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Abstract

Subject-specific causal models are appropriate for domains such as biology, medicine, and neu-
roscience, where the causal relations vary across the individuals of a population. However, its
learning could be challenging, particularly under limited data sets. Although some works have
addressed this issue, they are restricted to discovering up to Markov equivalence classes. In this
work, we propose a method for the causal relations identification of subject-specific models. We
hypothesized that transferring related data sets and locally performing interventions improves the
causal direction identification of relations. The experimental results on true and imperfect Markov
equivalence classes of synthetic causal Bayesian networks show that our method performing in-
terventions over several subsets of the candidate parents and using related data according to their
differences with target, recovers a higher number of correct oriented edges.

Keywords: Causal discovery, Probabilistic graphical models, Subject-specific causal models, Trans-
fer learning

1. Introduction

Probabilistic graphical models (PGMs) could incorporate causal knowledge for making predictions
under interventions. Experimental data should be used in their learning, but it may be difficult
or impractical to collect enough experimental samples, particularly from specific subjects. For
that reason, from observational data, causal discovery methods learn Markov equivalence classes
(MECs) representing a set of equivalents PGMs with the same probability distribution and including
the true causal PGM that could be identified by performing experiments.

Subject-specific causal PGMs include the particular causal relations of a member of a popula-
tion. These models could be more appropriate for domains that have observed variations in causal
relations across individuals. For example, studies in genetics have found that some somatic genome
alterations produce expression changes in specific tumors (Cooper et al., [2018)). Some works in
neuroscience have revealed that causal relations might vary across patients between brain regions
because of their differences in the degree of disease affectation and the recovery process (Grefkes
and Fink, 2014). Learning subject-specific causal PGMs from limited data sets has not been suf-
ficiently explored. Most causal discovery methods have been designed to search for the common
causal relations of a set of individuals from data sets with enough samples. Although some works
have addressed this problem, they are limited to learning MECs (Jia et al., 2018; Rodriguez-Lopez
and Sucar}, |2022)), bipartite models (Cooper et al.,[2018)), or models with homogeneous causal struc-
ture and variations in causal effects across the individuals (Li et al., [2018).

In this work, we propose a method for causal direction identification of relations in subject-
specific PGMs. Our main contribution is a active learning strategy based on the invariant causal
prediction method (ICP) for using data sets related to the target subject and performing interven-



tions over selected variables. Our experimental results show that our method with weighted related
samples recovers a higher number of correct oriented edges than from only target samples or from
related sources ignoring their differences with the target.

The paper is organized as follows. Related work to our proposal is described in Section [2]
Section[3|provides a description of the invariant causal prediction method. Our proposal is presented
in Section[d] and the experimental results in Section[5] Finally, in Section[6] conclusions and future
work are drawn.

2. Related work

Our proposal is a knowledge transfer method that aims to solve the lack of data for the target subject,
using data from other ones closely related to the target (Pan and Yang| |2010). Despite the advan-
tages of knowledge transfer strategies for learning from limited data sets, only a few works have
explored their application in causal discovery. Most of these works have relied on the identification
of causal predictors for a single response variable from multiple data sets (Gamella and Heinze-
Deml, 2020; Peters et al., [2016}; [Rojas-Carulla et al., 2018). Although other methods have been
proposed for discovering the complete causal structure, they do not analyze subject-specific causal
discovery from limited target data sets. Assuming that all data sets include a representative num-
ber of samples, these methods discover the common causal relations from multiple observational
(Ramsey et al., 2010; [Tillman and Spirtes, 2011)) or interventional data sets (Claassen and Heskes,
2010; Mooij et al., [2020; Triantafillou and Tsamardinos, [2015). Only a few works have explored
the learning of subject-specific causal models. Some are limited to learning simple bipartite causal
models from sufficient data of the target subject (Cooper et al., [2018), for finding the same causal
structure for all individuals with only variations in their causal effects (Li et al.| [2018)), for discov-
ering up to Markov equivalence classes from only observational data of the target subject (Jabbari
et al., 2018)) or from data sets closely related to the target subject (Jia et al., 2018} Rodriguez-Lopez
and Sucar, [2022). In contrast with previous work, we propose a method for causal direction iden-
tification of subject-specific causal models by transferring related data sets and actively performing
interventions, assuming variations in causal relations across subjects and small target sample size.

