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Abstract
Both Reinforcement Learning (RL) and Causal Modeling (CM) are indispensable parts
in the road for general artificial intelligence, however, they are usually treated separately,
despite the fact that both areas can effectively complement each other in problem solving.
On one hand, the interventional nature of the data generating process in RL favors the
discovery of the underlying causal structure. On the other hand, if an agent knows the
possible consequences of its actions, given by causal models, it can make better selections
of them, reducing exploration and, therefore, accelerating the learning process. Also, en-
suring that such an agent maintains a causal model for the world it operates in, improves
interpretability and transfer learning, among other benefits. In this article, we propose
a combination strategy to provide an intelligent agent with the ability to simultaneously
learn and use causal models in the context of reinforcement learning. The proposed method
learns a Causal Dynamic Bayesian Network for each of the agent actions and uses those
models to improve the action selection process. To test our algorithm, experiments were
performed on a simple synthetic scenario called the “coffee-task". Our method achieves
better results in policy learning than a traditional model-free algorithm (Q-Learning), and
it also learns the underlying causal models. We believe that the results obtained reveal
several interesting and challenging directions for future work.
Keywords: Reinforcement Learning; Causal Discovery; Causal Dynamic Bayesian Net-
works.

1. Introduction

One of the goals of Artificial Intelligence is to create autonomous agents that learn through
interaction with their environment. One framework that emerges from this purpose is Re-
inforcement Learning (RL) Sutton and Barto (2018), in which an agent explores the envi-
ronment to learn a task through rewards associated with each of the actions taken on each
situation (state) along the way. Determining the best action to take on each state is known
as an optimal policy. RL algorithms have shown to be effective in discovering optimal poli-
cies in various domains such as video games Vinyals et al. (2019), robotics Akkaya et al.
(2019), and medical care Gottesman et al. (2018). However, current reinforcement learning
systems do not take advantage of high-level processes such as Causal Models Pearl (2009)
to exploit patterns beyond the associative ones.

Causal Discovery (CD) aims to uncover the cause-effect relationships between different
variables Pearl (2009). Learning causal relations in the real world is a challenging task for
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which many algorithms have been proposed. One of the main limitations of causal discovery
is the need to make interventions on the model variables to guarantee the correct model. In
several domains, such as medicine, it is often very difficult, expensive or unethical to make
such interventions. However, once the causal model is known, it can provide the information
needed for an intelligent system to predict the effect of actions/interventions in a system,
improving planning and making counterfactual predictions.

Both Reinforcement Learning (RL) and Causal Modeling (CM) play an essential role
in artificial intelligence; however, they are usually treated separately, despite the fact that
both areas can effectively complement each other. Although, there seems to be a natural
connection between these fields, the different research communities are still separated. The
combination of RL and CM promises several advantages. On the one hand, the interventional
nature of the data that can be obtained by the agent and the temporal order of these
observations obtained from RL favor the discovery of the causal structure, although with
some limitations since only the effects of the agent’s actions can be discovered. On the
other hand, if an agent knows the possible consequences of its actions, it can make a better
selection of them. This is particularly relevant in RL, because the knowledge given by
a causal model can significantly reduce the exploration process and therefore accelerate
learning. In addition, the learned CM can be transferred to other tasks and used for more
interpretable models.

At present, the first works focusing on the relationship between RL and CM are beginning
to emerge and they can be divided into three main groups:

1. Use Causal Models as side information to improve Reinforcement Learning algorithms
(CM → RL): These works assume a known causal model relating the state, action
and reward variables so the RL agent can make a better action selection while learning
the policy for the given task, in this way the agent can learn faster. Most of these
works are limited to Multi Armed Bandit (MAB) settings Lee and Bareinboim (2019,
2018); Lattimore et al. (2016) and also a completely defined Causal Model is assumed,
which is hard to obtain in the real world.

