network ALARM BARLEY ANDES HAILFINDER (5)
RT Err RT Err RT Err RT Err
MAP 0.0135 - 1.4973 - 0.1556 - 0.0051 -
ANN | 0.1536 0.08 | 120.9530 0.46 | 6.3393  0.04 | 0.2891 0.70
MFE 0.1546 0.42 | 2420.1568 1.38 | 188.1614 0.26 | 1.5000 1.42
MFE+ | 0.0133 0.70 | 1.4669  1.66 | 0.1511  0.56 | 0.0061 1.84

Table 1: Summary of the main results for running time (RT) and error (Err) for the four
approaches on four benchmark networks.
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Figure 1: Graphical depiction of the main results for running time (RT) and error (Err)
for the four approaches on four benchmark networks. In the left panel from left to right
the average running time in seconds for exact MAP, Annealed MAP, MFE with sampled
relevance, and MFE with pre-computed relevance (note the log scale); in the right panel
the average errors.

on local changes for ANN are too large to be competitive for MAP for small hypothesis
sizes; for MFE the sampling is way too costly, which may be due to an unreasonable large
MAP computation time due to the limitations of the library. We further explored this in
Section 4.3. For MFE+, we see that the limited amount of marginalisation operations has
little effect on the running time.

When comparing errors, we note that, to our surprise, in MFE the sampling over 3
samples led to less errors than sampling over 1000 samples in the pre-compute stage. The
only reasons we can think of that explain this would be that by either the sampling result is
incorrect, or that the heuristic sometimes (even with perfect knowledge) leads to a different
MFE explanation than the MAP explanation, as also observed in Kwisthout (2015b), such
that the lower number of samples incidentally leads to an explanation closer to MAP.

As a follow-up simulation we explored the effect of a larger hypothesis space. For the
HAILFINDER network we ran the same simulations, but now also with the first seven and
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the first ten root variables designated as hypothesis variables. The results are depicted in
Figure 2.
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Figure 2: Results for the HAILFINDER network with 5, 7, and 10 hypothesis nodes. In the left
panel from left to right the average running time in seconds for exact MAP, Annealed MAP,
MFE with sampled relevance, and MFE with pre-computed relevance (note the log-scale);
in the right panel the average errors. Note that for 10 hypothesis nodes the inefficiency of
the MAP computation dominates the running times.

4.1 Other error measures

In Kwisthout (2015b), three error measures were used, in line with the three notions of
approximate MAP established in Kwisthout (2015a); in addition to the Hamming distance
between ground truth MAP and the approximate explanation, the ratio of their probabil-
ities as well as the rank of the explanation (i.e., the number k such that the approximate
explanation is the kth most probable explanation) were used. These measures can in prin-
ciple deviate, hence, we ran a sanity check test to assure that the Hamming distance gives
a reasonable impression of the quality of the approximate explanation. The results can be
found in Figure 3.

ANN scores best on all three measures, then MFE, then MFE+. This suggests that
indeed the Hamming distance gives a good indicator of the accuracy of the approximation.

4.2 Size of relevant variables set

We refer to Figure 4. In general: With more hypothesis variables, the ratio increases (see
the increase in HAILFINDER but also the large ratio in Alarm). For smaller sets, the number
of relevant variables is really low (see for example Andes), which ought to lead to a more
efficient algorithm; reducing factors with a large set of sampled values potentially greatly
reduces the resulting factor size and discards the marginalization computation. However,
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Figure 3: Comparison between Hamming distance, ratio, and rank of the explanations.
Note that for distance and rank lower is better, whereas for ratio a value closer to 1 is
better.

in reality, it does not, at least not for these simulations. We explore this in the next
Sub-section.
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Figure 4: Ratio of relevant variables out of all intermediate variables.

4.3 Running time vs. theoretical analysis

For the Alarm network, we see that on average four out of the eleven relevant variables
are relevant. We closely examined a particular run to get some insight in the discrepancy
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between theoretical results and actual runtime. Table 2 shows the characteristics of the
particular MAP query and MFE+ heuristic.

variable value variable value variable value
HISTORY FALSE CvVP HIGH PCWP HIGH
HRBP HIGH HREKG NORMAL HRSAT NORMAL
TPR HIGH EXPCO2 HIGH MINVOL ZERO
FI102 LOW SAO2 LOW PAP NORMAL
PRESS NORMAL MINVOLSET LOW CcO LOW

BP LOW

Table 2: Example evidence setting.

For this query, LVEDVOLUME, STROKEVOLUME, VENTTUBE, and VENTALV
were found relevant; we sample over ERRLOWOUTPUT, ERRCAUTER, PVSAT, SHUNT,
VENTMACH, VENTLUNG, ARTCO2, CATECHOL, and HR. The biggest factor, once
they are reduced with the evidence and sampled intermediate variables, now contains
KINKEDTUBE, INTUBATION, and VENTTUBE or 2 x 3 x 4 = 24 entries, rather than
four variables with 92 entries. When comparing MAP to MFE+ we see that they LibDAI
library spends 2.1ms on a junction tree run and 12.2ms computing the marginal distribu-
tion in MAP, with 0.8ms, respectively 8.2ms for MFE4. The library does not utilize the
fact that, after marginalization, the biggest factor contains two hypothesis variables with
12 entries (rather than all hypothesis variables with 384 entries), which may explain why
we see less effect on the running times than what could be expected in theory.

4.4 Discussion

Based on the above results, we conclude that background knowledge may help, and perhaps
should help in theory, but it does not really show in the current study using the LibDAI
library. This is partially due to the inefficient MAP computation used as sub-routine in
MFE; in addition, marginalization might be less costly for variables with small domains
than sampling might be due to various overhead. When comparing actual reported running
times (for ALARM and HAILFINDER) we see that Yuan et al. (2004) is about 2.5 times faster
than our results, despite running on an older computer with less memory. Perhaps the tight
integration with the SMILE inference engine in this implementation can account for this.

5. Conclusion

When reflection back on the original research questions, it is clear that when used as approx-
imation algorithm, MFE is unlikely to beat the state-of-the-art approximation as already
for a single sample and for very few relevant variables the assessment of relevance is very
costly save in the easiest situations. However, background knowledge (either precomputed
or by estimation of experts, inasmuch as this is possible) may still be useful, although our
results show little improvement over computing MAP exactly; however, we argued that this
may be partially due to the inefficient MAP computation using the LibDAI library. We
see that there is some variation on the relevant variables given the specific evidence, but

10
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there is also quite a lot of overlap so many variables may not be that relevant anyway for
designated sets of hypothesis and evidence variables.

In their study comparing ANNEALED MAP with P-LOC and P-SYS, Yuan et al. (2004)
uses 20 MAP variables, which favours local search approaches over approaches (such as
MFE) that work on the entire hypothesis set simultaneously; however, MAP is intractable
in general even for a singleton binary MAP variable, implying that there are hard instances
with a limited number of hypothesis variables. It would be interesting to compare the
approaches on such instances.

For future work we obviously would like to either patch the LibDAI library with a ‘true’
Junction-tree based MAP algorithm, or use another library that has this feature, to be able
to offer MFE a fairer comparison with other approximation algorithms. We also aim to
implement other approximation algorithms, such as ANYTIME APPROXIMATE MAP and
P-Loc and compare MFE on other - and larger - networks. Finally, the MFE algorithm
should be able to circumvent incompatible evidence due to deterministic variables so that
the heuristic also works on such networks without patching.
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