3. Invariant causal prediction

The invariant causal prediction method (ICP) (Peters et al., [2016)) identifies the direct causes of a
response variable from a set of environments including samples from different experimental condi-
tions. It focuses on Gaussian linear models and considers that there exists a causal prediction model
that is invariant under different experimental conditions.

In ICP, it is assumed that given a set of variables { Xo, X1, ..., X},} in which X is the response
variable, and, Y = { X1, ..., Xp} its set of candidate causal predictors, a set of environments & is
composed by samples for (Xo, X7, ..., X,,) from different experiments e € &, that were generated
by linear Gaussian structural equation models (SEM), X7 = Zk# 5ka/§ +¢€, 7=01,...p;
with € ~ N(0,0?), and Bjcf’k # 0if X¢ = Pa(X;). In £, e = 0 correspond to observational
samples, and for e > 0, samples from SEMs in which 7¢ C Xy, ..., X}, were intervened with the
do-operator in the form:

a if j e 7¢;
Xe = J L7 ’ 1
j {Zk# 0 Xp+ e ifj ¢ I¢. (1
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ICP does not need knowledge about the localization of the interventions. It only requires that
interventions do not occur on the response variable and the set of candidate causal predictors in-
cludes all causal predictors. To identify the set of causal predictors of a variable, ICP tests with each
S C Y the null hypothesis: Hy s(€) : 36 € RP, such that, Ve € 8,38(5) =/, and , X¢=Y°5+
€, e L XS, where Be are the least-squares regression coefficients for e € £. Several sets could sa-

tisfy Hy.s(E), hence the final set of causal predictors of X is, S() = n(S):Ho (&) not rejected S.

4. Method

The proposed method, called Knowledge transfer for Subject-Specific causal learning - KSS, iden-
tifies the causal direction of subject-specific models with limited observational data using related
data sets and locally performing interventions over selected variables. KSS searches the set of
causal parents of each variable assuming that does not exist latent variables and using the invariant
causal prediction method (Peters et al., 2016).

KSS takes as input the skeleton of a causal Bayesian network (BN) Gr = (X, E), and finds
the causal direction of the edges from a target data set D7, and a set of additional source data sets
{Ds}s=1,...5. We assume that target and sources data sets contain observational samples of the X,
Dy = {(LETl, ...,pr)i}i:L“’NT and D; = {(1‘51,...,xsp)i}izl’m,]vs, with Vs : PT(X) 75 PS(X),
Nr << Ng, with small Ny. With these elements, the knowledge transfer problem for causal
relation identification is defined as follows:

Definition 1 Given a target domain Dy and a set of source domains {Ds},s = 1, .., S, the know-
ledge transfer problem for causal relation identification consists in how to identify causal direc-
tions of a target causal BN Gr = (X, E), using the knowledge in Dy and {Ds}, with Vs : Vo =
Vs, Dr # D;.

Our knowledge transfer method by transferring related sources aims to identify higher number of
correct causal directions than those recovered by a method that only uses D7. We consider that
source data sets contain samples from causal BNs related to the target causal BNs. That is, source
causal BNs have some parts of their structures in common with the target causal BNs hence they
represent structure modifications of the target causal BN.

For each X;, KSS locally searches for its set of parents by applying ICP, transferring source data
sets, and performing interventions over subsets of candidate parents. Source data sets are transferred
to estimate the parameters of the linear Gaussian model for X;. To improve the estimations of
the parameters, we consider differences between source and target data sets in their probability
distributions. These differences are encoded in weights for each source sample that are estimated
following the proposal of Rodriguez-Lopez and Sucar| (2022):