2. Use RL data to learn causal relationships of the environment (RL → CM): The main
limitation of this reduced group of works is that the structure is given, so only the
parameters are learned Madumal et al. (2019) or the agent, instead of learning a policy
for the task, uses reinforcement learning as a search strategy to find the graph that
achieves the best reward Zhu and Chen (2019a).

3. Simultaneously do both tasks (RL ↔ CM): Finally, there are some more recent works
Nair et al. (2019); Kansky et al. (2017) that simultaneously do both tasks: learn causal
effects from an agent communicating with the environment, and then optimize its
policy based on the learned causal relations (RL ↔ CM). Among their limitations we
can mention the use of only observational data and the structural assumptions used
according to the specific problem.

In this article we focus on the last point (RL ↔ CM): How can we provide an intelligent
agent with the ability to simultaneously learn and use causal models in the context of
reinforcement learning? To this end, we learn one causal model from each of the agent’s
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actions using the interventional nature of the data collected by the agent while leaning the
task. These models are represented as causal Dynamic Bayesian Networks (DBN’s) relating
states variables at time (i) with state and reward variables at time (i+1), and are discovered
using a score-based greedy algorithm. On the other hand, an algorithm is proposed to use
the (partially) learned causal models to guide the agent to take actions that lead to positive
reward states and thus accelerate the learning process. Both approaches are combined in an
algorithm called Causal-Q-Learning.

We tested Causal-Q-Learning on the “Coffee-Task" Boutilier et al. (1995) and show that
it learns the task in fewer episodes than a traditional reinforcement algorithm, and obtains
a causal model that can be directly transferred to similar tasks.

2. Related Work

Combing RL and CM has been proposed on psychology works like Zhu and Chen (2019b).
The author contrasts a model-free system that learns to repeat actions that lead to reward
with a model-based system that learns a probabilistic causal model of the environment which
it then uses to plan action sequences. Evidence from neuropsychology suggests that these
two systems coexist in the brain, both competing and cooperating with each other Dolan
and Dayan (2013).

Model-based reinforcement learning, e.g., Sutton (1991); Deisenroth and Rasmussen
(2011); Silver et al. (2017), has focused on learning the transition (s′|s, a) and reward func-
tions (r|s, a), while a causal model explicitly models the nature of the relationships between
a set of state variables.

Some works have focused on how to combine RL and CM to improve transfer between
similar tasks. In Nair et al. (2019) is presented a method for causal induction using visual
observations for goal directed tasks. During each training episode, the agent samples each
training environment and uses an interaction policy πI to probe the environment and collect
a trajectory of visual observations. Then, using supervised learning, they train a causal
induction model F , which takes as input the trajectory of observational data and constructs
C, which captures the underlying causal structure. The predicted structure C is given
as input to the policy πG conditioned on goal g, which learns to use the causal model to
efficiently complete a specified goal in a given training environment. At test time, F and
πG are fixed and the agent is evaluated on new environments with unseen causal structures.
Their main limitation is that the causal relations are just direct binary relations.

Schema networks Kansky et al. (2017) are an example of how learning causal relationships
and using them to plan can result in better transfer than model-free policies. In this work, the
authors introduce an object-oriented generative physics simulator capable of disentangling
multiple causes of events and reasoning backwards through causes to achieve goals. Schema
Networks can learn the dynamics of an environment directly from data. Compared with
methods like Asynchronous Advantage Actor-Critic and Progressive Networks on a suite of
breakout game variations; Schema Networks report better results on training efficiency and
zero-shot generalization, demonstrating faster, more robust learning and better transfer.
Strong assumptions about the structure of the causal models are made in this work.

Another example can be seen in Gonzalez-Soto et al. (2018). The authors propose a
decision-making procedure in which an agent holds beliefs about its environment, which are
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used to make a choice and then are updated using the observed outcome. The agent, using
its current beliefs, generates a local causal model and chooses an action from it as if that
model was the true one. Then, after it observes the consequences of its actions, its beliefs
are updated according to the observed information to make a better choice the next time.
The agent, in addition to learning a policy to choose actions, will also learn a causal model
from the environment, since the causal model it forms will approximate the true model. In
the experiments however, only the case where (i) the causal model is completely known and
(ii) only the structure is known, are analyzed. The problem of discovering the variables itself
and the connections between them is left as future work.

3. Proposed Method

We consider goal-conditioned Markov decision processes, which have an underlying causal
structure describing the behavior of the environment Nair et al. (2019). A goal-conditioned
MDP is a tuple (S,A,X , C,P,G, r, γ, ϕ), where S denotes the state space; A is the set of
possible actions; X is the set of causal macro-variables1 describing the state of the environ-
ment at a high abstraction level (see Chalupka et al. (2015)); C is the set of causal graphs
relating variables on X at two consecutive time steps, one graph for each action a ∈ A;
P : S × A × S → [0, 1] defines the probability transition function between states given an
action; G is the goal space where its elements are vectors of variables on X ; r : S×A×G → R
is the reward function which yields the immediate reward conditioned on the goal g ∈ G;
γ is the discount factor; and ϕ : S → X is a function which associates the state space to
the macro-variables space. The goal is to learn an optimal policy π∗g : S × G → A which
maximizes the total expected return R =

∑∞
k γkr(sk, ak, g).

In the considered scenarios, the agent has no information of the models (transition,
reward or causal relations) and we want to integrate causal discovery during reinforcement
learning so that the system can learn faster π than a traditional RL algorithm, and also
discover causal models. In this section, we first present the task, then describe Causal-Q-
Learning, and then explain each of its main steps.

3.1 Coffee task description

We will illustrate our method on the coffee task introduced in Boutilier et al. (1995). An
office robot is ask to go to a coffee shop, buy coffee, and return to deliver it to a user in
her office. On the way it could be raining, so the robot will get wet unless it has taken
an umbrella (available at the office) before leaving. The robot must learn a sequence of
optimal actions that allow it to solve the task with the highest possible reward. We assume
the problem can be modeled as a completely observable MDP. A state S is described by six
binary state variables: SL, the location of the robot (office or coffee shop); SU , whether
the robot has an umbrella; SR, whether it is raining; SW , whether the robot is wet; SC,
whether the robot has coffee; and SH, whether the user has coffee.

The robot has four actions: GO, changes its location and the robot can get wet if it
rains and it does not have an umbrella; BC (buy coffee) causes it to hold coffee if it is in

1. A high-level or macro variable is a function defined from other variables Chalupka et al. (2015), which
summarizes information about some aspect of the data structure.
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the coffee shop; GU (get umbrella) causes it to hold an umbrella if it is in the office; and
DC (deliver coffee) causes the user to hold coffee if the robot has coffee and is in the office.
The action GO is simplified; by executing the GO action the robot successfully navigates
from one place to another. However, we assume a stochastic environment. The robot gets
a reward of 0.9 whenever the user has coffee plus a reward of 0.1 whenever it is dry, in
addition, it receives a positive reward of 0.05 on each sub-goal (being in the coffee shop,
buying the coffee and returning to the office). A penalty of −1.0 is given if the robot does
not take the umbrella and it rains, and −0.1 is given in all other cases.

3.2 Simultaneous RL + CD

The combination strategy between RL and CD is illustrated in Algorithm 1. First, the agent
performs (T ) reinforcement learning (RL) episodes, in which it starts to learn a policy to
solve the task, and also collects interventional data for each of its actions. Specifically, the
values of the state variables prior to the action (si) and the values of the state variables after
the action (sj) plus the value of the reward variable at time (j) are stored for each action.
At the end of the (T) episodes, partial causal models (CD) are learned using the datasets
of each action. Note that every time the agent performs causal discovery, the corresponding
models are updated according to the new collected data. In the following (T ) episodes, RL
is performed but now using the partial causal models (RL + CD). This cycle of RL, CD,
RL+CD is repeated until the agent has learned the optimal policy and the causal models
can not be improved.