1 1
Wsj(DT, Ds) = exp <_K dMMD(DT7 Ds)> * exrp <_Kw d¢ (-Tsja DT)> (2)
v

where K., = % Zsszl dyvp(Dr,Dyg), Ky = N% Zj\/:sl dy(xsj, D7), with dasarp the maximum
mean discrepancy (MMD) metric (Borgwardt et al., [2006), and

o ST Ay p (ks Tsf)

maxp=1,. Np{dvvp(@Tr, )}

3)

dﬂJ(ij’DT) =
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An overview of the KSS is given in Algorithm[I] KSS takes the skeleton of a causal BN as input
to reduce the search of causal parents of a specific variable. First, KSS applies the multiple]lCP
procedure (see Algorithm [2) to identify source data sets most related to the target. We consider
that the multipleICP procedure can not find parents for X; with some source data sets because their
probability distributions are most similar to that of the target. Thus, weighted samples of source
data sets most similar to the target are added to the target data set to estimate the parameters of
the linear Gaussian model for X;. Then, it applies the performNExperiments procedure that is
described in Algorithm [3] This procedure obtains samples for X; and its candidate parents Y;
after performing interventions over several subsets of the candidate parents. We suppose that all
candidate parents should be intervened to ensure the identifiability of the true causal parents. For
that, the performNExperiments procedure at least generates one environment with the intervention
of all candidate parents. These new interventional samples and the new target data set are used to
find the parents of X;. Finally, based on the width of the corresponding confidence interval, the
direction of each undirected edge in Gy is determined.

Because some source data sets might include observational or interventions samples not helpful
for identifying the parents of X, the procedure multipleICP (see Algorithm [2)) applies ICP with
each combination of target and source data. Following the strategy in (Gamella and Heinze-Deml
(2020), it identifies as parents of X, the variables that appear on at least half of all sets accepted by
ICP. The union of all parents sets and its confidence interval define the direction of the edges.

Algorithm 1: KSS

Procedure KSS
Input: Dr: target data set, {Dg}: set of source data sets, Gr: undirected graph,
nExp: the maximum number of experiments, nEnv: the number of
environments for each experiment, a:: confidence level
Output: Goyr estimated DAG
Compute Wy, for each x; € D using
foreach X; in Gz do
Y; < adjacent nodes to X; in Gzar
Sacc < multipleICP(X;,Y;,Dp,{Ds}, @)
D7pew < Dr(X3, Y;) U{W,; D, (X;,Y;)}
DSrc <~ {D'I‘(X’L7 Yi)}TGSAcc
{&} < per formN Experiments(X;, Yi, Drpew, nExp, nEnv, | Drpew|)
(Zi7 SAC’C’, ICZ') — multz’pleICP(Xi, Yi7 DTneun {gt}, a)

Gout < Grn , T <« the set of undirected edges in Gy
foreach (X —Y) € T do
AX—>Y — ICy(X), By_>X — ICX(Y)
if Ax_y 75 By_.x and Ax_y > By_x then
L orient (X —Y)as (X — Y) in Goyr

if Ax_ .y 75 By_.x and Ax_y < By_x then
L orient (X —Y) as (Y — X) in Goyr

r¢Sacc

return Goyr




Algorithm 2: multipleICP
Procedure multipleICP
Input: Y': set of potential parents for X, &: observational environment, {&,}: set of
experimental environments and, a:: confidence level
Output: Z C Y: set of accepted parents for X, {ICx (W)}: set with the width of the
confidence interval for each W € Z, S 4o set of source indexes that accept
some W € Z
Sacc <0
foreach &, do
£« 50 U 85
(Sg,ICg) — ICP((S,Y, a)
Z < the set of variables that appear on at least half of all sets in S¢
IC; « {[ICc(W)[}wez,
Sacc < Sacc U {s}
Z — |, Z,
IC + mazs(ICy)
return (Z,IC;S sc0)

Algorithm 3: performNExperiments

Procedure performNExperiments
Input: X: target variable, Y: set of potential parents for X, D: samples for X and Y,

nExp: the maximum number of experiments, nEnv the number of
environments for each experiment, nsamples: the number of samples for each
experiment
Output: {&;} the set of environments
model X <— parameters of X ~ Y using D
&1 < per formExperiment(model X, 7 =Y, nsamples)
141
while i < nEzxp and i < |Y|do
foreach k < 1 to nEnv do
I+ ICY,|Z|=1i
L & + per formExperiment(model X, T, nsamples)
t41+1
return {&;}

5. Experimental Results

In this section, we present the evaluation of KSS using simulated data sets from synthetic and bench-
mark causal BNs. The experimental evaluation aimed to analyze the performance of KSS with diffe-
rent target and source data sets configurations. We hypothesized that by transferring related sources
datasets, according to their differences with target data sets, KSS will get its best performance.
Hence, we analyzed the performance of KSS using only samples of target data sets (KSS-TARGET),



transferring source data sets ignoring (KSS-ALL) and considering their differences with target data
sets (KSS-WEIGHTED). KSS-ALL joins all available data, that is, all source samples with weight
one are used to perform experiments. The performance of KSS was compared with the SLICE
method (Montero-Hernandez et al., [2018)) using only target samples. Additionally, we evaluated
the performance of methods when increasing the number of experimental environments and starting
from the perfect and imperfect skeletons of causal BNs.