Algorithm 1: Simultaneos RL + CD
input :
output: A value function Q, a set of causal models G

1 while True do
2 for i← 0 to T_steps do
3 Q ← reinforcement_learning()
4 end
5 foreach a ∈ A do
6 G [a] ← causal_discovery(a)
7 end
8 for i← 0 to T_steps do
9 Q ← rl_using_causal_model(G)

10 end
11 if ¬(policy_improvement ∨model_improvement) then
12 break;
13 end
14 end
15 return Q,G

3.3 Causal Discovery using RL data

The coffee task can be solved using a model-free reinforcement learning algorithm, however,
there are a number of causal relationships of the type (S,A → S′) and (S,A → R) that can
be discovered and used to learn the optimal policy more efficiently. One way to represent
such relationships is through a Causal DBN for each action. In this scenario the Markov
assumption is fulfilled, therefore, the effects of a given action in the next state and the reward
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Figure 1: Ground truth causal DBNs relating state variables and reward at consecutive time
steps (I) and (J) for each action in the coffee task.

are completely determined by the current state of the world, so we can use a "two-slice"
causal DBN. We have one set of nodes representing the state of the world prior to the action,
Si, another set representing the state of the world after the action, Sj , and directed arcs
representing causal relations between them.

Figure 1 depicts the ground truth causal DBNs for each action in the coffee task. The
agent has no prior knowledge of any of these models. However, we will use these models as a
guide in order to measure the quality of their discovery with the data collected by the agent.
The value of a state variable Sj as a result of executing an action depends on the values of
state variables Si that have edges to Sj in the DBN. For example, after executing the action
GO the robot will be wet (swJ) at time j if it is raining (srI) and has no umbrella (suI)
or if it is already wet (swI) at time i. In the set of state variables at time j we include
R that represents the immediate reward obtained after executing the specified action. For
simplicity, we have also discretized this variable to two possible values: (+) indicating a
positive reward and (−) indicating a negative reward.

While the agent is learning the task we save, on each episode, all the values of the state
variables at time (i), the action, the values of the state variables at time (j) and the reward,
and then we group the data by the corresponding action. When we reach the number of
episodes (T ), we stop to collect data and the learning process, regardless of whether or not
the agent has learned the optimal policy. At this point, for the coffee task, we have 4 data
sets (one for each action) with 13 variables (6 for state at time i, 6 for state at time j and one
for the reward at time j), and a different number of observations depending on how often
the agent has executed the corresponding action during the RL process. To discover the
causal models, we can use any of the existing causal discovery algorithms in the literature
which can be supplemented with additional information. In our experiments we use the Hill
Climbing (HC) algorithm from the bnlearn package Scutari (2010). HC is a score-based
structure learning algorithm. We supplement the algorithm with a set of constraints as
additional information (for example, no variable of time (j) can cause a variable at time (i)
and variables at the same time cannot cause each other). We compare the discovered graph
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Algorithm 2: Action selection based on interventional queries.
Input : A state s sense by the agent, a set of actions A, a set of causal DBN models C, one for each

action.
Output: An action a.

1 probs← {}
2 foreach a ∈ A do
3 CM ← C[a]
4 p← P (reward = (+)|s, CM)
5 probs← probs+ p

6 end
7 max_value = max(probs)
8 max_index = index(probs,max_value)
9 if max_value > threshold then

10 return a[max_index]
11 end
12 return None

against the ground truth using the structural Hamming distance (minimum number of edge
insertions, deletions, and changes needed to transform a model into another) as accuracy
measure (lower is better). Those models may not be perfect at the beginning, but become
better with more data.

3.4 RL using Causal Models

It has been shown Molina et al. (2020); Feliciano-Avelino et al. (2021) that a causal model
relating state, action and reward can be used to accelerate a reinforcement learning process
by guiding the action selection process. In practice, it is very unlikely that the agent will have
such a model beforehand. In fact, our main goal is for the agent to be able to learn/use such
a model while learning the task. The models used in these works are not DBNs; however,
their action selection algorithm can be easily adapted to work with several DBNs (one per
action), see Algorithm 2. On line 4 we calculate the probability that the corresponding
action, given the value of the state variables at a given time, will lead to an immediate
positive reward. As future work, we could think of a sequence of actions instead of a single
action leading to a future positive reward. We calculate that value for each action, and then
we just select the one with higher probability. If that probability is higher than a certain
threshold, then we select the corresponding action. So the agent will execute that action no
matter if the current exploration strategy suggests another action.

4. Experiments and results

The experiments performed aim to test our hypothesis that by combining task learning
with causal discovery in a single algorithm can reduce the learning time and obtain the
corresponding causal models. We test our method in the stochastic version of the coffee
task described above, and compare it against Q-Learning Watkins and Dayan (1992). The
optimal policy to solve such a task is to take the umbrella (in case it rains on the way), go
to the coffee shop, buy the coffee, return to the house and deliver the coffee to the user. Our
hypothesis here is that our agent (that learns and uses causal models) can learn the optimal
policy faster (in terms of episodes) when compared to the model-free agent.
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In RL it is well known that a fundamental problem is determining the exploration-
exploitation strategy. ϵ indicates how often the agent must explore (take a random action
in a given state), instead of exploit (take the best action in the given state according to the
value function). The lower the value, the less the exploration. This exploration-exploitation
dilemma has an impact on our proposed method because more exploration favors the causal
discovery process, as we will see in the results, but eventually we need to explore less
to achieve convergence on learning the optimal policy. To compare the algorithms, we
performed experiments using two different exploration strategies. The first uses a fixed
exploration in all episodes at different levels (ϵ ∈ {0.9, 0.5, 0.1}). The second uses a decayed
exploration at different levels (λ ∈ {fast = 0.01, normal == 0.005, slow == 0.001}). In
this strategy, both agents start at (ϵ0 = 0.9) and then exponentially decrease the value of
the epsilon on each episode by (λ) using the following formula: ϵ(t) = ϵ0e

−λt

In all the experiments, we use a learning rate of α = 0.1 and a discount factor of γ = 0.8.
We run 10 trials of each experiment for each algorithm and report the average reward among
the episodes. In each episode, both agents start at a random state (excluding the terminal
state) and stop when they reach the goal state (the user has the coffee) or when a maximum
number of steps (99) is executed. First, we run the Q-Learning algorithm to determine the
total number of episodes for our experiments. We see that 600 episodes is enough to achieve
convergence (actually the Q-Learning agent seems to learn the optimal policy at around
episode 250). Our agent uses T = 30 and th = 0.7. T indicates the number of episodes in
which it alternates between performing traditional RL and RL using the model. That is,
during the first 30 episodes, it performs RL, learns the causal models with the collected data,
and in the next 30 episodes it performs RL using the learned causal models and repeats the
cycle. th is the causal threshold used by the action selection algorithm (see Algorithm 2).

In Figure 2 we can see an analysis of how the task learning behaves for our algorithm
(orange line) versus the baseline (blue line) using the fixed strategy at different levels of
exploration. The y-axis indicates the average reward, and the x-axis the episode number.
In subplots from (d) to (f), we can see how the model discovery (just for our agent) behaves
for each of the actions. On the y-axis we observe the structural hamming distance (shd)
which measures the similarity between the learned model and the ground truth and on the
x-axis we have the number of episodes. In scenario (a-d) we can see that none of the agents
can learn the optimal policy, because both are taking random actions 90% of the time.
However, it is clear that our agent achieves high rewards each time it uses the causal models
(e.g. from episodes 210 to 240). Which is explained on Figure 2(d) were we can see how
all causal models are correctly discovered by episode 200, so every time that our agent uses
the causal model for action selection it takes the action that gives a positive immediate
reward. The opposite happens in scenario (c-f). Due to the lack of exploration (ϵ = 0.1),
the learned causal models are incorrect. So every time our agent uses the causal models, it
takes incorrect actions that lead to the accumulation of negative reward. A middle ground
between these scenarios can be found in scenario (b-e).