We evaluated the methods using normalized structural Hamming distance (NSHD), arrowhead
precision (AHP) and recall (AHR) metrics. NSHD is the minimum number of edge insertions,
deletions, and changes needed to transform a model into another. Arrowhead precision is the ratio
TP/(TP+FP),and TP/(TP+F N) is the arrowhead recall. Where T'P is the number of common
edges in the estimated and the true models with the same orientation; F'P and F'N represent false
orientations, that is when an oriented edge X — Y is present in one model, but in the other one
thereis X <~ Y, X — Y, or no edge between X and Y (Jabbari et al., 2018). Differences between
the methods were assessed by applying the Wilcoxon signed-rank test with a significance level of
0.05. All simulations and implementations were performed on R 4.0.1 using the bnlearn (Scutari,
2010), pcalg (Kalisch et al., |2012), and InvariantCausalPrediction (Peters et al., [ 2016)) packages.

5.1 Synthetic data sets

We generated data sets from the benchmark causal BN MAGIC-NIAB (p = 44 nodes, 66 arcs,
and £ = 9 maximum number of parents for a node) and ten synthetic causal BNs. Following the
procedure of (Hauser and Biihlmann, 2012), we generated ten synthetic causal Bayesian networks
representing the target causal BNs, with p = 30 nodes, £ = 6, and edge weights selected uni-
formly from the range [0.1,1.0]. Edge weights were considered as parameters of each variable,
together with e ~ N(0,1). Using the procedure of (Luis et al., [2010), source causal BNs were
generated by modifying in certain percent (e,,.q) the edges of the target BNs, adding e;,,q edges,
followed by deleting edges in the same e,,,q percent. Source BNs less related to the target are
simulated increasing e,,oq (see Figure[I)). Five source BNs, from each target causal BN and each
emod € {10, 20, 30,40,50}%, were generated. Each target and source data set were sampled from
its corresponding BN using forward sampling and linear Gaussian models.

5.2 Results

We evaluated our proposal starting from the true and estimated skeletons of synthetic and MAGIC-
NIAB causal BNs. Estimated skeletons were obtained by the method of (Rodriguez-Lopez and
Sucar}, [2022) using the three most related synthetic source data sets (with a discrepancy level of
10%). The skeletons for synthetic causal BNs were estimated using source and target data sets
with 300 and 30 samples, respectively. From source and target data sets with 3080 and 44 samples,
respectively, was estimated the skeleton for MAGIC-NIAB. These estimated skeletons include false
and missing edges and incorrect v-structures.

First, we analyzed the impact on the performance of KSS of using source data sets with increa-
sing levels of discrepancy. In Figures [2] and [3| we present the average performance for the correct
and estimated skeletons of the synthetic causal BNs and the MAGIC-NIAB, respectively. The x-axis
represents the level of the discrepancy between source and target data sets. KSS-WEIGHTED, KSS-
ALL, and KSS-TARGET were configured to generate one experimental environment with p samples.
In the plots for synthetic causal BNs (Figure 2]), each point represents the average performance over



Target causal BN Source causal BN, e,,,,q = 10%

Figure 1: An example of synthetic target and source causal BNs used in the experiments. In red,
edges in the source BNs that do not appear in the target causal BN, and in blue, target edges that do
not appear in the source causal BNs. (Best seen in color.)

the ten synthetic causal BN, five target data sets with 15 samples, and five source data sets with the
same level of discrepancy and 900 samples. The plots suggest that the level of discrepancy of source
data sets impacts the performance in the causal direction identification. They indicate that including
the most related source data sets significantly outperformed the other configurations of KSS. We
found a significantly superior performance of KSS-WEIGHTED with respect to KSS-TARGET and
KSS-ALL in arrowhead recall and NSHD. This confirms that considering the differences between the
source and target data sets is important. The performance of KSS for true and estimated skeletons
is explained by the identifiability conditions of ICP and the number of experimental environments.
Because KSS-WEIGHTED, KSS-ALL, KSS-TARGET generate one experimental environment, and
ICP has problems identifying single causal parents, they fail in the causal identification of some
edges. Furthermore, ICP requires that sets of candidate parents include all causal parents, but es-
timated skeletons have missing edges. It is important to note that our proposal identifies causal
directions from imperfect skeletons without background knowledge.

In Figure [3] we present the average performance for the true and estimated skeletons of the
MAGIC-NIAB. Each point in the plots represents the average performance over ten target data sets
with 44 samples, and five source data sets with the same level of discrepancy and 6160 samples. The
plots shows that starting from the true skeleton, KSS-WEIGHTED gives significant superior perfor-
mance than KSS-TARGET and KSS-ALL, but not than SLICE. Due to the density of the MAGIC-
NIAB, one experimental environment is insufficient to identify more causal directions and improve
the performance of SLICE. This last, also explains the performance of KSS with estimated skeletons
of MAGIC-NIAB. In this case, the number of experimental environments and the missing edges of
estimated skeletons limit the causal identification.

We also analyzed the performance of our proposal when increasing the number of experiments.
The maximum number of experimental environments was increased from one to eleven in the fo-
llowing form. For the case of one experiment, it corresponds to the environment generated by the
intervention of the n candidate parents of a variable. The subsequent experiments correspond to
environments that were created by the intervention of k£ randomly selected candidate parents with
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Figure 2: Plots of the averages in arrowhead precision and recall -higher is better-, and NSHD -lower
is better- across the target-source discrepancy for the true (top) and estimated (bottom) skeletons of
synthetic causal BNs. (Best seen in color.)
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k = 1,2,3,..,n — 1. The remaining experimental data sets were generated by the intervention
of each candidate parent. In Figure 4] we present the average performance across the number of
experiments for the true and estimated skeletons of synthetic causal BNs. We followed a simi-
lar configuration to that of the experiment across the level of discrepancy. The plots suggest that
increasing the number of experiments improves the performance of KSS-WEIGHTED, KSS-ALL,
and KSS-TARGET. For true and estimated skeletons, we observed significant differences between
the performance of KSS-WEIGHTED with KSS-TARGET and KSS-ALL in arrowhead recall and
NSHD. The plots indicate that one experimental environment, including interventions of all candi-
date parents, is enough to obtain acceptable performance. They indicates that even with imperfect
skeletons, our proposal improves the causal identification. We found that this performance could
be significantly improved by transferring weighted source data sets and adding experimental envi-
ronments with the interventions of at least half of the candidate parents. Including experimental
environments with few interventions is not helpful, particularly with one random intervention that
produces edges with incorrect direction. These findings are confirmed with the plots for true and
estimated skeletons of MAGIC-NIAB in Figure[5] The plots suggest that KSS-WEIGHTED is more
appropriate to identify the causal direction of edges in dense causal BNs. The plots shows the sig-
nificantly superior performance of KSS-WEIGHTED with respect to KSS-ALL and KSS-TARGET.

6. Conclusions

In this paper, we have addressed the issue of learning subject-specific causal models from limited
data sets through a knowledge transfer method based on ICP. Our proposal is an active method
that identifies the direction of causal relations by transferring observational related data sets and
performing interventions over selected variables. This is one of the first approaches to try to recover
the complete casual structure of subject-specific models with limited data.

Our experimental results with simulated data sets from synthetic causal BNs indicate that our
proposal identifies causal directions when starting from the skeleton of causal BNs, including
weighted samples of the most related data sets and locally performing interventions over several
subsets with at least half of the candidate parents. Even though our proposal requires a skeleton,
it could identify causal direction starting from imperfect skeletons, without background knowledge
of the possible direction for some edges. Our experimental results also suggest that it is necessary
to include strategies to include extra edges in the imperfect skeletons for solving missing potential
causal parents.

As future work, we plan to validate our proposal with neuro-images of neuro-rehabilitation pa-
tients, and extend it to identify the causal direction using subsets or supersets of the target variables.
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