The results of these first experiments show us the need to find a balance between explo-
ration and exploitation for the correct functioning of our proposed method. For this reason,
we then performed experiments where the exploration decayed exponentially as the episodes
progressed. In Figure 3, we can see the results using the decayed strategy at different levels
of decay (λ ∈ {fast = 0.01, normal = 0.005, slow = 0.001}). The first thing we can high-
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light is how, unlike the previously used fixed strategy, in this strategy both agents manage
to learn the optimal policy in fewer episodes. In scenario (a) and (b) we can observe how
our agent learns in fewer episodes while managing to fully discover the causal models for all
actions (see subplots (d) and (e)). In scenario (c) where exploration decreases more slowly,
our agent manages to learn the models faster, however, after 600 episodes we still cannot
see convergence in the rewards.

4.1 Discussion

As we can see from the results, our method performs better using a decreasing exploration
strategy. In this scenario it manages to learn the optimal policy for the task in fewer episodes
than a traditional model-free agent and also learns correctly the causal models for each of the
actions. The learned models could be transferred to other tasks that share state variables
and rewards.

It is important to mention that in these experiments we used predefined values of (T )
(interval to learn the causal model) and (th) (causal threshold) based on the initial estimate
of the total number of episodes. For a more realistic application, these parameters should be
estimated at run time, since the agent cannot know a priori how many episodes it will take
to learn the task, nor what are the correct causal models it has to discover. With respect
to the T parameter, we can use the cardinality of the variables of the corresponding causal
model and the amount of observations, so that when the first discovery is made, there is
enough data available to infer a (partial) model. With respect to the threshold t, we can

(a) ϵ = 0.9 (b) ϵ = 0.5 (c) ϵ = 0.1

(d) ϵ = 0.9 (e) ϵ = 0.5 (f) ϵ = 0.1

Figure 2: Q-Learning vs Causal Q-Learning using a fixed exploration strategy at different
levels.
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(a) λ = fast (b) λ = normal (c) λ = slow

(d) λ = fast (e) λ = normal (f) λ = slow

Figure 3: Q-Learning vs Causal Q-Learning using a decayed exploration strategy at different
levels.

perform simulations with the learned model and observe the results to know if both the
transition and the reward are correct, and based on that determine if it is convenient to be
guided by the model for the selection of actions.

Also critical is the size of the agent’s action space, since the number of causal models
to be discovered is equal to the total number of actions. To mitigate this limitation, a
relational representation of the actions could be used, which could drastically reduce the
number of actions. We are aware that experiments in more complex environments are
required, with sparse rewards, more actions, and more state variables, in order to make our
proposal scalable. Nevertheless, we consider that the results obtained constitute a good
starting point for future experiments.

5. Conclusions

The combination of Causal Discovery and Reinforcement learning is an exciting emergent
field. A method for simultaneously learning a policy with reinforcement learning and learning
and using causal models to accelerate the learning process was presented, in which the
agent alternately explores the environment to learn a policy and uses the observations to
discover the underlying causal models to select actions. The method was tested in different
experimental settings. Based on the results we can conclude that: (i) There is a trade-
off between optimal policy learning and causal discovery. High exploration favors causal
discovery but hampers reinforcement learning. (ii) The underlying causal models can be
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discovered using a Causal Dynamic Bayesian Network for each agent action and a score-
based causal discovery algorithm with good results. (iii) Learning (partially) correct causal
models can be used to improve reinforcement learning. (iv) Using a decreased exploration
strategy our method was able to converge to an optimal police in less episodes than a
traditional model free algorithm, while correctly discovering the causal models.

The results indicate that the presented methodology is a suitable alternative for solving
tasks where the environment is governed by a causal model. Using those models for action
selection can reduce the learning time with respect to a trial-and-error interaction with the
environment. The proposed approach was implemented over a commonly used model free
RL algorithm but it can be easily transfer to other algorithms. It is left for future work to
determine the T and th parameters at run-time, and also to perform tests on more complex
scenarios.
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